
An Operational Semantics for DFM, a Formal Notation
for Modelling Asynchronous Web Services Coordination

Jingtao Yang, Corina Cîrstea, Peter Henderson
School of Electronics and Computer Science

University of Southampton, U.K.
{jy02r, cc2, ph}@ecs.soton.ac.uk

Abstract

This paper presents the DFM notation and its
operational semantics. DFM (Document Flow Model)
is a message-based workflow notation for modelling
asynchronous web services communication, which uses
coordination mechanisms to support dynamic
configurations and long-running business processes.
The operational semantics of a DFM specification
describes the possible behaviours of a system of inter-
related web services, in terms of the messages that can
be exchanged during the execution of one or more
business processes, and the effect each message
execution has on the business process state.

1. Introduction

Web Services technology enables modern
applications implemented over heterogeneous web
environments. A web service publishes its interfaces in
an XML document, WSDL, and is invoked through an
XML-based messaging protocol, SOAP [1]. Using
platform independent and standard XML documents, a
service consumer can invoke a service following this
shared understanding, without being concerned with
how the service is implemented.

 A service-oriented application is composed of
dynamic web services orchestrated using asynchronous
messages. The web services are owned and managed
by several business partners. This architecture provides
benefits over traditional applications on
interoperability, flexibility and dynamic configuration.
However, it also adds considerable complexity to the
implementation and verification [2].

2. Motivation

The aim of our work is to investigate service-
oriented system environments, and use formal

modelling to capture a business process as a workflow
specification, in order to facilitate service-oriented
system automation and validation [3, 4].

 Business Process Execution Language for Web
Services (BPEL4WS) has been positioned as the
standard for specifying web service workflows. Other
workflow definition languages [5, 6] leverage the
concepts from BPEL4WS, and focus on workflow
patterns. BPEL4WS separates a workflow from the
web services involved in its execution, by using a pre-
defined workflow instance with full interaction states
communicating with stateless services [7]. However,
BPEL4WS provides limited support for long-running
interactions, where failures are more likely to happen,
and where services might require reconfiguration while
some of their interactions are still active: on the one
hand, failure of the workflow instance can result in the
interaction state being lost; on the other hand, business
process workflows can not be updated while processes
are still running [8]. A mechanism for coordinating
complex services and for managing long-running
transactions is therefore required.

The requirements for dynamic web services that use
asynchronous messaging were investigated in [9]. A
formal notation for describing the flow of documents
in such systems, DFM, was also introduced in loc. cit.
(see also [10]). The most important features of DFM
are summarized below:
• DFM uses an XML-like tree data structure to

specify documents in a concise notation.
• DFM models asynchronous communication, and

supports two kinds of communication patterns:
one-way communication, which amounts to a
service receiving a message, and notification,
which amounts to a service sending a message.
Request-response and solicit-response [11]
conversations are modelled in DFM as a one-way
plus a notification communication.

• DFM uses a coordination mechanism to support
long-running interactions and dynamic

configurations. This includes the use of contexts
to identify process states, of a decentralized
context propagation mechanism to structure
process-related data, and of a persistent
component, a ContextStore, to maintain process
states.

The syntax and informal semantics of DFM are
summarized in Section 3. (Further details can be found
in [10].) An operational semantics for DFM is then
presented in Section 4.

3. The DFM notation

DFM is a message-based workflow notation, used
to specify systems of independent web services,
coordinated via asynchronous messages. Since
messages are essentially XML documents, we call this
notation Document Flow Model.

The systems specified in DFM are concurrent:
multiple process sessions are carried out at the same
time. Unique identities are used to distinguish between
different processes or sub-processes. These identities
are generated by a service following some request
(incoming message), and are passed as parameters to
outgoing messages. To ensure process integrity, the
actual process state is maintained in a persistent
component, ContextStore, and the process identity is
used to access and update this state.

Web services interact with each other by messages.
Since we are not interested in the detailed functionality
of each service, we model a service as a collection of
outgoing messages generated in response to an
incoming message. The outgoing messages are
independent, and can be sent out in any order. Prior to
sending these messages, a service may perform an
update of relevant process states, as maintained in the
ContextStore. Also, in determining the messages to be

sent, the service may rely on an evaluation of certain
process states (subsequent to any state updates).

