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Abstract

In this paper, we compare low cost implementations of wide-
band adaptive beamformers utilising the generalised sidelobe
canceller (GSC) in combination with the least-mean squares
algorithms. DFT based techniques suffer from unjustified nar-
rowband assumptions. We therefore derive and investigate an
overlap-save implementation of the GSC, which offers a steady
state suppression of jammers equivalent to a time domain GSC
but may be prone to slow convergence. Finally, subband tech-
niques offer a more robust convergence trade-off for a some-
what higher computational cost. Analysis and simulation re-
sults revealing some of the algorithms’ properties are presented.

1 Introduction

Ultra-wideband (UWB) communications offers a radically dif-
ferent approach to wireless communication compared to con-
ventional narrowband systems. This fast emerging technol-
ogy with uniquely attractive features invite major advances in
wireless communications, networking, radar, imaging and po-
sitioning systems [1]. However, for this technology to achieve
high spectral and spatial resolution, the array usually requires
a considerable temporal and spatial dimension. Thus, a larger
number of sensors, M , and tap delay line (TDL) elements, L,
results in a very large computational complexity of wideband
beamforming algorithms, inhibiting the deployment of pow-
erful techniques such as recursive least squares (RLS) algo-
rithms.

To reduce the computational complexity of wideband beam-
forming algorithms, transformations can be applied to the TDL
elements of each sensor. For example, the discrete Fourier
transform (DFT) yields frequency bins, on which independent
narrowband beamforming algorithms can be performed [3, 4,
5], yielding tremendous savings [6]. However, the suboptima-
lity of these narrowband solutions with respect to the wide-
band problem, as established in e.g. [4, 7, 8], requires slid-
ing window and block processing implementations [5] to be
replaced by algorithms based on overlap-add or overlap-save
techniques [8, 9, 10]. This step enhances the mean square error
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performance, but increases the computational load compared to
sliding window and block processing. Further, subband trans-
formations for adaptive filtering [11] can be applied to wide-
band beamforming [12, 13, 14]. There, filter banks with a high
frequency selectivity produce non-critically decimated alias-
free subband signals, which can be processed independently.
Although the various subbands will require wideband beam-
forming algorithms, a considerably reduced temporal dimen-
sion can be achieved [7, 13].

This paper performs a comparative study of the various
methods — in terms of computational cost, convergence speed,
and steady-state error — by example of the generalised side-
lobe canceller (GSC) [2, 15]. Sec. 2 briefly reviews the GSC’s
structure, while the various low-complexity realisations are dis-
cussed in Sec. 3. Simulations in Sec. 4 will provide insight into
the performance of various systems, and conclusions be drawn
in Sec. 5.

2 Wideband Beamforming via the Generalised
Sidelobe Canceller

We consider the wideband beamforming structure depicted in
Fig. 1, which acquires a spatio-temporal waveform by means of
M sensor signals xm[n], m = 0(1)M − 1 and fed into tapped-
delayed lines (TDLs) of dimension L. At each discrete time
instance n, an ML dimensional data vector

x[n] =
[
xT

0 [n] xT
1 [n] . . . xT

M−1[n]
]T

(1)

xm[n] = [xm[n] xm[n−1] . . . xm[n−L+1]]T (2)

is passed to the beamforming processor. We consider a linear
wideband beamformer, where a a linear output

e[n] = wHx[n], (3)
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Fig. 1. Time-domain beamforming structure.



is formed by a scalar product with the beamforming weights in
w,

w =
[
wT

0 wT
1 . . . wT

M−1

]T
(4)

wm = [wm,0 wm,1 · · · wm,J−1]
T

.

Exemplarily, we want to consider the linearly constrained min-
imum variance (LCMV) beamforming problem [19],

min
w

wHRxxw subject to CHw = f , (5)

where Rxx = E{
x[n]xH[n]

}
is the covariance matrix, C ∈

CMJ×r the constraint matrix and f ∈ Cr the response vector
for linearly independent constraints.

