
ISEF 2005 - XII International Symposium on Electromagnetic Fields 
 in Mechatronics,  Electrical and Electronic Engineering 

Baiona, Spain, September 15-17, 2005 

 
Magneto-electric network models in electromagnetism 

 
Andrzej Demenko*, Jan Sykulski** 

 
*Poznań University of Technology, 60-965 Poznań, Poland, E-mail: andrzej.demenko@put.poznan.pl  

** University of Southampton, Southampton SO17 1BJ, UK, E-mail: J.K.Sykulski@soton.ac.uk 
 

Abstract – Network models of an electromagnetic field containing both eddy and displacement currents are 
presented. The models consist of magnetic and electric networks coupled via sources. The analogy between the 
finite element method and the loop and nodal formulations of electric circuits is emphasised. The models 
include networks containing branches associated with element edges (edge networks) or facets (facet networks). 
Methods of determining mmf sources of magnetic networks from loop and branch currents in electric circuits, 
as well as emf sources in electric networks on the basis of the rate of change of loop and branch fluxes in electric 
networks, have been carefully considered. 

 
I. Introduction 

 
One of the oldest techniques for electromagnetic field analysis and computation relies on magnetic 

and/or electric field equivalent circuits. Historically such circuits tended to be simple with few degrees 
of freedom due to limitations of available computing power; notwithstanding, these methods are still 
helpful in providing efficient estimates of global parameters and are used for teaching purposes as they 
are well based physically and avoid complicated mathematical descriptions. Dramatic increases in 
computer speed and available memory have removed many restrictions and contemporary network 
equivalents are often based on finite element formulations and are very detailed and accurate. It has 
been shown before [1–3] that finite element equations are equivalent to loop or nodal descriptions of 
appropriate magnetic or electric networks. Thus models stemming from the finite element approach 
may be viewed as network models. The number of branches in such networks is consistent with the 
number of edges or facets in the discretised mesh. Hence the models are fully multi-node and multi-
branch, which explains why they are called the networks. This contribution builds on previous 
publications and, in particular, addresses the coupling between magnetic networks and electric 
networks when both conduction and displacement currents may exist. 

 
II. Edge and Facet Models 

 
It has been shown [1] that it is helpful to introduce two types of models: ‘edge networks’ (EN) 

where branches are associated with edges of the elements, and ‘facet networks’ (FN) with branches 
connecting the centres of the relevant facets with the centre of the element volume. Figure 1 illustrates 
both types of networks for a hexahedron. Fragments of networks divided into prisms with a triangular 
base are depicted in Fig. 2 and refer to four elements. The facet model shows one loop around the edge 
P1P2, whereas the edge model includes one complete branch associated with that edge. Table 1 
summarises the branch equations for both models. The parameters of the edge model (permeance Λ, 
conductance G, capacitance C) may be established from the interpolation functions of the edge element, 
while the parameters of the facet model (reluctance Rµ and impedance Z) result from the interpolation 
functions of the facet element [1]. It should be noted that in models established using edge or facet 
elements there exist inter-branch couplings. For example, the flux in the ith branch of the edge 



(permeance) element model depends on the voltage across the permeance of the jth branch, whereas the 
magnetic voltage of the branch q in the facet (reluctance) model is linked to the flux in the branch p. 
Thus, when considering equations of Table 1, care must be taken as the matrices of branch parameters 
are not diagonal and matrix inversion may be very cumbersome. Such matrix inversion is normally 
avoided by applying a nodal method to the edge models and a loop method to the facet models. From the 
equations in Table 1, the nodal equations for the edge network follow: 
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Fig.1. Models of hexahedron: (a) edge model,  (b) faced model 
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Fig.2. Models of region with 9-edge prisms (4 prisms): (a) EN; (b) (FN) 

