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Abstract

This document covers the logical and process architectures of provenance systems.
The logical architecture identifies key roles and their interactions, whereas the
process architecture discusses distribution and security. A fundamental aspect of
our presentation is its technology-independent nature, which makes it reusable:
the principles that are exposed in this document may be applied to different
technologies.
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Chapter 1

Introduction

1.1 Motivation

The importance of understanding the process by which a result was generated is
fundamental to many real life applications (science, engineering, medical domain,
supply management, etc). Without such information, users cannot reproduce,
analyse or validate processes or experiments. Provenance is therefore important
to enable users, scientists and engineers to trace how a particular result had been
arrived at.

We propose a definition of provenance that is suited to the computational
model underpinning service oriented architectures, an architectural style regarded
as suitable for large scale, open systems. Based on such a definition, we conceive
a computer-based representation of provenance that allows us to perform useful
reasoning about the origin of results.

The purpose of this document is to present an architecture for provenance
systems, its rationale and a methodology guiding its use. According to Kruchten
[ |, several views of an architecture can be considered:

e The logical architecture primarily supports the functional requirements, i.e.
what the system should provide in terms of services to its users: the system
is decomposed into a set of abstractions, and their high level interactions
are identified.

e The process architecture takes into account some non-functional require-
ments, such as performance and availability. It addresses issues of concur-
rency and distribution, of system integrity, of fault-tolerance and how the
main abstractions from the logical view fit within the process architecture.

e The development architecture focuses on the actual software module organ-
isation, including libraries.



e Finally, the physical architecture takes into account primarily the non-
functional requirements of the system such as availability, reliability, per-
formance and scalability.

This document covers the logical and process architectures of provenance systems.
The logical architecture identifies key roles and their interactions, whereas the
process architecture discusses distribution and security. A fundamental aspect of
our presentation is its technology-independent nature, which makes it reusable:
the principles that are exposed in this document may be applied to different
technologies.

The development and physical architectures will be presented in separate
documents, explaining how the architectural design is mapped onto the Web
Services stack of standards, and how each individual service is implemented.

1.2 Structure of Document

This document is structured as follows.

Chapter 2: Provenance Definition Based on the common sense definition
of provenance, we propose a new definition of provenance that is suited
to the computational model underpinning service oriented architectures.
Since our aim is to conceive a computer-based representation of provenance
that allows us to perform useful reasoning about the origin of results, we
examine the nature of such representation, which is articulated around the
documentation of execution.

Chapter 3: Logical Architecture We then examine the architecture of a prove-
nance system, centered around the notion of a provenance store. We also
examine models of execution documentation.

Chapter 4: Security Architecture Although security is a non-functional re-
quirement, software engineering methodology strongly recommends that se-
curity considerations be integrated into the development life-cycle as early
as possible. Many of the application domains in which a provenance archi-
tecture could potentially be deployed have stringent requirements on access
to data manipulated within the system. A security architecture that helps
addressing these issues is discussed in this chapter.

Chapter 5: Distribution Architecture This chapter discusses distribution in
the provenance architecture. First, it introduces a set of patterns that iden-
tify communications between key architecture roles; second, it explains how
the data model underpinning the architecture allows for data that is geo-
graphically distributed; finally, it explains how deployments of core archi-
tecture components can cater for high load.



Chapter 6: Identifying Data Items When using a provenance-aware appli-
cation, a user or software client may ask for the provenance of a piece of
data at any time after that data has been produced. There are several fac-
tors which make asking the provenance question difficult: a piece of data
may not have a unique identifier, may be moved from where it was initially
stored after being produced etc. These factors mean that identifying data
items to determine their provenance is a non-trivial task. In this chapter,
we analyze a set of solutions for identifying arbitrary pieces of data to be
applied when making an application provenance-aware.

Chapter 7: Provenance Modelling This chapter describes the various data
models for the information recorded in the provenance store. The modelling
describes how this information can be organised, identified, and extended.

Chapter 8: Functionality This chapter provides a more detailed description
of the functionality supported by a provenance system. It relies on an
overall model of information recorded in the provenance store, which is
acted upon by and recording, querying and managing capabilities. This
presentation is in natural language, informal, and will be used to derive
more formal specifications expressed in UML.

Chapter 9: Actor Behaviour This chapter describes the expectations on ac-
tors behaviour so that process documentation can correctly be recorded and
provenance questions usefully answered.

Chapter 10: Justification This chapter describes how the software require-
ments identified by the EU Provenance project for a provenance system are
satisfied by the architecture.

Chapter 11: Related Work The chapter presents related work and discusses
how our approach to provenance differs from existing systems.

Notes A set of technology-specific comments.

Index An index of terms defined in this document.

1.3 Status of this Document

This document will keep on evolving during the course of the EU Provenance
project. Different chapters contribute to different milestones of the project, sum-
marised in the following table, with schedules of drafts, reviews and final revisions.

Once a chapter has been finalised, following changes will be agreed and clearly
documented.



Milestone Chapters Draft by Review by Final by

Logical architecture frozen: 2,3 24/6 8/7 15/7
Functional architecture frozen: 4, 6 10 7/10 21/10 28/10
Final architecture frozen: 5, 7,89, 11, ... TBC TBC TBC

For reference, the versions of individual chapters are summarised in the fol-
lowing table.

Chapter Revision

Chapter 1~ Revision: 1.25
Chapter 2 Revision: 1.25
Chapter 3 Revision: 1.25
Chapter 4  Revision: 1.25
Chapter 5 Revision: 1.25
Chapter 6 Revision: 1.25
Chapter 7 Revision: 1.25
Chapter 8  Revision: 1.25
Chapter 9  Revision: 1.25
Chapter 10 Revision: 1.25
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Chapter 2

Provenance Definition

2.1 Common Sense Definition

We first introduce the common sense definition of the word ‘provenance’. Its
etymology is the French verb ‘provenir’, which means to come forth, originate.
According to the Oxford English Dictionary, provenance is defined as follows.

Definition 2.1 (OED Provenance Definition) (i) the fact of coming from
some particular source or quarter; origin, derivation. (ii) the history or pedigree
of a work of art, manuscript, rare book, etc.; concr., a record of the ultimate
derivation and passage of an item through its various owners. 0O

Likewise, the Merriam-Webster Online dictionary defines provenance as follows.

Definition 2.2 (MWO Provenance Definition) (i) the origin, source; (ii)
the history of ownership of a valued object or work of art or literature. O

Both definitions are compatible since they regard provenance as the deriva-
tion from a particular source to a specific state of an item. The nature of the
derivation, or history, may take different forms, or may emphasise different prop-
erties according to interest. For instance, for a piece of art, provenance usually
identifies its chain of ownership. Alternatively, the actual state of a painting may
be understood better by studying the different restorations it underwent.

From definitions 2.1 and 2.2, we can also distinguish two different understand-
ings of provenance: first, as a concept, it denotes the source or derivation of an
object; second, more concretely, it is used to refer to a record of such a derivation.
We shall return to such a distinction when we define the notion of provenance we
adopt in this project.

2.2 Context: Service Oriented Architectures

Given that our work predominantly focuses on Grid and Web Services, we sum-
marise some relevant terminology in this section. We take the broad view that



open, large-scale systems are typically designed using a service-oriented approach
[ |, usually referred to as service-oriented architectural style | |. As far
as services are concerned, we do not intend to restrict ourselves to a specific tech-
nology; instead, we take services to be components that take inputs and produce
outputs. Such services are brought together to solve a given problem typically
via a workflow that specifies their composition. In this abstract view, interac-
tions with services take place using messages that are constructed in accordance
with service interface specifications. In a service-oriented architecture (SOA),
clients typically invoke services, which may themselves act as clients for other
services; hence, we use the term actor to denote either a client or a service in a
SOA. Finally, the execution of a workflow is referred to as a process.

Actors may have internal states that change during the course of execution.
An actor’s state is not directly observable by other actors; to be seen by another
actor, the state (or part of it) has to be communicated within a message sent by
its owner actor.

Our broad, technology-independent approach to SOAs has formal foundations
in the m-calculus | | and asynchronous distributed systems | : ]
According to such a view of the world, messages are the only mechanism used to
transfer information between actors. The m-calculus is of interest in this context
because of its approach to defining events that are internal to actors as hid-
den communications; an asynchronous view of distributed systems is, however, a
better match to service-oriented architectures.

2.3 Definition of Provenance

In this section, we focus on data produced by computer systems, and we de-
fine the provenance of a piece of data (or data item). Specifically, we consider
service-oriented architectures, as discussed in Section 2.2, since they constitute
the architectural style adopted to build large scale open systems. (In Section 2.6,
we examine how our definition of provenance can be extended to cater for objects
or events of the physical world.)

The two common sense definitions consider provenance to be the derivation
from a particular source to a specific state of an item. We have identified a process
in a SOA as the execution of a workflow, which we broadly see as a specification
of a service composition. Hence, by having a description of the process that re-
sulted in a data item, we can explain how such a data item has been obtained. In-
spired by previous work [ , , , , , ],
the EU Provenance project pre-prototype | |, its requirements documents
[ , |, and an architecture strawman | ], we propose the fol-
lowing definition of provenance, which makes explicit the notion of process.

Definition 2.3 (Provenance of a piece of data) The provenance of a piece
of data is the process that led to that piece of data. O

(1)
(2)
(3)

(4)

(5)



In relation to the two common sense definitions of provenance, we note that
Definition 2.3 is concerned with provenance as a concept. Ultimately, our aim
is to conceive a computer-based representation of provenance that allows us to
perform useful analysis and reasoning to support our use cases. Consequently,
the provenance of a piece of data is to be represented in a computer system by
some suitable documentation of the process that led to the data.

While specific applications determine the actual form that such documenta-
tion should take, we can identify several of its general properties. Documentation
can be complete or partial (for instance, when the computation has not yet termi-
nated); it can be accurate or inaccurate; it can present conflicting or consensual
views of the actors involved; it can be descriptive or conceptual; and it can ab-
stract more or less from reality.

2.4 Representation of Provenance

In this section, we introduce the key elements that form the representation of
provenance in a SOA; further refinement will ultimately lead to data types for
provenance representation (cf. Chapter 7).

In the previous section, we stated that provenance of a data item is to be
represented in a computer system by some suitable documentation of the process
that led to it. To this end, we distinguish a specific piece of information doc-
umenting some step of a process from the whole documentation of the process.
The former shall be referred to as p-assertion, which we define as follows.

Definition 2.4 (p-assertion) A p-assertion is an assertion that is made by an
actor and pertains to a process. O

From this definition, we derive the notion of process documentation.

Definition 2.5 (Process Documentation) The documentation of a process
consists of a set of p-assertions made by the actors involved in the process.
O

We note that a given p-assertion may belong to the provenance representation
of multiple pieces of data. When a p-assertion is created (and later recorded), it
documents a step of a process in progress, which ultimately will lead to a piece
of data. At the time of the p-assertion creation, we may not know the piece of
data that will be produced; however, the p-assertion being recorded constitutes
an element of the provenance representation of the data. For instance, when
some quality wood is being transported in the Amazon forest, one may not know
that it will be used for creating the frame for a future famous painting, still to
be painted and framed.

(6)



Among all the p-assertions, we now introduce two kinds of p-assertions that
allow us to capture an explicit description of the flow of data in a process: inter-
action p-assertions and relationship p-assertions.

Computer science has a long tradition of focusing on communications and
interactions as a central concept used in the study and modelling of complex sys-
tems, e.g., programming language semantics, process algebrae and more recently
in biological systems models. In the context of SOAs, interactions consist of the
messages exchanged between actors. By capturing all the interactions that take
place between actors involved in the computation of some data, one can replay
an execution, analyse it, verify its validity or compare it with another execution.
Describing such interactions is then core to the documentation of process.

Therefore, the documentation of a process includes a set of interaction p-
assertions, each describing an interaction between actors involved in the process.

Definition 2.6 (Interaction p-assertion) An interaction p-assertion is an as-
sertion of the contents of a message by an actor that has sent or received that
message; the message must include information that allows it to be identified
uniquely. O

We do not prescribe the nature of the assertion of the message contents; instead,
such decisions are left to the specific application. For instance, an interaction
p-assertion could simply contain a copy of the message exchanged between two
actors. Alternatively, if some data contained in the message is regarded as confi-
dential by the actor or too large to be manipulated, the assertion may consist of
the message in which the data concerned has been replaced by some other data
or a pointer.

A crucial element of an interaction p-assertion is information to identify a
message uniquely. Such information allows us to establish a flow of data between
actors. Indeed, let us consider two interaction p-assertions: actor A making an
assertion a4 that it sent actor B a message with identity ¢, and actor B making
an assertion ag that it received from A a message with the same identity ¢. Such
a pair of interaction p-assertions a4, ap is said to be “matching”; it identifies a
flow of data from actor A to B.

Actors may directly return outputs for the inputs they receive; alternatively,
they may invoke other actors in order to obtain intermediate results that help
them return their outputs. In both circumstances, the relationship between the
outputs and the inputs to the actor is not explicit in the messages themselves,
and can only be understood by an analysis of the actor’s business logic, which is
private to the actor.

We do not expect the source code of the actor to be made available, because
it may not be feasible, or the code may not be at a suitable level of abstraction.
Instead, in order to permit some understanding of the flow of data, an actor may
decide to “volunteer” some information that is only available to it. An actor

(7)



may provide relationship p-assertions that identify the relationship between its
outputs (whether as returned result or invocation message to other actors) and
its inputs (or intermediary results received from invoked actors).

Definition 2.7 (Relationship p-assertion) A relationship p-assertion is an
assertion about an interaction, made by an actor, that describes how the actor
obtained output data or the whole message sent in that interaction by applying
some function to input data or messages from other interactions. A relationship
p-assertion is directional. O

While matching interaction p-assertions denote a flow of data between actors,
relationships explain how data flows inside actors. Relationship p-assertions are
directional since they explain how some data was computed from other data.
Figure 2.1 illustrates two actors. The first is a primitive actor, i.e., one that
does not invoke other actors, or alternatively, an actor that does not make as-
sertions of the messages it sends to other actors (say, for privacy reasons). In
order to contribute some information about its internal flow of information, it
can indicate that its output data (in the output message) is a function of the in-
put data (contained in the input message). The second actor of Figure 2.1 is not
primitive, and makes assertions of the contents of the messages it sends to and
receives from another actor. Like the first actor, it may indicate that its output
is a function of its input; alternatively, it may explain how the data contained in
the secondary invocation message and its result relate to the input and output.

Interaction p-assertion: M1

_M.1_.¢d1\ Interaction p-assertion: M2
§> Relationship p-assertion: d2=f(d1)
— d2
M2
M1, @ Interaction p-assertion: M1
dB M3 Interaction p-assertion: M2

Interaction p-assertion: M3

Interaction p-assertion: M4

M2 Relationship p-assertion: d2=f(d1)
Relationship p-assertion: d3=f1(d1)
Relationship p-assertion: d2=f2(d4,d1)

Figure 2.1: Data flow assertions by opaque and transparent actors

Figure 2.1 displays the ideal case of purely functional actors, which do not
maintain a persistent state across invocations. The same approach generalises



to stateful actors: the data in an output message can be a function of the data
received during a previous interaction and kept in a persistent store.

Hence, interaction p-assertions denote data flows between actors, whereas
relationship p-assertions denote private ones. Such data flows are core elements
to reconstitute functional data dependencies in execution. In the most general
case, such data flows constitute a directed acyclic graph (DAG). From a specific
data item, the data flow DAG indicates where and how the data item is being
used; vice-versa, following relationships in reverse helps us identify how a data
item was produced. The data flow DAG is thus a core element of provenance
representation, but it is not the only one; other p-assertions can provide further
information about internal states of actors during execution, as we now explain.

Interaction and relationship p-assertions capture the flow of data in a process.
In some circumstances, however, actors’ internal states may also be necessary to
understand the functionality, performance or accuracy of actors, and therefore the
nature of the result they compute. Hence, we introduce the notion of an actor
state p-assertion as the documentation provided by an actor about its internal
state in the context of a specific interaction.

Definition 2.8 (Actor State p-assertion) An actor state p-assertion is an
assertion made by an actor about its internal state in the context of a specific
interaction. O

Actor state p-assertions can be extremely varied: they may include the function
the actor performs, the workflow that is being executed, the amount of disk and
CPU a service used in a computation, the floating point precision of the results
it produced, or application-specific state descriptions.

In summary, p-assertions can be of three disjoint kinds: interaction p-assertions,
relationship p-assertions and actor state p-assertions. We note that p-assertions
are independent of the actual service technology used to implement applications.

2.5 Provenance Lifecycle and Three Provenance
Views

In the previous section, we characterised the syntactic nature of p-assertions,
in the form of a broad classification in three different categories, according to
whether they document interactions, relationships or actor states. We now fo-
cus on a dynamic characterisation of p-assertions and, in particular, when they
are created, recorded, queried and managed. These different phases identify a
provenance lifecycle, which we now describe.

Before discussing the provenance lifecyle, it is necessary to introduce an archi-
tectural element, which we expand upon in Chapter 3. Since we aim to provide
a long-term facility for storing the provenance representation of data items, we

10
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delegate the role of making persistent, managing and providing controlled access
to such provenance representation to a specific element, which we refer to as
a provenance store. The choice of an explicit architectural element to embody
this role in no way implies any form of physical deployment; instead, it helps us
identify the kind of functionality that is necessary in order to offer support for
provenance.

The provenance lifecycle is composed of four different phases. As execution
proceeds, actors create p-assertions that are aimed at representing their involve-
ment in a computation. After their creation, p-assertions are stored in a prove-
nance store, with the intent they can be used to reconstitute the provenance of
some data. The provenance store therefore acts as storage of p-assertions. After
a data item has been computed, users (or applications) may need to obtain the
provenance of this data item: they can do so by querying the provenance store.
At the most basic level, the result of the query is the set of p-assertions pertain-
ing to the process that produced the data. More advanced query facilities may
return a representation derived from p-assertions that is of interest to the user.
We will come back to this aspect in Section 2.7. Finally, as time progresses, the
provenance store and its contents may need to be managed (subscription manage-
ment, content relocation, etc). In summary, the provenance lifecyle is composed
of four different phases: (i) creating, (%i) recording, (%ii) querying and (v)
managing. A provenance system should provide support for all these phases.