The generalised sidelobe canceller (GSC) transforms (5)
into an unconstrained optimisation problem by projecting the
ML element data vector by a blocking matrix B ∈ CML×ML−r

onto a subspace independent of the constraints, i.e. u[n] =
BHx[n], and by a quiescent vector wq to obtain the signal of
interest plus interference, d[n] = wH

q x[n]. Unconstrained op-
timisation of the output

e[n] = d[n] − wH
a u[n] (6)

can then be performed to linearly combine the blocking matrix
outputs by coefficients in wa ∈ CML−r to minimise any in-
terference remaining in d[n] in the mean square error (MSE)
sense [2, 15]. With the projections amounting to (ML)2 mul-
tiply-accumulates (MACs), the optimisation can be performed,
for example, by a normalised LMS algorithm with a complex-
ity of approximately 3ML MACs.

3 Efficient Implementations

3.1 Independent Frequency Bin Processing

A class of popular beamforming algorithms applies DFTs to
each TDL, and independently processes the resulting frequency
bins by L narrowband beamforming algorithms, e.g. a GSC,
as shown in Fig. 2, with H(z) representing an L-point DFT
matrix [3, 4, 5]. The resulting cost for processing the signal in
blocks of L samples accrues to

Cfb,block = (M + 1) log2 L + M2 + 3M (7)

complex MACs per fullband sampling period. A sliding win-
dow version of this algorithm computes the DFTs at each time
instance n, and replaces the IDFT at the beamformer output in
Fig. 2 by a simple summation [5], yielding a slightly higher
cost of

Cfb,sliding = ML log2 L + LM2 + 3LM (8)

MACs per fullband sampling period.
In both block and sliding window DFT implementations,

we use a vector xfd to denote the input data to the GSC beam-
former.

xfd[n] = P

⎡
⎢⎣ TL 0

. . .
0 TL

⎤
⎥⎦ · x[n] , (9)

where TL is an L-point DFT matrix applied to each TDL and
P a permutation matrix such that xfd[n] is ordered w.r.t. fre-
quency bins. The latter vector contains the M sensor compo-
nents for the first frequency bin in its first M elements, and so
forth until the last M elements are occupied by the M sensor
components of the Lth frequency bin.

By applying a DFT to the constraint equation in (5), con-
straints for sliding window and block processors can be de-
rived. If the signal of interest illuminates the array from broad-
side, the r = L constraints are decoupled and identical for
every frequency bin. As a result, the input to the adaptive GSC
processor can be denoted as

ufd[n] =

⎡
⎢⎣ BH 0

. . .
0 BH

⎤
⎥⎦

︸ ︷︷ ︸
BH

fd

xfd[n] , (10)

with ufd[n] ∈ C
(M−1)L and B ∈ C

M×M−1. Note that the
blocking matrix B applied to each frequency bin is different
from the blocking matrix defined in Sec. 2. Therefore, the co-
variance matrix Ruu,fd = E{

ufd[n] · uH
fd[n]

}
is given by

Ruu,fd = BH
fd

⎡
⎢⎢⎢⎣

R0,0 R1,0 . . . RL−1,0

R0,1 R1,1 . . . RL−1,1

...
...

. . .
...

R0,L−1 R1,L−1 . . . RL−1,L−1

⎤
⎥⎥⎥⎦Bfd

(11)
where Ri,j are M×M correlation matrices between frequency
bins i and j of the different sensor signals prior to passing the
blocking matrix Bfd.

Block and sliding window processing neglect any corre-
lation between frequency bins. With this approximation, the
covariance matrix to the resulting independent frequency bin
(IFB) processor Ruu,fd is forced to attain the form

Ruu,ifb =

⎡
⎢⎢⎢⎣

BHR0,0B OL . . . OL

OL BHR1,1B . . . OL

...
...

