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Abstract. Achieving real-time response to complex, ambiguous, high-
bandwidth data is impractical with conventional programming. Only
the narrow class of compressible input-output maps can be specified
with feasibly sized programs. Present computing concepts enforce for-
malisms that are arbitrary from the perspective of the physics underly-
ing their implementation. Efficient physical realizations are embarrassed
by the need to implement the rigidly specified instructions requisite for
programmable systems. The conventional paradigm of erecting strong
constraints and potential barriers that narrowly prescribe structure and
precisely control system state needs to be complemented with a new ap-
proach that relinquishes detailed control and reckons with autonomous
building blocks. Brittle prescriptive control will need to be replaced with
resilient self-organisation to approach the robustness and efficiency af-
forded by natural systems. Structure-function self-consistency will be key
to the spontaneous generation of functional architectures that can har-
ness novel molecular and nano materials in an effective way for increased
computational power.

1 Commanding the Quasi-universal Machine

The common conventional computer is an approximation of a hypothetical uni-
versal machine [I] limited by memory and speed constraints. Universal machines
are generally believed to be in principle able to compute any computable function
and are commonly used to define what can effectively be computed [2]. Corre-
spondingly it is assumed that if processing speed and memory space of computers
would indefinitely continue to increase, any computable information processing
problem would eventually come within reach of practical devices. Accordingly
time and space complexity of computation has been studied in detail [3] and
technological advances have focused on memory capacity and switching speed
[]. But along with this there is another factor that limits realizable computing
devices: the length of the program required to communicate a desired behaviour
to the device [B]. The length of this program is limited by the state space of the

J.-P. Banatre et al. (Eds.): UPP 2004, LNCS 3566, pp. 47-55] 2005.
(© Springer-Verlag Berlin Heidelberg 2005


www.ecs.soton.ac.uk/people/kpz/

48 K.-P. Zauner

|

I
Pr—| O=f(l)
a

|

O

Fig. 1. Communicating a desired input-output map to a machine. The input-output
map can in principle be thought of as a potentially very large lookup table that asso-
ciates an output response with every input that can be discerned by the machine (A).
For n bit input patterns (I) and a m bit output response (O) the, number of possi-
ble maps is 2m2"  To implement an arbitrary one of these maps on a quasi-universal
machine, the mapping f has to be specified by the program p with respect of ma-
chine architecture a (B). Selecting an arbitrary map from the set of possible maps may
require a specification of length: log, [2m2n] = m2". Even for moderate pattern recog-
nition problems (e.g., classifying low resolution images) the program length required
for most mappings is impractical [6]

device and the capacity of the programmers. Even small problems can exhaust
these practical limitations (cf. figure [I). As a consequence conventional com-
puting architectures are restricted to the implementation of highly compressible
input-output transforms [7]. The set of compressible maps is a small subset of
the potential input-output functions—most behaviours cannot be programmed.
Whether the inaccessible mappings would be useful for practical applications
awaits further investigation. For complex ambiguous pattern recognition prob-
lems, a domain where organisms cope much better than existing technology,
mappings of limited compressibility may be valuable.

The picture painted in figure [l is optimistic with regard to the number of
maps that can be implemented by a program of given size. It assumes that the
machine architecture is not degenerate, i.e., any two programs that differ by at
least one bit will give rise to distinct input-output maps. In practice, computing
architectures often map many programs to the same input-output transforma-
tion. The transformation is usually implemented as a programmed sequence of
elementary operations. The essence of each operation is to selectively discard
information [8,[@]. As the number of elementary operations grows it becomes in-
creasingly likely that all information regarding the input signals is dissipated and
as a consequence the output of the computation is constant [I0,1T]. Accordingly,
the degeneracy of the mapping from program to input-output transform raises
with increased program length in conventional architectures and the number
input-output transforms accessible through programming is further reduced.

For a machine to be programmable, additional restrictions come into play.
Programming is here equated with an engineering approach in which mental
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conception precedes physical creation (cf. [I2]). It necessitates the possibility
for the programmer to anticipate the actions of the available elementary opera-
tions. Only if the function of the elementary operations can be foreseen by the
programmer can a desired input-output map be implemented by incrementally
composing a program. Accordingly, the machine’s architecture has to adhere to
a fixed, finite user manual to facilitate programming. To achieve this, numerous
potential interactions among the components of the machine need to be sup-
pressed [13]. Programmability is achieved by using relatively large networks of
components with fixed behaviour. This however does not allow for the efficiency
afforded by networks of context sensitive components [14].