We previously discussed the two understandings of provenance that Defini-
tions 2.1 and 2.2 imply: conceptual and representational (in a computer system).
In light of the provenance lifecycle, we can refine this view and distinguish three
understandings of provenance. (i) As before, provenance can be seen as a
concept from which we can explain how a result has been achieved. (i) The
recording phase of the provenance lifecycle results in a set of p-assertions accu-
mulated in the provenance store. These p-assertions constitute a documentation
of execution, which we regard as a recording-time representational understanding
of provenance; by this, we mean that among all the p-assertions accumulated
in the provenance store, there is a representation of the provenance of the data
we are interested in.  (7ii) Alternatively, the lifecycle querying phase suggests
that provenance queries filter out p-assertions and make them available in some
representation (whether as a set of p-assertions or in some other form), which
constitutes a query-time representational understanding of provenance.

When designing a generic provenance system, we cannot anticipate all forms
of queries that users may wish to issue. Hence, to be able to support complex
querying functionality, it is important to provide a complete and detailed set of
p-assertions about the aspect of execution we are permitted to document. This
inevitably may raise scalability concerns that have to be addressed by the archi-
tectural design for the lifecycle recording phase. Symmetrically, the challenge for
a query facility is to identify a subset of useful p-assertions, by selecting, scoping
and filtering p-assertions. (These aspects are discussed further in Section 2.7.)
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2.6 Beyond Computer Data

We specifically restricted Definition 2.3 to the provenance of electronic data con-
tained in a computer system. Our rationale was that our primary focus is service
oriented architectures, used in building open, large scale sytems. However, ob-
jects in the real world also have a provenance. The purpose of this section is
to examine how the approach we propose to track provenance of data can be
extended to track provenance of physical world entities.

Initially, we consider a restrictive deployment, as illustrated in Figure 2.2. On
the left hand side, we see a computer application, in a SOA style, composed of
a set of actors and producing some result. With the approach presented in this
chapter, p-assertions describing execution are stored in a provenance store. The
actors however are not traditional processing actors that take inputs and produce
outputs as result of their internal behaviour. Instead, such actors are directly
wired to “actuator/sensor” pairs that operate on objects in the physical world
and sense their environment, all represented on the right hand of the picture.
(The actual “wiring” is represented by dashed lines.) Such actuators can be
robots, taking objects as input and assembling them, painting them, wrapping
them, or even shipping them. Sensors perceive events in the physical world, such
as movement sensors, cameras, radar. Information can transit from an actor to an
actuator: it can be seen as control order for the actuator; vice-versa, sensors can
feedback information to the computer system. We assume here that the mapping
is one to one, i.e., for one actor there exists one and only one actuator/sensor,
that an actuator is directly driven by an actor, and that an actor reacts to
information provided by a sensor. The outcome of the chain of actuators/sensors
is a physical artefact. We note that either the actuator or the sensor functionality
in an actuator/sensor pair may be void.

Application Actuators/sensors

Actors

- Physical

Data artefact

Figure 2.2: Mapping to the Physical World
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Given this mapping assumption, the computer system’s workflow mirrors a
physical process in the physical world. The ultimate electronic data produced by
the computer system is thus an electronic proxy for the physical world artefact.
By querying the provenance of the electronic data, we can therefore obtain an
accurate representation of the provenance of the physical artefact, due to the one
to one mapping assumption. This requires some explicit actor state p-assertions
to be recorded by actors in the computer application, which describe the activated
actuators and the sensed data they return.

In practice, the one to one assumption may not necessarily hold, which means
that the physical process may not directly be mirrored in the computer system.
Specifically, we consider the case in which there may be actuators or sensors
that are not directly driven by the computer systems, but by other entities (e.g.,
humans), not directly under the control of the computer application. In such
circumstances, the provenance of the electronic data only helps us to derive a
partial representation of the provenance of the physical artefact. Such limitation
may be alleviated if an actor is capable of recording p-assertions about the part
of the physical process that is not directly mirrored in the computer system, as
if a one-to-one mapping existed. (We note that this also applies to any process
where actors are not able to record documentation of process themselves.)

The discussion in this section has focused on physical artefacts. However,
the principles just exposed remain applicable to other “things” in the real world,
such as choices made by users, outcomes of a decision making process, or events
observed by sensors or users. What the provenance system requires is either a
user interface or sensor to act as an actor, recording p-assertions about the actions
that occurred in the physical world, or another actor to relate such actions on
behalf of the physical process that is not observed by sensors or users.

Consequently, we can now extend our definition of provenance to encompass
the physical world.

Definition 2.9 (Provenance of an entity) The provenance of an entity (whether
computer based or in the physical world) at a given point in execution is the pro-
cess that led to that entity at that point. O

In the rest of the document, we continue to refer to the provenance of “data
items” unless we specifically wish to refer to the provenance of physical world
entities.

Additionally, we note that earlier we used the term actor to denote either a
client or a service in a SOA. As the physical world is not so clearly describable
in terms of clients and services, we broaden the definition of actor to mean any
entity that acts.
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2.7 The Nature of Queries

The purpose of a provenance query about a given data item is to identify a set of
p-assertions that were submitted to the provenance store during some execution
that resulted in the data item. The intent of such a query is that the selected
p-assertions, which we refer to as the query result, provide a description of the
process that led to the data, i.e., the provenance of the data, expressed at a level
of abstraction that is suitable for the requester.

Hence, given a query, the purpose of a query engine is to decide which p-
assertions belong to a query result. Several factors can be taken into account in
order to decide if a p-assertion belongs to a query result. It is the purpose of the
query to specify such factors. In the rest of the section, we discuss some of the
factors that a provenance system needs to support.

Open systems may introduce an understanding of a process’s scope that dif-
fers from the one in closed systems. Indeed, in a traditional batch system, the
beginning of a process is marked by its submission to the batch system (or by its
scheduling) and its end is defined by the termination of execution and deallocation
of resources. While such a clearly defined beginning and end of process can still
be achieved in a well-structured and controlled closed computation performed
in an open environment, it no longer applies when previous results are oppor-
tunistically and serendipitously discovered and reused to produce some data. As
an illustration, consider a process p; producing a result r, which is itself later
discovered and used by a distinct process p, producing 5. In this example, the
end of process p; is marked by the production of result r;, while process p, begins
after the production and discovery of r; and terminates with result 7. Another
design could have conceived process p3 producing a similar final result ), where
p3 is the composition of p; and py. If we are not interested in temporal details,
and the fact that intermediary result r; was stored and discovered, both results
ro and 7 have similar provenance, but were produced by apparently different
processes, po and ps, respectively. The reason for this difference is that ps is con-
ceived as a closed experiment, producing 77, whereas p, opportunistically reused
an existing result. There is no right or wrong interpretation in this example:
whether py or p3 is the process of interest is to be decided at query time, by the
querier.

Let us now assume that the provenance representation we discuss here is
made available for all data or objects. Given that the state of our universe,
including all electronic data, is derived from the “Big Bang”, we do not expect
provenance queries to return all p-assertions back to such a point. Hence, we need
mechanisms to specify how far back in the execution we include p-assertions in
the query result. Such mechanisms can be varied: we introduce them briefly here
and discuss them later in Section 8.2. (i) A limit can be set on the length of the
relationship chains, or on the number of successive processes. (i) Relationship
chains can be traversed until the data being transferred satisfies some property,
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such as being of a given type. (i) Given that actors can describe themselves by
the functionality they perform on their inputs, functionalities of interest identify
p-assertions that belong to the query result or that are to be rejected.  (iv)
Actors may record p-assertions describing their state and message they exchange;
a query may identify that an actor should be seen as private, as if itself and the
other actors it invoked did not record any p-assertions.

2.8 Conclusion

In this chapter, we have introduced our definition of provenance of a data item
and how it can be extended to physical world entities. We have shown how prove-
nance can be represented in a computer system, and have identified a provenance
lifecycle composed of four phases: creating, recording, querying and managing.
In the next chapter, we introduce an architecture that provides support for these
four lifecycle phases.
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Chapter 3

Logical Architecture

3.1 Architecture vs System

In the context of this document, a provenance system is defined as a computer
system that deals with all issues pertaining to the recording, maintaining, visual-
ising, reasoning and analysis of the documentation of process that underpins the
notion of provenance. Such a system is a software implementation of a provenance
architecture, which identifies the different roles in such a system, their interactions
and the kind of provenance representation they are expected to support.

The provenance lifecycle is composed of four phases concerned with creating,
recording, querying and managing p-assertions. We now describe the roles of the
actors involved in each phase of the lifecycle and then present a logical architec-
ture that supports these actors in performing the activities of the lifecycle.

3.2 Role Definition

We can classify the actors involved in the provenance lifecycle according to their
role in a provenance system. Briefly, the responsibilities of each role are as follows.

e An application actor is responsible for carrying out the application’s busi-
ness logic.

e A provenance store is responsible for making persistent, managing and pro-
viding controlled access to recorded p-assertions.

An asserting actor is an actor that creates p-assertions about an execution.

A recording actor is an actor that submits p-assertions to a provenance
store for recording.

A querying actor is an actor that issues provenance queries to a provenance
store.
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e A managing actor is an actor that interacts with the provenance store for
management purposes.

3.3 Logical Architecture

In order to support capturing, recording, querying and managing the categories of
p-assertions introduced in the previous chapter, we have specified a provenance ar-
chitecture that takes into account a broad range of use cases | , ].
The architecture is summarised in Figure 3.1, which we discuss in the rest of this
section. Central to the architecture is the notion of a provenance store, which is
a service designed to store and maintain provenance representation beyond the
lifetime of a Grid application. Such a service may encapsulate at its core the
functionality of a physical database, but also provides additional functionality
pertinent to the requirements of the provenance architecture. In particular, the
provenance store’s responsibility is to offer long-term persistence of p-assertions.

In a given application, one or more provenance stores may be used in order
to act as storage for p-assertions: multiple provenance stores may be required
for scalability reasons or for dealing with the physical deployment of a given
application, possibly involving firewalls.

In order to accumulate p-assertions, a provenance store provides a recording
interface that allows recording actors to submit p-assertions related to their in-
teractions and internal states, for recording purposes. The recording interface
supports the second phase of the provenance lifecycle (storing). A provenance
store is not just a sink for p-assertions: it must also support some query facility
that allows, in its simplest form, browsing of its contents and, in its more complex
form, search, analysis and reasoning over process documentation so as to support
use cases. To this end, we introduce query interfaces that offer multiple levels of
query capability; the query interfaces support the third phase of the provenance
lifecycle (querying). Finally, since provenance stores need to be configured and
managed, an appropriate management interface is introduced, which supports
the fourth phase of the provenance lifecycle.

Some actor-side libraries facilitate the tasks of recording p-assertions in a
secure, scalable and coherent manner and of querying and managing provenance
stores. They are also designed to ease integration with legacy applications. We
also expect actor-side libraries to provide some support to create common forms
of p-assertions (the first phase of the provenance lifecycle). The creation of p-
assertions here will need to take into account the expression of causal relationships
in an appropriate manner, as previously discussed.

The interfaces and libraries shown in Figure 3.1 have different purposes: the
interfaces specify the messages accepted and returned by provenance stores, and
will be the focus of a standardisation proposal to ensure that applications, written
in multiple programming languages, can inter-operate with different implemen-
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tations of provenance stores; the libraries are convenient mechanisms for offering
bindings to the interfaces for specific programming languages. During an ap-
plication’s execution, all application services are expected to submit p-assertions
to a provenance store; this not only applies to domain-specific services, but also
to generic middleware, such as workflow enactment engines, registries and appli-
cation user interfaces.

Once p-assertions have been recorded in a provenance store, process documen-
tation can be used by processing services and presentation user interfaces. The
former provide added-value to the query interfaces by further searching, analysing
and reasoning over recorded p-assertions, whereas the latter essentially visualise
query results and processing services’ outputs. Figure 3.1 provides examples
of such processing services and presentation Uls offering functionality discussed
in | |. For instance, processing services can offer auditing facilities, can
analyse quality of service based on previous execution, can compare the processes
used to produce several data items, can verify that a given execution was seman-
tically valid, can identify points in the execution where results are no longer
up-to-date in order to resume execution from these points, can re-construct a
workflow from an execution trace, or can generate a textual description of an
execution. Presentation user interfaces can, for instance, offer browsing facili-
ties over provenance stores, visualise differences in different execution, illustrate
execution from a more semantic viewpoint, visualise the performance of execu-
tion, and be used to construct provenance-based workflows. We note that such a
list of processing services and presentation Uls is illustrative and not exhaustive;
furthermore, it does not represent a commitment by the project to deliver these
services specifically.

Another kind of user interface to the provenance store is also identified in
the architecture. This is the management user interface, which allows users to
manage the contents of the provenance store.

To be generic, a provenance architecture must be deployable in many different
contexts and must support user preferences. To adapt the behaviour of the
architecture to the prevailing circumstances and preferences, several policies are
introduced to help configure the system in its different aspects. Specifically, (i)
policies state user requirements about recording, e.g., to identify the provenance
stores to use, the level of documentation required by the user, desired security
aspects; (ii) policies specify capabilities of documenting process that services
may wish to advertise (such as their ability to provide some type of actor states
p-assertions), and any requirements they have on other services they rely upon
in order to perform this documenting (such as their need for high throughput
or highly persistent provenance stores); (i) policies define configurations of
provenance stores, from a deployment and security viewpoint (e.g., resources
they use, their access control list, or registry where they should be advertised).
By making explicit all these policies, it becomes possible to discover services
that match user or other service needs. When requested policies conflict with
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discovered policies, negotiation can be initiated to find a compromise between
the offer and demand.

3.4 The P-Header

In Section 3.2, we introduced the roles of actors involved in the provenance life-
cycle and their general responsibilities. Roles place more specific obligations
on actors with respect to supporting actors in other roles. Largely, this is a
matter of providing adequate information in the correct format: for example, an
asserting actor must create p-assertions in a format that a provenance store can
make persistent and a provenance store must provide p-assertions in a format
that querying actors can interpret. We specify how p-assertions and other data
should be modelled to provide such consistency in Chapter 7.

In order for p-assertions to be created, asserting actors need to identify which
process they are making an assertion about, which requires some shared context
between asserting actors. The asserting actors receive the information, such as
messages sent or received or actor states, from application actors, and therefore
it is the application actors which need to share context information. We there-
fore place a further obligation on application actors to pass context information
between each other regarding the process being executed. As this would often
be achieved by putting the context information in the header of an application
message (it could be exchanged by other, application-specific means), we call this
information the p-header, defined as follows.

Definition 3.1 (p-header) The p-header of an interaction is provenance-related
context information, sent along with the interaction’s message. O

In practice, the p-header can contain an identifier for the interaction to which
the context information applies and the locations of provenance stores where p-
assertions documenting the same process are stored. Additionally, the p-header
can contain a set of tracers, which are used to demarcate where one process
starts and ends. A tracer is a token added to a p-header by an application
actor, where the same tracer is added to the p-headers of all interactions in
the same process by the same application actor. Additionally, where a tracer is
included in the p-header of a message received by an application actor, that actor
is obliged to copy the tracer into the p-header of all interactions within the same
process. Using tracers, a querying actor can determine which interactions were
part of a single process, because their p-headers will all contain the same tracer,
and whether one process is contained within another, because the tracers of the
former’s interactions will be a subset of the tracers of the latter’s interactions.
The structure of p-headers and tracers is discussed in more detail in Chapter 7.
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3.5 Conclusion

In this chapter, we have presented the logical architecture that underlies our
provenance system and the roles of the actors that interact within that archi-
tecture. During the provenance lifecycle, the actors perform several roles: appli-
cation actors execute processes; asserting actors create p-assertions about these
processes; and recording actors record p-assertions in provenance stores, which
allow querying actors to retrieve p-assertions and managing actors to maintain
them. The recording, query and management functions of the provenance stores
are made available through fixed, pre-specified interfaces, making it possible to
program an application to take advantage of the architecture. Policies control the
run-time behaviour of architectural components deployed in different contexts,
and each of the roles places obligations on the actors playing them.

The remaining chapters of this document examine the issues that affect the
fundamental parts of the architecture or that cut across a provenance system as
a whole.
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Chapter 4

Security Architecture

One of the key features for a provenance architecture within the context of this
project is security. Many of the application domains in which a provenance archi-
tecture could potentially be deployed in have stringent requirements on access to
data manipulated within the system. Correspondingly, p-assertions that incorpo-
rate or are derived from these data are likely to have similar security restrictions
on them as well. Although security is a non-functional requirement, software
engineering methodology strongly recommends that security considerations be
integrated into the development life-cycle as early as possible. With this as a
motivating factor, we proceed in this chapter to outline a security architecture
for the logical architecture that we described in Chapter 3. In addition, the re-
maining chapters of this document will contain a security section (if relevant)
that may make reference to the material presented in this chapter.

In Section 4.1, we briefly define some of the common security concepts that we
use in this document. In Section 4.2, we survey the security issues relevant to the
conception of provenance. Following that, we present the security architecture
for the provenance store and describe the functionality and interaction between
its constituent components in 4.3. In Section 4.4, we discuss the security issues
pertaining to other components in the logical architecture. We then outline the
security issues that remain unaddressed in Section 4.5, and conclude in Section
4.6.

4.1 Background

This section provides a brief narrative that encompasses some of the more com-
mon terminologies encountered in the field of electronic security. It is not intended
to be a comprehensive treatise of the area, and merely seeks to provide a con-
ceptual background for the security discussion in the remaining sections of this
document.

We consider a system that offers some functionality through a set of resources
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that can be accessed and manipulated. It is usually the case that these resources
can only be accessible or manipulated in specific ways in order to ensure that the
functionality offered by the entire system is unaffected. The integrity of a resource
is a property of that resource that is preserved as long as the resource is accessed
or manipulated in the prescribed manner. It is assumed that these restrictions
on resource manipulation necessary to preserve its integrity are known to the
entity responsible for the system resources, which we shall term as the system
administrator. Hence for the trivial case where a system administrator accesses
or manipulates a system resource, there is no risk of intentional resource integrity
violation. The role of a system administrator would be roughly analogous to that
of a managing actor within the context of the provenance architecture.