. . .
...

OL OL . . . BHRL−1,L−1B

⎤
⎥⎥⎥⎦ ,

(12)
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Fig. 2. Transform domain beamforming structure.



i.e. any correlation between bins i and j �= i is neglected. How-
ever, due to the high sidelobes in the DFT’s frequency response
characteristics as depicted in Fig. 3, adaptive algorithms suf-
fer from spectral leakage — limiting their convergence [16] —
and potentially need a substantial amount of degrees of free-
dom to approximately suppress even low rank interferers [7].
Recently, such failures have generally been attributed to the
application of essentially narrowband processing to wideband
problems [8].

3.2 Overlap-Save DFT Implementation

In order to overcome the problem of inter-frequency bin cor-
relations being neglected, overlap-add or overlap-save meth-
ods can be applied to accurately address wideband problems
in the DFT-domain [8, 9, 10]. Overlap-add and overlap-save
techniques exploit the Toeplitz nature of the of data matrix,
transforming it to a circulant form by increasing the DFT to
2L points. Unlike the circular convolution between the signals
xm[n] and the filters following each sensor implemented by
the previously outlined methods, they now realise a linear con-
volution [9]. By rigorously minimising time domain criteria,
such as the mean square error, expressed in the DFT domain,
exact wideband DFT domain methods can be attained and, if
required, subsequently simplified [8].

3.2.1 Exact Frequency Domain Formulation

We first introduce a block processing notation by stacking the
outputs e∗[nL], e∗[nL+1], · · · , e∗[nL+L−1] into a vector
e[n] ∈ CL, yielding

e[n] =
M−1∑
m=0

XH
m[n]wm, (13)

where with (2)

Xm[n] = [xm[nL] xm[nL+1] · · · xm[nL+L−1]] . (14)
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Fig. 3. Filter bank characteristic of a 16-point DFT.

We can expand the convolutional matrices Xm[n] to a circulant
form [20] and write the output of the beamformer as

[
v

e[n]

]
=

M−1∑
m=0

[
X̃H

m[n] XH
m[n]

XH
m[n] X̃H

m[n]

]
·
[

wm

0

]
(15)

where v is an arbitrary J element vector and X̃m is a Toplitz
matrix using the data samples of Xm except for an arbitrary
element along the main diagonal. Note that with a 2L point
DFT matrix T, the circulant property can be exploited such
that

Γ
m

[n] = T ·
[

X̃H
m[n] XH

m[n]
XH

m[n] X̃H
m[n]

]
· TH (16)

= diag

{
TJ

[
xm[nL + L]

xm[nL]

]}
(17)

takes on a diagonal form [20], whereby J is a reverse identity.
Therefore, the definition of a DFT domain error vector e[n] ∈
C2L leads to

e[n] = T
[

0
en

]

= T
[

0L×L 0L×J

0L×L IL

]
TH

︸ ︷︷ ︸
G

·T
[

v
en

]

= G
M−1∑
m=0

Γ
m

[n] · T
[
wm

0

]
= G Γ[n] w (18)

in dependency of the frequency domain coefficients w ∈ C 2ML

with G ∈ C2L×2L, and Γ[n] ∈ C2L×2ML.
To formulated the constraint equation with the frequency

domain variables,

CHw =
M−1∑
m=0

CH
m · wm = f (19)

whereby the original matrix equation can be separated into M
additive components. Note that Cm ∈ CL×r has an arbitrary
form (in particular not Toeplitz), where r is the number of lin-
early independent constraints. In terms of the DFT domain co-
efficients, we have

M−1∑
m=0

[
CH

m 0r×J

] [
wm

0

]
= f (20)

or
M−1∑
m=0

[
CH

m 0r×J

]
THwm = CH w = f , (21)

where C ∈ C2ML×r is the new constraint matrix

C =

[[
C0

0L×r

]H

TH · · ·
[

CM−1

0L×r

]H

TH

]H

(22)

applicable to the DFT domain coefficient vector.