Table 1. Branch equations and substitutions for edge and facet models 

Type of network Branch equation Substitution Comments 

Edge – magnetic )( bb Θ+Λφ Ω= u  Ωnku =Ω  

Edge – electric ))(p( bVb euCGi ++=  Vku nV=  

Ω, V are the vectors of nodal potentials; Λ, G, C are the 
matrices of branch permeances, conductances, capacitances; Θb, 
eb are the vectors of branch mmfs and emfs; kn is the transposed 

nodal incidence matrix for EN, see Figs 1a, 2a 

Facet – magnetic fff Θφ −= µΩ Ru  eef φφ k=  

Facet – electric ffVf eZiu −=  eef iki =  

φe, ie are the vectors of loop fluxes and currents; Rµ, Z are the 
matrices of branch reluctances and impedances, ef Θf, are the 

vectors of branch mmfs and emfs; ke is the loop (mesh) matrix for 
EN and the transposed loop matrix for FN, see also Figs 1a, 2a
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The loop equations, on the other hand, may be written as 
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The nodal equations (1) are equivalent to the nodal finite element formulation using scalar potentials 
Ω and V, whereas equations (2) refer to the edge element formulation based on vector potentials A and 
T. The vector φe of loop fluxes of a facet network equals the vector of edge values of potential A, 
while the vector of loop currents ie is the same as the vector of edge values of potential T. 

The parameters of the edge and facet models may also be obtained in an approximate way [4, 6, 7], 
in which case no coupling between branches can be established, thus no mutual reluctances, permeances, 
conductances or capacitances are available. Only magneto-electric couplings are preserved, resulting 
from the dependence of mmf on current and emf on time derivative of magnetic flux. 

 
III. Magnetomotive and Electromotive Forces 

 
Branch sources in FN are established from loop quantities in EN, and – by symmetry – branch 

sources in EN are found from loop quantities in FN. Branch mmfs Θb in EN correspond to loop currents 
ie in FN, e.g. the mmf in branch P1P2 of the magnetic network of Fig. 2a is equal to the loop current of 
the electric network of Fig. 2b in the loop around the edge P1P2. Branch emfs eb in EN are found as time 
derivatives of loop fluxes φe in FN, hence the sources in (1) may be expressed as 

 eb i=Θ ,     teb ddφ−=e . (3a,b) 

The branch mmfs Θf in FN are represented by the loop currents io of the edge network, e.g. the mmf 
in branch Q1Q2 of the facet network of Fig. 2b is equal to the loop current io of the edge network 
depicted in Fig. 2a. The time derivative of the flux φo in the loop shown in Fig. 2a is equal (with the 
negative sign) to the emf in the branch Q1Q2 of the electric FN (Fig. 2b), thus the sources in (2) may be 
described as 

 of i=Θ , tof ddφ−=e . (4a,b) 

When using the loop method it is not necessary to know the branch sources, instead the loop 
sources are needed. For example, when dealing with equations (2), the branch values of Θf and ef are 
not required and we can concentrate on deriving the loop sources Θm and em, where  and 

. The loop mmf is equivalent to the current passing through the loop of the magnetic 
network, thus loop mmfs Θ

f
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m in the facet network correspond to the branch currents ib in the edge 
network, e.g. the mmf in the loop shown in Fig. 2b (the loop embracing the edge P1P2) is equal to the 
current of the branch P1P2 of the electric network of Fig 2a. The loop emfs may be found by taking 
time derivatives of branch fluxes in the magnetic network passing through the loops of the electric 
network, e.g. loop emfs em in the electric facet network may be established from the fluxes associated 
with branches of the magnetic edge network, em=−dφb/dt. Thus, when solving (2), we are allowed to 
use the following identities: 
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In order to determine fluxes φb, φo and currents ib, io associated with edge networks, it is not 
essential to solve the network equations; instead we may use the solutions for the facet network and 
apply a transposition matrix N. The elements of this matrix are given by the product of the 
interpolating functions of the relevant facet and edge elements [1]. Employing the matrix N yields 

 eo φφ N= ,     eo Nii = ,  (6a,b) 
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The matrix N may also be used do establish currents ie and fluxes φe, related to the loops of the facet 
network, from currents io and fluxes φo in the loops of the edge network: 
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These relationships are illustrated in Fig. 3, where hexahedron elements are considered for which 
all entries in the matrix N are equal to 1/8. 
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Fig.3. Transformation of currents: (a) FN into EN branch, (b) EN into FN loop, (c) FN into EN loop 

 
From the above discussion it may be concluded that – due to a better representation of sources – 

the field description using loop quantities is more universal. This deduction is consistent with an 
observation that the loop approach establishes correspondence with vector potentials, and it is 
generally agreed that formulations in terms of vector potentials are more powerful than those using 
scalar potentials.  