As outlined above, conventional programming is not always the most suitable
way of implementing an input-output map. Some maps cannot be compressed
into programs of practical length, and the need for programmability precludes
hardware designs that elicit functionality from a minimum of material.

2 Learning, Adaptation, Self-organisation

Programmability is not a strict requirement for information processing systems.
The enviable computing capabilities of cells and organisms are not implemented
by programs. Non-programmed information processing is not limited to nature.
Artificial neural networks provide a technological example of a system where pro-
grammability has been given up for the benefit of parallel operation [15]. Freeing
the computing architecture from the need for predictable function of elementary
components opens up new design degrees of freedom. Firstly, the fan-in for an
elementary component could be increased by orders of magnitude. It may be
interesting to note that neurons in the cortex of the mouse have on average 8000
input lines [I6]. Secondly, there is no need for all components to operate ac-
cording to identical specifications. This opens a path to broadening the material
basis of computation by allowing for computational substrates the structure of
which cannot be controlled in detail. And likewise, thirdly, the operation of the
elementary components can depend on their context in the architecture, thus
greatly increasing the number of interactions among the components that can
be recruited for signal fusion.

Utilising these design degrees of freedom requires the development of new
training algorithms for the resulting networks. Evolutionary methods that take
the performance of a network as prediction for the performance of a randomly
modified network are particularly suitable. They can cope with the complexity
and inhomogeneity of architectures based on context sensitive components and
benefit from the increased dimensionality in such networks [I7,[18[19]. Clearly,
giving up programmability will not by itself increase the number of input-output
transforms that can be implemented on a given system. The feasible length of
training for the system draws the limit. However, the complexity of the input-
output transformations is not restricted by the need for compact specification.
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3  Orchestrating Informed Matter

Techniques for producing biomaterials and manufacturing nano-materials are
rapidly developing. We already see materials with unprecedented characteristics
arriving at an increasing rate. But so far computer science is not on a path to
harnessing these new materials for increased computational power. Training the
materials to act as logic gates is unlikely to be fruitful.

Present computing concepts enforce formalisms that are arbitrary from the
perspective of the physics underlying their implementation. Nature’s gadgets
process information in starkly different ways than do conventionally programmed
machines [20]. They exploit the physics of the materials directly and arrive at
problem solutions driven by free energy minimisation while current computer
systems are coerced by high potential barriers to follow a narrowly prescribed,
contrived course of computation [2I]. The latter is only possible in a macro-
physical device and comes at the cost of using a large fraction of the material of
the processing device for enforcing adherence to the formalism rather than ac-
tual information processing. As devices shrink to micro-physical scale it becomes
increasingly difficult to isolate the operation of the device from the physics of
their implementation. However, as outlined in the preceeding two sections, infor-
mation processing can be implemented without a formalism that abstracts away
from the underlying computing substrate.

Nature provides a large collection of implementations that employ compu-
tation driven directly by physics for sophisticated information processing tasks.
This mode of computation is most clearly demonstrated by single-cell systems.
A seed weighs time series of multiple ambiguous sensory signals to make the de-
cision to grow, a vital decision from which it cannot retract [22]. Bacteria assess
their chemical surroundings to adjust their motions in accordance with a com-
plex trade-off among attractive and repulsive factors [23,24]. Being too small to
afford isolation from the micro-physics of their material components the infor-
mation processing operations in these systems necessarily have to follow a course
of computation inherent in molecular interactions.