3.2.2 Overlap-Save GSC

The LCMV formulation equivalent to the time domain but us-
ing frequency domain variables is now given by

min
w

E{
eH[n]e[n]

}
= min

w
wHRw , (23)

subject to CHw = f , where R = E{
Γ[n]HGHGΓ[n]

}
=

E{
Γ[n]HGΓ[n]

}
.

Analogously to the time domain formulation of the GSC,
the weight vector w is separated into two orthogonal compo-
nents, w = wq − v, with a quiescent vector wq representing a
projection onto the constraints, and a projection away from the
constraints, −v, given by

v = Bwa (24)

utilising the blocking matrix B =span{C⊥}, which spans the
nullspace of the constraint matrix C.

Therefore, with (18), the beamformer output is given by

e[n] = G Γ[n]
(
wq − Bwa

)
. (25)

Analogously to a time domain LMS algorithm, by using the
instantaneous squared error as a cost function ξ = eH [n]e[n]
we obtain a stochastic gradient

∇̂ξ =
∂ξ

∂w∗
a

= −BH ΓH[n] e[n] (26)

where GHG = G has been exploited. The update equation for
wa can then be written as

wa[n + 1] = wa[n] + μ BH ΓH[n] e[n] (27)

The computational cost of this exact frequency domain GSC
algorithm has been addressed in [22] and accrues to

Cfd,os = 2M(4ML− 2r + log2 L + 3) + 4 log2 L + 6 (28)

complex MACs per fullband sampling period.

3.2.3 Covariance Matrix

To determine the input covariance matrix to the adaptive pro-
cess, we follow a proof of convergence in the mean similar to
the LMS algorithm [21]. If the MMSE solution is subtracted
both sides of (27), it can be shown that

w̃a[n + 1] = w̃a[n] − μ BHE
{
ΓH[n]GΓ[n]

}
B w̃a[n]

=
(
I− μBHE

{
ΓH[n]GΓ[n]

}
B

)
w̃a[n] (29)

with w̃a[n] = E
{
wa[n] − wa,opt

}
, where wa,opt is the MMSE

solution. If the solution in (29) is compared to the structurally
identical derivation for the LMS, the term

Ros = BHE
{
ΓH[n]GΓ[n]

}
B ∈ C

2ML−r×2ML−r (30)
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Fig. 4. Filter bank characteristic (K = 8, N = 6).

can be identified as the covariance matrix in the overlap-save
frequency domain implementation of the GSC. Note that no
approximation have been made in the derivation of the overlap-
save method with respect to the original time domain MSE, and
that Ros is not forced to be of block diagonal form as in the
standard frequency domain approach of Sec. 3.1.

3.3 Independent Subband Processing

In subband adaptive beamforming, the blocks H(z) in Fig. 2
represent K-channel analysis filter banks which are non-critically
decimated by a factor N < K . These filter banks can be de-
rived from a real value prototype FIR filter by a generalised
discrete Fourier transform (GDFT), according to [17]. The re-
dundancy of the filter banks can be exploited to attain a high
frequency selectivity where sidelobes between adjacent bins
are kept to a minimum as illustrated in Fig. 4.

Due to the high sidelobe attenuation, the resulting subbands
only overlap with adjacent bands and possess a sufficiently
high stopband attenuation elsewhere. The covariance matrix of
the filter bank outputs, given by Rxx,sub = E{

xsub · xH
sub

} ∈
CKML/N×KML/N , therefore takes the structure of

Rxx,sub=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R0,0 R1,0 0J . . . 0J RK−1,0

R0,1 R1,1 R2,1 0J 0J

0J R1,2 R2,2
. . .

...
...

. . .
. . .

