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Abstract 
 

This paper presents the DFM notation and its 
operational semantics. DFM (Document Flow Model) 
is a message-based workflow notation for modelling 
asynchronous web services communication, which uses 
coordination mechanisms to support dynamic 
configurations and long-running business processes. 
The operational semantics of a DFM specification 
describes the possible behaviours of a system of inter-
related web services, in terms of the messages that can 
be exchanged during the execution of one or more 
business processes, and the effect each message 
execution has on the business process state. 
 
1. Introduction 
 

Web Services technology enables modern 
applications implemented over heterogeneous web 
environments. A web service publishes its interfaces in 
an XML document, WSDL, and is invoked through an 
XML-based messaging protocol, SOAP [1]. Using 
platform independent and standard XML documents, a 
service consumer can invoke a service following this 
shared understanding, without being concerned with 
how the service is implemented. 

 A service-oriented application is composed of 
dynamic web services orchestrated using asynchronous 
messages. The web services are owned and managed 
by several business partners. This architecture provides 
benefits over traditional applications on 
interoperability, flexibility and dynamic configuration. 
However, it also adds considerable complexity to the 
implementation and verification [2]. 

 
2. Motivation 
 

The aim of our work is to investigate service-
oriented system environments, and use formal 

modelling to capture a business process as a workflow 
specification, in order to facilitate service-oriented 
system automation and validation [3, 4]. 

  Business Process Execution Language for Web 
Services (BPEL4WS) has been positioned as the 
standard for specifying web service workflows. Other 
workflow definition languages [5, 6] leverage the 
concepts from BPEL4WS, and focus on workflow 
patterns. BPEL4WS separates a workflow from the 
web services involved in its execution, by using a pre-
defined workflow instance with full interaction states 
communicating with stateless services [7]. However, 
BPEL4WS provides limited support for long-running 
interactions, where failures are more likely to happen, 
and where services might require reconfiguration while 
some of their interactions are still active: on the one 
hand, failure of the workflow instance can result in the 
interaction state being lost; on the other hand, business 
process workflows can not be updated while processes 
are still running [8]. A mechanism for coordinating 
complex services and for managing long-running 
transactions is therefore required. 

The requirements for dynamic web services that use 
asynchronous messaging were investigated in [9]. A 
formal notation for describing the flow of documents 
in such systems, DFM, was also introduced in loc. cit. 
(see also [10]). The most important features of DFM 
are summarized below: 
• DFM uses an XML-like tree data structure to 

specify documents in a concise notation.  
• DFM models asynchronous communication, and 

supports two kinds of communication patterns: 
one-way communication, which amounts to a 
service receiving a message, and notification, 
which amounts to a service sending a message. 
Request-response and solicit-response [11] 
conversations are modelled in DFM as a one-way 
plus a notification communication. 

• DFM uses a coordination mechanism to support 
long-running interactions and dynamic 



configurations. This includes the use of contexts 
to identify process states, of a decentralized 
context propagation mechanism to structure 
process-related data, and of a persistent 
component, a ContextStore, to maintain process 
states. 

The syntax and informal semantics of DFM are 
summarized in Section 3. (Further details can be found 
in [10].) An operational semantics for DFM is then 
presented in Section 4. 
 
3. The DFM notation 
 

DFM is a message-based workflow notation, used 
to specify systems of independent web services, 
coordinated via asynchronous messages. Since 
messages are essentially XML documents, we call this 
notation Document Flow Model. 

The systems specified in DFM are concurrent: 
multiple process sessions are carried out at the same 
time. Unique identities are used to distinguish between 
different processes or sub-processes. These identities 
are generated by a service following some request 
(incoming message), and are passed as parameters to 
outgoing messages. To ensure process integrity, the 
actual process state is maintained in a persistent 
component, ContextStore, and the process identity is 
used to access and update this state.  