However, systems are generally useful only where their functionality (as pro-
vided by their internal resources) is accessible to external entities. In situations
such as this, the system administrator may not have direct control over these
external entities and cannot ensure that their behaviour is compliant with preser-
vation of resource integrity. There is therefore the need to perform access control
to these resources, and this is typically achieved by restricting access (out of the
overall group of entities that are capable of accessing the system resources) to a
specific group of entities that are trusted by the system administrator. We do
not consider in our discussion the context of trust and how it is established in the
first instance between the system administrator and a group of external entities.

A preliminary and necessary requirement for access control is authentication,
which is the process of producing an identity based on some credentials sub-
mitted by the entity to the security infrastructure. An identity produced from
a successful authentication process can subsequently be used in access control
to ascertain whether an entity’s accompanying request to access some resource
in a specific manner is permitted or not. An entity that is allowed to access
a given resource in a specific manner is said to be authorised to perform that
access on the specific resource, and such an authorisation can be expressed in
different ways. For example, in a mandatory access control system, entities are
authorised to access resources on the basis of the relationship between different
security labels or clearance levels assigned to the various resources and entities.
In a discretionary access control system, authorisations are generally expressed
in the form of a direct relationship between a given identity and the resources
accessible to it.

The set of authorisations in a system is typically predetermined by the sys-
tem administrator according to some existing security policies, and the scope of
enforcement of this policy is generally known as a security domain. It should be
noted that the identity produced from an authentication process is only mean-
ingful to the system performing the authentication; it is entirely possible that
a single entity may be represented in different systems with different internal
system identities. Authentication and access control are often tightly interlinked
components in a security architecture.
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Situations may arise when a data resource (or a copy of it) has to be trans-
ported across an open medium, such as a network connection, where it is no longer
protected by the security infrastructure of the system. Privacy is a property of
this data that is achieved in this context by transforming the data into a form
(typically via the use of symmetric cryptographic mechanisms) that is unintelli-
gible to entities that were not originally authorised to access it. Integrity of this
data is achieved in this context by ensuring that any processing or modification
of the data while in transit becomes detectable. This generally involves the use
of asymmetric cryptographic mechanisms such as digital signatures.

Signatures are generated by using the private portion of a public/private key
pair to generate a message digest on a piece of data. Only the owner of the
private key is capable of generating a digest on that data that can subsequently
be verified successfully by any entity possessing the public portion of the key pair.
This ensures that any modification of the data by any entity other than the owner
would be detectable via an unsuccessful verification attempt. In addition, the
uniqueness of the private key enables the establishment of a direct link between
the key owner and a piece of data signed with that key. This is sometimes useful in
attempting to guarantee the property of non-repudiation, which seeks to ensure
that an individual is held accountable for an action in the system and cannot
deny having undertaken this action post hoc. If such an action is expressible in
the form of a data item, then a signature on this item undisputedly establishes
corresponding responsibility for the action on the key owner.

Certificates are electronic documents used to link a public key with an identity
of an entity possessing the corresponding private key. The reliability of this link
is established by a signature on the certificate by a party trusted by all entities
that use the certificates. This trusted party is usually a certificate authority
(CA), who is the primary entity responsible for the life cycle management of
these certificates within a Public Key Infrastructure (PKI).

Interactions across different security domains can sometimes occur, partic-
ularly in large scale, distributed systems exemplified by the Grid or the Web
Services environment. For example, a workflow initiated by an individual may
interact with resources from several systems, each with separately administered
access control schemes. Here, the individual would need to authenticate to the
relevant security components of each of these systems, since the individual would
very likely have distinct internal identities in the different security domains. Fed-
eration of identity is a method which seeks to simplify the security procedure, and
hence the overall workflow process, by requiring the individual to authenticate
only once (usually known as single sign-on) in order to access resources across
several security domains. In order to accomplish this while still retaining the orig-
inal level of security, the infrastructure of each of these security domains needs
to be structured to communicate relevant information, particularly pertaining to
actor identities, between themselves.

Another requirement that arises within a distributed environment is the need
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for delegation of access control rights. For example, during the process of work-
flow execution by an enactment engine, a service invoked by the workflow engine
might need to invoke another service in order to fulfil the requested functionality.
If these services exist in different security domains, then the individual respon-
sible for initiating the workflow would need to authenticate twice: once to each
of them. Once again, a single sign-on capability can be provided if a mechanism
is implemented in the security infrastructure that empowers the first service to
invoke the second service based on the access control rights transferred to it from
the individual concerned. Note here that while the conception of single sign-on
is the same as is the case in identity federation, the motivating situations are
slightly different. Delegation of access control generally also carries the implica-
tion that the delegated access rights are only qualified within a certain context:
for example, during the duration of a workflow or to access specific resources only.
There must be a way to ensure that a service that has been delegated some rights
from an individual does not maintain the ability to use these rights indefinitely
outside of the given context, nor to delegate it further onwards to other entities
unless permitted to do so.

It needs to be borne in mind that delegation of access control and federation
of identity are not novel security methodologies nor do they enhance the security
capabilities of a system. They merely provide a way to maintain the existing level
of security in individual security domains while attempting to simplify the secu-
rity requirements that arise when complex interactions between these different
domains occur.

4.2 Provenance Related Security Issues

In this section, we outline the security issues that we believe are relevant pertain-
ing to our notion of provenance. We note however that not all of these issues are
relevant in the context of the software requirements (see Chapter 10), and the
eventual security architecture will only address those that are.

1. Access control to the provenance store. This is the primary security issue as
the provenance store is considered to be central to the logical architecture.
While the access control mechanisms utilised are situated in the context of
the specific requirements of the project, this notion of security here is con-
ceptually identical to the general case of securing a database with multiple
users.

2. Integrity and non-repudiation of p-assertions. Recording actors store p-
assertions created by asserting actors in the provenance store. In the event
that the asserting actor is not the recording actor, there is a need to en-
sure that information within the p-assertion is not altered unintentionally
or maliciously by either the recording actor or provenance store. This can
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be achieved by having the asserting actor sign the p-assertion it creates.
The signature also serves the additional purpose of ensuring that the as-
serting actor cannot deny responsibility for the creation of the p-assertion
in question. This can be necessary when legal or other requirements man-
date establishment of liability for the consequences arising from utilizing
the information in a p-assertion. This issue is discussed further in Section
7.8.

. Ascertaining asserter identity in a p-assertion. The structure for holding
p-assertions created by an asserting actor will also hold the identity of
this actor (Figure 7.9). By implication of the previous point we discussed,
the asserter identity should correlate with the identity associated with the
signature on the p-assertion, since only the asserting actor should sign the
p-assertion. A check can be done to ascertain whether this is true, and can
be undertaken by either the provenance store to which the p-assertion is
recorded to, or by the querying actor retrieving the p-assertion in question.

. Derivation of authorisation information relating to p-assertions. It is likely
that p-assertions will contain or be derived in some fashion from an existing
piece of data in the system. For example, an application actor with access
to a database may send a message containing an item from that database to
another actor. This item is likely to have certain access control restrictions
enforced upon it within the security domain of the database in question.
When a p-assertion is created for the transmitted message and recorded to
the provenance store, appropriate access control restrictions (or authorisa-
tions) must now be established for this new entry to ensure that any future
access to it is in accordance with the security policies of the provenance
store.

In some situations, it may be useful to relate the authorisation for the newly
recorded p-assertion in some way to the access control restrictions on the
original database item that the p-assertion is based upon. This effectively
allows for a more flexible specification of authorisations on p-assertions by
taking into account information other than that found in statically prede-
fined security policies on the provenance store. A possible approach towards
this end is for the recording actor to submit additional information along
with the p-assertion to be stored. This additional information would be
created by the asserting actor and can then be utilised in an automated
manner by the provenance store to generate appropriate authorisations for
the new p-assertion.

. Context-based authorisation specifications. As we have seen in Chapter 3,
processing services provide added-value to the query interfaces by further
searching, analysing and reasoning over recorded p-assertions. Some of the
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operations that can be performed by a processing service have a well defined
functionality; for example, comparing processes used to produce several
data items. In order to perform this operation, a certain set of p-assertions
identified by certain criteria will need to be retrieved from the provenance
store. Another operation, for example, verifying that a given execution
was semantically valid, will require the retrieval of another set of different
p-assertions. Situations may arise where it is useful to ensure that certain
actors are authorised to access only the relevant p-assertion subset necessary
for a specific operation (or more generally, any type of context in which
provenance representations can be used in). This would require an ability
to express authorisations at this level, as well as some way to translate
these context-based authorisations into finer grained authorisations at the
p-assertion level.

4.3 Provenance Store Security Architecture

In this section, we present the logical design for a security architecture for the
provenance store, having identified it as being the central component in the prove-
nance architecture. Security issues pertaining to the other components in the
logical architecture are addressed in the following section. An overview of this
architecture is illustrated in Fig. 4.1; components enclosed in ovals indicate that
they potentially (although not necessarily) exist in security domains separate
from the domain of the provenance store. We first describe the functionality of
each of these components and then proceed to outline the possible interactions
between them. Finally, we discuss some of the broader security issues that are
not considered in this architecture.

4.3.1 Components of Security Architecture

The provenance store in the logical architecture exposes three different interfaces
(recording, management, query) for different purposes. All of these interfaces
can have optional operations that access the required security functionality in
the actor side libraries. The identity validator accepts all incoming requests and
accompanying credentials (such as certificates) over a secure link supporting ei-
ther transport or message level encryption. It is also important that the validator
and actor interacting with it mutually authenticate each other during this secure
transmission. This is necessary from the viewpoint of the provenance store as the
identity of the actor is the first step towards enforcing appropriate access control.
However, it is equally relevant as well for the actor who needs to circumvent
potential impersonations of a valid provenance store by malicious parties that
would then gain unauthorised access to the p-assertion.

The identity validator then performs four functions:
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1. Verifies that the submitted credentials are valid within the context of the
domain. This may require interaction with the trust mediator in the event
where federated identity validation is required. It also needs to take into
account that the submitted credentials may imply some form of delegation.

2. Maps these credentials to an internal representation (IR). This could assume
a combination of various forms (an identity, a role, a list of attributes, a list
of privileges, etc). This should include basic role information to support an
RBAC implementation. A common way of doing this is to map the identity
to a role which has a predefined set of authorisations or privileges.

3. Ensures that the asserter identity on the submitted p-assertion tallies with
the identity associated with the signature, if any, on the p-assertion. This
operation is optional, and correlates with the third security issue in Section
4.2. If the asserter identity is to be utilized in the access control decision,
then it needs to be mapped to a corresponding IR as well.

4. Formats the request into an appropriate representation for access control
purposes.

The first two functions are performed with help from an internal representation
list that specifies the appropriate mapping relationships, including roles.

The credential server fulfils the role of being a trusted third party hold-
ing identity-related information for all potential users of the provenance system
within a given security domain, as well as providing them with suitable creden-
tials and other related security tokens for authentication purposes. The autho-
risation engine essentially performs the access control functionality in two main
ways based on the authorisations specified in the authorisation policy and the IR
produced from the identity validator:

e The request is granted or denied solely on the basis of the information
from the authorisation policy and the IR related to the identity of the
requesting actor. It is also possible that the IR of the asserting actor is
taken into account in the access control decision as well; we assume that
this possibility exists, but use the term IR to refer to the IR of the recording
actor for the sake of brevity in the remaining discussion. If granted, the
requested operation is performed and the appropriate acknowledgment or
data item is returned directly to the requestor without further intervention
from the authorisation engine.

e The granting of the request may additionally be dependent on informa-
tion contained within the data item that the request is related to (such a
condition would be specified accordingly in the authorisation policy). For
example, a read operation associated with an IR on a given p-assertion
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might be permitted only if the p-assertion contained relevant information
pertaining to that IR. In this case, the p-assertion in question would have
to be retrieved first and assessed accordingly by the authorisation engine
before a final decision can be made on granting or denying the request.

Depending on the nature of the authorisation engine, it may be necessary that
the assignment of a role to an IR for the case of a RBAC should be achieved by the
authorisation engine instead of the identity validator. In addition, it is possible
to employ either one or both of these two approaches to specifying authorisation:

e an identity / role is assumed to have no authorisations in the initial case,
and explicit authorisations have to be granted;

e an identity / role is assumed to have complete authorisation in the initial
case, and explicit restrictions have to be placed.

The access control policy is a higher level security policy that specifies the
ways in which the authorisation policy and/or internal representation list can be
modified by the components which access them. Both the access control policy
and authorisation policy could be subsumed under the broad umbrella of prove-
nance store policy in the logical architecture. The database backend provides
actual physical storage for the p-assertions. The trust mediator is an optional
component of the architecture that is required only if federated identity manage-
ment is to be supported. It provides the interface to other security domains, and
is the component through which security assertions are exchanged about local
internal representations and authorisations. The derivation engine provides the
following functionality:

1. Derives new authorisations from existing authorisation information. For
the case of the third security issue for provenance as identified in Section
4.2, the authorisation information would originate with the p-assertion as
part of submitted request from the actor. Alternatively, there may be a
need to correlate the authorisations as specified in the access control policy
with the authorisations in the host systems security architecture, in the
event that a tighter integration between both architectures is required.

2. Creates a set of appropriate authorisations corresponding to a higher level
context-based authorisation specification. This corresponds to the fourth
security issue for provenance, and can be considered to be optional func-
tionality.

4.3.2 Interaction Between Components

We illustrate the interaction between these components using some simple sce-
narios in a technology independent manner. The flow of information are denoted
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by labelled arrows in Fig. 4.1 and our description makes reference to them ac-
cordingly in brackets.

Scenario 1: Submission of a p-assertion to be stored by a recording actor

1.

The p-assertion along with other relevant information is submitted as a an
invocation message (b.) in accordance to the schema of the recording in-
terface. The submission link is secured using appropriate client-side library
functionality. The entire message could be signed, or some of its contents
could be signed (for example, signing the p-assertion for non-repudiation).
The required credentials can be obtained from the credential server prior
to the invocation process. (a.).

The identity validator intercepts the message and verifies the signature if
there is one; this may involve another interaction with the credential server
(c.). An attempt is made to resolve the supplied credential information
with the internal representation list (f.) If the credentials cannot be imme-
diately resolved but there is additional information to indicate the domain
in which it might be recognised, an appropriate request is sent off to the
trust mediator (d.).

The mediator interacts with its counterpart in the relevant domain using
appropriate assertions as part of a security protocol, and then formulates a
new security assertion based on the access control policy (p.). This assertion
is then sent off to the derivation engine (h.). The recognition of the new
IR is achieved by appropriate additions to the internal representation list
(s.) and the authorisation list (j.) by the derivation engine, based on the
access control policy (q.)

If the credentials fail to resolve successfully either in the current domain
or the domain that the mediator attempts to interact with, an appropriate
security exception is returned via a fault (g.). Otherwise, the validator
converts the store request into an appropriate format and sends it off to
the authorisation engine (e) along with the role and accompanying security
attributes.

The authorisation engine first needs to ascertain whether the store request
is valid for the specified role based on the authorisations specified in the
access control policy (k.). If it is not, an appropriate security exception is
again returned via a fault (t.). Otherwise, new authorisation information
for the p-assertion to be stored needs to be determined. The authorisation
engine formulates an appropriate statement which is then sent off to the
derivation engine (i.). For the case of the third security issue mentioned
in Section 4.2, the submitted p-assertion will also contain accompanying
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authorisation information; this will be also be taken into account in the
formulated statement of the authorisation engine.

. The derivation engine subsequently creates new authorisation information
from the formulated statement based on the rules prescribed in the access
control policy (q). For purposes of maximising performance, this new autho-
risation information could have been created by the recording actor doing
the submission so that the derivation engine uses it directly without any
further processing. The new authorisation for the p-assertion to be stored
is added to the authorisation list (j). The p-assertion is now sent onwards
to the storage pre-processor, along with relevant authorisation information
or metadata that it is meant to be stored with (1.). Here, the p-assertion
may be encrypted or signed using the private key of the provenance store
domain (in the case that the database backend is in a different domain)
and then formatted to correspond to the recording interface schema of the
backend.

. The p-assertion is then sent over a secure, mutually authenticated link to
the database backend in an analogous manner to the way that the original
submission by the recording actor to the provenance store was accomplished
(0). The database backend, if hosted by a third party provider, could be
exposed for remote access in a variety of ways with corresponding authen-
tication and access control mechanisms; the storage pre-processor will need
to be aware of these possibilities and cater to them accordingly by acquir-
ing and generating the relevant security credentials. The acknowledgement
sent back from the database backend (n.) is processed accordingly and sent
back to the recording actor (m.)

. A session connection can be established on a secure link so that future
submissions no longer require the submission of authentication credentials
that need to be verified. This requires that the implementation support
such a secure persistent session connection.

Scenario 2 : Retrieval of a p-assertion by a querying actor

The sequence of interactions is nearly identical to that for the case of storage.
The primary difference arises from the fact that there is no need for the derivation
engine to generate new authorisation information as there is no new p-assertion
to be stored. However, when the requested p-assertion is returned (m.), further
transformations may be performed on it, in accordance to the initial authorization
information associated with the request as well as any additional authorization in-
formation stored and associated with the p-assertion itself. The transformations
which are undertaken by the derivation engine, may take the form of filtering out
portions of the p-assertion or transforming the information in the p-assertion in
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some specific manner.
Scenario 3: Management of the provenance store by a managing actor

Management operations on the stored p-assertions are achieved in an identi-
cal manner to that for scenario 1 and 2. Submission of a management operation
request is treated like the submission of a p-assertion to be stored, with the dif-
ference that the management request is not stored but rather processed by the
derivation engine and the appropriate functionality then enacted. This may re-
quire retrieval of p-assertions, if so, these are then returned to the managing actor
in a similar manner to that in Scenario 2. There may also be modifications of
internal representation list/authorisation list which may include deletion, mod-
ification and addition of entries. All of these operations are consequent on the
identity validator first recognizing that the authenticated managing actor has the
role or capability to perform these management type activities.

