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Abstract 
 

Serial links in network on chip provide advantages in terms 
of reduced wiring area, reduced switch complexity and 
power. However, serial links offer lower bandwidth in 
comparison to parallel schemes. Poor bandwidth increases 
the risk of congestion and potential loss of packetised data. 
This paper proposes a simple yet effective real-time 
compression technique that reduces the amount of bits sent 
over serial links. The proposed technique reduces the number 
of bits and the number of transitions when compared to the 
original uncompressed data. A case study showing the results 
of compression on two MPEG1 coded picture data shows 
average bit reductions of approximately 17% to 47% and 
average transition reductions of approximately 15% to 24% 
over a serial link. 

1. INTRODUCTION∗ 
Network on Chip (NoC) is an emerging interconnection 

design methodology which is seen as a promising solution to 
provide scalable, energy  efficient and reliable 
communication for System on Chip [1-3]. In NoC, data is 
routed from one core to another through switches, the links 
between the switches could be parallel or serial, each of 
which has advantages and disadvantages. A serial link, for 
example, has lower wiring density and reduced crosstalk, but 
reduced bandwidth when compared to parallel. Morgenshtein 
[4] analysed serial and parallel links in NoCs and concluded 
that on-chip interconnects could benefit from serial links. 
The analysis showed that improvements could be as much as 
x5.5 for area and x17 for power in the communication link 
due to the low number of wires and repeaters in serial links. 
Kimura [5] and Lee [6] have both implemented serial links in 
practice and shown they are viable for use in high speed, low 
power on chip network communication. 

Whilst there exists publications that deal with reducing 
power of parallel links [7,8], there is little reported work on 
reducing power in serial links apart from Lee [9] who has 
recently proposed a coding technique, SILENT, for serial 
transmission on NoC that reduces power effectively. This is 
achieved by XORing data with the previous data so that only 
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the differences between successive words cause a transition 
on the serial link. With their example application the number 
of transitions is reduced by 40%. However, it is important to 
note that in their scheme the original amount of data is not 
reduced. 

The previous work [4,6,9] has demonstrated the benefits in 
terms of area and power when employing serial links to 
connect the switches of a NoC. The motivation of this paper 
is to investigate and develop a technique that will allow data 
transfers to overcome bandwidth limitations associated with 
serial links. This is achieved through our proposed simple 
compression technique that exploits the bit level similarities 
of successive data words. The rest of this paper is organised 
as follows; Section 2 describes how the basic compression is 
performed, taking into consideration fixed and dynamic 
blocks lengths of data, and finally an algorithm which can 
dynamically alter the block sizes to suit the current data is 
proposed. Section 3 gives experimental results of dynamic 
and fixed block sizes on two example intra-coded picture 
data from MPEG1 video-streams. Section 4 presents the 
conclusions. 

2. PROPOSED TECHNIQUE 
As the bandwidth in the NoC is limited there exists a 

motivation for compressing data in serial linked NoC to 
reduce the overall bits being transmitted. The reduction in 
bits transmitted by Unused Significant Bit Removal (USBR) 
would directly give spare bandwidth capacity within the 
network communication structure. The proposed technique is 
aimed at data streams where the most significant bits are less 
likely to change than least significant bits, such as situations 
where the variance of the data is sometimes small for a 
certain number of words. If the variance of the data is small 
then it is likely that the significant bits will change less and 
USBR can be used to compress the data. Consider Figure 1, 
the binary data given has the most significant bit that changes 
in each word underlined (Figure. 1A). 

For the rest of this paper data is shown pictorially as a 
group of squares representing bits with the most significant 
bit change shown as a shaded square (Figure. 1B). It can be 
seen that the two MSBs in this example do not change, so 
redundant information is present which need not be 
transferred (Figure.1C). The USBR technique removes these 
bits which do not change and sends some extra bits which 
signify what bits change and how long the block of data is. 



The extra bits added can be considered as additional 
overhead. 

 D0 00111100 
D1 00111001 
D2 00011101 
D3 00000001 
D4 00001100 
D5 00001011 
D6 00011111 
D7 00010100 

Most Significant Bit that Changes Bits do not change 

(A) (B) (C) 

 
Figure 1 Example 8x8bit block of data 

As an example, assume an overhead of 8 bits is used, 3 of 
which signify what bits change (23 can signify that 1 to 8 bits 
change) and 5 of which signify the block length (25 = 32, in 
length if necessary). Referring to the example in Figure 2 it 
can be seen that 14 bits are removed from the block (Figure. 
2A). The overhead of 8 bits is then added to the start of the 
block (Figure. 2B). The overhead would show that the 6 least 
significant bits change in the block and the block length is 8. 
Note that the 1st data word stays complete as a starting 
reference point for the subsequent data words which have 
been reduced to 6 bits each. The number of bits is reduced 
from 64 to 58 in this example. 

