

Improved Data Compression for Serial Interconnected Network on Chip

through Unused Significant Bit Removal

Simon Ogg, Bashir Al-Hashimi∗
Southampton University, Southampton, UK

so04r@ecs.soton.ac.uk, bmah@ecs.soton.ac.uk

Abstract

Serial links in network on chip provide advantages in terms
of reduced wiring area, reduced switch complexity and
power. However, serial links offer lower bandwidth in
comparison to parallel schemes. Poor bandwidth increases
the risk of congestion and potential loss of packetised data.
This paper proposes a simple yet effective real-time
compression technique that reduces the amount of bits sent
over serial links. The proposed technique reduces the number
of bits and the number of transitions when compared to the
original uncompressed data. A case study showing the results
of compression on two MPEG1 coded picture data shows
average bit reductions of approximately 17% to 47% and
average transition reductions of approximately 15% to 24%
over a serial link.

1. INTRODUCTION∗
Network on Chip (NoC) is an emerging interconnection

design methodology which is seen as a promising solution to
provide scalable, energy efficient and reliable
communication for System on Chip [1-3]. In NoC, data is
routed from one core to another through switches, the links
between the switches could be parallel or serial, each of
which has advantages and disadvantages. A serial link, for
example, has lower wiring density and reduced crosstalk, but
reduced bandwidth when compared to parallel. Morgenshtein
[4] analysed serial and parallel links in NoCs and concluded
that on-chip interconnects could benefit from serial links.
The analysis showed that improvements could be as much as
x5.5 for area and x17 for power in the communication link
due to the low number of wires and repeaters in serial links.
Kimura [5] and Lee [6] have both implemented serial links in
practice and shown they are viable for use in high speed, low
power on chip network communication.

Whilst there exists publications that deal with reducing
power of parallel links [7,8], there is little reported work on
reducing power in serial links apart from Lee [9] who has
recently proposed a coding technique, SILENT, for serial
transmission on NoC that reduces power effectively. This is
achieved by XORing data with the previous data so that only

∗ The authors would like to acknowledge the Engineering and
Physical Sciences Research Council (EPSRC) for funding
under grant no. EP/C512804.

the differences between successive words cause a transition
on the serial link. With their example application the number
of transitions is reduced by 40%. However, it is important to
note that in their scheme the original amount of data is not
reduced.

The previous work [4,6,9] has demonstrated the benefits in
terms of area and power when employing serial links to
connect the switches of a NoC. The motivation of this paper
is to investigate and develop a technique that will allow data
transfers to overcome bandwidth limitations associated with
serial links. This is achieved through our proposed simple
compression technique that exploits the bit level similarities
of successive data words. The rest of this paper is organised
as follows; Section 2 describes how the basic compression is
performed, taking into consideration fixed and dynamic
blocks lengths of data, and finally an algorithm which can
dynamically alter the block sizes to suit the current data is
proposed. Section 3 gives experimental results of dynamic
and fixed block sizes on two example intra-coded picture
data from MPEG1 video-streams. Section 4 presents the
conclusions.

2. PROPOSED TECHNIQUE
As the bandwidth in the NoC is limited there exists a

motivation for compressing data in serial linked NoC to
reduce the overall bits being transmitted. The reduction in
bits transmitted by Unused Significant Bit Removal (USBR)
would directly give spare bandwidth capacity within the
network communication structure. The proposed technique is
aimed at data streams where the most significant bits are less
likely to change than least significant bits, such as situations
where the variance of the data is sometimes small for a
certain number of words. If the variance of the data is small
then it is likely that the significant bits will change less and
USBR can be used to compress the data. Consider Figure 1,
the binary data given has the most significant bit that changes
in each word underlined (Figure. 1A).