A web service is described in DFM using a set of
message definitions. Each message definition,
messagedef, specifies the actions taken by the service
when executing a particular message. This includes
actions for generating new process identities, actions
for storing process data into the ContextStore, and
actions for sending messages, either unconditionally or
upon certain conditions being satisfied. A condition is a
ContextStore evaluation expression, possibly
containing logical operators. Simple conditions
evaluate to true when certain entries, containing
process data, are present in the ContextStore under a
specified process identity, id. The three types of
actions, i.e. generating process identities, storing
process data and sending messages, are performed in
this particular order. The storebody specifies the store
actions to be carried out concurrently, after the process
identities described in idaction have been generated,
and before the message sending actions described in
sendbody are carried out (also concurrently).

A document record data structure is used to specify
the properties of an object, in an XML-like fashion. A
document record consists of a list of property
name/value pairs, or simply of a list of values,
enclosed within square brackets. The values can
themselves be document records, thus allowing for an
arbitrary degree of nesting in a document record. For
example, a message is a document record with
property names to:, query: and function:, and with the
corresponding property values describing the message
receiver, the message data (or parameters), and the
requested operation.

We use a travel booking example to illustrate the
DFM notation.

messagedefs ::= messagedef | messagedef messagedefs
messagedef ::= onMessage message idaction storebody sendbody
storebody ::= _ | storeaction storebody
sendbody ::= _ | sendaction sendbody | csendaction sendbody
idaction ::= _ | generate new ids ids ::= id | id, ids
storeaction ::= store id -> entry in ContextStore id ::= string
sendaction ::= send message
csendaction ::= if condition then { sendactions } sendactions ::= sendaction | sendaction sendactions
condition ::= ContextStore [id] contains entries | condition and condition | condition or condition | not condition
entries ::= entry | entry, entries
entry ::= [from:from, query:query] | [from:from , query:query, result:query] from ::= string
message ::= [to:to, query:query, function:function] to ::= string function ::= string
query ::= element | [from:from,query:query,context:id] | [from:from,query:query,result:query,context:id]
element ::= string | [elements] elements ::= element | element, elements

Figure 1. Formal syntax for DFM

onMessage[to:a,query:[from:u,query:[f,h],context:c],
 function:bookTravel]
generate new id
store id->[from:u, query:[f,h], context:c] in ContextStore
send[to:fs,query:[from:a,query:f,context:id],
 function:bookFlight]
send[to:hs,query:[from:a,query:h,context:id],
 function:bookHotel]

Figure 2. Travel agent spec-I

Upon receiving a user request, the TravelAgent, a,
creates a new process identity, id. It then stores the
user query into the ContextStore. In this example, the
TravelAgent decomposes the query into two new
queries, to be sent to the FlightShop, fs, and the
HotelShop, hs, using then new process identity. The
two messages are parallel messages, i.e. they could be
sent out in any order.

onMessage[to:a,query:[from:s,query:f,result:r,
 context:id], function:shopReply]
store id -> [from:s, query:f, result:r] in ContextStore
if ContextStore[id] contains
 [from:a, query:[from:u,query:[f,h],context:c]],
 [from:fs,query:f,result:r1],[from:hs,query:h,result:r2]
then { send[to:u,
 query:[from:a,query:[from:u,query:[f,h],context:c],
 result:[r1,r2], context:id],
 function:bookReply] }

Figure 3. Travel agent spec-II

When the TravelAgent receives a reply from a shop

service, it reads the context of the query and saves the
other parts of the query into the ContextStore under
that process identity. Since the systems specified in
DFM are asynchronous, the two shop replies can arrive
in any order. Therefore, each time the agent receives a
reply, it will check the process state, and if the process
has been completed a reply message will be sent to the
user, otherwise no action will be taken.