Scenario 4 : Integrating authorisations of the provenance store and the host sys-
tem

This can be accomplished by providing a link / interface between the access
control /authorisation components of the host system and the derivation engine.
If the provenance store architecture is tightly integrated with its host system, this
link may not need to be secured as all communications between the architectures
are internal within the operating system, rather than through an exposed net-
work medium. Changes that need to be made to the authorisation list / internal
representation list can then be propagated through the derivation engine (r).

An implementation of the provenance architecture may require distributed
provenance stores for reasons such as scalability, as will be discussed in Chapter
5. In such an instance, p-assertions related to a specific workflow or sequence of
execution may be stored in multiple provenance stores by the responsible record-
ing actors. Consequently, a query to retrieve a group of related p-assertions may
potentially require a series of queries to the various provenance stores holding the
desired p-assertions. We discuss the security implications of this requirement in
5.4.

4.4 Security in Other Architecture Components
In the previous subsection, we presented and described the functioning of a secu-
rity architecture to protect the provenance store, a key component of the logical

architecture. Here, we study the security considerations underlying interactions
involving other components of the logical architecture.
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4.4.1 Between other components and the provenance store

The other components in the logical architecture that interact directly with the
provenance store will now require corresponding security functionality as well in
order to ensure their interactions are secured properly. We describe the nature
of the required functionality below for application services, management Uls and
processing services.

1. A facility is required for accessing credentials that are to be submitted to
the identity validator in the provenance store. This can be provided as addi-
tional libraries in the corresponding actor side libraries or as interfaces that
permit interoperation with external third party applications that provide
credential generating functionality. A straightforward example would be a
keystore manager application that generates, archives keys and certificates
and obtains approval for these certificates from a CA.

2. If a keystore or some other facility for storing cryptographically generated
material is to be used by the client side libraries, it has to be secured
appropriately (e.g. located in a secure account, encrypted and contents
accessible only by the provision of a username/password combination).

3. A facility is required for accessing specific security mechanisms such as
signing or time stamping. This is necessary, for example, when the asserting
actor needs to sign the p-assertion it created (see related security issue 2).

4. For the case where authorisation information is desired to be submitted
alongside p-assertions, an interface must be provided as part of the domain
specific services that allows the retrieval of this information from the ap-
propriate locations (such as a local database). This interface should be
congruent with the specific format in which the authorisation information
can be expressed in.

4.4.2 Intermediate components

By intermediate components, we refer to components that are not directly acces-
sible by the user. Such components may themselves be invoked or accessed by
other components rather than by the user, and may interact directly with the
provenance store. For example, a user may use a presentation Ul to access a pre-
sentation service which in turn accesses the provenance store. In the application
domain, a user may access an application Ul that in turn invokes a chain of other
application services before a final invocation is made to the provenance store. In
such cases, the intermediate component may require authentication of incoming
requests to it. It is possible to reuse the security architecture developed for the
provenance store for this particular component as well. The primary differences
would be, with reference to Fig. 4.1, are:
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1. As the incoming request is to the intermediate component, it is unlikely
to be a p-assertion, rather a generic data item (which may contain a p-
assertion) submitted in accordance with the schema of the interface to this
intermediate component.

2. The derivation engine will not be used to create new authorization infor-
mation as the submitted data item is not intended to be stored. However
it may be used in performing some security-related functionality on the
data item, for example encrypting or filtering out a certain portion of it.
This will be accomplished in conjunction with security policy dictating the
operation of this intermediate component.

3. Once the request is approved by the authorization engine, it is sent off (1) to
some internal function of the intermediate component for further processing,
rather than to a database backend (as is the case for the provenance store).
Once this processing is complete, a result is returned to the invoking actor
(m) and / or a further invocation is made to another component.

4.4.3 Delegation of identity or access control

The need to delegate access control may arise if the intermediate component
described previously exists in a separate security domain from both the user and
the provenance store. Consider again the logical architecture in Fig. 4.1 and
assume that a user is performing a query on the provenance store through the
presentation Ul and a processing service. Assume now three separate security
domains: one containing the user and the presentation Ul, another the processing
service, and the third encapsulating the provenance store.

When the presentation UI under the users control sends a request to the pre-
sentation service, an appropriate credential is submitted by the user for purposes
of authentication. If the request is authorized, the presentation service will then
decide the type and number of provenance store queries that need to be made in
order to satisfy the request. When making these queries, the presentation ser-
vice needs to present suitable authentication credentials to the provenance store.
There are essentially two ways to proceed here:

e Authenticate to the provenance store using the credentials of the presen-
tation service, whereupon subsequent authorization decisions will be based
on the identity or associated role of the presentation service. This approach
requires the presentation service to be trusted and known to the provenance
store security administrators, and that it has the appropriate authorization
to access a wide enough pool of p-assertions to satisfy requests from all
potential users (or at least users that are known within the security domain
of the presentation service).
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e Authenticate to the provenance store on behalf of the original user. This
approach requires that a form of delegated identity or access control creden-
tial be created by the presentation service, possibly in negotiation with the
presentation UI. The identity validator of the provenance store must then
be able to recognize and process this delegated credential accordingly, and
infer the identity or associated role of the original user. Subsequent autho-
rization decisions are then on the basis of the users identity, and may also
need to take into account additional constraints specified in the delegated
credential itself.

The first approach is suitable if all potential users making queries can ever
only do so through the medium of a presentation service. Here, the responsibility
of checking authorizations for the actual users is effectively offloaded from the
provenance store to the various presentation services in the system. If the number
of presentation services known within the provenance store security domain is
significantly smaller than the potential number of users, then the overhead of
authorization is equivalently reduced as there is now only a need to check on
these presentation services.

There are some drawbacks however with this approach however. Firstly, au-
thorization lists are likely to be duplicated between many presentation services,
as it is unlikely that authorization for a specific user will differ between differ-
ent services. Accordingly, changes or additions to these authorization lists must
then also be propagated between the different copies on all services. Lastly, ap-
plication services storing p-assertions through the recording interface must now
provide authorization information pertaining to presentation services rather than
specific users. This may necessitate additional overhead in communication be-
tween application services and presentation services.

The second approach therefore appears to be a more feasible one. There will
however be an overhead associated with communication between the presenta-
tion Ul and the presentation service in order to create an appropriate delegation
credential. Depending on the delegation act itself, there may be a need also for
further communication between the security architecture of the provenance store
and the user / presentation UI during the authentication or authorization pro-
cess in the security architecture of the provenance store. This might happen,
for example, when delegating access control is expressed through the modifica-
tion of the authorization list in the provenance store to reflect the delegation
of authorizations between the security domains of the user and the provenance
store.

Even when credential delegation is used, the presentation service may also
have an installed security policy that dictates the nature of the results to be
returned to the user / presentation Ul For example, assume that a request from
the user to the presentation service results in several corresponding query requests
being sent in turn to the provenance store along with a delegated credential.
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P-assertions pertaining to the authorization associated with this credential are
then returned to the presentation service. At this point, the security policy of
the presentation service as pertaining to the user in question may dictate further
processing of the results (such as transforming or filtering it in some way) before
finally returning it to the user. In this case, filtering or transforming of the
returned results based on authorization considerations happens at two stages:
once at the provenance store, and then subsequently at the presentation service.
In both stages, it is performed by the derivation engine of the respective security
architecture. There may also be need to communicate between the authorization
engines of both the presentation service and provenance store via their respective
trust mediators, if complex authorization decisions are to be affected.

The description in this subsection is equally applicable to intermediate com-
ponents in other places in the logical architecture, for example with an application
service that is located in a different security domain from the actual application
service that makes the final submission of p-assertions to the provenance store.
Similarly, delegation of identity or access control can also occur multiple times if
there is an invocation of a chain of application services (such as that might occur
in a workflow), with all these services located in different security domains. In
cases like this, it is necessary to ensure that the delegation mechanism being used
(for example, proxy certificates) can support multiple acts of delegation.

4.5 Additional security issues

While this chapter discusses security considerations for all components of the
logical architecture, the primary focus is on the security architecture for the
provenance store as we have established it as the core component in the logi-
cal architecture. The construction and implementation of this architecture will
therefore take precedence over security considerations for other components. In
particular, if the provenance system is to be integrated into an independent appli-
cation domain of which the developers of the provenance system have no control
over, then it is assumed that some, if not all, of the security issues relating to the
application services have already been addressed adequately. Such issues include
the need for delegation of access control, which was already discussed at the end
of the previous section. In this section, we describe a few more of these types
of security issues, which also do not completely come under the purview of the
security work to be achieved for the provenance architecture.

1. Mutual authentication and secure transport of p-assertions between two
application actors. Both activities have to be handled or negotiated between
the two actors involved in the production of interaction p-assertions.

2. Anonymisation of data. Some medical-based applications require the ex-
change of patient-related information during the interaction of services.
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Legal restrictions mandate that data of this nature is anonymised (patient
identity is removed) and depersonalised (i.e. the identity of the patient
cannot be traced based on other information in the record). Again, this
requirement remains outside the context of the security architecture.

. Support for multiple authentication schemes. To enhance security in some
application scenarios, authentication requires a combination of security cre-
dentials in order to be successful. The identity validator of the component
in question must then be able to support the use of multiple security cre-
dentials.

. Establishing the access control polices for a RBAC system. Authorisation
in this system is very much policy-driven; specifying the nature of these
policies within the particular context of RBAC is vital to the correct and
efficient functioning of the architecture. Policy related issues are addressed
in Chapter 8.

. Long term storage of provenance information. If a third party database
provider is used, then provenance information may need to be encrypted
or signed by the storage pre-processor prior to sending it off for storage.
In the event that this provenance is intended to be stored for a relatively
long period (e.g. 100 years), a situation likely to arise is one where the
original cryptographic keys and / or algorithms become outdated or expire.
Such issues must be catered for in some way, for example, by having a
key archival facility and re-signing / re-encrypting provenance information
periodically over the intended storage duration.

. Expiry of certificates. For workflows that run over a relatively long period,
it is possible that certificates could expire in the middle of a workflow run.
If an actor uses a certificate as part of the authentication process to the
provenance store, then expiry of this certificate would mean that submis-
sion invocations that were once accepted within the context of this workflow
have now become invalid. To avoid situations like this, proper management
of certificates and keys at the actor end is called for (i.e. workflow duration
is estimated against certificate life time prior to commencing a workflow).
Alternatively, the provenance store security policy could be articulated ap-
propriately to avoid this situation. For example, the authorisation com-
ponent could keep track of all invocations from a given actor within the
context of a specific activity and allow remaining invocations to proceed
in that activity as long as the initial invocations were signed with a valid
certificate.
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4.6 Conclusion

In this chapter, we discussed security issues that were relevant in the context of
provenance. The security architecture for the provenance store is then presented
along with an explanation of the functionality of its constituent components. This
is followed by an illustration of the interaction of these various components in for
some standard interactions with the provenance store. We then discuss security
issues pertaining to other components of the architecture. Finally, we outline
some of the security issues that we do not address or are out of scope of the
proposed security architecture. In the following chapters, we will again discuss
security issues (where relevant) with appropriate references to this chapter .
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Chapter 5

Distribution Architecture

After introducing a logical architecture for provenance systems in Chapter 3,
this chapter now discusses distribution in the architecture. First, it presents a
set of recording patterns that identify communications between key architecture
roles; second, it explains how the data organisation adopted by the provenance
store allows for data that is geographically distributed; finally, it describes how
deployments of core architecture components can cater for high load.

5.1 Recording Patterns

To be able to cope with the documentation of a single execution, provenance
stores may have to be distributed since there can be a large quantity of data, in a
large amount of assertions, recorded by a high number of actors deployed in many
organisations, each with their own security domain, privacy requirements, etc.
The requirement for recording process documentation in distributed provenance
stores, such that all documentation related to an execution can be retrieved again,
presents a developer with several deployment problems. Therefore, one aim of the
distribution architecture is to present a set of deployment patterns that address
these problems.

A pattern-based approach began with Alexander in the field of architecture
[ , | and was latter promoted as useful for software systems by Gamma
et al. | |. According to Alexander | |, a pattern describes a problem
that occurs over and over again in our environment, and then describes the core
of the solution to that problem, in such a way that one can use this solution a
million times over, without ever doing it the same way twice.

A pattern then describes a solution to a common design problem; the solution
described must strike a balance between being concrete enough to be applicable
and abstract enough so that it can be applied to a range of similar problem
situations. Patterns allow us to present a solution that any developer can use
to integrate p-assertion recording into their application. We now describe each

40



pattern for p-assertion recording in turn. The adopted format is as follows:
Name A short name of the pattern that reflects the solution.

Diagram A diagram that shows the pattern visually. Diagrams have a common
visual appearance. Provenance Stores are labeled and denoted by a 3D cylinder.
Actors are denoted by boxes. A single message exchange is denoted by a line with
an arrow head. The arrow denotes the direction of the message flow. Dotted lines
follow the same convention but denote multiple message exchanges.

Context The situation in which the pattern applies and why this pattern exists.

Problem Describes the problem that the pattern solves providing more detail
as to when the pattern should be applied.

Solution A description of how to apply the pattern including the interactions
between actors and any properties an actor is expected to have in order to function
in the pattern.

5.1.1 Separate Store

Name SeparateStore.
Diagram See Figure 5.1.

Context Application actors want to make available information about their in-
teractions and associated state. This pattern exists because querying actors want
to know how application actors have interacted in the past in order to produce
a piece of data. To know how application actors performed, these application
actors must make available information about their actions.

Problem An application actor, A, may be involved in a large number of inter-
actions over its lifetime and cannot retain all the process documentation itself.
Likewise, querying actors would like to access information about A’s previous
message exchanges and states, even when A is not available. For example, A
may have been shutdown, moved or be under repair.

Solution A separately deployed store is introduced to retain information about
an application actor’s interactions and states, which we referred to as provenance
store in Chapter 2. An actor records p-assertions into a provenance store so that
it does not have to retain this information itself. A provenance store should have
the following properties:
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Figure 5.1: SeparateStore Pattern Diagram

1. It should be available in a long term manner in comparison to the applica-
tion actors that submit p-assertions to it. This property allows p-assertions
recorded by an application actor to be accessed after the application actor
has become unavailable.

2. It should provide a well defined interface for the recording of p-assertions
by an application actor.

3. It should provide a query mechanism to retrieve p-assertions, which makes
the p-assertions available to querying actors.

4. Tt should provide a management mechanism to manage the stored p-assertions.

5.1.2 Context Passing

Name ContextPassing.
Diagram See Figure 5.2.

Context Two application actors, A and B, exchange a message. A and B
record p-assertions about this interaction in two provenance stores (see the pat-
tern SeparateStore). Both actors record these interaction p-assertions because
they want their view of that interaction to be documented. This allows other
actors to determine if A’s and B’s views of the interaction concur. Likewise, A
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Figure 5.2: ContextPassing Pattern Diagram

and B may want to record actor state p-assertions and relationship p-assertions
within the context of the interaction.

Problem The p-assertions that A and B record need to be identified as being
the documentation for the same interaction. Otherwise, the actors’ views of the
interaction cannot be associated with one another; it then becomes difficult to
determine if the recorded p-assertions are documenting the same interaction.

Solution The client actor in the interaction must generate the appropriate
identifiers (IDs) to identify the interaction. It must then pass a context contain-
ing those IDs to the service actor. Both actors use these IDs to record their
p-assertions in their respective provenance stores. The p-assertions for the inter-
action can be matched by the IDs generated by the client actor. A method of
passing this context is by attaching it to the application message exchanged by
the client and service actors. Application actors may use any other appropriate
method to pass such context information. Beyond passing IDs, application ac-
tors may use a context to pass other information relevant to provenance. The use
of ContextPassing is core to the architecture as discussed in Section 3.4; Chap-
ter 9 discusses further the expected behaviour of actors regarding such contexts.
Identifiers and contexts are also discussed in Sections 7.1 and 7.3.
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5.1.3 Shared Store

Name SharedStore.

Diagram See Figure 5.3.

Record Record

P—Assertions‘,c“"

Client Service

Figure 5.3: SharedStore Pattern Diagram

Context Actors record p-assertions into provenance stores following the Sepa-
rateStore and ContextPassing patterns.

Problem The SeparateStore and ContextPassing patterns may lead developers
to believe that for every application actor there is a corresponding store. However,
developers may not want to deploy a provenance store for every application actor,
especially when the number of application actors is large. Also, in order to retrieve
the provenance of a result each provenance store must be contacted resulting in
slower query performance.

Solution Application actors are allowed to record p-assertions in a shared
provenance store.

The SharedStore pattern clarifies the way in which SeparateStore and Con-
textPassing can be applied. Both SeparateStore and ContextPassing are agnostic
as to what provenance store an actor may use to record its p-assertions. The pat-
tern emphasizes that actors can record their p-assertions in any store they choose
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and provenance stores may hold p-assertions from multiple actors. SharedStore
does not prescribe how many stores there should be and which provenance stores
should be shared. This is left to the developer applying the pattern. SharedStore
allows developers to determine the distribution of provenance stores that fits their
application.

5.1.4 Pattern Application

The patterns that we have introduced show how p-assertions can be recorded
in provenance stores by actors. The documentation of process can be recorded
for an entire system by applying a selection of these patterns to every actor and
every interaction in a system. Hence, a given actor may use different provenance
stores for recording p-assertions pertaining to different interactions. For exam-
ple, Figure 5.4 shows a system with a client initiator, a workflow enactor and a
service all recording p-assertions about their request and response interactions.
SeparateStore, ContextPassing and SharedStore have all been applied multiple
times in this case.

Provenance Provenance

Store 1 Store 2

Client Workflow
Initiator Enactment
Engine  [-...
...... Provenance
.7 Store3
Service1 [

Figure 5.4: A system in which SeparateStore, ContextPassing and SharedStore
have been applied multiple times

These recording patterns allow for the flexible deployment of provenance
stores to aid scalability. The patterns can be applied to any number of interact-
ing actors using any number of provenance stores in order to record p-assertions;
the distributed architecture however does not mandate the number of provenance
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stores that must used in a given application, nor the way they must be shared.
This is left to the application designer to make those decisions.