For the rest of this paper data is shown pictorially as a
group of squares representing bits with the most significant
bit change shown as a shaded square (Figure. 1B). It can be
seen that the two MSBs in this example do not change, so
redundant information is present which need not be
transferred (Figure.1C). The USBR technique removes these
bits which do not change and sends some extra bits which
signify what bits change and how long the block of data is.

The extra bits added can be considered as additional
overhead.

 D0 00111100
D1 00111001
D2 00011101
D3 00000001
D4 00001100
D5 00001011
D6 00011111
D7 00010100

Most Significant Bit that Changes Bits do not change

(A) (B) (C)

Figure 1 Example 8x8bit block of data

As an example, assume an overhead of 8 bits is used, 3 of
which signify what bits change (23 can signify that 1 to 8 bits
change) and 5 of which signify the block length (25 = 32, in
length if necessary). Referring to the example in Figure 2 it
can be seen that 14 bits are removed from the block (Figure.
2A). The overhead of 8 bits is then added to the start of the
block (Figure. 2B). The overhead would show that the 6 least
significant bits change in the block and the block length is 8.
Note that the 1st data word stays complete as a starting
reference point for the subsequent data words which have
been reduced to 6 bits each. The number of bits is reduced
from 64 to 58 in this example.

Up to now the block length has been considered as a fixed.
The block length in the example is 8. It is difficult to say
what the optimum block length is without knowledge of the
data to be compressed. A general guideline is to make the
fixed block size similar to any inherent groups of consecutive
data that show minimal data variance. For example, in
section 3 a fixed block size of 64 is used for MPEG picture
data. This is because picture data is often processed in units
that consist of six groups of 64 words, the less complex the
picture, the less variance there generally is within each
group. It is important not to make the block size too large as
this would impact the size of any buffer which has to hold the
data. Increasing the buffer size will increase the area cost of
implementation. Conversely, making the fixed block size too
small will lead to compression inefficiencies where the any
potential gains from removing redundant bits would be
impacted by an increased amount overhead bits being used
for the increase in the number of blocks resulting from higher
fragmentation of the data.

An alternative to fixed block length is to dynamically alter
the length on a block by block basis. This is useful for
situations where there is no inherent grouping of data that can
be seen. If the block length is fixed the implementation of
performing the proposed compression technique becomes
simple since the block length stays constant. Using an
algorithm to allow dynamic block sizing based on
information about the data can be done but this will impact
the area of the transmitter and receiver since the circuitry
would be more complex. Dynamic block sizing will now be
discussed in more detail.

It is common to buffer data within the network switch
interface to store data before being packetised to make sure
data is transferred efficiently. For dynamic block sizing a
queue such as a FIFO could be used to provide information
about how to compress the buffered data. The information in
the queue would consist of some overhead information which

signifies the block length and the number of bits which
change or stay the same. Figure 3 shows a simplified block
diagram of data flow through the transmitter and receiver of
the compression scheme. A further, more detailed, diagram is
shown in Figure 6.

64 bits 58 bits

LE
N

G
TH

O

VE
R

H
EA

D

LSBSCHANGE MSBSSAME

BITWIDTH
Block Length No. Bits Change

00111100
00111001
00011101
00000001
00001100
00001011
00011111
00010100

01100111
00111100
 111001
 011101
 000001
 001100
 001011
 011111
 010100

01100111
00111100
 111001
 011101
..etc

No. Bits Change = 6 Block Length = 8

1st word

2nd word

Overhead

(A) (B) (C)
Figure 2 Example of compression

A simple algorithm is proposed that effectively uses
pointers which point to the start of 3 successive minimum
length blocks in the data. Using 3 pointers allows the
algorithm to make two decisions, to continue to merge blocks
together or to store information about the current merged
block and start a new block. To get the minimum length for a
block it is necessary to know when compression will be
worthwhile. Referring to the labelled example in Figure 2C
the following equation must be satisfied in order to achieve
compression.