4. Operational Semantics

We now present an operational semantics for DFM.
The semantics describes the possible behaviours of a
system consisting of a number of related services, in
terms of the messages that can be executed in
particular states of the system, and the effect such
message executions have on the system state. The
execution of a message is handled by the web service

to which the message was sent. Since communication
is asynchronous, the sequence of message executions
is undetermined.

The environment within which the communications
are taking place is modelled using a virtual daemon.
The daemon uses a message pool to manage the
sending and receiving of messages by the services, and
at the same time maintains service configurations.

The execution of a message is carried out in the
following key steps: the message is matched to a
message pattern; the actions which need to be carried
out are determined, based on information generated
from the system specification and on the current
process state; and finally, the resulting message
patterns are evaluated, and the result is added to the
message pool.

Our operational semantics supports dynamic
configurations, by allowing the service names used in
system specifications to be mapped to actual services
at runtime. This is achieved using the configuration
tables dynamically provided by the environment.

Formally, the operational semantics associates, to
each DFM specification, a labelled transition system
whose states correspond to possible states of the
system (defined by the messages awaiting execution
and by the current state of the ContextStore), and
whose labels correspond to message executions.
Defining this transition system requires several
auxiliary functions, which we now describe.

4.1. Specification functions

The following information can be extracted from a
given DFM specification.

4.1.1. ServiceId. The set ServiceId contains all the
service identifiers present in the specification:

ServiceId = {s | to:s appears inside a message}

4.1.2. Message. The set Message contains all message
patterns present in the specification:

Message = {m |
 onMessage m appears inside a messagedef}

4.1.3. The ids, context and vars functions. As part of
executing a message, new process identities can be
created, in order to identify specific sub-processes. The
ids function gives, for each message m, the process
identities generated upon the execution of m:

ids: Message → P (String)
ids(m) = {id | id appears in the idaction of onMessage m}

Similarly, the context and vars function give, for
each message m, the process identities passed as
parameters to m using the context: property, and the
names of all the other variables used as parameters in
definition of m, respectively:

context, vars : Message → P (String)
context(m) = { id | context:id appears inside m}
vars(m) = {var | var appears as an element inside m}

4.1.4. Store action function. The function storeactions
gives, for each message m, the set of storeactions to be
carried out upon the execution of m.

StoreAction = {storeA | storeA is generated by storeaction}

storeactions: Message → P (StoreAction)
storeactions(m) = {storeA∈StoreAction |
 storeA appears inside onMessage m}

4.1.5. Send action functions. The function sendactions
gives, for each message m, the set of sendactions to be
carried out unconditionally upon the execution of m:

SendAction = {sendA | sendA is generated by sendaction}
sendactions: Message → P (SendAction)
sendactions(m) = {sendA∈SendAction |
 sendA appears inside onMessage m}

For each message m, the set conds(m) gives the
conditions which must be evaluated as part of the
execution of m:

Condition = {c | c is generated by condition}
conds(m) = {c∈Condition| c appears inside onMessage m}

while the function csendactions(m) gives the actions
associated to each such condition:

csendactions(m) : conds(m) → P (SendAction)
csendations(m)(c) = {sendA∈SendAction | sendA appears
 inside if c then {…}, inside onMessage m }

4.2. Semantic Functions

A number of semantic functions will be used to
describe the effect of message executions, both on the
message pool (where new messages will typically be
added), and on the current state of the ContexStore
(where some process states will be updated).

4.2.1. Context Store. The ContextStore stores
business process states using entries, and organizes
them using process identities.

Entry = {e | e is generated by entry}
ContextStore = string → P(Entry)

Figure 4. A message pool

4.2.2. Service. The set Service contains the names of all
services relevant to a particular specification. In the
following, we assume Service = {S1,S2,…Sn}. For each
service, Si, a message-set, MSi, gives the pending
messages of Si., as found in the message pool (see also
Figure 4). In addition, for each service Si, a
configuration table links the service identifiers used in
the definition of Si to actual services (elements of
Service). This is captured by the function:

configi : ServiceId → Service

Table 1. A TravelAgent service configuration

Service Id Service

a S1
fs S3
… …

4.2.3. MessageVal. The message pool is the container
for messages awaiting execution. The set MessageVal
contains all possible such messages.