IV. Coupled Electro-Magnetic Networks 
 

Models of the electromagnetic field are provided by the coupled, via sources, magnetic and electric 
networks. It has already been noted that – due to the couplings between branches (mutual permeances, 
conductances and capacitances in EN, and mutual reluctances and impedances in FN) – it is more 
convenient to analyse edge networks using nodal approach, whereas facet networks are better handled 



using loop methods. Thus it follows (refer also to our previous comments about establishing mmfs and 
emfs) that a system containing an electromagnetic field may be described using the following coupled 
network models: (a) magnetic and electric facet network (FM-FE) – Fig. 4, (b) magnetic facet network 
and electric edge network (FM-EE) - Fig 5a, or (c) magnetic edge network and electric facet network 
(EM-FE) – Fig. 5b. 
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Fig. 4. Coupled facet networks (FM-FE), a network representation of the A-T method 

Q3 Q4 

Q1 Q2

P2 

P1 

P4 

P5 

φe1,2 

eb1,2 Θf2 Θf2

ib1,2 

EN-electric 
FN-magnetic 

Θf2

Θf1

Reluctance, Rµ

(a)

2,143212,1 bffffm i=Θ+Θ+Θ+Θ=Θ

2,12,1 p ebe φ−=

Admitance, G+pC

 
Q3 Q4 

Q1 Q2

P2 

P1 

P4 

P5 

ie1,2 

Θb1,2 ef2 ef2

φb1,2

EN-magnetic 
FN-electric  ef2

ef1 

Impedance, Z Permeance, Λ

(b) 

2,143212,1 p bffffm eeeee φ−=+++=

2,12,1 eb i=Θ

 
Fig. 5. Coupled facet and edge networks: (a) a network representation of the A-V method (FM-EE) 

(b) a network representation of the Ω-T method (EM-FE) 

The loop equations of the network model FM-FE correspond to the edge formulation using A-T. 
The loop sources are established directly from the branch quantities. In the FM-EE and EM-FE 
models, the branches of the magnetic network pass through the loops of the electric network, while the 
branches of the electric network pass through the loops of the magnetic network, as shown in Fig. 6. 
The equations of the FM-EE, EM-FE models correspond to the A-V, Ω-T formulations of the finite 
element method, respectively. The loop sources in the facet networks are obtained from the branch 
quantities in the in the edge networks, whereas branch sources in the edge networks from the loop 
quantities in the facet networks. From the loop equations applied to the facet networks of the FM-EE and 



EM-FE models, it is possible to derive edge formulation arising from the field description. It should be 
assumed that the nodes of the edge networks are equipotential, thus E=−dA/dt, H=T and loop currents in 
the electric network represent edge values of vector H, while time derivatives of the loop fluxes in the 
magnetic network correspond to the edge values of vector E. 
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Fig. 6. Network model of a region with a plane wave, E=1xEx(z), H=1yHy(z) 

 
V. Conclusions  

 
The proposed network models provide good physical insight, help understanding of complicated 

electromagnetic phenomena and aid explanation of methods of analysis of electromagnetic systems. 
The models are general and allow creation of networks of electromagnetic systems containing non-
homogenous materials and multiply-connected conducting regions. It is possible, for example, to 
represent windings containing filament or thin conductors, as well as rod conductors (e.g. in cage 
rotors). For thin conductors the best suited model is the facet electric network, which is a circuit 
representation of the method using electric vector potential T, but care must be taken to replace ‘large’ 
loops of the windings with ‘small’ loops around the edge of the elements [5]. The facet model can also 
be used to model cage windings of an induction machine – despite a common opinion that vector T is 
not appropriate for such systems – as well as conductors with holes all way through, i.e. multiply 
connected regions. The classical T formulation leads to loop equations around the element edges. 
Although the number of such loops is usually higher than the number of independent loops, in the 
multiply connected region it is not possible to set up a complete system of independent loops. It is 
therefore necessary to complement these equations by introducing additional loops embracing the 
‘holes’ which provide the required extra equations. This conclusion – which may be considered 
obvious from the circuit theory point of view – is not easy to arrive at using the classical finite element 
formulation. It may be argued therefore that the presented analogies between the finite element 
formulation and the equivalent network models not only facilitate understanding of the methods of 
field analysis but also help to formulate efficient computational algorithms. 
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