() BITWIDTHLENGTHOVHDMSBSLSBSLENGTH SMCH ×<++×
LENGTH = length of the block,
LSBSCH = number of Least Sig. Bits that change
MSBSSM = number of Most Sig. Bits that stay the same
OVHD = overhead in bits
BITWIDTH = bit width of the data words

D
A

TA

B
U

FF
E

R

QUEUE

Serial Data Out

Core Payload Data

BLOCK SIZING

CONTROLLER &
PARALLEL to SERIAL

D0

D1

D2

D3

OVHD D0 D1D2D3

CONTROLLER &
SERIAL to PARALLEL Serial Data In

OVHD D0 D1 D2D3

D0

D1

D2

D3

Overhead
Entire 1st word

Changing bits of subsequent words

Figure 3 Overview of Data Flow between serial transmitter

and receiver

For the case when the MSB changes the minimum length
can be forced to 1 to ensure the block size is kept to a
minimum because any block which contains a data word
where all bits change cannot be compressed since the block
will have all bits changing over the entire block. The basic
outline of the algorithm is detailed in Figure 4. It consists of
an initialization phase followed by an evaluation and update
loop.

 // Initialize the pointers by getting the first three minimum blocks
GetNextBlock(p0), GetNextBlock(p1), GetNextBlock(p2)

while (not at end of data) // Main loop
{
 // bias = 4

 // Net savings merging p0 + p1
 // = - potential savings lost + overhead + bias

 // Net savings merging p1 + p2
 // = - potential savings lost + overhead

 // Evaluate the merging options
 if merging block 0 and 1 gives best savings
 p0 = Merge(p0,p1)
 p1 = p2
 GetNextBlock(p2)
 else if merging block 1 and 2 gives best savings
 store p0 info in queue
 p0 = Merge(p1,p2)
 GetNextBlock(p1)
 GetNextBlock(p2)
} end while

GetNextBlock(p) // Gets minimum sized block that will compress

Merge(p,p) // Merges the two blocks together

Figure 4 Algorithm for dynamic block sizing

An example initialization, evaluation and update cycle is
shown in Figure 5. First, three minimum length blocks are
found. These three minimum length blocks are then
evaluated for two possible merging options, merging block 0
and block 1 or merging block 1 and block 2. In the example
shown in Figure 5, merging block 0 and block 1 results in the
loss of 4 bits. However, the merge operation would also
remove one set of overhead bits, in this case 8 bits.
Furthermore a bias value is used when calculating the
potential savings when merging block 0 and block 1. This is
done to encourage the algorithm not to fragment the data into
too many blocks. The resulting net savings for merging block
0 and block 1 will therefore be -4+8+4 giving a total of +8.
Merging block 1 and block 2 in Figure 5 shows that 9 bits are
lost and 8 bits are saved through removing overhead bits.
This gives a total net saving of -1. Merging block 0 and 1
gives the best overall net bit savings. The merge is performed
and the pointers are updated.

0
+
1

2

0

1+2

merge(0,1) merge(1,2)

net save = 8 net save = -1

potential savings lost

-4 + 8 + 4 -9 + 8

0

1

2

Most Significant Bit which changes

0

2

0

1

2

1. Initialization of pointers 2. Evaluate Merging Options

3. Update Pointers

Figure 5 Initialization, evaluation and update cycle

This whole process is continuously performed again.
Anytime block 1 and block 2 is merged the information about
block 0, the length and number of bits that change, is stored
in a queue to allow the already buffered data to be

compressed. The queue will contain the length and changing
bits information that allows the data in the buffer to be
compressed. Figure 6 shows a possible implementation of the
compression technique in hardware. The packet header
generation is ignored in this diagram and just the payload
data is considered for clarity. The general structure outlined
shows a transmitter consisting of a buffer, block sizing unit,
queue, controller and parallel to serial converter. The receiver
consists of a serial to parallel converter where each bit can be
addressed and a controller. For the transmitter, the data is
written into a buffer from the core as normal but at the same
time the block sizing unit is collecting information on the
data and working out ways to try and compress the data. As
the block sizing unit finds the best way to split the data into
blocks the information is written into a queue. The controller
then takes information from the queue regarding the length
and number of bits that change and uses these to drive the
parallel to serial converter correctly. The parallel to serial
converter shifts out the overhead information from the queue,
the entire first data word and then only the bits that change
within the block for each word.