Up to now the block length has been considered as a fixed. 
The block length in the example is 8. It is difficult to say 
what the optimum block length is without knowledge of the 
data to be compressed. A general guideline is to make the 
fixed block size similar to any inherent groups of consecutive 
data that show minimal data variance. For example, in 
section 3 a fixed block size of 64 is used for MPEG picture 
data. This is because picture data is often processed in units 
that consist of six groups of 64 words, the less complex the 
picture, the less variance there generally is within each 
group. It is important not to make the block size too large as 
this would impact the size of any buffer which has to hold the 
data. Increasing the buffer size will increase the area cost of 
implementation. Conversely, making the fixed block size too 
small will lead to compression inefficiencies where the any 
potential gains from removing redundant bits would be 
impacted by an increased amount overhead bits being used 
for the increase in the number of blocks resulting from higher 
fragmentation of the data. 

An alternative to fixed block length is to dynamically alter 
the length on a block by block basis. This is useful for 
situations where there is no inherent grouping of data that can 
be seen. If the block length is fixed the implementation of 
performing the proposed compression technique becomes 
simple since the block length stays constant. Using an 
algorithm to allow dynamic block sizing based on 
information about the data can be done but this will impact 
the area of the transmitter and receiver since the circuitry 
would be more complex. Dynamic block sizing will now be 
discussed in more detail. 

It is common to buffer data within the network switch 
interface to store data before being packetised to make sure 
data is transferred efficiently. For dynamic block sizing a 
queue such as a FIFO could be used to provide information 
about how to compress the buffered data. The information in 
the queue would consist of some overhead information which 

signifies the block length and the number of bits which 
change or stay the same. Figure 3 shows a simplified block 
diagram of data flow through the transmitter and receiver of 
the compression scheme. A further, more detailed, diagram is 
shown in Figure 6. 
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Figure 2 Example of compression 

A simple algorithm is proposed that effectively uses 
pointers which point to the start of 3 successive minimum 
length blocks in the data. Using 3 pointers allows the 
algorithm to make two decisions, to continue to merge blocks 
together or to store information about the current merged 
block and start a new block. To get the minimum length for a 
block it is necessary to know when compression will be 
worthwhile. Referring to the labelled example in Figure 2C 
the following equation must be satisfied in order to achieve 
compression. 

 
( ) BITWIDTHLENGTHOVHDMSBSLSBSLENGTH SMCH ×<++×  
LENGTH = length of the block, 
LSBSCH = number of Least Sig. Bits that change 
MSBSSM = number of Most Sig. Bits that stay the same 
OVHD = overhead in bits 
BITWIDTH = bit width of the data words 
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Figure 3 Overview of Data Flow between serial transmitter 

and receiver  

For the case when the MSB changes the minimum length 
can be forced to 1 to ensure the block size is kept to a 
minimum because any block which contains a data word 
where all bits change cannot be compressed since the block 
will have all bits changing over the entire block. The basic 
outline of the algorithm is detailed in Figure 4. It consists of 
an initialization phase followed by an evaluation and update 
loop. 



 // Initialize the pointers by getting the first three minimum blocks 
GetNextBlock(p0), GetNextBlock(p1), GetNextBlock(p2) 
 
while (not at end of data) // Main loop 
{ 
 // bias = 4 
 
 // Net savings merging p0 + p1 
 // = - potential savings lost + overhead + bias 
 
 // Net savings merging p1 + p2 
 // = - potential savings lost + overhead 
 
 // Evaluate the merging options 
 if merging block 0 and 1 gives best savings 
  p0 = Merge(p0,p1) 
  p1 = p2 
  GetNextBlock(p2) 
 else if merging block 1 and 2 gives best savings 
  store p0 info in queue 
  p0 = Merge(p1,p2) 
  GetNextBlock(p1) 
  GetNextBlock(p2) 
} end while 
 
GetNextBlock(p) // Gets minimum sized block that will compress 
 
Merge(p,p) // Merges the two blocks together 

 
Figure 4 Algorithm for dynamic block sizing 

An example initialization, evaluation and update cycle is 
shown in Figure 5. First, three minimum length blocks are 
found. These three minimum length blocks are then 
evaluated for two possible merging options, merging block 0 
and block 1 or merging block 1 and block 2. In the example 
shown in Figure 5, merging block 0 and block 1 results in the 
loss of 4 bits. However, the merge operation would also 
remove one set of overhead bits, in this case 8 bits. 
Furthermore a bias value is used when calculating the 
potential savings when merging block 0 and block 1. This is 
done to encourage the algorithm not to fragment the data into 
too many blocks. The resulting net savings for merging block 
0 and block 1 will therefore be -4+8+4 giving a total of +8. 
Merging block 1 and block 2 in Figure 5 shows that 9 bits are 
lost and 8 bits are saved through removing overhead bits. 
This gives a total net saving of -1. Merging block 0 and 1 
gives the best overall net bit savings. The merge is performed 
and the pointers are updated. 
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Figure 5 Initialization, evaluation and update cycle 