In physics-driven information processing architectures the structure of an
architecture and its processing function are inseparable. Accordingly physics-
driven information processing is closely related to self-organisation. Self-orga-
nisation is taken here as a process that forms an organised functional struc-
ture and is essentially supported by the components of the structure themselves
rather than a process conducted by an external infrastructure. The possibilities
of self-organisation are exemplified by biological growth and development. Self-
assembly of molecular structures is a relatively simple self-organisation process
in the aforementioned sense. The formation of viruses [25] is the prototypic ex-
ample of molecular self-assembly, but numerous functional structures in the cell,
e.g., ribosomes [26] form in a similar fashion. Artificial self-assembly systems
have been designed with inorganic [27], organic [28], and bio-molecules [29,[30]
and provide a potential route to realizing artificial molecular information pro-
cessors [31].
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Fig. 2. Implementation paradigms for a computational device. Present conventional
computer technology is indicated near the lower left corner. Random variation en-
ters unintentionally in the production process. With increasing miniaturisation control
will become increasingly more difficult (dashed arrow). Resilient architectures that can
cope with wide component variation and the deliberate use of self-organisation pro-
cesses provide the most likely path to complexification of computing architectures (bent
arrow)

The practical implementation of an input-output map can adhere in varying
degrees to different paradigms as illustrated in figure

As engineering extends to base-components at nano meter scale, the fine-
grained prescriptive control familiar from the macro-physical world becomes in-
creasingly difficult to achieve. Accordingly the proportion of products conforming
to specification is falling. To some extend it is possible to compensate for the
loss of control during production in a subsequent selection procedure, as is com-
mon practice. Selecting functional structures from a pool of randomly created
structures provides a first approach to nano-materials where detailed control is
not feasible or not economical. If the process of structure formation is repeat-
able then the selection from random variation can be iterated for evolutionary
progress.

A key driver for miniaturisation, however, is its potential for highly complex
systems within a small volume. A production process relying on selection alone
will not deliver such systems for two reasons. Firstly, the falling proportion
of functional components will make the selection approach (indicated by the
dashed arrow in figure B)) increasingly inefficient, particularly if systems with
high component count are desired. Secondly, for selecting the products that
exhibit correct functionality it is necessary to identify them. Doing so by testing
incurs a high cost and exhaustive testing becomes prohibitive with rising system
complexity.

To arrive at economic nano-scale systems of high complexity it is necessary
to leave the implementation approach indicated by the baseline of the triangle
in figure 2l One possible solution lies in the self-assembly properties of suitably
formed base components. The challenge is to design base components in such
a way that they will spontaneously form a desired architecture. This course of
engineering (indicated by the bend arrow in figure [2) will require the considera-
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Fig. 3. To engineer self-organised systems, the traditional design considerations of
energy and matter need to be augmented to include information (A). The potential gain
of adding the information paradigm to our engineering toolkit can best be estimated
by a view at nature. The biological world exhibits a hierarchy of self-processes that
lead to increasingly more complex organisations of matter (B)

tion of information in addition to the traditional considerations of materials and
energy (Figure BA).

The concept of informed matter [32], i.e., molecules deliberately designed
to carry information that enables them to interact individually, autonomously
with other molecules, provides a basis for heterogeneous three-dimensional fab-
rication. Combining the abstract concepts of artifical chemistry [33] with the
physics of supramolecular chemistry [28,[34] conceivably will enable the orches-
tration of self-organisation to arrive in practical time scales at physics-driven
architectures.

This path to organising matter requires an information paradigm that does
take physics into account. Molecules cannot be instructed in the way conven-
tional computers are programmed, because their interactions and behaviour can-
not be limited to simple abstractions. A methodology more akin to mechanical
engineering than to software engineering, conceptually depicted in figure [ is
required.

4 Perspectives

Potential application domains for the principles outlined in the previous sec-
tion are architectures in which the amount of matter necessary to implement
a required function is important. Examples are pervasive computing and space
exploration devices. A likely early application niche is the area of autonomous
micro-robotic devices. With the quest for robots at a scale of a cubic millime-
tre and below molecular controllers become increasingly attractive [35L36], and
initial steps towards implementation are underway [37]. Coherent perception-
action under real-time constraints with severely limited computational resources
does not allow for the inefficiency of a virtual machine that abstracts physics
away. For satisfactory performance the robot’s control needs to adapt directly
to the reality of its own body [38]. In fact the body structure can be an integral
part of the computational infrastructure [39]. A second application domain is
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Fig. 4. Orchestration of informed matter. The interplay of experimental data, physi-
cal simulation of component behaviour in a systems context and adaptation methods
such as directed evolution will play an important role in the process of engineering
informed matter building-blocks that self-organise to spontaneously form architectures
with desired functionality

bioimmersive computing. Components of a computational architecture could be
encoded in the genome of a host cell and upon expression the computational ma-
chinery would autonomously form within the cell [40,41142]. Any computational
device small enough to fit within a cell will be severely limited in the amount of
matter that can be used to implement it. It will need to employ the physics of
its material directly for realizing its operations.