5.2 Linking

By the definition of the p-assertion recording patterns, an actor is allowed to
record its p-assertions in any provenance store. This means that the documen-
tation of process that led to a result can exist across any number of provenance
stores. There are several benefits in allowing documentation to be recorded across
multiple stores: the elimination of a central point of failure, the spreading of de-
mand across multiple services and the ability for provenance stores to exist in
different network areas (for example, one provenance store may be behind a fire-
wall whereas another is not). In general, allowing p-assertions to be recorded
across multiple stores increases the flexibility and scalability of systems recording
p-assertions. This scalability and flexibility are key to allowing these patterns to
be applied in the large scale, open distributed systems that we consider.

Given that the p-assertions representing the provenance of a result may be
spread across multiple stores, there must be some mechanism to retrieve these
p-assertions in order to validate, visualise or replay the represented process. To
facilitate such a retrieval mechanism, we introduce the notion of a link, which
intuitively is a pointer to a provenance store.

Definition 5.1 (Link) A link is a reference to a provenance store. O

We note that links are necessarily unidirectional: a link always points to a
remote provenance store location. Links are used in two instances, which we now
describe.

5.2.1 View Links

The first use of a link deals with the situation where a client’s view of an in-
teraction and a service’s view of the same interaction as identified by a shared
interaction ID are stored in two different provenance stores. It is necessary for
each actor to record a link, which we refer to as a View Link, that points to the
provenance store where the opposite party recorded their p-assertions. Hence,
the client in an interaction records a link to the provenance store that the service
used to record p-assertions for the given interaction, and vice-versa. This allows
querying actors to navigate from one provenance store to the other in order to re-
trieve both views of an interaction. We note that View Links point to provenance
stores only, not to particular pieces of data in a provenance store; the actual data
of interest can be found by the ID identifying the interactions uniquely.

If an actor A interacting with actor B has to assert, in provenance store Py,
that B is recording its view of the interaction in another provenance store, then
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actor A has to become aware that the store used by B is Pg. FEither such a
knowledge is built in A, or it is communicated to A in the course of execution. If
it is built in A, then such a knowledge is part of A’s state, and can be asserted
by A as an actor state p-assertion. Alternatively, if it is to be communicated
to A, then such a knowledge can be passed as part a context, as formalised
by the ContextPattern (for instance, when B returns a result to A). It is up
to the provenance store to extract such linking information from actor state or
interaction p-assertions and make it readily available to the querier.

5.2.2 Object Links

Relationship p-assertions allow relationships between both messages and data to
be expressed. We model relationship p-assertions as one-to-many triples between
data or messages. (Details about the modelling can be found in Chapter 7.)
Each triple consists of a subject, a relation and several objects. A relationship
p-assertion made by an actor is a directional relation and the subject is referring
to the local current interaction p-assertion (or a data contained in it).
Alternatively, the object of a relation p-assertion may be local or remote.
Hence, we introduce a second usage of links to cater for the situation in which an
application actor records a relationship p-assertion between a local p-assertion
and a remote p-assertion. In this case, the application actor needs to record
which provenance store the remote p-assertion being related is stored in; such
a kind of link is being referred to as Object Link. Again, an Object Link only
points to the provenance store and not a particular piece of data in the store,
because the data of relevance can be found using an interaction record key.

5.2.3 Linking Summary

Both View Links and Object Links allow data and p-assertions stored across
provenance stores to be retrieved by querying actors. View and Object Links
can be contrasted as follows. A View Link points to another store that contains
a piece of data written by another actor (which is providing a different view on
a same interaction). An Object Link points to another store containing a piece
of data asserted by the same actor (which is making assertions about another
interaction).

5.3 Scalability Issues

This section is a placeholder for more discussion on scalability issues based on
the scalability deliverable.
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5.4 Security

As discussed earlier, linking provides a mechanism to discover related p-assertions
in multiple stores. A potential security issue will arise if the querying actor is not
recognized or does not have the necessary authorization to retrieve the relevant
p-assertions in the security domains of all these stores. Consider a querying actor
submitting a complex query to the provenance store, whereupon the querying
functionality determines the necessary p-assertions required to satisfy the query
and attempts to retrieve them from the provenance store. In the event that not
all of the required p-assertions can be found locally, there are two possible ways
to proceed:

e The querying functionality itself uses the links in the available p-assertions
to locate other distributed provenance stores which it will subsequently
need to query. Thus, the querying functionality queries the distributed
provenance stores on behalf of the querying actor, and hence this approach
will require delegation of the querying actor’s identity or access rights to
the querying functionality.

e The querying functionality returns the available p-assertions to the querying
actor, which will then itself have to navigate the links and make queries to
the relevant distributed provenance stores.

In either case, the identity (delegated or otherwise) of the querying actor may
not be recognized or may not have the required authorisation in all the provenance
stores that need to be queried. There is therefore a need for additional interaction
between the trust mediator of the provenance stores that do not recognize this
identity with the trust mediators of other provenance stores that do, in a similar
manner to that outlined in Scenario 1 in Section 4.3.2. The credentials (delegated
or otherwise) submitted by the querying actor must provide enough information
for such interaction between these different trust mediators to take place.

Another security concern revolves around the need to establish liability for
erroneous context information. In Section 5.1.2, we had discussed the use of
a context containing IDs to identify an interaction between two actors. Since
p-assertions in the provenance store are matched on the basis of these IDs, it
may be useful to provide non-repudiation on such generated IDs in application
domains where the need to identify matching p-assertions correctly is critical. As
an example, if a client records X for its ID in its own p-assertion and sends a
service Y as an ID instead, the client’s signature on Y would establish its liability
for the subsequent inability to obtain a match between both IDs. The signature
permits us to rule out other possible mitigating factors for the discrepancy, such
as transmission errors or an error on the part of the service actor.

The security policy in such an instance should therefore dictate that the client
actor sign the IDs it generates (or the context containing such IDs) to the service
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actor. This signature activity could be encompassed within the mandate of the
protocol governing a secure interaction between both the client and service actors.
On a similar note, we observe that since the view link is crucial in locating a
related p-assertion for a given interaction, its non-repudiation can also be achieved
by ensuring that the recorded link is signed as well. If the recorded link is part
of the contents of a recorded p-assertion, then a signature on the entire content
will suffice. Signatures on p-assertions are discussed in Section 7.8.

5.5 Conclusion

This chapter presented a distribution architecture that addresses problems of
scalability in provenance systems. The chapter presented three deployment pat-
terns, which identify communication between key architecture roles and that can
be applied by developers to deploy their provenance system in a distributed man-
ner. It then discussed how provenance retrieval could be enabled across a set of
distributed provenance stores via linking. We also discuss some relevant security
issues.
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Chapter 6

Data Identification

As stated in Chapter 2, the provenance of a data item is the process that led
to that data item. A querying actor may ask for the provenance of a data item
at any time after that item has been created. Asking for the provenance of that
data requires: (1) determining what process that data was the product of and
(2) obtaining all documentation about that process.

There are several factors that make asking the provenance question difficult:
a data item may not have a unique identifier, may be moved from where it was
initially stored after being produced, etc. These factors mean that identifying
data items to determine their provenance is a non-trivial task. In this chapter,
we develop a set of solutions for identifying arbitrary data items, and the re-
lationships between them, in order to discover their provenance. The solutions
place requirements on the querying functionality of the provenance architecture,
discussed in Chapter 8.

The chapter is structured as follows. Section 6.1 examines what documen-
tation is produced from executing a process. The algorithm for retrieving the
provenance given a query data handle for a data item is specified in Section 6.2.
Section 6.3 enumerates the different ways in which data can be identified for the
purposes of retrieving the provenance of that data: global p-assertion key, unique
data and relational query data handles, with some important examples of the lat-
ter. Finally, Section 6.4 examines the difficulties presented when documentation
is moved around between provenance stores.

6.1 Data Item Reference Creation

Application data items may be given explicit references (names) by an application
process. We call this action naming of the data items. In this section, we illustrate
what documentation is contained within a provenance store after a process has
completed. This allows us to later show how such documentation can be searched
in order to identify p-assertions relevant to the provenance of a data item. We
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emphasise that the mechanism for naming data items is outside the scope of this
project, and is application-specific, so we do not prescribe how it should be done,
but examples include file paths or database keys.

For each output data item, D, of the application, there was an application
actor that sent D to a data store where a querying actor can later retrieve it.
In order to retrieve the data from the data store, the data is given a reference,
which is, at minimum, unique locally to the data store. The structure of a data
store, and its mapping from references to data items is shown in Figure 6.1.

Storage Reference 1 | D 1
Storage Reference 2 | D 2

Storage Reference N | D N

Table 6.1: Data store

In order to clarify what the contents of a provenance store are after an appli-
cation process has completed, we consider four possible ways in which D could be
named in the sections below. We assume that recording actors record interaction
p-assertions regarding all the application interactions: this may not be true in
practice, but allows us to show the most complete contents of the provenance
store. Actor state and relationship p-assertions are also assumed to be recorded
where required to provide enough information so that a querying actor can de-
termine which data was stored and the references that were used for them in the
data store. The documented relationship between data items and their storage
references can be used to discover the provenance of the data item, as discussed
in Section 6.3.4.

Scenario 1 The data item may be produced by one application actor, SA, and
named by another, SB, with the latter application actor specifying the refer-
ence. Figure 6.1 illustrates this scenario. After the process has been documented
by recording actors recording p-assertions for each interaction, the provenance
store(s) will contain the data schematically described in Table 6.2. Each interac-
tion ID in the table corresponds to the interaction numbered in Figure 6.1 and
the message contents are shown to include the information passed as shown in
the figure. Because the interaction p-assertions replicate the interaction message,
D and the Reference 1 are also contained in the provenance store(s) as shown.

[ Interaction ID Sender Receiver Interaction PA Actor State PA
[1 SA SB

[ 2 SB SA ... D ..

[ 3 SA Store A ... D to be stored at Reference 1 ... Storage operation

Table 6.2: Contents of provenance store after scenario 1
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SB

Figure 6.1: Scenario 1

Scenario 2 The data item may be produced by one application actor, and
named by another, with the data store specifying the reference. Figure 6.2 illus-
trates this scenario. After the process has been documented by recording actors
recording p-assertions for each interaction, the provenance store(s) will contain
the data schematically described in Table 6.3.

SB

Figure 6.2: Scenario 2

Interaction ID Sender Receiver Interaction PA Relationship PA

1 SA SB

2 SB SA ... D ...

3 SA Store A ... D ...

4 Store A SA ... Reference 1 ... Key resulting from storing D in interaction 3

Table 6.3: Contents of provenance store after scenario 2

Scenario 3 The data item may be produced and named by one application
actor, with an application actor other than the data store specifying the refer-
ence. Figure 6.3 illustrates this scenario. After the process has been documented
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by recording actors recording p-assertions for each interaction, the provenance
store(s) will contain the data schematically described in Table 6.4.

Reference 1

SA 1 SB
DI »
Reference 1
Store A

Figure 6.3: Scenario 3

Interaction ID Sender Receiver Interaction PA Actor State PA
1 SA SB ... Reference 1 ...
2 SB Store A ... D to be stored at Reference 1 ... Storage operation

Table 6.4: Contents of provenance store after scenario 3

Scenario 4 The data item may be produced and named by one application
actor, with the data store specifying the reference. Figure 6.4 illustrates this
scenario. After the process has been documented by recording actors recording
p-assertions for each interaction, the provenance store(s) will contain the data
schematically described in Table 6.5.

Interaction ID Sender Receiver Interaction PA Relationship PA

1 SA SB

2 SB SA ... Reference 1 ...

3 SB Store A ... D ...

4 Store A SB ... Reference 1 ... Key resulting from storing D in interaction 3

Table 6.5: Contents of provenance store after scenario 4

6.2 Provenance Query

There are two facts we can state about a querying actor, Q, querying for the
provenance of data item D.
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Reference 1

DY L Reference 1

Store A

Figure 6.4: Scenario 4

e (Q must have received D or some information that identifies D from some-

where in order to ask the provenance question (“What is the provenance of
D?”).

e (Q must know the locations of the provenance stores containing the prove-
nance of D and how to query those stores.

Ultimately, Q’s source of D is an application actor that was aware of D from
the application, i.e. an application actor in the experiment which received or
created D at some point.

We define a query data handle of data item D as a data item that can be
used to discover the process that led to D. For each query data handle, there is
a method by which that name is processed to retrieve a global p-assertion key
which is part of the documentation of the process that led to D: we call this
resolving the query data handle. A global p-assertion key is a globally unique
identifier for a p-assertion. By passing a global p-assertion key to the provenance
store containing the p-assertion to which the identifier refers, a querying actor can
retrieve the p-assertion. The general algorithm for discovering the provenance of
D given query data handlel is as follows.

e Retrieve an interaction p-assertion regarding part of the process that led to
D by resolving 1.

e Retrieve, from the provenance stores, the identity of the processes that the
interaction p-assertion is marked as being part of.

e Secarch the provenance stores for all interaction p-assertions marked as be-
longing to that process, and the associated actor state and relationship
p-assertions.

The method by which query data handlel is resolved to a p-assertion depends
on the form of I. We discuss each form below.
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6.3 Query Data Handles

A query data handlecan have one of the following forms. For each form, we
discuss its content, how querying actors may obtain a query data handleof that
form and how it can be resolved to find a p-assertion for the process that led to
a data item. It should be emphasised that these are a set of options and only a
subset will apply in the case of a particular data item in an application. Also, a
single data item may have multiple query data handles.

6.3.1 Provenance Store Identification

As was illustrated in Section 6.1, the data occurs at least once in the provenance
stores. This means that one way to identify a data item is as a component of the
provenance documentation. For convenience, we define a p-assertion identifier of
D as a global p-assertion key for a p-assertion that is part of the documentation
of the process that led to D obtained by means other than querying a provenance
store. For example, if a single actor recorded a p-assertion in the process that led
to D because they were involved in that process, then they must have a global p-
assertion key of D, because supply all the data making up that key on recording.
A global p-assertion key of D is a query data handlefor D.

Every recording actor that records an interaction p-assertion about a message
in which D (or a reference to D) is sent or received, must have had a p-assertion
identifier of D in order for documentation about that interaction to be recorded:
the global p-assertion key must be provided in the message from the recording
actor to the provenance store on recording.

To resolve a global p-assertion key, it is sent to the provenance store containing
the corresponding p-assertion, and the p-assertion is returned.

6.3.2 Unique Data Identification

If the data is unique within the application, e.g. if it includes a universally unique
ID as part of its content, then the data itself is its own query data handle.

Any application actor or querying actor that has access to data that is unique
has this query data handle.

To resolve unique data D to a p-assertion, search the provenance stores for a
p-assertion documenting an interaction returning D.

6.3.3 Relational Identification

A data item may be referred to uniquely by its relation to another data item.
This may be an explicit reference that can be resolved by a known service, for
example a path to a file in a file system. Alternatively, it may be an intensional
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definition, e.g. D may be the second element of list L. These are examples of
relational query data handles.

A relational query data handleis a query data handlethat can be expressed in
the form: subject S is related to data item D by property P. A querying actor
with a relational query data handleknows S and P. The resolution of a relational
query data handledepends on the type of property P.

A few types of relational query data handlesare common across applications,
so we provide these as concrete examples below.

6.3.4 References

Data items may be referred to by a unique identifier, a reference within an ap-
plication. This is relational query data handlewhere the subject is the reference
and the property defines a reference.

One instance of a reference is a storage location. Given the data store location,
L, at which a data item, D, was stored and store reference, S, that can be used
to retrieve the data item from L, L. and S uniquely identify D. This is a relational
query data handlewhere the relation defines an application-specific operation: the
‘storage’ operation in which D was stored in L.

As shown in the tables in Section 6.1, at least the application actor that stores
a data item and the data store itself know this query data handle.

Relating Operations

If an application-specific operation linked two data items then, to find a p-
assertion regarding one of those data items, we can search the provenance stores
for an interaction involving that operation and the other data item. For example,
if the subject of a relational query data handleis a collection and the property
is the containment relation, then searching for the ‘add’ operations on the col-
lection will find p-assertions documenting the process that led to the contents of
the collection, i.e. the data item we want to find the provenance of.

Movement of Data Objects

When D is moved or copied between data stores or within a data store, a new
data item with a new store reference is created. That is, D was previously at
Reference 1 in Data Store 1 and now D’ is in Reference 2 in Data Store 2 (and D
may have been deleted from Data Store 1). We consider the movement or copying
or D to be equivalent to another experiment in which the data item is D’. The
provenance of D’ is the documentation of a process whose data item was D’ and
whose inputs include Reference 1 and Data Store 1. Therefore, any querying
actor able to determine the provenance of D’ using the algorithm above, will
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have the storage identification of D and, so, can also determine the provenance
of D.

Therefore D’ is relational query data handlefor D where the property defines
an application-specific operation: move or copy operation.

6.4 Movement of Process Documentation

The p-assertion that a p-assertion identifier refers to can be moved or copied
between provenance stores. That is, the p-assertion identifier was previously
resolvable by Provenance Store 1 to retrieve a p-assertion and it is now resolvable
by Provenance Store 2. After the move, Provenance Store 1 may no longer exist.

The p-assertion identifier itself remains the same when the p-assertion it refers
to is transferred between provenance stores. This means that, unless informed,
querying actors no longer have provenance store query data handle. Even if the
movement of the p-assertions was itself recorded in a provenance store, Prove-
nance Store 3, this will not help because the querying actors may not know to
look in Provenance Store 3.

We identify three alternative solutions.

1. If there are an adequately small number of provenance stores that the p-
assertion could have been moved to then a querying actor may be able to
discover Provenance Store 2 by attempting to resolve the p-assertion in each
provenance store.

2. The move could be recorded in a location that all previously aware query-
ing actor would know to look in, i.e. all querying actors know to look in
Provenance Store 3.

3. Each interested querying actor may be informed of the move of the prove-
nance data their p-assertion identifier refers to when it happens. This latter
option could be achieved by subscription to notifications of provenance data
movement (possibly sent by the Provenance Store 1).

6.5 Security

If p-assertions are copied or moved between stores that are located in different
security domains, the access control restrictions on them in their new destina-
tions will need to be defined. In the simplest case, the newly moved or copied
p-assertions retain the same access control restrictions that were associated with
them in their original domain. These restrictions can be provided as authorisa-
tion information along with the p-assertions as they are recorded to their new
destinations, where they can be processed by the derivation engine in the manner
described in Section 4.3.1.