MessageVal = {[to:t, query:q, function:f] | t, q, f ∈ string}

4.2.4. Matching function. For each service Si, the
matchesi function gives the message pattern m that
corresponds to a message M from the message pool.

matchesi: MessageVal → Message
matchesi([to:t, query:q, function:f]) =
 [to:t’, query:q’, function:f] ∈ Message if configi(t’) = t

4.2.5. Evaluation of a document. The evaluation
function evalM,i defines how to evaluate document
expressions appearing inside a message definition m,
based on the values provided by a corresponding
actual message M waiting to be executed by Si, and on
the values generated from the environment upon the
execution of M. The function evalM,i is defined
inductively on the structure of document expressions.
The base cases correspond to service names, message
parameters/contexts and process identities:

evalM,i(t) = config i(t) if m=matchesi(M)
 and to:t or from:t inside m
evalM,i(v) = value obtained from m=matchesi(M),
 if v ∈ vars(m) ∪ context(m)
evalM,i (id) = new value generated from the environment,
 if m=matchesi(M) and id ∈ ids(m)

while the induction cases correspond to messages,
queries and entries:

evalM,i ([to:t,query:q,function:f])
 = [to:evalM,i(t), query:evalM,i(q), function:f]
evalM,i([var1,..,varn]) = [evalM,i(var1),..,evalM,i(var2)]
evalM,i([from:f, query:q, context:c])
 = [from:evalM,i(f),query:evalM,i(q),context:evalM,i(c)]
evalM,i([from:f, query:q, result:r, context:c])
 = [from:evalM,i(f), query:evalM,i(q),result:evalM,i(r),
 context:evalM,i(c)]
evalM,i([from:f, query:q])
 = [from:evalM,i(f), query:evalM,i(q)]
evalM,i([from:f, query:q, result:r])
 = [from:evalM,i(f), query:evalM,i(q), result:evalM,i(r)]

4.2.6. Evaluation of a condition. An additional
function needs to be defined for evaluating the
conditions appearing inside message definitions, given
an actual message M waiting to be executed by service
Si, and a particular state of the ContextStore, CS:

evalM,i : conds(m) × ContextStore → {true, false}
evalM,i (ContextStore[id] contains e1,…,en , CS)
 = true if each evalM,i(ej) ∈ CS[evalM,i(id)]
 = false otherwise

The boolean operators are evaluated in the usual way.

4.2.7. Send function. For each message M waiting to
be executed by a service Si, and each state CS of the
ContextStore, the function send_funM,CS,i gives, for each
service, Sj, the messages to be sent to Sj as a result of
executing M:

send_funM,CS,i : Service → P(MessageVal)
send_funM,CS,i (Sj) = {M’∈MessageVal | m=matchesi(M)
 and send m’ ∈ sendactions(m) ∪
 (csendactions(m)(c) where evalM,i(c,CS)=true)
 and to:t in m’ and evalM,i(t)=Sj

 and M’=evalM,i(m’)}

4.3. System configurations and transitions

The operational semantics of a DFM specification is
defined in terms of transitions between system
configurations, where a configuration describes the
messages waiting to be executed by each service,
together with the current state of the ContextStore.
Formally, a configuration is tuple:

(MS1,...,MSn,CS) ∈ P(MessageVal)×…× P(MessageVal)

 ×ContextStore

and transitions between configurations have the form:

 execute(M)
 (MS1,...,MSn,CS) ⎯⎯⎯⎯⎯→ (MS1’,…,MSn’,CS’)

where the latter configuration is completely
determined by executing M in the former
configuration. A single operational rule, given in
Figure 5, describes when such a transition is possible,
and what the outcome of the transition is. Specifically,
the message M being executed must belong to some
message-set MSi; its execution (by service Si) results in
M being taken out from the message-set, in some
process states being updated, and in new messages
being added to some of the message-sets. The matchesi

 execute(M)
 (MS1,…,MSn, CS) ⎯⎯⎯⎯⎯⎯⎯→ (MS1’, …,MSn’, CS’)
 if (M ∈ MSi)

where:
 matchesi(M) = m
 for id ∈ ids(m)∪context(m), CS’[evalM,i(id)] = CS[evalM,i(id)] ∪ {evalM,i(e) | store id → e ∈ storeactions(m)}

