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Abstract

An ultrasonic microfluidic particle manipulator has been modeled and its experimentally measured separation performance has been
compared with the modeled results fopth latex particles, and yeast particles in water.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction thick. These dimensions have been chosen as a result of a
modelling studyf3] and extended if2].

High-frequency acoustic standing waves can be used to These studies predicted a half-wave mode at 3.5 MHz and
separate materials with different acoustic characteristics. Thethis was confirmed if2], and this was the mode used for the
technique can be used to agglomerate particles, to hold parti+esults described here.
cles within a flow, or to manipulate particles within the flow Ifthe PZT transducer is driven at the required resonant fre-
[1]. quency of the chamber, the resultis an acoustic standing wave

This paper briefly describes the construction and then de-generated in the cavity. Particles within the fluid then move
scribes both the acoustic modelling and the particle trajectory towards the pressure nodal plane, driven by acoustic radiation
modelling of an ultrasonic device that uses this principle to forces. In this case, the device is operated in half-wave mode
separate particles. The combination of these models allowsand so the nodal position is in the centre of the cavity. The de-
prediction of the performance of the separator, and these pre-ice has two outlets, and by selectively adjusting the relative
dicted results are compared with experimental performance.outputs of these two channels, it is possible to arrange to have

one flow predominately made up of the cleaner fluid, and

the other to contain the majority of the particles. However,
2. Construction and modelling to make useful predictions about the separation performance

of such a device, it is necessary to incorporate information

The device has been constructed in Pyrex and silicon, toabout how specific particles behave under the influence of
make use of standard silicon processes. It consists of a siliconthe acoustic field. In many ways this interaction between
substrate with channels etched through it, and a Pyrex top thathe acoustic field and the hydrodynamic system is the most
has a cavity etched into it, as shown schematicallyiin 1 important part of the system to model, and this model has

The depth of the cavity is 17bm, and the unetched thick-  been used to make predictions of the separation performance
ness of the Pyrex wafer is 1.7 mm. The silicon is p2% of the device as the transducer drive voltage is altered for a

given flow rate, for a range of different particles and these
mpondmg author. predictions are compared with experimental results in this
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2.1.2. Drag forces

- — For low particle Reynold’s numbeRg,<0.2, the drag
Cavity ' forceFp on a particle is calculated using Stokes drag, where
Alis the area of the particle in a plane normal to the flow and

—p x
; Silicon ; # @ the velocityUq the relative velocity between the fluig(x, y)
‘ ', ' and particleu(x, y)

PZT

y Pyrex

In Clean Dirty Fp = %CDprgA (3)
Fig. 1. Schematic of the separator device. whereCp = 24/Re andRep = 2RuUo/ ps.
Combiningu(x, y) andU(x, y) with Eq.(3) and the expres-
2.1. Predicted performance sions forCp andRg, gives:
Fo(x, y) = 6unR(U(x, y) — u(x, y)) (4)

As a patrticle passes along the main channel of the sepa-

rator, it is subject to acoustic radiation, drag and buoyancy g determine the drag force, the velocity profile across
forces. Less significant forces such as those due to laterakhe depth of the main channel must be known. This can
acoustic effects, acoustic streaming and interparticle forcespe getermined numerically using CFD software but in

[1] are not considered by the following treatment. The dom- this case, as laminar flow dominates, a parabolic pro-
inant forces mentioned are solved numerically within MAT- e describing flow between parallel platg8] may be

LAB, resulting ina description of the particle trajectory asthe gssymed,

particle passes through the ultrasonic separator. A series of _

particle trajectories are used to determine the relative spacingU _ G—U(hy —y? (5)
of particles and therefore the concentration as the particles *~  h?2

move along the channel. This is a numerical method which
enables both frequency dependence and non-uniform flow to
be easily considered.

whereU is the mean fluid velocity antl the depth of the
channel.

_ o 2.1.3. Buoyancy
2.1.1. Acoustic radiation force The relative densities of the particle and fluid con-

Within an acoustic field, the time averaged acoustic force trq| the buoyancy force on a particle, wheffg opposes
on a particleFqc, in a direction normal to the transducer is  grayity:

given by[1]:
. Fg = 37R3g(pr — pp) (6)
<Fac(xv Y, Z)) = —V(¢ (xv Vs Z)) (1)
with 2.2. Particle trajectories
(@°(x, v, 2)) By summing the forces in botkandy directions a sys-
3 2 tem of equations can be formed to give accelerations ~
=_ M(Ekm) - (1_ C;”) (Epot) 2) and y for a particle of massn. Note that both buoyancy
2pp + pi CpPp and drag terms have andy components, but the acous-

tic radiation force is assumed to be significant in the
direction only (this allows for the option of inclining the
cell)

whereV s the particle volumegp andps the particle and fluid
densities, respectivelg, andc; the speed of sound for the
particle and fluid mediums, respectivelykin) and (Epot)
the time-averaged kinetic and potential energies ata pointin., > Fx _ Fp, + Fg,

the field, respectively ang® the gradient of radiation force * m m %
Ege?—nal. The orientation of theandy axes are indicated in . Y F, Fa+Fp, + Fa, @