57



If the authorisation information involves identities from the originating do-
main that are currently unknown in the destination domain, then this identity
information needs to be communicated between the trust mediators of both do-
mains. The communication can be performed when the p-assertions are initially
recorded, or at a later time when a request is made to the provenance store from
an entity that is not recognizable in the new provenance store domain. The pro-
cess of moving p-assertions between different stores will also need to ensure that
the transfer medium is secure (if such a requirement is present), and that both
stores are properly authenticated to each other prior to the movement.

6.6 Conclusion

In this chapter, we have presented different ways in which to identify application
data items, and thereby find their provenance. We suggested a general algorithm
for discovering the provenance of D given query data handlel, repeated below.

e Retrieve a p-assertion regarding part of the process that led to D by resolv-
ing [.

e Retrieve, from the provenance stores, the identity of the process that the
interaction is marked as being part of.

e Search the provenance stores for all interaction p-assertions marked as be-
longing to that process, and the associated actor state p-assertions.

In summary, we provided three ways in which data items could be identified:
by the identifier of a p-assertion that documents part of its provenance, by its own
unique content of which there will be copies in the interaction p-assertions in the
provenance store, or by relation to something that can itself be used to identified
the provenance. Examples of the former, relational, means of identification were
given: a reference identifier, the storage location and the data items produced by
processes that used another data item as input.

For each data item for which a querying actor may want to discover the
provenance, application developers should decide the solution or solutions to
apply. The algorithms for resolving query data handlepresented in the chapter
place requirements on the query interface of provenance stores. In particular, the
query interface must have the following functionality.

e Retrieve a p-assertion given its p-assertion ID.
e Retrieve the processes that a p-assertion is marked as belonging to.
e Return all p-assertions marked as belonging to a process.

e Search for interaction p-assertions containing given data.

o8



A data item that has been exchanged in an application message can be referred
to even after it has been deleted from the data store in which it was stored,
because a global p-assertion key identifies a p-assertion that contains it. A p-
structure data identifier is an extension of a global p-assertion key that refers
to a data item contained within a structured p-assertion. The structures and
contents of global p-assertion keys and p-structure data identifiers are defined in
Chapter 7.
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Chapter 7

Provenance Modelling

In Section 2.4, we discussed the representation of provenance and introduced the
concept of a p-assertion as an assertion by an actor about a process. We identified
three types of p-assertion: interaction, relationship and actor state p-assertions.
In this section, we identify how each type of p-assertion can be modelled, i.e. we
define the data structure used to represent each type of p-assertion. Based on
these models, we introduce a common structure according to which p-assertions
are structured in the provenance store.

We note that the p-assertion models presented could be instantiated in dif-
ferent languages, such as XML, RDF or even application-specific binary formats.
The choice is specific to the application that will make use of the process doc-
umentation and the infrastructure on which it is run. To depict the models in
the sections below, we adopt a graphical representation of XML Schema, but this
should not be interpreted as prescribing the method of encoding. A description
of the graphical representation can be found in Appendix C.

7.1 Identifying Interactions

Every p-assertion is made in the context of an interaction: an interaction p-
assertion asserts the content of a message sent or received in an interaction,
an actor state p-assertion asserts the state of an actor at a specific instance
during an interaction and a relationship p-assertion relates an interaction to other
interactions. Therefore, in order to model p-assertions, we must provide a way
to identify an interaction.

In Figure 7.1, we specify our model for referring to a single interaction: the
interaction key. This key is made up of three parts: the address from which
the message came, the messageSource, the exact address to which the message
was sent, the messageSink and an identifier that specifies a particular interaction
between these two addresses, the interactionld. An instance of this data structure
must be sent along with every p-assertion when the p-assertion is recorded in a
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provenance store, so that the store is aware to which interaction the p-assertion
pertains.

messagesource
| g [FH—— === E— Any Element

D..*

messagesink
| | q FH—— === [— Any Element

D..*

interactionId [=]

Figure 7.1: Model for identifying an interaction

7.2 Identifying P-Assertions and Data

In addition to identifying the interaction about which an assertion is being made,
every p-assertion has its own identifier: the local p-assertion identifier. Each p-
assertion made by one asserting actor about one interaction must have a different
local p-assertion identifier. With both interaction identifiers and local p-assertion
identifiers, we can construct a global p-assertion key (GPAK) as shown in Figure
7.2. A GPAK consists of an interaction key, whether the client (sender) or service
(receiver) in the interaction made the assertion (the view kind) and the local p-
assertion id. A GPAK uniquely identifies a p-assertion whether that p-assertion
is stored in a provenance store or not.

We can extend the GPAK to also allow data to be uniquely identified within a
p-assertion. This is done by adding a dataAccessor to a GPAK to form what we
term a P-Structure Data Identifier. This dataAccessor is p-assertion specific and
identifies uniquely a piece of data within the particular p-assertion referenced by
the GPAK that is extended.

7.3 Interaction Contexts and the P-Header

As described in Chapter 3, application actors must exchange provenance-specific
context information related to particular interactions for the process documen-
tation to be usable by query actors. For example, both client and service must
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GlobalPAssertionKey

interactionkey
byvpe = ps:Interactionkey

viewkKind =
m= kype = ps:Viewkind

localPAssertionld =]
kvpe = ps:LocalPassertionld

Figure 7.2: Global P-Assertion Key

use the same interaction key for the same interaction. Context information can
be passed as extra data in existing messages or independently in messages specif-
ically for the purpose. In the latter case, the context information conforms to
the interaction context structure shown in Figure 7.3. An interaction context
contains an interaction key and any number of items of interaction metadata,
which are contextual information regarding the identified interaction. Examples
of interaction metadata include tracers and addresses of provenance stores, which
are used to create ViewLinks discussed in Section 5.2.

InteractionContext

interactionkey
type = psiInkeractionkey =

InteractionMetaData

link
bype = ps:Link E

interactionContext
type = ph:InteractionConkext

interactionMetaData =

tracer
tyie = ph:InteractionMetabata e TR
1.

item
=
type = xsianyType

Figure 7.3: Model of an Interaction Context.

If information contexts are exchanged via the header of an application mes-
sage, according to the ContextPassing pattern, then the p-header structure,
shown in Figure 7.4 is used. Apart from potentially including a set of interac-
tion contexts about other interactions, the p-header provides context information
about the message to which it is attached. It includes an interaction key that
the message sender is stating should be used to denote the interaction to which
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the p-header is attached. This can be used, for example, for a client to inform
a service of the interaction key for a given interaction. Additionally, a set of
interaction metadata can be provided about the message to which the p-header
is attached.

a interactionkey

link
pheader — interactionMetaData a1 oemer =
F— === EH B, | =
ok '
it
item
interactionContext
—
D..*

Figure 7.4: Model of the PHeader.

When View Links are sent in interaction context messages, not a p-header, the
receiving actor will have to determine to which view it refers, i.e. if an actor that
was a client in an interaction sends a View Link for that interaction to the actor
which was the service in the same interaction, the service will determine that the
link refers to the store containing the client view even though this information is
not explicitly stated in the interaction context.

7.4 Interaction P-Assertion Modelling

Interaction p-assertions, as defined in Definition 2.6, state the content of a mes-
sage received or sent by the asserting actor. There may be different ways accord-
ing to which the content of a message may be asserted: for instance, the message
content may be asserted verbatim as the asserting actor received/sent it, or an
altered description may be asserted in which, for example, sensitive or large data
items within the message are replaced with references to those copies of the data
items stored elsewhere, or are replaced with references and a digest of the data.
Therefore, in modelling an interaction p-assertion, we need a data structure in
which asserting actors can declare not only the content of the message but also
the documentation style that has been applied to it. If no change has been made
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between the message content sent/received and that asserted in the p-assertion,
a ‘direct copy’ documentation style is asserted.

We define a data type InteractionPAssertion to represent any interaction p-
assertion and depict its structure in Figure 7.5. The p-assertion consists of three
pieces of information: the local p-assertion identifier, localPAssertionld; an iden-
tifier specifying the documentation style applied to the message content, docu-
mentation style; and the message content itself, shown as ‘any’ as it is entirely
application-dependent and so no generic data structure can be specified for it.
For example, the message content may be a SOAP or a CORBA meessage.

localPAssertionld =1
documentationstyle [=]

Any Element
|:|I .*

Figure 7.5: Model for an interaction p-assertion

We remind the reader that the purpose of an interaction p-assertion is to
describe an interaction that took place in a process; ultimately, that p-assertion
may be returned as part by a provenance query about the result produced by that
process. The act of constructing an documentation item, i.e. a p-assertion, is
itself a computation. Our rationale for introducing the concept of documentation
style is that such a computation is so small or trivial (e.g. verbatim copy of a mes-
sage) that it simply can be described by documentation style. If an application
needs to perform a complex computation involving multiple actors in order to
produce a p-assertion, we expect such a complex computation to be documented
fully by using the p-assertion model of documentation introduced in this chapter.
It is up to the application designer to decide the level of documentation that is
required for a given computation: if the process of creating p-assertions needs
to be documented by p-assertions itself, we must have a base case according to
we agree not to document a computation further: this is precisely the role of
documentation style.

7.5 Actor State P-Assertion Modelling

Actor state p-assertions, as defined in Definition 2.8, are assertions made by an
actor about its internal state in the context of a specific interaction. Each actor
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in an interaction sends or receives a message, so an actor state p-assertion asserts
something about the state of the actor just before or just after it sent or received
the message. For example, a service with an incoming message buffer may assert
the state of its buffer just before and after receiving a message. Often, after
an actor receives a message it will perform an execution that the message has
triggered and, similarly, before sending a message it will perform an execution
that resulted in that message. Therefore, a common subset of actor state p-
assertions give details of the execution that took place just after receiving or just
before sending a message. For example, a service may assert the computational
resources allocated to an execution. For example, the actor state may name the
workflow that the interaction occurred as part of.

We define a data type ActorStatePAssertion to represent any actor state p-
assertion and depict its structure in Figure 7.6. The p-assertion consists of two
pieces of information: the local p-assertion identifier; localPAssertionld, and the
actor state document content itself, shown as ‘any’ as it is entirely application-
dependent and so no generic data structure can be specified for it.

localPAssertionId =

R E-|: Any Element

D..*

Figure 7.6: Model for an actor state p-assertion

In Appendix D, we provide suggested models for common types of actor state,
which can be followed to allow greater interoperability.

7.6 Relationship P-Assertion Modelling

Relationship p-assertions allow uni-directional relationships between both mes-
sages and data to be expressed. We model relationship p-assertions as one-to-
many triples between data or messages. The triple consists of a subject identifier
(subjectld), a relation, and several object identifiers (objectlds).

A subjectld identifies a data item or message within the asserting actor’s view
of an interaction. Therefore, we limit the subjectld to identifying one message or
data item within the context of the particular interaction. An objectld identifies
any data item or message. It accomplishes this by referring to the interaction, the
view in that interaction, the local p-assertion identifier, and if referring to a data
item an additional dataAccessor. An objectld also contains a parameterName,
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which specifies which particular input the object was used as in the operation
that transformed the objects of the relation into the subject, e.g. in a ‘division’
operation the parameter name may a ‘dividend’ or a ‘divisor’ concept. Similarly,
the subjectld can have a parameter name specifying which output of the operation
the subject refers to. Finally, the objectld optionally contains an object link giving
the address of the provenance store in which the p-assertion is kept.

The relation of the triple is a URI that has some semantics that can be
understood by querying actors.

Examples of possible relationships are as follows: interaction A is before inter-
action B; interaction B is after interaction A; data item C was zipped to produce
data item D; data item D is a combination of data item C and data item B; data
item D s a product of multiplying x and y data item C is x and data item B is
y; interaction A is in reply to interaction B; interaction A causes interaction B.
Since, we do not limit what relationships can be expressed, this allows asserting
actors to express application specific relationships.

7.7 The P-Structure

Up to this point the architecture has assumed that a provenance store contains
a collection of p-assertions. However, if this collection has no structure several
problems may arise: the inability to identify one p-assertion from another, the
inability to tell the interaction context of an actor state p-assertion, the inability
to causally relate one p-assertion to another, and therefore the inability for a
querier to retrieve the provenance of a piece of data. To solve these problems, we
introduce the notion of a p-structure.

Definition 7.1 (p-structure) The p-structure is a common logical structure of
the provenance store shared by all actors including asserting, recording, querying
and managing actors. O

The p-structure is designed specifically for organising p-assertions in a manner
that allows the provenance of a piece of data to be retrieved. We now detail
the p-structure itself and then show how parts of the p-structure, including p-
assertions, can be identified. Figure 7.8 shows the p-structure. It reflects the
models discussed above.

The p-structure is organised as a hierarchy. At the top level of the hierarchy
are InteractionRecords. Fach record encapsulates all the p-assertions and iden-
tifiers related to one interaction. The choice of interaction records as the chief
items in the p-structure comes from the idea that interactions are the core actions
of a process. Each InteractionRecord is identified by a set of an interaction key,
as shown in Figure 7.1. The interaction key distinguishes one InteractionRecord
from all others and is provided by the asserting actor and not the provenance
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Figure 7.7: Relationship p-assertion model

67



interactionKey

pstruck [ = interactionRecord — Azl

0.+ 0.1

Service

0.1

Figure 7.8: The P-Structure

store. Therefore, no contact with the provenance is required in order to create
p-assertions.

In the p-structure hierarchy, we find two Views under the InteractionRecord.
One View contains the p-assertions from the client in the interaction, while the
other View contains those from the service. A View has the following structure as
shown in Figure 7.9: it can contain several interaction p-assertions (where there
are more than one, we would expect different document styles to be used for the
same message), several actor state p-assertions, several relationship p-assertions,
the number of p-assertions that the store should expect to receive in this view
(which can be asserted by the recording actor as part of the recording protocol)
and a View Link (as described in Chapter 5). All of these are optional. Each
p-assertion is defined by an associated model described above.

We note that the definition of p-structure does not dictate its internal im-
plementation. Instead, the p-structure facilitates the asserting, recording, query-
ing and management of p-assertions by allowing actors to address and create
p-assertions with a common knowledge about how p-assertions are logically as-
sociated with one another.

7.8 Security

As discussed in Section 4.2, integrity and non-repudiation of p-assertions as well
as the need to verify asserter identity in a p-assertion are important security
requirements. Both these requirements can be fulfilled by having an asserting
actor sign the created p-assertion. A subsequent check can then be done to
determine whether the identity associated with the signature corresponds with the
identity of the asserter as recorded in the p-assertion. This can be accomplished
either by the provenance store prior to storing a submitted p-assertion, or if it
is not done here, by a querying actor prior to processing the p-assertion in some
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Figure 7.9: A View in the P-Structure
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manner.
To provide for this, the model should state where in the p-structure the signa-

tures as well as the certificates necessary to verify them are to be found. There-
fore, we augment the three p-assertion models to include an optional fourth ele-
ment: the signature applied to that p-assertion in recording. These models, with
the additional signature element, are shown in Figures 7.10, 7.11 and 7.12.

InteractionPAssertion

signature
| type = <anonymous= [
0.1

localPAssertionId =

bype = psiLocalPAssertionld

documentationStyle [=]
bvpe = xsianyURI

D..*

Figure 7.10: Model for a secured interaction p-assertion

ActorStatePAssertion

signature -
Lype = <anonyrmous =

0.1

oo localPAssertionId =
type = psiLocalPassertionld

D”*

Figure 7.11: Model for a secured actor state p-assertion

7.9 Conclusion

In this chapter, we discussed how p-assertions may be modelled within an ap-
plication. We presented a model for how interactions, p-assertions and the data
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_ subjectId
Lype = <anarymaus > *

relation =]
bvpe = xsianyURI

objectid .
| bype = <anonymous =
1 . .*

Figure 7.12: Model for a secured relationship p-assertion

contained in p-assertions can be identified, as well as a model of an interaction
context and the p-header in which this context information can be passed between
actors. We then provided more detailed models for interaction p-assertions, actor
state p-assertions, and relationship p-assertions. The p-assertion models were de-
signed to be extensible and uniquely identifiable. Combining the above models,
we defined the p-structure as a common logical structure of the provenance store
shared by all actors. In the next chapter, we describe the functionality of the
provenance store, which utilises the p-structure to accomplish its task.
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Chapter 8

Functionality

This chapter discusses the functionality of the provenance store: for each of the
recording, querying and management interfaces, it provides an informal descrip-
tion, in English, of the functionality that is supported by the provenance store.
Such informal presentation will serve at the derivation of a more formal specifica-
tion in UML and service interface specifications, which will be part of a separate
document.

8.1 Recording Interface

Provenance stores provide a recording interface based on the P-assertion Record-
ing Protocol (PReP), which defines the messages that actors can exchange with
the provenance store in order to record p-assertions | , , ,

|. The protocol is designed to be asynchronous so that p-assertions can
be recorded at any time to the selected provenance store. The protocol is also
designed to have the following properties:

1. A protocol is stateless when an actor can understand a message without re-
lying on any previous or subsequent messages. By supporting this property,
the provenance store can record any p-assertion with only the information
in the protocol messages it receives. This allows for out of order message de-
livery and for unfinished interaction records to be present in the provenance
store.

2. Idempotence is the quality of something that has the same effect if used
multiple times as it does if used only once. With this property, once a
p-assertion has been submitted to a provenance store then that p-assertion
cannot be overwritten or modified. In other words, an actor cannot retract
its assertion.

3. The protocol terminates. This means that an actor will not be indefinitely
recording p-assertions for one interaction.
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These properties are discussed in greater detail in other documents [GLN 04D,
Gro05]. PReP assumes a model in which application actors send application mes-
sages to one another. To record p-assertions, we augment the standard application
message with an additional parameter, the P-Header, as described in Sections
3.4 and 7.3.

We now discuss the messages that are exchanged by actors with the prove-
nance store to record p-assertions. The messages are shown in Figure 8.1 and
constitute the recording functionality of the provenance store. Each message in
Figure 8.1 contains an interaction key, which is the same as the interaction key
transferred in the P-Header (see Figure 7.4). Because every message in the pro-
tocol contains an interaction key, all the messages are self-contained and can be
understood without reference to any other messages. Therefore, the protocol is
stateless. The protocol is asynchronous. This allows actors to record p-assertions
about an interaction when it is most convenient to them. We now discuss how
actors use these messages to record p-assertions.