This whole process is continuously performed again. 
Anytime block 1 and block 2 is merged the information about 
block 0, the length and number of bits that change, is stored 
in a queue to allow the already buffered data to be 

compressed. The queue will contain the length and changing 
bits information that allows the data in the buffer to be 
compressed. Figure 6 shows a possible implementation of the 
compression technique in hardware. The packet header 
generation is ignored in this diagram and just the payload 
data is considered for clarity. The general structure outlined 
shows a transmitter consisting of a buffer, block sizing unit, 
queue, controller and parallel to serial converter. The receiver 
consists of a serial to parallel converter where each bit can be 
addressed and a controller. For the transmitter, the data is 
written into a buffer from the core as normal but at the same 
time the block sizing unit is collecting information on the 
data and working out ways to try and compress the data. As 
the block sizing unit finds the best way to split the data into 
blocks the information is written into a queue. The controller 
then takes information from the queue regarding the length 
and number of bits that change and uses these to drive the 
parallel to serial converter correctly. The parallel to serial 
converter shifts out the overhead information from the queue, 
the entire first data word and then only the bits that change 
within the block for each word. 
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Figure 6 Implementation for dynamic block sizing 

The receiver shifts in the overhead bits that contain the 
information which specifies the bits that stay the same and 
the length of the block. The first data word is then shifted in 
and on subsequent data words only the bits which change are 
shifted in to the appropriate bit position. Each time enough 
bits have been shifted in to form a valid word whole 
uncompressed data is clocked out in parallel to be used by 
the receiving core. This continues until the end of the block is 
reached and then the whole process is repeated on the next 
block. An interesting observation with this compression 
method is that the receiver does not have to buffer data in 
order to perform decompression. Each word can be extracted 
in turn as soon as the necessary bits have been shifted in. 
This is useful with memory accesses since as soon as the 
packet has finished being sent across the serial link the 
memory should contain the updated data. If a NoC switch 
already contains a buffer to packet the data then the addition 
of compressing the data has little or no impact on 
performance since the information needed to compress the 
data is being generated in real-time in parallel to the actual 
process of data being written into the buffer. The data is left 
untouched once in the buffer and it is only at the parallel to 
serial converter where certain bits are selectively shifted out. 



3. EXPERIMENTAL RESULTS 
In order to confirm the effectiveness of USBR in 

compressing data over a serial link we applied the technique 
to two MPEG intra-coded pictures shown in Figure 7, one of 
which is showing a bike jumping from a wall and the other 
showing an American football game. Each example picture is 
used with a 15 bit fixed point and 10 bit fixed point 
representation of the YUV data. The resulting bit and 
transition percentage reduction for each picture is summed 
and then averaged. The amount of overhead was set at 16 bits 
per block and the bit-width set at 16. 
 

 
Figure 7 Pictures bike.m1v [10] & football.m1v 

Figure 8 shows the average reduction of the bits being 
transmitted for the two example pictures for 10 and 15 bit 
precision with a block bit-width of 16. The uncompressed 
labelled bar shows the original amount of data normalised to 
100%. The three further bars show the resulting amount of 
data from SILENT, fixed and dynamic techniques. As it can 
be seen fixed and variable block sizes using the proposed 
USBR has been reduced from 100% to 53.3% for fixed and 
56.9% for dynamic using 10 bit precision. The bit reduction 
for 15 bit precision is less than 10 bit precision due to the 
higher precision using more significant bits to represent the 
data. For fixed block sizing the length of each block was 64, 
for dynamic the block lengths were determined by the 
algorithm in Figure 4, which resulted in a minimum data 
block length of 3 and a maximum 455 for the 15 bit precision 
football example. For the bike example a minimum data 
block length of 3 and maximum of 313 was observed. If the 
maximum length of the data blocks are too big for the 
transmitter buffer to handle the block lengths can be capped 
to a more suitable maximum length. 
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Figure 8 Average Reduction in Bits Transmitted 

To examine how the proposed technique reduces the 
number of transitions and therefore the power, Figure 9 
shows the average reduction of transitions for the two 
example pictures. It can be seen that the transitions have been 
reduced from 100% (uncompressed) to 76% for fixed and to 