Fac can easily be determined for the resonant case and m m

where the nodal position and level of acoustic energy within This system of equations is solved in MATLAB using
the channel is knowifl]. However, by using an acoustic an ODE numerical solver function, whergy: is ex-
impedance transfer modgl,8], the variation in acoustic ve-  tracted from the acoustic impedance transfer model im-
locity and pressure through the device can be determined,plemented in MATLAB by Hill and Wood[7]. The
which allows the kinetic and potential energi¢Byin) and ODE solver provides a series of particle coordinate lo-
(Epot) to be calculated. As the acoustic impedance is deter- cations and velocity components and therefore the tra-
mined as a function of frequency, the calculatiofrgfis not jectory of a particle, examples of which are shown in
limited to the resonant condition. Fig. 2a.
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Fig. 2. (a) Convergence of particles towards nodal plane and (b) relative particle concentration across channel at a distance 8.5 mm alongecivastiel and
field (relative concentration at inlet=1) and whére 175pm.

By modelling a series of particles at the channel inlet and 3. Experiment
using the resulting particle coordinates, it is possible to calcu-
late the change in concentration across the chgdhelhe The experimental set-up consists of two peristaltic pumps,
change in concentration is dependent on the change in lat-one feeding the inlet of the separator device and one drawing
eral ) spacing between each particle. Based on the examplefluid through one of the two outlets. The device is isolated
given inFig. 2a, at a distance 8.5 mm along the acoustic field from the pulses produced by the pumps by using air filled
(the edge of the acoustic field in a typical device) the parti- syringes to act as dampers as showRim 3.
cle trajectories illustrated result in the relative concentration ~ The transucer was driven via afixed gain (50 dB) RF power
distribution plotted irFig. 2o. amplifier by a signal generator at the resonant frequency of
Here, it is again important to consider the influence the chamber, previously determinedtobe a nominal 3.5 MHz.
of the non-uniform flow profile; according to continu- Fine adjustmentwas made by monitoring the transducer volt-
ity, particle flow rate must remain constant therefore as age with an oscilloscope and adjusting the frequency for a
a stream of particles moves into a plane of increased voltage minimum.

fluid velocity, the longitudinalX) spacing between particles The flow rates through the outlets were chosen such that
must increase thus reducing the concentration seen at thaf <Q,. Therefore, operating in the half-wavelength mode
point. with a particle stream formed along the centre of the separator

In the ultrasonic separator, two outlets split the flow and channel, clear fluid can be extracted through outlet 1 and
depending on the relative flow rates through these outletsparticle concentrate through outlet 2.
the flow can be assumed to divide at a heighthN. The
particle flow rate passing through outlet 1, for example, can be
calculated using the concentration data described previously
within the bounds of 0¢<hN. Further, the concentration
through the outlet is the particle flow rate divided by the fluid
flow rate. A similar method within the bount®<y<h can
be used for outlet 2 or alternatively, by considering mass
(particle) continuity. Itis this method that is used to determine
the predicted outlet concentration values presented in this
paper. Fig. 3. Schematic of experiment.

air filled syringe

peristaltic pump

Q
outlet 1 outlet 2
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3.1. Concentration measurement

For each test, the fluid through each outlet was collected
and its concentration measured using a turbidity sensor (Hon-
eywell APMS-10GRCF)5], previously calibrated for the
particles under test.

3.1.1. Sensor calibration

This sensor offers the possibility of a low-cost, flow-
through turbidity measuring system. The sensor is manu-
factured by Honeywell (Part number APMS-10GR(5)

and is a microprocessor controlled system that measures tur-

bidity, conductivity and temperature. It was originally de-
signed for use in low cost, high volume applications, and
so calibration to assess its suitability for this application
was necessary. Readings are output in digital form and can
be updated once every 1.3s. The turbidity measurement is
achieved optically by using both a transmissive and a 90
reflective sensor, allowing ratiometric readings. The sensor
can be connected to a PC via an RS232 interface board. Cus
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Fig. 5. Percentage of yeast by weight against sensor output.

In the experiments for yeast, a total flow raf@ ¢ Q2) of ap-
proximately 0.053 ml/s was maintained, 25% of which passed
through outlet 1. For the m latex particles, these figures

tom software was written in Visual Basic to allow ratiometric were 0.028 ml/s and 21%, respectively.
measurements to be calculated from the raw data, and to be

logged.
Measurement values vary with the materials in the fluid,

and therefore the device needs to be calibrated for each type of

fluid/particle mix. An absolute calibration was carried out us-
ing 1pm latex particles in water, comparing the sensor read-
ing with the actual number of particles in the sample counted
using a microscope and haemocytomefég. 4 shows the
sensor output against actual particle count fani latex
particles[6].

In addition, a calibration curve for percentage by weight

was also established for the yeast particles used. This is shown

in Fig. 5.

4. Results
Experimental and modelled results showing the influence

of transducer voltage on both separation g latex parti-
cles and yeast cells are showrFiys. 6 and 7respectively.
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Fig. 4. One micron particle concentration against sensor output.
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Fig. 6. Separation of jtm latex particles based on an initial concentration
of 0.016 wt.%. Applied voltage is input voltage to amplifier.
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Fig. 7. Separation of yeast particles based on an initial concentration of
0.2wt.%. Applied voltage is input voltage to amplifier.
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