Messages

Record

interactionKey
tyvpe = ps:Inkeractionkey N

interactionPAssertion
type = ps:InteractionPAssertion *

record
type = msg:Record

actorStatePAssertion
type = ps:ActorStateP Assertion N

relationshipPAssertion
tvpe = ps:RelationshipPAssertion z

SubmissionFinished

interactionkey
tvpe = ps:Interackionkiey &

submissionFinished
bype = msg: SubmissionFinished

numberOfPAssertions [=]
bype = xs:positivelnteger

Acknowledgement

acknowledgment _ interactionKey [=]

| tvpe = msq:Acknowledgement [~ bype = ps:Identifiers

Figure 8.1: Protocol messages

Both clients and services record their view of an interaction in the provenance
store. Both actors record their interaction p-assertions using the record message.
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Interaction p-assertions can only be recorded once per message exchange. Any
subsequent interaction p-assertions received for a particular interaction will be
discarded. This is to preserve the idempotent nature of the protocol for interac-
tion p-assertions. Therefore, the provenance store will contain only one view of
the interactions that took place in an activity from a particular actor.

Beyond interaction p-assertions, an actor can record multiple actor state p-
assertions using the same record message. Actors record assertions about their
state in the context of an interaction. We note that any number of these p-
assertions may be recorded. Relationship p-assertions can also be recorded.
Again, there is no bound on the number of relationship p-assertions an actor
can record. We note that if an actor attempts to record a p-assertion and uses
a local p-assertion identifier that is already assigned to a previously recorded
p-assertion in that interaction context then the p-assertion will not be recorded.

The second message specified in Figure 8.1 is the submission finished message.
This informs the provenance store of the total number of p-assertions the store
can expect from a recording actor. In this manner, a store can determine when an
actor has finished submitting p-assertions for a particular interaction identified
by an interaction key.

The final message defined by PReP is the acknowledgement message. This
message is sent by the provenance store when it has received either a record or
submission finished message. The acknowledgement message contains an interac-
tion key. This allows an actor to determine if all the messages it sent pertaining
to a particular interaction were received by the provenance store. In a binding
of PReP to a system where requests and responses are synchronous, the binding
may choose not to include the interaction key in the acknowledgement message.

The recording functionality of the provenance store lets actors record p-
assertions about their interactions, state and relationships between them. These
p-assertions are uniquely identifiable. The protocol terminates and its messages
are idempotent and stateless. These properties are important in the context of
the large scale distributed applications.

8.2 Query Interface

Once documentation of a process has been recorded, the query interface provides
a way to navigate, search and retrieve it for further processing. The navigation
capability is based on evaluating expressions against a hierarchical view of the
documentation in provenance stores. We then envisage other query capabilities
being provided as layers over the navigation capability, to ensure that queries
can be expressed in a way convenient to the processing services. In particular,
we consider below two fundamental types of query: discovering the provenance
of some data and asking questions about past processses in the physical world.

74



8.2.1 Navigating Documentation of Process

As the p-structure demonstrates, p-assertions recorded when an application ex-
ecutes can be arranged into a hierarchy: every p-assertion is with regard to one
interaction, for each interaction there can be differing views from the sender and
the receiver of the message, and each view consists of three sets of p-assertions,
one for each of three types: interaction, actor state and relationship.

The navigation capability should allow querying actors to refer to the follow-

ing.
e An interaction with a given key.
e The sender or receiver’s view of that interaction.

e One p-assertion about the interaction in one actor’s view.

8.2.2 Querying for Provenance

In the conceptual model defined in Chapter 2, the provenance of a data item
is the process that led to that data item. At very least, therefore, the query
interface should allow querying actors to express queries that do the following.

1. Identify the interaction that finally produced the data item within the
provenance store’s documentation, i.e. within the p-structure.

2. Follow the asserted relationships from that interaction to related interac-
tions according to the semantics of the relationships.

3. Scope the related interactions by some criteria of relevance, interaction
filters.

The first problem above, identifying the interaction that produced a data item,
is the one tackled by applying the data identification algorithms in Chapter 6. We
assume that, from applying these algorithms, a querying actor identifies a single
interaction p-assertion. In the second step, we identify the interactions that are
related to the one finally producing the data item by querying the relationship
p-assertions. In the final step, we filter interactions to determine where to bound
the related interactions.

Therefore, the provenance query interface should allow querying actors to
perform the following general functions.

e Retrieve the related interactions for a given interaction p-assertion.
e Scope related interaction p-assertions according to some criteria.

We have currently identified four interaction p-assertion filters to limit the
scope of query results.
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Execution Filter Exclude or include all p-assertions that are marked as part
of an execution by a single actor.

Relationship Filter Include or exclude p-assertions that are related by a given
relationship.

Message Filter Exclude or include all interaction p-assertions that have a given
content, e.g. requests of a given type.

Input Filter When an execution takes as input a data item of a given type,
include or exclude the interaction in which that data item was provided.

Distance Filter Include or exclude p-assertions who are related to the final
interaction via a number of relationships greater than a given amount.

8.2.3 Querying Physical World Processes

As discussed in Section 2.6, we would like to be able to query processes involving
actors who cannot directly document the processes they are involved in, particu-
larly physical actors such as people and machines. To support this, a provenance
query interface should be able to:

e Express queries regarding application actors that are hidden but who have
interacted with visible application actors.

e Allow for interactions between hidden actors to be inferred from the inter-
action and actor state p-assertions between visible actors.

8.3 Management Interface

A management interface is defined to facilitate the administration, reuse and
maintenance of provenance stores. While such an interface may provide generic
data storage administration capabilities, we focus on provenance-specific man-
agement functionality. The functionality of this interface is described below.

8.3.1 Notification of Provenance Store Use

Managing actors might like to be informed when operations are performed on a
provenance store. For example, they might like to know when a p-assertion has
been recorded. The management interface should provide the following function-
ality regarding notification.

e Notification

The management interface should be able to notify subscribed managing
actors of record and query operations.
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e Subscription management

The management interface should allow actors to manage their subscription
information e.g. where notifications are sent to.

8.3.2 Provenance Store Utility

e Import and export

The management interface should provide functionalities to import and
export p-assertions. Importing, in this context, means adding process doc-
umentation to the provenance store that has been taken from storage else-
where and possibly in a different format. Similarly, exporting means re-
trieving documentation without regard to the fact that it is process doc-
umentation and possibly not in the same format, so that it can be stored
elsewhere.

e Setup and management of indexes

Provenance stores hold a large amount of p-assertions. No matter how
these p-assertions are organised, some storage structures may be suitable
for some query operations and not suitable for others. The management
interface should provide a mechanism to setup and manage indexes in terms
of time, tracer or other criteria, so that p-assertions can be organised into
multiple views and structures, thus facilitating querying.

8.3.3 P-Assertion Lifetime Management

A number of operations can be perfomed on recorded p-assertions to ensure the
provenance stores maintain useful process documentation over the long term.
The management interface should provide the following functionalities regarding
p-assertion lifetime management.

e Movement

A provenance store may automatically export the p-assertions it contains to
another location under given conditions, e.g. after a given period of time,
when the store contents becomes too large etc. This operation allows a
managing actor to control the automatic transfer of p-assertions.

e Deletion

In some circumstances, when application data is deleted, the p-assertions
about the process that led to that data may also need to be deleted. The
deletion of p-assertions should be strictly controlled, and should only hap-
pen when specific asserting actors make an explicit signed request. The
management interface should provide functionality to check and verify an
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actor’s deletion authority and request. It should also allow an actor to
specify which p-assertions are deleted.

8.4 Policy

This section is a placeholder for description of policy configurations that should
be supported by the provenance architecture.

8.5 Security

The security policy of the provenance store essentially encompasses the internal
representation list, authorisation list and access control policy components of the
provenance store security architecture as discussed in Section 4.3. The informa-
tion in all these components are provided by the system administrator of the
provenance store prior to its deployment; for example, the potential users of the
store may interact with the administrator who subsequently classifies them into
roles and assigns authorisations accordingly in the authorisation list.

During the operation of the provenance store, changes may need to be made
to the security policy. This could entail, for example, adding or removing iden-
tities from the internal representation list and creating or modifying existing
authorisations in the authorisation list. These changes can be achieved through
a security specific section in the management interface. Correspondingly, the se-
curity policy should be initially set to ensure that only trusted managing actors
are authorised to make changes of this nature. The same comment is equally ap-
plicable to other non-security functionality exposed by the management interface
that we have already described, such as provenance store utility or p-assertion
lifetime management.

Moving p-assertions between different provenance stores has implications on
the authorisations associated with these p-assertions; this issue has already been
discussed in Section 6.5.

8.6 Conclusion

This chapter presented a more detailed, informal description of functionality to
be supported by the provenance store. Such functionality needs to be further
refined. Ultimately, it will lead to UML specification documents and interface
specifications, which will be part of a separate document.
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Chapter 9

Actor Behaviour

Note: this is the very first draft of this chapter.

9.1 Introduction

So far, we have defined an architecture and a data model for provenance sys-
tems. The architecture identifies different roles and functional interfaces that
characterise the behaviour of actors to some extent. However, the architectural
framework does not (and cannot!) enforce allowed actor behaviours (because
provenance recording is a voluntary activity by applications and because enforc-
ing very specific behaviour would make the system excessively inefficient).

Instead, this chapter describes the behavioural constraints that actors should
follow so that process documentation can correctly be recorded; if such behaviour
is followed, querying actors can have the expectation that their provenance ques-
tions will be usefully answered. These constraints provide bounds for actor be-
haviour in provenance-aware systems.

To be systematic, behavioural constraints are expressed as named architec-
tural rules, which express a behaviour that an actor must follow. The reference
semantics of the provenance architecture is only defined in the case behavioural
rules are followed.

9.2 Architectural Rules

This section introduces rules that actors playing a particular role must follow
in order for process documentation to be both recorded, managed and queried
correctly.

Fundamental to the provenance architecture is the ability to uniquely identify
interactions from one another. To ensure that interactions are uniquely identified,
we introduce the unique interaction key rule.
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Rule 9.1 (Unique Interaction Key rule) A client asserting actor (i.e. a client
in the role of an asserting actor) must generate a unique interaction key for an
interaction.O

The interaction key generated by the client must be passed to the service in
an interaction so that the service may record p-assertions about the interaction.
Therefore, we introduce the interaction key transmission rule.

Rule 9.2 (Interaction Key Transmission Rule) A client asserting actor must
transmit the interaction key it generated for an interaction to the service in that
interaction.O

In order for the provenance of a piece of data to be retrieved, p-assertions
must be associated with a particular interaction. The appropriate interaction
rule governs how p-assertions should be associated with a particular interaction.

Rule 9.3 (Appropriate Interaction Rule) A recording actor must use the
interaction key associated with an interaction, I, when recording p-assertions
about 1.0

Given that an actor can record p-assertions in multiple provenance store, we
introduce the following recording consistency rule.

Rule 9.4 (Recording Consistency Rule) All p-assertions pertaining to one
interaction from a particular actor must be recorded in the same provenance store.
O

The recording consistency rule implies that the documentation of an interaction
from a given actor’s viewpoint is kept in a single place, which allows for efficient
storage, fast query processing and easy consistency checks.

9.3 Tracers

Section 3.4 introduced tracers as a mechanism for demarcating processes. Tracers
are tokens that are passed between actors based on the actor’s internal knowledge
and the semantics of the tracer. The semantics of the tracer are the rules used
by actors to determine when to generate and/or propagate tracers. This section
describes several tracers and their semantics. If an actor follows the expectations
placed on it by a tracer, more detailed process documentation can be recorded.
We begin by defining the notion of a computational activity. This definition
is derived from the definition of an activity in WS-Context | ]. A compu-
tational activity is a conceptual grouping of actors cooperating to perform some
work. It represents the execution of a series of related interactions between a set
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of actors; these interactions are explicitly related via a tracer. This notion can
be used to scope processes.

For the purpose of this discussion, we assume a pure client-server model, in
messages are categorised into requests and responses, and in which all requests
to an actor are followed by a response from that actor to the originator of the
request. In the future, we shall relax this assumption in order to deal with non
client-server interactions.

Given this assumption, an actor, A, is said to be inferior to another actor, B,
if A received a request from B. Likewise, an actor B is said to be superior to
an actor, A, when it sent a request to A. Using these definitions, we can now
present several tracers.

Additionally, we define the notion of a task. A task is a independent compu-
tation within an actor that has a defined start point and end point. A request-
response pair defines the start point and end point of a task, respectively.

Each tracer is defined by a generation rule and several propagation rules. A
generation rule defines when an actor should create a tracer. A propagation rule
details when an actor should propagate a tracer that it has received in a request.

9.3.1 Session Tracer
A session tracer is defined by the following three rules.

Rule 9.5 (Generation Rule) An actor must generate a new session tracer at
the start of each task and add the tracer to all requests within that task. O

Rule 9.6 (Propagation Rule: to inferior) An actor must add any session
tracers received from a superior actor to all requests it makes to inferiors within
the task started by the superior’s request. O

Rule 9.7 (Propagation Rule: to superior) An inferior actor must add the
session tracers supplied by its superior to its response to the superior. O

Figure 9.1 shows an example of how session tracers are generated and prop-
agated. Each actor is a box. Tracers are labelled by a lower case letter. In
this example, a GUI invokes a workflow enactment engine with a tracer a. The
enactment engine invokes the actors C' and D with the tracer a and b. The en-
actment engine passes along the tracer according to propagation rule 1 and adds
its own tracer to the request according to the generation rule. Actor C' invokes
the actor E within the task started by the request from the enactment engine.
C passes the tracers it receives along with its own tracer to E, which returns a
response to C'. The response contains the tracers a, b, and ¢ per propagation rule
2. Each actor responds to its superior until the GUI receives a result from the
enactment engine and finishes its task. In this example, a computational activity
(the execution of a workflow) is defined by the tracer a.
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Figure 9.1: Diagram showing session tracers

9.4 Security

Here, we discuss the constraints on the behaviour of the actors as well the prove-
nance system as a whole in order that process documentation be recorded securely
and in a non-repudiable fashion. For the case of actors, we can introduce two
rules:

Rule 9.8 (Signature Rule) Asserting actors must digitally sign the p-assertions
they create.O

The designated locations for the signatures are shown in Figure 7.10, 7.11
and 7.12. This rule ensures that liability for the information contained within a
p-assertion can be traced back to its creator.

Rule 9.9 (Mutual Authentication Rule) Recording actors must mutually au-
thenticate with the provenance store that they record their p-assertions to.O

This rule ensures that the identity of the recording actor can be extracted for
access control purposes as detailed in Chapter 4.3.1. Conversely, the recording
actor needs to ensure that it is submitting its p-assertion to the intended prove-
nance store. In order to allow these two constraints on actor behaviour to be
enforced, an additional constraint may be required on the provenance system as
a whole. We describe this as a rule as well:

Rule 9.10 (Security Environment Rule) The provenance environment should
provide the necessary security functionality and credentials that actors require in
order to behave in a secure manner, as well as the information required to use
these credentials properly. O
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An example of such security functionality could be a signature generating
algorithm, while credentials such as certificates could be provided through key
stores. Information would include components like a security policy that ac-
tors can consult in deciding the manner in which they interact securely between
themselves or with the provenance store.

Independently of the p-assertions they assert and record to provenance stores,
application actors may also choose to interact with each other in a secure manner
as well. The rules constraining their behaviour in this instance will be entirely
dependent on the requirements of the application domain they operate in, and so
is outside the scope of discussion of this document. However, the nature of the
security-specific interactions that they engage in may need to be reflected in the
process documentation asserted pertaining to their interaction as a whole. Below,
we provide some constraining rules on the types of p-assertions that need to be
produced by the participating actors as a result of a security-specific interaction.

Rule 9.11 (Error Message Rule) Security-specific error messages and excep-
tions exchanged between actors should be asserted as p-assertions in the same
manner as normal interactions. O

As an example, a client application actor invoking a service actor may not be au-
thenticated properly or does not have the appropriate access rights corresponding
to its request on that service. The service actor will return an appropriate error
message indicating the appropriate fault; this message should be documented as
a p-assertion in the normal manner by both client and service.

Rule 9.12 (Relationship Rule) When security interactions utilize credentials
that reflect relationships between several identities, these relationships should be
asserted appropriately as a relationship p-assertion. O

As an example, in Section 4.4.3, we note the need for delegation of access
control or identity could potentially arise amongst application actors if the various
actors involved in a chain of invocations are located in separate security domains.
If a delegated credential is used by a client when authenticating to a service
during an interaction, then an appropriate relationship p-assertion reflecting this
delegated relationship should be created in addition to the standard interaction
p-assertion.

Rule 9.13 (Tokens Rule) If security tokens (such as signatures) are used in
specific portions of messages exchanged between actors, these tokens should also
be included with the messages when they are recorded as p-assertions.0

As an example, the protocol dictating interaction between two application
actors may dictate that certain parameters in the exchanged messages be signed
for purposes of non-repudiation. In that case, both actors must ensure that
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these tokens are recorded appropriately in the message content portion of the
interaction p-assertion if a direct copy documentation style is employed (Figure
7.5).

9.5 Conclusion

This chapter has defined a number of expectations on actor behaviour. This
expectations include a set of architectural rules, a description of tracers, along
with a set of security considerations. Actors must follow these expectations in
order for process documentation to be correctly recorded, managed, and queried.
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Chapter 10

Justification

This chapter briefly describes how the software requirements for provenance sys-
tem are satisfied by the functionality provided by the logical architecture de-
scribed in Chapter 3. These requirements are sourced from the software require-
ments document | ] and are listed in the remaining sections of this chapter
along with the corresponding feature of the logical architecture that addresses it.
The notation (NA) is used to indicate that the software requirement refers to a
specific functionality which is not applicable at the level of the logical architec-
ture. The classification of requirements in the following sections mirrors those in
the original software requirements document.

10.1 Functional Requirements

SR-1-1: The provenance architecture should provide for the recording and query-
ing of interaction and actor provenance.