81.2% for dynamic using 10 bit precision picture data. Again, 
15 bit precision picture data shows reduction in transitions. 
To provide a comparison to previous work Figure 9 shows 
the transition reduction using SILENT. The transition 
reduction using SILENT is better than our proposed 
technique reducing the transitions from 100% to 52.7% but 
this is achieved without any bit reduction (see Figure 8). To 
achieve both bit and transition reduction a combination of the 
USBR and SILENT can be used as shown in Figure 9. This 
shows transition reductions from 100% to 51% for fixed and 
54.5% for dynamic using 10 bit precision. 
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Figure 9 Average Reduction in Transitions 

To give an idea of the cost of the proposed compression in 
terms of power and area, the transmitter and receiver for a 
fixed block size of 64 was coded in VHDL. To show how 
power could be saved within a NoC switch a simple FIFO 
type buffer was coded and used as a connection between the 
transmitter and receiver, Figure 10, as much of the power in a 
switch is used by the buffers [11,12]. The transmitter and 
receiver was synthesised with Synplify-ASIC using ST 
0.12µm CORE9GPLL library. The synthesised design was 
then used in conjunction with the picture data from the bike 
example of Figure 7 and run through Synopsys Primepower 
to provide gate level power estimations for the design. The 
simulation time for the runs was the same for both 
implementations to allow a comparison of the average power. 
The results of the power simulation are shown in Figure 11. 
The top plot shows, going from top to bottom, power in the 
transmitter, receiver and buffer for the standard serial link. 
The bottom plot shows the same for USBR fixed block 
compression. It is noted that time to complete the transfer in 
the standard implementation is ~40 ms and time to complete 
for the fixed compression scheme is ~20 ms. This decrease in 
time corresponds to the approximate halving of bits for the 
fixed compression as shown in Figure 8, and means the 
overall time to transfer the data has been halved. 
Furthermore, the halving of the transfer time means that the 
activity in the buffer is halved and therefore the congestion 
should be lower within a NoC environment. 
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Figure 10 Test-bench and power simulation setup 



As shown in Table 1, for the standard uncompressed 
implementation the area of the hardware is 91836 µm2. For 
USBR using fixed block sizing the area is 101196 µm2 
effectively an increase of 10%. Table 2 shows the power for 
the two implementations is very similar when the data goes 
through a single switch, 0.3949 mW for the uncompressed 
and 0.4007 mW for USBR using a fixed block size, at first 
there seems to be no gain in using the compression since the 
power increase in the transmitter section is slightly more than 
the power saved in the buffer. However, this power is for a 
single buffer only. If the data has to go through more than 
one switch then the additional power saving of each 
additional buffer within each switch exceeds the power 
increase in the transmitter due to compression. For example, 
in a NoC system if the data from the transmitting core has to 
pass through at least 3 switches to arrive at the receiving core 
then the power is reduced from 0.7031 mW down to 0.6332 
mW, a power saving of around 10%. If the data has to pass 
through more buffers then further power is saved at a rate of 
0.038 mW per buffer. 
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Figure 11 Power vs Time 

Table 1 - Area (µm2) of synthesised implementations 

 Transmitter Receiver Buffer Total 
Standard 86830 1404 3602 91836 

Fixed  93717 3862 3616 101195 

Table 2 Average Power (mW) for bike picture data 

1 Buffer Transmitter Receiver Buffer Total 
Standard 0.1813 0.0595 0.1541 0.3949 

(USBR)Fixed 0.2208 0.0635 0.1164 0.4007 
2 Buffers     

Standard 0.1813 0.0595 0.3082 0.5490 
(USBR)Fixed 0.2208 0.0635 0.2328 0.5168 
3 Buffers     

Standard 0.1813 0.0595 0.4623 0.7031 
(USBR)Fixed 0.2208 0.0635 0.3492 0.6332 

4. CONCLUSION 
Recent research is indicating that NoC with serial 

interconnect provides benefits from power and area point of 
view. This paper has presented an effective compression 
technique that can be employed with such NoC, improving 
the bandwidth bottleneck issue. Fixed and dynamic block 
sizing has been considered. General guidelines for 
determining a suitable fixed block length and an algorithm 
for dynamic block sizing has been shown. The technique, 
USBR, exploits the fact that unused significant bits do not 
need to be transmitted. A possible implementation of the 
proposed compression technique has been outlined and the 
area overhead costs and potential power and bandwidth 
savings within a NoC environment have been presented. At 
present, the authors are continuing to investigate practical 
implementations using the proposed technique for NoC. 
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