BLOCK SIZING

Serial Data Out

D
at

a

Pointer
Management

D0

D1

D2

D3

OVHD D0 D1 D2 D3

Serial Data In

D0

D1

D2

D3

Overhead
Entire 1st word

Changing bits of subsequent words

FI
FO

W
rit

e_
En

p0
p1
p2

ƒ

ƒ

Merge

CTRL

p0 (bits, length)

FI
FO

D
AT

A
BU

FF
ER

Write_En

QUEUE

(bits, length)

D
at

a

TX
SHIFT
CTRL

PARALLEL TO SERIAL

Load, Shift
Data_OVHD_Sel

RX
SHIFT
CTRL

Bi
t_

Se
l

Lo
ad

_P
ar

a

D
at

a

OVHD_REG

Bi
ts

Le
ng

th

(bits, length)

D
at

a
W

rit
e_

En

SERIAL TO
PARALLEL

DATA /
OVHD SEL

DATA FROM
SOURCE
CORE

DATA TO
DESTINATION
CORE

TR
A

N
S

M
IT

R
EC

EI
V

E

Figure 6 Implementation for dynamic block sizing

The receiver shifts in the overhead bits that contain the
information which specifies the bits that stay the same and
the length of the block. The first data word is then shifted in
and on subsequent data words only the bits which change are
shifted in to the appropriate bit position. Each time enough
bits have been shifted in to form a valid word whole
uncompressed data is clocked out in parallel to be used by
the receiving core. This continues until the end of the block is
reached and then the whole process is repeated on the next
block. An interesting observation with this compression
method is that the receiver does not have to buffer data in
order to perform decompression. Each word can be extracted
in turn as soon as the necessary bits have been shifted in.
This is useful with memory accesses since as soon as the
packet has finished being sent across the serial link the
memory should contain the updated data. If a NoC switch
already contains a buffer to packet the data then the addition
of compressing the data has little or no impact on
performance since the information needed to compress the
data is being generated in real-time in parallel to the actual
process of data being written into the buffer. The data is left
untouched once in the buffer and it is only at the parallel to
serial converter where certain bits are selectively shifted out.

3. EXPERIMENTAL RESULTS
In order to confirm the effectiveness of USBR in

compressing data over a serial link we applied the technique
to two MPEG intra-coded pictures shown in Figure 7, one of
which is showing a bike jumping from a wall and the other
showing an American football game. Each example picture is
used with a 15 bit fixed point and 10 bit fixed point
representation of the YUV data. The resulting bit and
transition percentage reduction for each picture is summed
and then averaged. The amount of overhead was set at 16 bits
per block and the bit-width set at 16.

Figure 7 Pictures bike.m1v [10] & football.m1v

Figure 8 shows the average reduction of the bits being
transmitted for the two example pictures for 10 and 15 bit
precision with a block bit-width of 16. The uncompressed
labelled bar shows the original amount of data normalised to
100%. The three further bars show the resulting amount of
data from SILENT, fixed and dynamic techniques. As it can
be seen fixed and variable block sizes using the proposed
USBR has been reduced from 100% to 53.3% for fixed and
56.9% for dynamic using 10 bit precision. The bit reduction
for 15 bit precision is less than 10 bit precision due to the
higher precision using more significant bits to represent the
data. For fixed block sizing the length of each block was 64,
for dynamic the block lengths were determined by the
algorithm in Figure 4, which resulted in a minimum data
block length of 3 and a maximum 455 for the 15 bit precision
football example. For the bike example a minimum data
block length of 3 and maximum of 313 was observed. If the
maximum length of the data blocks are too big for the
transmitter buffer to handle the block lengths can be capped
to a more suitable maximum length.