Web services interact with each other by messages. 
Since we are not interested in the detailed functionality 
of each service, we model a service as a collection of 
outgoing messages generated in response to an 
incoming message. The outgoing messages are 
independent, and can be sent out in any order. Prior to 
sending these messages, a service may perform an 
update of relevant process states, as maintained in the 
ContextStore. Also, in determining the messages to be 

sent, the service may rely on an evaluation of certain 
process states (subsequent to any state updates). 

A web service is described in DFM using a set of 
message definitions. Each message definition, 
messagedef, specifies the actions taken by the service 
when executing a particular message. This includes 
actions for generating new process identities, actions 
for storing process data into the ContextStore, and 
actions for sending messages, either unconditionally or 
upon certain conditions being satisfied. A condition is a 
ContextStore evaluation expression, possibly 
containing logical operators. Simple conditions 
evaluate to true when certain entries, containing 
process data, are present in the ContextStore under a 
specified process identity, id. The three types of 
actions, i.e. generating process identities, storing 
process data and sending messages, are performed in 
this particular order. The storebody specifies the store 
actions to be carried out concurrently, after the process 
identities described in idaction have been generated, 
and before the message sending actions described in 
sendbody are carried out (also concurrently). 

A document record data structure is used to specify 
the properties of an object, in an XML-like fashion. A 
document record consists of a list of property 
name/value pairs, or simply of a list of values, 
enclosed within square brackets. The values can 
themselves be document records, thus allowing for an 
arbitrary degree of nesting in a document record. For 
example, a message is a document record with 
property names to:, query: and function:, and with the 
corresponding property values describing the message 
receiver, the message data (or parameters), and the 
requested operation. 

We use a travel booking example to illustrate the 
DFM notation.  

 
 
messagedefs ::= messagedef | messagedef messagedefs  
messagedef   ::= onMessage message  idaction  storebody  sendbody 
storebody       ::= _ | storeaction  storebody   
sendbody       ::= _ | sendaction  sendbody  | csendaction sendbody 
idaction          ::= _ | generate new ids                 ids ::= id | id, ids 
storeaction     ::= store id -> entry in ContextStore  id  ::= string 
sendaction     ::= send message 
csendaction   ::= if condition then { sendactions }  sendactions   ::= sendaction | sendaction sendactions 
condition        ::= ContextStore [id] contains entries | condition and condition | condition or condition | not condition 
entries          ::= entry | entry, entries      
entry              ::= [from:from, query:query ] | [from:from , query:query, result:query]  from ::= string 
message        ::= [ to:to, query:query, function:function] to ::= string       function ::= string    
query             ::= element | [from:from,query:query,context:id] | [from:from,query:query,result:query,context:id] 
element         ::= string | [elements]    elements ::= element | element, elements    
 

Figure 1. Formal syntax for DFM 



 
 
onMessage[to:a,query:[from:u,query:[f,h],context:c], 
                 function:bookTravel] 
generate new id 
store id->[from:u, query:[f,h], context:c] in ContextStore 
send[to:fs,query:[from:a,query:f,context:id], 
    function:bookFlight] 
send[to:hs,query:[from:a,query:h,context:id], 
    function:bookHotel] 
 

Figure 2. Travel agent spec-I 
 

Upon receiving a user request, the TravelAgent, a, 
creates a new process identity, id. It then stores the 
user query into the ContextStore. In this example, the 
TravelAgent decomposes the query into two new 
queries, to be sent to the FlightShop, fs, and the 
HotelShop, hs, using then new process identity. The 
two messages are parallel messages, i.e. they could be 
sent out in any order. 
 
 
onMessage[to:a,query:[from:s,query:f,result:r, 
  context:id], function:shopReply] 
store id -> [from:s, query:f, result:r] in ContextStore 
if  ContextStore[id]  contains   
       [from:a, query:[from:u,query:[f,h],context:c]],  
       [from:fs,query:f,result:r1],[from:hs,query:h,result:r2] 
then { send[to:u, 
           query:[from:a,query:[from:u,query:[f,h],context:c], 
                      result:[r1,r2], context:id],  
            function:bookReply] } 
 

Figure 3. Travel agent spec-II 
 
When the TravelAgent receives a reply from a shop 

service, it reads the context of the query and saves the 
other parts of the query into the ContextStore under 
that process identity. Since the systems specified in 
DFM are asynchronous, the two shop replies can arrive 
in any order. Therefore, each time the agent receives a 
reply, it will check the process state, and if the process 
has been completed a reply message will be sent to the 
user, otherwise no action will be taken. 
 