 MSi’ = MSi \ {M} ∪ send_funM,CS’,i(Ni), and for j ≠ i, MSj’ = MSj ∪ send_funM,CS’,i(Nj)

Figure 5. A transition rule

function (of service Si) is used to determine the
message pattern m that matches the message M, and
subsequently the evalM,i and send_funM,CS,i functions are
used to compute the required state updates (as
specified in the storeactions of m), and the new
messages to be added to the message-sets (as specified
in the sendactions of m).

This operational rule can be used to generate a
transition system, whose states are configurations, and
whose transitions are all possible instances of the given
rule. Any configuration containing at least one
message in one of the message-sets can, in principle,
be chosen as an initial state. Unfolding the transition
system starting from this state yields all the behaviours
which can be exhibited by the services S1,...,Sn, while
they cooperate towards the execution of the messages
in the initial configuration.

For the travel booking example of Section 3, letting
the initial state consist of a single message
bookTravel(A) yields the transition system in Figure 6
(where only the message part of configurations is
shown).

Figure 6. A TravelAgent process flow

4.4. Discussion

Web services are independent entities in a service-
oriented system. As a result, the sending of a message
should not rely on the availability of other web
services. A web service should be able to pick up a
message after it has recovered from a failure, or
immediately after its addition to a web service system.
The operational semantics presented here conforms to
this asynchronous communication behaviour which
also supports dynamic configurations.

Earlier in this section we discussed the use of
configuration tables in mapping system prototypes to
actual services. Transition rules for changing system
configuration (e.g. by adding or removing a service)
have not been discussed here due to lack of space, but
it is relatively straightforward to extend our
operational semantics to also account for the dynamic
aspect of web service systems.

5. Conclusion

We have described a message-based workflow
notation for modelling asynchronous web services
communication, with the capability to support long-
running interactions and dynamic configurations. A
formal operational semantics for this notation has also
been presented. Future work includes the use of this
operational semantics to develop a simulation tool for
asynchronous web services coordination.

6. References

[1] “Web Services Architecture”, http://www.w3.org, W3C
Working Group Note 11 February 2004.

[2] C. Peltz, “Web services orchestration and choreography”,
Computer, vol. 36, 2003, pp. 46-52.

[3] D. Hollingsworth, “The Workflow Reference Model
Workflow Management Coalition”, WFMC org, 1995.

[4] M. H. D. Georgakopoulos, A. Sheth, “An Overview of
workflow management: From process modeling to workflow
automation infrastructure”, Distributed and Parallel
Databases, vol. 3, 1995, pp. 119-153.

[5] D. Cybok, “A Grid Workflow Infrastructure”, presented
at GGF 10, Berlin, March 2004.

[6] T. Fahringer, J. Qin and S. Hainzer, “Specification of
Grid Workflow Applications with AGWL: An Abstract Grid
Workflow language”, IEEE International Symposium on
Cluster Computing and the Grid 2005, Cardiff, UK, 2005.

[7] “Business Process Execution Language for Web
Service”, BEA, IBM, Microsoft, 2002.
ftp://www6.software.ibm.com/software/developer/library/

[8] ”BPWS4J - A platform for creating and executing
BPEL4WS processes”, IBM alphaWorks,
http://www.alphaworks.ibm.com/tech/bpws4j, 2004.

[9] P. Henderson. and J. Yang, “Reusable Web Services”,
Proceedings of 8th International Conference, ICSR 2004,
Madrid, Spain, 2004, pp. 185-194.

[10] J. Yang, C. Cîrstea and P. Henderson, “Document Flow
Model: A Formal Notation for Modelling Asynchronous
Web Services Composition”, submitted to AWeSOMe'05,
2005.

[11] E. Christensen et al, “Web Services Description Language
(WSDL) 1.1”, http://www.w3.org/TR/wsdl ,W3C, 2001.