The 18 million organic compounds we known today comprise a negligible part
of the space of possible organic molecules, estimated to 105 substances [43]. Na-
ture offers a glimpse at what is available in this space of possibilities with organ-
ised, adaptive, living, thinking, conscious matter. Following Lehn’s trail-blazing
call to “ultimately acquire the ability to create new forms of complex matter”
[32] will require information processing concepts tailored to the microphysics of
the underlying computational substrate.

Acknowledgements. Comments by Stefan Artmann, Srinandan Dasmahapa-
tra, and Denis Nicole are gratefully acknowledged.

References

1. Turing, A.M.: On computable numbers with an application to the Entschei-
dungsproblem. In: Proceedings of the London Mathematical Society. Volume 42.
(1937) 230-265 Corrections, Ibid vol. 43 (1937), pp. 544-546. Reprinted in The
Undecideable, M. Davis, ed., Raven Press, New York, 1965.

2. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Engle-
wood Cliffs, N.J. (1967)

3. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

Companid, R.: Trends in nanoelectronics. Nanotechnology 12 (2001) 85-88

5. Chaitin, G.J.: On the length of programs for computing finite binary sequences.
J. Assoc. Comput. Mach. 13 (1966) 547-569

-



54

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

K.-P. Zauner

Conrad, M., Zauner, K.P.: Conformation-based computing: a rational and a recipe.
In Sienko, T., Adamatzky, A., Rambidi, N., Conrad, M., eds.: Molecular Comput-
ing. MIT Press, Cambridge, MA (2003) 1-31

. Zauner, K.P., Conrad, M.: Molecular approach to informal computing. Soft Com-

puting 5 (2001) 39-44

Landauer, R.: Irreversibility and heat generation in the computing process. IBM
Journal 5 (1961) 183-191

Landauer, R.: Fundamental limitations in the computational process. Berichte der
Bunsen-Gesellschaft 80 (1976) 1048-1059

Langdon, W.B.: How many good programs are there? How long are they? In
Rowe, J., et al., eds.: Foundations of Genetic Algorithms FOGA-7, Torremolinos,
4-6 September, Morgan Kaufmann (2002)

Langdon, W.B.: The distribution of reversible functions is normal. In Riolo, R., ed.:
Genetic Programming Theory and Practice, Ann Arbor, 15-17 May, Proceedings,
Dordrecht, Kluwer Academic Publishers (2003)

Pfaffmann, J.O., Zauner, K.P.: Scouting context-sensitive components. In
Keymeulen, D., Stoica, A., Lohn, J., Zebulum, R.S., eds.: The Third NASA /DoD
Workshop on Evolvable Hardware—EH-2001, Long Beach, 12-14 July 2001, IEEE
Computer Society, Los Alamitos (2001) 14-20

Conrad, M.: Scaling of efficiency in programmable and non-programmable systems.
BioSystems 35 (1995) 161-166

Conrad, M.: The price of programmability. In Herken, R., ed.: The Universal
Turing Machine: A Fifty Year Survey. Oxford University Press, New York (1988)
285-307

Partridge, D.: Non-programmed computation. Communications of the ACM 43
(2000) 293-302

Schiiz, A.: Neuroanatomy in a computational perspective. In Arbib, M.A., ed.:
The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge,
MA (1995) 622-626

Cariani, P.: To evolve an ear: epistemological implications of Gordon Pask’s elec-
trochemical devices. Systems Research 10 (1993) 19-33

Thompson, A., Layzell, P., Zebulum, R.S.: Explorations in design space: Uncon-
ventional electronics design through artificial evolution. IEEE Trans. Evol. Comp.
3 (1999) 167-196

Miller, J.F., Downing, K.: Evolution in materio: Looking beyond the silicon box.
In: 2002 NASA/DoD Conference on Evolvable Hardware (EH’02), July 15 - 18,
2002, Alexandria, Virginia, IEEE (2002) 167-176

Conrad, M.: Information processing in molecular systems. Currents in Modern
Biology (now BioSystems) 5 (1972) 1-14