4. Operational Semantics 
 

We now present an operational semantics for DFM. 
The semantics describes the possible behaviours of a 
system consisting of a number of related services, in 
terms of the messages that can be executed in 
particular states of the system, and the effect such 
message executions have on the system state. The 
execution of a message is handled by the web service 

to which the message was sent. Since communication 
is asynchronous, the sequence of message executions 
is undetermined. 

The environment within which the communications 
are taking place is modelled using a virtual daemon. 
The daemon uses a message pool to manage the 
sending and receiving of messages by the services, and 
at the same time maintains service configurations. 

The execution of a message is carried out in the 
following key steps: the message is matched to a 
message pattern; the actions which need to be carried 
out are determined, based on information generated 
from the system specification and on the current 
process state; and finally, the resulting message 
patterns are evaluated, and the result is added to the 
message pool. 

Our operational semantics supports dynamic 
configurations, by allowing the service names used in 
system specifications to be mapped to actual services 
at runtime. This is achieved using the configuration 
tables dynamically provided by the environment. 

Formally, the operational semantics associates, to 
each DFM specification, a labelled transition system 
whose states correspond to possible states of the 
system (defined by the messages awaiting execution 
and by the current state of the ContextStore), and 
whose labels correspond to message executions. 
Defining this transition system requires several 
auxiliary functions, which we now describe. 
 
4.1. Specification functions 
 

The following information can be extracted from a 
given DFM specification. 
 
4.1.1. ServiceId. The set ServiceId contains all the 
service identifiers present in the specification: 
 
ServiceId = {s | to:s appears inside a message} 
 
4.1.2. Message. The set Message contains all message 
patterns present in the specification: 
 
Message = {m |  
 onMessage m appears inside a messagedef} 
 
4.1.3. The ids, context and vars functions. As part of 
executing a message, new process identities can be 
created, in order to identify specific sub-processes. The 
ids function gives, for each message m, the process 
identities generated upon the execution of m: 
 
ids: Message → P (String) 
ids(m) = {id | id appears in the idaction of onMessage m} 



Similarly, the context and vars function give, for 
each message m, the process identities passed as 
parameters to m using the context: property, and the 
names of all the other variables used as parameters in 
definition of m, respectively: 
 
context, vars : Message → P (String) 
context(m) = { id | context:id appears inside m} 
vars(m) = {var | var appears as an element inside m}                                 
 
4.1.4. Store action function. The function storeactions 
gives, for each message m, the set of storeactions to be 
carried out upon the execution of m. 
 
StoreAction = {storeA | storeA is generated by storeaction}
  
storeactions: Message → P (StoreAction) 
storeactions(m) = {storeA∈StoreAction |   
                storeA appears inside onMessage m}  
 
4.1.5. Send action functions. The function sendactions 
gives, for each message m, the set of sendactions to be 
carried out unconditionally upon the execution of m: 
 
SendAction = {sendA | sendA is generated by sendaction} 
sendactions: Message  → P (SendAction)  
sendactions(m) = {sendA∈SendAction |  
              sendA appears inside onMessage m}  
 

For each message m, the set conds(m) gives the 
conditions which must be evaluated as part of the 
execution of m: 
 
Condition = {c | c is generated by condition} 
conds(m) = {c∈Condition| c appears inside onMessage m} 
 
while the function csendactions(m) gives the actions 
associated to each such condition: 
 
csendactions(m) : conds(m) → P (SendAction) 
csendations(m)(c) = {sendA∈SendAction | sendA appears  
 inside  if c then {…}, inside onMessage m }  
 
4.2. Semantic Functions 
 

A number of semantic functions will be used to 
describe the effect of message executions, both on the 
message pool (where new messages will typically be 
added), and on the current state of the ContexStore 
(where some process states will be updated). 
 