Bit Reductions

100.0%

100.0%

100.0%

100.0%

53.3%

82.3%

56.9%

83.3%

10 bit

15 bit

Pi
ct

ur
e

D
at

a
Pr

ec
is

io
n

UnCompressed

SILENT [9]

Fixed (proposed)

Dynamic
(proposed)

Figure 8 Average Reduction in Bits Transmitted

To examine how the proposed technique reduces the
number of transitions and therefore the power, Figure 9
shows the average reduction of transitions for the two
example pictures. It can be seen that the transitions have been
reduced from 100% (uncompressed) to 76% for fixed and to

81.2% for dynamic using 10 bit precision picture data. Again,
15 bit precision picture data shows reduction in transitions.
To provide a comparison to previous work Figure 9 shows
the transition reduction using SILENT. The transition
reduction using SILENT is better than our proposed
technique reducing the transitions from 100% to 52.7% but
this is achieved without any bit reduction (see Figure 8). To
achieve both bit and transition reduction a combination of the
USBR and SILENT can be used as shown in Figure 9. This
shows transition reductions from 100% to 51% for fixed and
54.5% for dynamic using 10 bit precision.

Transition Reductions

100.0%

100.0%

52.7%

64.3%

76.0%

83.2%

51.0%

63.1%

81.2%

84.2%

54.5%

63.9%

10 bit

15 bit

Pi
ct

ur
e

D
at

a
Pr

ec
is

io
n

UnCompressed

SILENT [9]

Fixed(proposed)

Fixed + SILENT

Dynamic(proposed)

Dynamic + SILENT

Figure 9 Average Reduction in Transitions

To give an idea of the cost of the proposed compression in
terms of power and area, the transmitter and receiver for a
fixed block size of 64 was coded in VHDL. To show how
power could be saved within a NoC switch a simple FIFO
type buffer was coded and used as a connection between the
transmitter and receiver, Figure 10, as much of the power in a
switch is used by the buffers [11,12]. The transmitter and
receiver was synthesised with Synplify-ASIC using ST
0.12µm CORE9GPLL library. The synthesised design was
then used in conjunction with the picture data from the bike
example of Figure 7 and run through Synopsys Primepower
to provide gate level power estimations for the design. The
simulation time for the runs was the same for both
implementations to allow a comparison of the average power.
The results of the power simulation are shown in Figure 11.
The top plot shows, going from top to bottom, power in the
transmitter, receiver and buffer for the standard serial link.
The bottom plot shows the same for USBR fixed block
compression. It is noted that time to complete the transfer in
the standard implementation is ~40 ms and time to complete
for the fixed compression scheme is ~20 ms. This decrease in
time corresponds to the approximate halving of bits for the
fixed compression as shown in Figure 8, and means the
overall time to transfer the data has been halved.
Furthermore, the halving of the transfer time means that the
activity in the buffer is halved and therefore the congestion
should be lower within a NoC environment.

Transmit Receive Buffer(s)

Synthesised Gate Level Netlist

Bike picture
data

Output

Figure 10 Test-bench and power simulation setup

As shown in Table 1, for the standard uncompressed
implementation the area of the hardware is 91836 µm2. For
USBR using fixed block sizing the area is 101196 µm2
effectively an increase of 10%. Table 2 shows the power for
the two implementations is very similar when the data goes
through a single switch, 0.3949 mW for the uncompressed
and 0.4007 mW for USBR using a fixed block size, at first
there seems to be no gain in using the compression since the
power increase in the transmitter section is slightly more than
the power saved in the buffer. However, this power is for a
single buffer only. If the data has to go through more than
one switch then the additional power saving of each
additional buffer within each switch exceeds the power
increase in the transmitter due to compression. For example,
in a NoC system if the data from the transmitting core has to
pass through at least 3 switches to arrive at the receiving core
then the power is reduced from 0.7031 mW down to 0.6332
mW, a power saving of around 10%. If the data has to pass
through more buffers then further power is saved at a rate of
0.038 mW per buffer.