Zauner, K.P., Conrad, M.: Parallel computing with DNA: toward the anti-universal
machine. In Voigt, H.M., Ebeling, W., Rechenberg, 1., Schwefel, H.P., eds.: Par-
allel Problem Solving from Nature: PPSN IV. Volume 1141 of Lecture Notes in
Computer Science., Berlin, Springer-Verlag, Berlin (1996) 696-705

Conrad, M.: The seed germination model of enzyme catalysis. BioSystems 27
(1992) 223-233

Adler, J., Tso, W.W.: “Decision”-making in bacteria: Chemotactic response of
Escherichia coli to conflicting stimuli. Science 184 (1974) 1292-1294

Scharf, B.E., Fahrner, K.A., Turner, L., Berg, H.C.: Control of direction of flagellar
rotation in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 95 (1998) 201-206
Wikoff, W.R., Johnson, J.E.: Virus assembly: Imaging a molecular machine. Cur-
rent Biology 9 (1999) R296-R300



26.

27.

28.

29.
30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

From Prescriptive Programming of Solid-State Devices 55

Ban, N., Nissen, P., Hansen, J., Moore, P.B., Steitz, T.A.: The complete atomic
structure of the large ribosomal subunit at 2.4 a resolution. Science 289 (2000)
905-920

Miiller, A., Beckmann, E., Bogge, H., Schmidtmann, M., Dress, A.: Inorganic
chemistry goes protein size: a mo368 nano-hedgehog initiating nanochemistry by
symmetry breaking. Angew. Chem. Int. Ed. Engl. 41 (2002) 1162-1167

Lehn, J.M.: Supramolecular chemistry—scope and perspectives: Molecules, super-
molecules and molecular devices. Angewandte Chemie, Int. Ed. Engl. 27 (1988)
90-112

Seeman, N.C.: DNA in a material world. Nature (2003) 427-431

Zhang, S.: Fabrication of novel biomaterials through molecular self-assembly. Na-
ture Biotechnology 21 (2003) 1171-1178

Conrad, M.: Quantum mechanics and cellular information processing: The self-
assembly paradigm. Biomedica Biochimica Acta 49 (1990) 743-755

Lehn, J.M.: Supramolecular chemistry: from molecular information towards self-
organization and complex matter. Reports on Progress in Physics 67 (2004) 249—
265

Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries—a review. Artificial
Life 7 (2001) 225-275

Whiteside, G.M., Mathias, J.P., Seto, C.T.:  Molecular self-assembly and
nanochemistry: A chemical strategy for the synthesis of nanostructures. Science
254 (1991) 1312-1319

Ziegler, J., Dittrich, P., Banzhaf, W.: Towards a metabolic robot control system.
In Holcombe, M., Paton, R., eds.: Information Processing in Cells and Tissues.
Plenum Press, New York (1998) 305-317

Adamatzky, A., Melhuish, C.: Parallel controllers for decentralized robots: towards
nano design. Kybernetes 29 (2000) 733-745

Adamatzky, A., de Lacy Costello, B., Melluish, C., Ratcliffe, N.: Experimental
implementation of mobile robot taxis with onboard Belousov-Zhabotinsky chemical
medium. Materials Science & Engineering C 24 (2004) 541-548

Elliott, T., Shadbolt, N.R.: Developmental robotics: manifesto and application.
Phil. Trans. R. Soc. Lond. A 361 (2003) 2187-2206

Hasslacher, B., Tilden, M.W.: Living machines. Robotics and Autonomous Systems
(1995) 143-169

Atkinson, M.R., Savageau, M.A., Myers, J.T., Ninfa, A.J.: Development of genetic
circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell
113 (2003) 597-607

Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molec-
ular computer for logical control of gene expression. Nature 429 (2004) 423-429
Blake, W.J., Isaacs, F.J.: Synthetic biology evolves. Trends in Biotechnology 22
(2004) 321-324

Scheidtmann, J., Weif}, P.A., Maier, W.F.: Hunting for better catalysts and
materials—combinatorial chemistry and high throughput technology. Applied
Catalysis A: General 222 (2001) 79-89



	Commanding the Quasi-universal Machine
	Learning, Adaptation, Self-organisation
	Orchestrating Informed Matter
	Perspectives