4.2.1. Context Store. The ContextStore stores 
business process states using entries, and organizes 
them using process identities. 
 

Entry = {e | e is generated by entry} 
ContextStore = string → P(Entry) 
 

 
Figure 4. A message pool 

 
4.2.2. Service. The set Service contains the names of all 
services relevant to a particular specification. In the 
following, we assume Service = {S1,S2,…Sn}. For each 
service, Si, a message-set, MSi, gives the pending 
messages of Si., as found in the message pool (see also 
Figure 4). In addition, for each service Si, a 
configuration table links the service identifiers used in 
the definition of Si to actual services (elements of 
Service). This is captured by the function: 
 
configi : ServiceId → Service 
 
Table 1. A TravelAgent service configuration 

 
Service Id Service 

a S1 
fs S3 
… … 

 
4.2.3. MessageVal. The message pool is the container 
for messages awaiting execution. The set MessageVal 
contains all possible such messages. 
 
MessageVal = {[to:t, query:q, function:f] | t, q, f ∈ string}  
 
4.2.4. Matching function. For each service Si, the 
matchesi function gives the message pattern m that 
corresponds to a message M from the message pool. 
 
matchesi: MessageVal → Message 
matchesi([to:t, query:q, function:f]) = 
    [to:t’, query:q’, function:f]  ∈ Message if configi(t’) = t 
 



4.2.5. Evaluation of a document. The evaluation 
function evalM,i defines how to evaluate document 
expressions appearing inside a message definition m, 
based on the values provided by a corresponding 
actual message M waiting to be executed by Si, and on 
the values generated from the environment upon the 
execution of M. The function evalM,i is defined 
inductively on the structure of document expressions. 
The base cases correspond to service names, message 
parameters/contexts and process identities: 
 
evalM,i(t) = config i(t) if m=matchesi(M)  
                                     and to:t or from:t inside m 
evalM,i(v) = value obtained from m=matchesi(M), 
                      if v ∈ vars(m) ∪ context(m) 
evalM,i (id) = new value generated from the environment, 
                      if m=matchesi(M) and id ∈ ids(m) 
 
while the induction cases correspond to messages, 
queries and entries: 
 
evalM,i ([to:t,query:q,function:f]) 
           = [to:evalM,i(t), query:evalM,i(q), function:f] 
evalM,i([var1,..,varn]) = [evalM,i(var1),..,evalM,i(var2)] 
evalM,i([from:f, query:q, context:c]) 
         = [from:evalM,i(f),query:evalM,i(q),context:evalM,i(c)] 
evalM,i([from:f, query:q, result:r, context:c]) 
         = [from:evalM,i(f), query:evalM,i(q),result:evalM,i(r), 
                                                                context:evalM,i(c)] 
evalM,i([from:f, query:q]) 
         = [from:evalM,i(f), query:evalM,i(q)] 
evalM,i([from:f, query:q, result:r]) 
         = [from:evalM,i(f), query:evalM,i(q), result:evalM,i(r)] 
 
4.2.6. Evaluation of a condition. An additional 
function needs to be defined for evaluating the 
conditions appearing inside message definitions, given 
an actual message M waiting to be executed by service 
Si, and a particular state of the ContextStore, CS: 
 
evalM,i  : conds(m) × ContextStore → {true, false} 
evalM,i (ContextStore[id] contains e1,…,en , CS) 
                 = true if each evalM,i(ej) ∈ CS[evalM,i(id)]  
                 = false otherwise 
 

The boolean operators are evaluated in the usual way. 
 