. . . 0J

0J
. . . RK−2,K−2 RK−1,K−2

R0,K−1 0J . . . 0J RK−2,K−1 RK−1,K−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)
with J = ML/N , where

xT
sub[v] =

[
x0[v] x1[v] · · · xK−1[v]

]
with (32)

xT
k [v] =

[
x0,k[v] x1,k[v] · · · xM−1,k[v]

]
,

xT
m,k[v] =

[
x̂m,k[v] x̂m,k[v−1] · · · x̂m,k[v−L/N +1]

]
.

The vector xT
m,k[v] contains data inside a TDL formed from

the mth sensor signal in the kth subband, with v being the dec-
imated time index, v = n

N . Different from the DFT domain



processing, the subband signals are still considered wideband
— although with a reduced bandwidth as evident from Fig. 4 —
thus motivating the need for wideband processing in the sub-
band domain. However, due to the reduced bandwidth note
that the length of TDL for each subband channel is now ap-
proximately N times shorter than the fullband case [13].

The essence for computational efficiency in subband-based
beamforming is the independent processing of subband signals.
Although adjacent subband signals are correlated, the off-block
diagonal terms in (31) are due to redundancy in the overlap
regions, and will disappear if the main block diagonal terms
Rk,k, k = 0(1)K − 1 are suppressed, i.e. Rxx,subis rank-
deficient. Therefore, different from critically decimated DFT
domain processing, the off-block-diagonal terms in (31) can be
neglected from processing without incurring a penalty, and a
separate beamforming algorithm can be operated in each sub-
band [14, 13].

The covariance matrix seen by the adaptive filter input is
given by

Ruu,sub = BH
sb Rxx,sub Bsb (33)

with a block diagonal blocking matrix

Bsb =

⎡
⎢⎣ B0 0

. . .
0 BK−1

⎤
⎥⎦ (34)

consisting of the blocking matrices Bk ∈ CML/N×(M−1)L/N ,
k = 0(1)K−1. Hence, Ruu,sub retains the structure of Ruu,sub

and its redundancy. With the temporal dimension of the sub-
band beamformers reduced by a factor of approximately N and
an N times slower update rate due to decimation, the computa-
tional complexity of this approach accrues to

Csb =
1
N

[(M + 1)(4K log 2(K) + 4K + Lp) +

+ K(ML/N)2 + KML/N ] (35)

MACs, whereby Lp is the length of the filter bank’s proto-
type and the filter bank implementation is based on a gener-
alised DFT modulation permitting a computationally inexpen-
sive polyphase realisation. The cost in (35) also includes the
reconstruction of the beamformer output via a synthesis bank
G(z), as indicated in Fig. 1.

4 Performance Comparison

4.1 Computational Complexity

A comparison of complexity between the various GSC imple-
mentations is provided in Fig. 5 in dependence on the tem-
poral dimension L and the number of sensor elements M of
the beamformer. The time domain implementation is the most
costly realisation, while the lowest cost is afforded by the in-
dependent frequency bin processor in block mode. The sliding
window independent frequency bin processor is more costly
than the latter, but still provides a benefit in terms of complex-
ity of overlap-save and the subband realisation, which is based
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Fig. 5. Computational complexities in MACs of the various
GSC implementations in dependence on the TDL length L and
M = 10, M = 30, and M = 100 sensor elements each. The
lowest curve reverse to M = 10, the highest of each kind to
M = 100.

on a filter bank with K = 16 channels decimated by N = 14
based on a prototype with Lp = 448 coefficients.

4.2 Final MSE

Taking the performance of the time domain beamformer as a
benchmark, we assess the possible final MSE of the various
implementations. Since the overlap save technique optimises
the time domain cost function, its steady state performance can
be expected to be similar to the time domain solution. A differ-
ence arises from the doubling of the adaptive parameters from
ML − r elements in wa[n] to 2ML − L elements in wa[n],
resulting in a potentially larger excess mean square error [21].