20 ms
40 ms

Figure 11 Power vs Time

Table 1 - Area (µm2) of synthesised implementations

 Transmitter Receiver Buffer Total
Standard 86830 1404 3602 91836

Fixed 93717 3862 3616 101195

Table 2 Average Power (mW) for bike picture data

1 Buffer Transmitter Receiver Buffer Total
Standard 0.1813 0.0595 0.1541 0.3949

(USBR)Fixed 0.2208 0.0635 0.1164 0.4007
2 Buffers

Standard 0.1813 0.0595 0.3082 0.5490
(USBR)Fixed 0.2208 0.0635 0.2328 0.5168
3 Buffers

Standard 0.1813 0.0595 0.4623 0.7031
(USBR)Fixed 0.2208 0.0635 0.3492 0.6332

4. CONCLUSION
Recent research is indicating that NoC with serial

interconnect provides benefits from power and area point of
view. This paper has presented an effective compression
technique that can be employed with such NoC, improving
the bandwidth bottleneck issue. Fixed and dynamic block
sizing has been considered. General guidelines for
determining a suitable fixed block length and an algorithm
for dynamic block sizing has been shown. The technique,
USBR, exploits the fact that unused significant bits do not
need to be transmitted. A possible implementation of the
proposed compression technique has been outlined and the
area overhead costs and potential power and bandwidth
savings within a NoC environment have been presented. At
present, the authors are continuing to investigate practical
implementations using the proposed technique for NoC.

REFERENCES

[1] L. Benini and D. Bertozzi, "Network-on-chip
architectures and design methods," IEE Proceedings-
Computers and Digital Techniques, vol. 152, no. 2, pp.
261-272, Mar.2005.

[2] W. J. Dally and B. Towles, "Route packets, not wires: on-
chip interconnection networks," DAC 2001, pp. 684-689.

[3] S. Kumar, A. Jantsch, "A network on chip architecture
and design methodology," ISVLSI 2002 Pittsburgh, PA,
USA: IEEE Comput. Soc, 2002, pp. 117-124.

[4] A. Morgenshtein, I. Cidon, "Comparative analysis of
serial vs parallel links in NoC," 2004 International
Symposium on SoC, 2004, pp. 185-188.

[5] S. Kimura, T. Hayakawa, "An on-chip high speed serial
communication method based on independent ring
oscillators," ISSCC. 2003, pp. 385-390.

[6] K. Lee, S. J. Lee, "A 51mW 1.6GHz on-chip network for
low-power heterogeneous SoC platform," ISSCC 2003,
pp. 152-153.

[7] Z. Khan, A. T. Erdogan, "Dual low-power and crosstalk
immune encoding scheme for on-chip data buses,"
Electronics Letters, vol. 39, no. 20, pp. 1436-1437, 2003.

[8] M. R. Stan and W. P. Burleson, "Low-power encodings
for global communication in CMOS VLSI," IEEE Trans.
on VLSI Systems, vol. 5, no. 4, pp. 444-455, 1997.

[9] K. Lee, S. J. Lee, "SILENT: Serialized low energy
transmission coding for on-chip interconnection
networks," ICCAD 2004, pp. 448-451.

[10] vlsi.technion.ac.il/projects/2002s26/movies/bike.m1v

[11] N. Banerjee, P. Vellanki, "A power and performance
model for network-on-chip architectures," DATE 2004,
pp. 1250-1255.

[12] T. T. Ye, L. Benini, "Analysis of power consumption on
switch fabrics in network routers," DAC 2002, pp. 524-
529.