4.2.7. Send function. For each message M waiting to 
be executed by a service Si, and each state CS of the 
ContextStore, the function send_funM,CS,i gives, for each 
service, Sj, the messages to be sent to Sj as a result of 
executing M: 
 
send_funM,CS,i : Service → P(MessageVal) 
send_funM,CS,i (Sj) = {M’∈MessageVal | m=matchesi(M)  
                      and send m’ ∈ sendactions(m) ∪  
                   (csendactions(m)(c) where evalM,i(c,CS)=true)  
                and to:t in m’ and evalM,i(t)=Sj  

           and M’=evalM,i(m’)} 
 
4.3. System configurations and transitions 
 

The operational semantics of a DFM specification is 
defined in terms of transitions between system 
configurations, where a configuration describes the 
messages waiting to be executed by each service, 
together with the current state of the ContextStore. 
Formally, a configuration is tuple: 
 
(MS1,...,MSn,CS) ∈ P(MessageVal)×…× P(MessageVal) 

  ×ContextStore 
 
and transitions between configurations have the form: 
 
                   execute(M) 
     (MS1,...,MSn,CS) ⎯⎯⎯⎯⎯→ (MS1’,…,MSn’,CS’) 
 
where the latter configuration is completely 
determined by executing M in the former 
configuration. A single operational rule, given in 
Figure 5, describes when such a transition is possible, 
and what the outcome of the transition is. Specifically, 
the message M being executed must belong to some 
message-set MSi; its execution (by service Si) results in 
M being taken out from the message-set, in some 
process states being updated, and in new messages 
being added to some of the message-sets. The matchesi  

 
 
             execute(M) 
 (MS1,…,MSn, CS )  ⎯⎯⎯⎯⎯⎯⎯→ (MS1’, …,MSn’, CS’) 
 if  ( M ∈ MSi )  

where:    
             matchesi(M) = m 
             for id ∈ ids(m)∪context(m), CS’[evalM,i(id)] = CS[evalM,i(id)] ∪ {evalM,i(e) | store id → e ∈ storeactions(m)} 

              MSi’ = MSi \ {M} ∪ send_funM,CS’,i(Ni), and for j ≠ i, MSj’ = MSj ∪ send_funM,CS’,i(Nj) 
 

Figure 5. A transition rule 



function (of service Si) is used to determine the 
message pattern m that matches the message M, and 
subsequently the evalM,i and send_funM,CS,i functions are 
used to compute the required state updates (as 
specified in the storeactions of m), and the new 
messages to be added to the message-sets (as specified 
in the sendactions of m). 

This operational rule can be used to generate a 
transition system, whose states are configurations, and 
whose transitions are all possible instances of the given 
rule. Any configuration containing at least one 
message in one of the message-sets can, in principle, 
be chosen as an initial state. Unfolding the transition 
system starting from this state yields all the behaviours 
which can be exhibited by the services S1,...,Sn, while 
they cooperate towards the execution of the messages 
in the initial configuration. 

For the travel booking example of Section 3, letting 
the initial state consist of a single message 
bookTravel(A) yields the transition system in Figure 6 
(where only the message part of configurations is 
shown). 

 

 
Figure 6. A TravelAgent process flow 

 
4.4. Discussion 
 

Web services are independent entities in a service-
oriented system. As a result, the sending of a message 
should not rely on the availability of other web 
services. A web service should be able to pick up a 
message after it has recovered from a failure, or 
immediately after its addition to a web service system. 
The operational semantics presented here conforms to 
this asynchronous communication behaviour which 
also supports dynamic configurations. 

Earlier in this section we discussed the use of 
configuration tables in mapping system prototypes to 
actual services. Transition rules for changing system 
configuration (e.g. by adding or removing a service) 
have not been discussed here due to lack of space, but 
it is relatively straightforward to extend our 
operational semantics to also account for the dynamic 
aspect of web service systems. 

 
5. Conclusion 
 

We have described a message-based workflow 
notation for modelling asynchronous web services 
communication, with the capability to support long-
running interactions and dynamic configurations. A 
formal operational semantics for this notation has also 
been presented. Future work includes the use of this 
operational semantics to develop a simulation tool for 
asynchronous web services coordination.   
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