Block and sliding window independent frequency bin im-
plementations suffer from the forced block-diagonalisation of
the covariance matrix Ruu,ifb in (12), which is justified only
if the input signal consists of frequencies coinciding with fre-
quency bins. If the input signal violates this condition, then the
MSE performance will be reduced with respect to the time do-
main approach. A shown in [7], potentially a rank one source
could require all degrees of freedom available in the beam-
former [7], and hence with the exhaustion of available degrees
of freedom in the system, the steady state MSE performance
can be poor.

The subband approach is based on the tri-block diagonal
covariance matrix in (33). As evident from the filter bank char-
acteristic in Fig. 4, the stopband level of the bandpass filters
determines how well the idealised zero matrices 0ML/N are ap-
proximated, as they will determine the MSE bound [16]. Thus
the MSE performance of the subband GSC can be controlled by
the filter bank design, in contrast to sliding window and block
processing methods.

4.3 Convergence Speed

In order to provide examples for the convergence speed of the
various wideband beamformer implementations in Sec. 3, we
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consider an array with M = 10 linear uniformly spaced sensors
followed by TDLs of length L = 32. In the case of a subband
implementation, we utilise a filter bank with prototype length
Lp = 96 decomposing signals into K = 8 subbands deci-
mated by N = 6. The computational complexity of the various
schemes is summarised in Tab. 1. The signal of interest is at the
array’s broadside, while 10 narrowband jammers impinge from
-20◦ at an SINR of -45 dB. Additionally, the array is corrupted
by uncorrelated noise at an SNR of -6 dB. Below, we consider
two scenarios for the interferers.

Scenario 1. All interferers sit on frequency bins, i.e. at
integer multiples of Ω = 2π/L, and not in the overlap re-
gion of the analysis filter banks of the subband implementa-
tion. The mean squared residual error (MSE), i.e. the beam-
former output minus the signal of interest, over an ensemble of
100 simulations is shown in Fig. 6. For the frequency domain

Table 1. Computational cost of various beamformers.

structure MAC/sample rel. cost
time domain 103360 100.00%
freq. domain/block 185 0.18%
freq. domain/sliding 5760 5.57%
freq. domain/overlap save 416 0.40%
subband domain 4416 4.27%

methods, the interferers sit on frequency bins and can be nulled
out fast and with a single degree of freedom (DOF) – the data
covariance matrix at the blocking matrix output is diagonal,
and no approximation error is made by neglecting correlations
between different frequency bins. The subband method con-
verges somewhat fast than the time domain approach due to
the prewhitening effect of the decomposition.

Scenario 2. All interferers lie outside the frequency bins
and coincide with the overlap region of the filter banks. As can
be seen in Fig. 7, the time domain algorithm is unaffected. In
the subband scheme each interferer will appear in the two sub-
bands sharing the overlap region, and two DOFs are required
to suppress each rank-one interferer [7]. Since the order of the
subband beamformer is large enough to provide the DOFs, the
convergence characteristic is not substantially different from
Fig. 6. For the DFT based approaches, block processing and
sliding window methods fail due to neglecting the correlations
between frequency bins. All temporal DOFs are needed to sup-
press a single interferer, otherwise only a limited level of at-
tenuation can be achieved. The overlap-save method reaches a
satisfactory steady-state MSE, but due to a large dynamic range
in the excitation of the various frequency bins due to spectral
leakage as well as block adaptation [10], convergence is slow.

5 Conclusions

A number of different beamformer implementations have been
reviewed and compared. DFT-based techniques, in particu-
lar block processing, offer high computational savings. How-
ever, if the jammer signal components do not coincide with
frequency bins, block and sliding window methods suffer from
unjustified narrowband approximations. The presented overlap-
save method guarantees a better steady-state value, but can
incur slow convergence, while the subband approach offers a
very robust performance at a somewhat higher cost, although
still inexpensive and consistently faster in terms of its conver-
gence compared to a time domain implementation.
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