Design Feature: The architecture includes submission, query and management
interfaces which can be used to retrieve one or more p-assertions from the Prove-
nance Store.

SR-1-2: The provenance architecture should allow the retrieval of a provenance
trace from the Provenance Store. Either a complete trace or a subset may be
retrieved.

Design Feature: The architecture provides a query interface with multiple levels
of query capability that supports the required granularity of trace to be retrieved.
Intermediate results can be stored locally before being returned.

SR-1-3: The provenance architecture should allow the back-up of a Provenance
Store to be taken. This will generally include an archiving facility that allows
data within a Provenance Store to be saved for future use.

Design Feature: Retrieval of data for purposes of archival is supported through
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appropriate use of query and management interface functionality; the specific
functionality of archival is outside the domain of the logical architecture.

SR-1-4: The provenance architecture should allow comparisons to be made across
Provenance Records within a Provenance Store with reference to particular data
attributes within a Provenance Record.

Design Feature: The architecture provides a query interface with multiple levels
of query capability and granularity. For example, at the level of a single inter-
action or actor state p-assertion, or the specific items within each of these. The
queries can be generated in the appropriate format to allow accessibility at the
desired level.

SR-1-5: The provenance architecture should allow the results of a query to the
Provenance Store to be captured for future use. A query in this context must be
specified with reference to the structure of the Provenance Store.

Design Feature: The results of a query are returned in an appropriate format
that reflects the structure of the Provenance Store, and this result can be subse-
quently stored for future use. The nature of this storage is outside the bounds of
the logical architecture.

SR-1-6: The provenance architecture should allow a user to access a Provenance
Record based on the time and date (calendrical information) at which the Record
was stored.

Design Feature: The Recording interface at the Provenance Store should attach
a timestamp with each p-assertion sent to the Provenance Store. This timestamp
may be in addition to one generated by the application submitting the p-assertion.

SR-1-7: The provenance architecture should allow a user to verify the contents
of a Provenance Store against a specified set of rules. Verification in this context
means that the contents of the Provenance Store meet the set of constraints ex-
pressed by the set of rules.

Design Feature: The trace comparison service or semantic validity analyzer (or
some other equivalent service) that form part of the processing services group
can be used here.

SR-1-8: The provenance architecture should allow a user to specify a time period
in the future at which a provenance query may be submitted to a Provenance
Store. A scheduler will be made available that allows queries to be stored to disk,
and dispatched to the store in the future.

Design Feature: The scheduling functionality can be achieved by a service that
forms part of the processing services group. A notification service could be pro-
vided to alert the user when the Provenance Store is ready to accept queries.
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SR-1-9: The provenance architecture should allow capabilities provided by the
tools to be accessible as an API. This is to allow such capabilities to be embedded
within an existing application.

Design Feature: These APIs can be exposed at the actor side query, management
and submission libraries respectively. The provenance architecture also provides
the possibility of exposing the software interfaces for all functionality through a
registry service, as part of the processing services group.

SR-1-10: As part of the initialisation of the provenance recording process, the
provenance architecture should allow a service or user to specify the identity of
the Provenance Store to which data should be recorded.

Design Feature: The specification of a specific Provenance Store to be used can
be specified as part of a policy configuration decision by the service or a user, or
as negotiation between two actors in the P-Assertion Recording Protocol (PReP).
The interfaces should support the acquisition of appropriate identity information
for a Provenance Store.

(NA) SR-1-11: The system should support the multiple storage of a provenance
record, i.e. the system should provide a way to store copies of a provenance
record in more than one repository.

Design Feature: Copies of provenance records can be obtained via the query
/ management interfaces; however, storage and retrieval across multiple reposi-
tories is a storage layer issue that cannot be addressed by the logical architecture.

SR-1-12: The system should support the recording of different provenance infor-
mation views related to an event or an entity.

Design Feature: PReP provides the facility of different views of interaction p-
assertions.

SR-1-13: The provenance architecture should support the migration of prove-
nance data among Provenance Stores.

Design Feature: Query, management and submission interfaces allow the extrac-
tion of process documentation and transferring it to a different store. In addition,
multiple physical Provenance Stores corresponding to a single logical Provenance
Store is supported; this will also include support for migration of process docu-
mentation among stores.

(NA) SR-1-14: The system should support the storage of recorded provenance
data for an indefinite period of time.

Design Feature: This is a non-functional requirement that cannot be addressed
by the logical architecture.

(NA) SR-1-15: The provenance architecture should support the storage of results
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of analysis and reasoning operations performed on the provenance data by tools
that are not part of the generic architecture (3rd party tools on the application
layer).

Design Feature: Such storage functionality is beyond the domain of the prove-
nance architecture.

SR-1-16: The provenance architecture should provide support for maximum au-
tomation of the provenance recording mechanism.

Design Feature: The management and application Uls, presentation and process-
ing services provide a high level of automation of the entire activity of provenance
storage and processing.

SR-1-17: The provenance architecture should be deployable as an integrated part
of a system, as a service within the same administrative domain as the client sys-
tem and as a 3rd (external) party operated service, too.

Design Feature: The APIs of the query, submission and management libraries
allow integration into the existing system, whilst the Uls, processing and pre-
sentation services allow the provenance architecture to be used as a external
3rd party service. The derivation engine of the provenance security architecture
allows policies of the client domain to be reflected into the provenance access
control functionality.

(NA) SR-1-18: Client side components of the provenance architecture should not
block an executing workflow if any provenance services are unavailable.

Design Feature: No requirements on synchronous or asynchronous behaviour
should be assumed. This is an implementation issue and hence not applicable
within the context of a logical architecture.

10.2 Performance Requirements

(NA) SR-2-1: The additional execution overhead for an application recording
provenance information should be kept to a minimum.

(NA) SR-2-2: Storage space requirements of the provenance architecture for
provenance information recording should be kept at a reasonably low level.
SR-2-3: The provenance architecture should guarantee reliable once-and-once-
only delivery of provenance information to and from a Provenance Store.
Design Feature: The logical architecture supports the use of recording protocols
for interacting with the Provenance Store that guarantees this property.

(NA) SR-2-4: The provenance architecture should be capable of handling large
amounts of provenance data submitted frequently by user applications. The
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provenance architecture should not be the cause of any bottlenecks in the overall
system due to the processing of provenance data.

Design Feature: The protocol used for submission in the logical architecture pro-
vides a way for dealing with large amounts of data being transferred through
appropriate recording patterns.

10.3 Interface Requirements

SR-3-1-1: All of the functions of the provenance architecture should be accessible
through its API so it can be used as an embedded component in a system.
SR-3-1-2: The provenance architecture should support a rich set of published,
generic application programming interfaces (APIs) that allow application specific
analysis and reasoning tools to be built upon.

SR-3-1-3: The provenance architecture should provide a programmatic interface
for the administration of the system.

Design Feature: These are all catered for via the management and provenance
querying actor side libraries. The Provenance Architecture should make no as-
sumptions about the contents of this API, or the particular protocol that is used
to access services made available through this APIL.

(NA) SR-3-1-4: The provenance architecture should support an XML-based API
format for provenance data.

(NA) SR-3-2-1: Export formats for provenance data should be non-proprietary
to allow tools and applications to be built without violating IPR rules. A format

based on an existing data representation standard (with special focus on XML
defined by XML Schema) would be highly preferred.

10.4 Operational Requirements

SR-4-1: Provenance information displayed by the provenance architecture on a
human computer interface (HCI) should be updatable on user request.

Design Feature: The Provenance Architecture should make no assumption about
the types or modes of user interfaces being supported.

SR-4-2: HCIs presented by the provenance architecture for displaying the con-
tents of a Provenance Store should support continuous monitoring, i.e. the dis-
played information should be updated automatically on every change as soon as
possible.

Design Feature: These can be handled by a suitably developed functionality in
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the trace visualizer / browser.

SR-4-3: The update frequency of provenance information displayed by the sys-
tem on a HCI should be configurable based on policies.

Design Feature: A policy for presentation/processing services akin to those for
Provenance Store and user requirements can be used.

SR-4-4: Human-computer interfaces presented by the provenance tools should
be designed to allow multilingual support.

Design Feature: This can be handled by a suitably developed functionality in the
trace visualizer / browser.

10.5 Documentation Requirements

(NA) SR-5-1: Detailed documentation of the provenance architecture public in-
terfaces should be produced both for APIs and HCIs.

(NA) SR-5-2: A detailed description of the administrative interface of the prove-
nance architecture should be produced.

10.6 Security Requirements

SR-6-1: The provenance architecture should have a configurable access control
system over the resources it provides, with a granularity that is sufficient to pro-
tect these resources.

Design Feature: The authorization engine and list are configurable through suit-
able access control policies in the security architecture. The granularity of pro-
tection will be determined on the basis of the granularity of the provenance
information being stored (i.e. p-assertions).

SR-6-2: The provenance architecture should allow both automated and manual
determination of access control rights.

Design Feature: The access control policies in the security architecture are man-
ually determined through the management interface. The trust derivation engine
allows automated generation of access control rights on the basis of access con-
trol statements accompanying provenance information that is meant to be stored.

SR-6-3: The provenance architecture should allow a service or user to request

the level of security they wish to be associated with the recording process. The
level of security can range from no security through encrypted data transfer to
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more complex security mechanisms.

Design Feature: This can be specified through the user requirement policy on the
user side and through the access control policy in the security architecture of the
provenance system.

SR-6-4: The provenance architecture should provide a way to map access rights
information of embedding systems into its security subsystem.

Design Feature: The derivation engine of the provenance security architecture
allows policies / access control rights of the embedding system to be reflected
into the provenance access control functionality.

SR-6-5: Security related procedures for accessing the provenance system should
be subsumed under the existing security related procedures for the embedding
system if possible, so that changes or additions to the existing procedures are
minimized.

Design Feature: The derivation engine of the provenance security architecture
allows policies / access control rights of the embedding system to be reflected
into the provenance access control functionality. In addition, the identity valida-
tor can accept a multiplicity of security credentials, including the ones used for
authenticating to the embedding system.

SR-6-6: The provenance architecture should provide a mechanism for recording
provenance data in an unmodifiable form and also ensuring that the party re-
sponsible for the recording process cannot deny having recorded that provenance
data.

Design Feature: Provenance submission interface supports the submission of
signed data items, and the domain specific services for the appliaction should
include functionality for accessing certificates in keystores and signing submitted
p-assertions. No assumptions should be made about the recording format used.

SR-6-7: The provenance architecture should provide a mechanism for the au-
thentic timestamping of provenance records. Authenticity should be guaranteed
by the mechanism on a level that is enough even for the use in legal procedures.
Design Feature: The application domain specific services in the architecture pro-
vide an interface to external third parties or applications that can provide this
functionality, or may implement the functionality itself.

10.7 Other Requirements

(NA) SR-7-1: The provenance architecture should have the properties of cost ef-
ficiency and robustness versus an in-application hand-engineered logging system.
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SR-7-2: The provenance architecture should be loosely coupled and independent
from the applications as much as possible. Integration costs for existing systems
should be minimal, ideally existing system components should remain unaffected.
Design Feature: Addressed by features for SR-1-17, 6-4, 6-5.

10.8 Conclusion

The vast majority of software requirements appear to have been addressed ade-
quately by the logical architecture. Those that have not are either implementa-
tion or storage layer requirements that can only be fulfilled at a later stage of the
development life-cycle.
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Chapter 11

Related Work

This chapter gives a literature review about provenance and provenance systems
in different areas.

11.1 Current Practices of Provenance in Mu-
seum, Library and Archival Management
Systems

Apart from as an English word, provenance has been formally and explicitly de-
fined and used in the several domains, in particular, in museum, library and
archival management systems. In Dublin Core Application Profile (DCAP),
provenance is defined as a statement of any changes in the ownership and custody
of the resource that are significant for its authenticity, integrity or interpretation.
In the Dublin Core-based DSpace metadata schema for DSpace, a digital library
system to capture, store, index, preserve, and redistribute the intellectual output
of a university’s research faculty in digital formats, provenance is defined as The
history of custody of the item since its creation, including any changes successive
custodians made to it. Two most related works are as follows. The International
Standard for Archival Description (ISAD(G)), Second Edition (2000) is a descrip-
tive standard for archival records. It can be applied to units of description at
any level from the collection to the individual item, and includes two pieces of
related information.

e Archival history

Purpose: To provide information on the history of the unit of description
that is significant for its authenticity, integrity and interpretation.

Rules: Record the successive transfers of ownership, responsibility and/or
custody of the unit of description and indicate those actions, such as history
of the arrangement, production of contemporary finding aids, re-use of the
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records for other purposes or software migrations, that have contributed to
its present structure and arrangement.

e Immediate source of acquisition

Purpose: To identify the immediate source of acquisition or transfer. Rules:
Record the source from which the unit of description was acquired and the
date and/or method of acquisition if any or all of this information is not
confidential.

The Encoded Archival Description (EAD) DTD is a standard for encoding
archival finding aids using SGML or XML. It includes two pieces of information:

e Provenance

Information about the chain of ownership of the materials being described,
before they reached the immediate source of acquisition. Both physical
possession and intellectual ownership can be described, providing details of
changes of ownership and/or custody that may be significant in terms of
authority, integrity, and interpretation.

e Acquisition Information

The immediate source of the materials being described and the circum-
stances under which they were received. Includes donations, transfers, pur-
chases, and deposits.

As can be seen from the above provenance definitions, standards and use
context, provenance in these domains is mainly referred to the acquisition and
creation information, and the history of the ownership and custody of a resource
(description or data).

11.2 The State of Art of Provenance Systems

At the beginning of this report, we defined provenance as the process that leads
to a result. Prior research has referred to this concept using several other terms
including audit trail, lineage [ ], and dataset dependence | ]. We use
these terms interchangeably to refer to the process that leads to a result. Much
of the literature considers what we term a provenance system, i.e. a system
that records the documentation of a process and allows a representation of the
provenance of a result to be retrieved. The literature can be divided into four
categories: fine granularity provenance systems, domain specific provenance sys-
tems, provenance in database systems, and middleware provenance systems. This
review gives a brief summary and analysis of the literature pertaining to each of
these categories.
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11.2.1 Fine Granularity Provenance Systems

The following systems record the documentation of script or program execution
thereby allowing a representation of the provenance of a script/program’s result
to be retrieved. These systems differ from workflow centric systems because of the
finer granularity of process documentation these systems achieve. By granularity
of documentation, we mean how detailed the documentation of process is. If a
system records all the instructions in a program whereas another system records
the name of the program being run, the first system will record a finer granular-
ity of documentation. With finer granularity documentation the corresponding
representation of provenance for a result can be more detailed.

One example is the Transparent Result Caching (TREC) prototype | ].
TREC uses the Solaris UNIX proc system to intercept various UNIX system
calls in order to build a dependency map. Using this map, a trace of a program’s
execution can be transparently captured, which can be used to keep Web page
caches current and to provide an ‘unmake’ function. Although TREC has sev-
eral limitations, including high overhead, it is interesting case for deteriming the
bounds on process documentation granularity.

Another technique for capturing fine granularity process documentation is
[ | sub-pushdown algorithm. This algorithm can only be used to record
documentation of array operations in the Array Manipulation Language and was
implemented in a prototype database system, ArrayDB. In this system the prove-
nance of an array in ArrayDB can be retrieved. A more comprehensive system
is the audit facilities designed for the S language | |. S is an interactive
system for statistical analysis. The result of users command are automatically
recorded in an audit file. These results include the modification or creation of
data objects as well as the commands themselves. The AUDIT utility can then
be used to analyse the audit file to retrieve the provenance of a statistical anal-
ysis. This utility can also create a script to reexecute a series of commands from
the audit file.

A similar fine granularity technique for recording the documentation a process
has been used in security for mobile agent systems. Using a technique called
interaction tracing, a user sending a mobile agent can verify that it has correctly
executed on the host platform. Interaction tracing treats a mobile agent as a black
box, recording all the inputs/outputs of the executing agent | ]. Although
interaction tracing is not concerned with the provenance of a result it presents a
novel notion for recording process documentation.

11.2.2 Domain Specific Provenance Systems

Much of the research into provenance has come in the context of domain spe-
cific applications. Some of the first research in provenance was in the area of
geographic information systems (GIS)[ |. Knowing the provenance of map
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products is critical in GIS applications because it allows one to determine the
quality of those derived map products | ]. Lanter developed two systems
for recording process documentation and retrieving the provenance of map prod-
ucts in a GIS. The first system was a meta-database for recording documentation
of a GIS process. The second system was for tracking Arc/Info GIS operations
from a graphical user interface with a command line | : ]. The work-
flow centric user interface was integrated into a software product called Geolineus,
which was one of the few lineage systems to be incorporated into a commercial
software product | |. Another GIS system that includes process tracking is
Geo-Opera, which is based on a non-domain specific software | |. Many of
the ideas in Geo-Opera are extended from GOOSE, which uses data attributes to
point to the latest inputs/outputs of a data transformation. All inputs/outputs
must be stored in GOOSE and data transformations are programs or scripts
[ |. Both GOOSE and Geo-Opera are workflow based systems.

Another domain where provenance is of interest is satellite image processing.
The Earth System Science Workbench (ESSW) is designed for processing satel-
lite imagery locally. It provides a lab notebook service for tracking processing
steps and a No-Duplicate Write Once Read Many storage service for storing files.
Essentially, as a workflow is run inside ESSW the results of each metadata de-
scribed step is stored in the lab notebook service. ESSW is interesting because
it emphasises the need to have immutable process documentation. In chemistry,
the CMCS project has developed a system for managing metadata in a multi-
scale chemistry collaborations | |. The CMCS project is based on the
Scientific Application Middleware project | ], which we discuss in greater
detail later in this review. Another domain where provenance tools are being
developed is bioinformatics. The myGrid project has implemented a system for
recording the documentation of process in the context of in-silco experiments
represented as workflows aggregating Web Services | ]. In myGrid, docu-
mentation is recorded about workflow execution and stored in the user’s personal
repository along with any other metadata that might be of interest to the scien-
tist | |. Using this personal repository the provenance of bioinformatics
results can be determined. The focus of myGrid is personalising the way prove-
nance is presented to the user. MyGrid highlights the need for provenance in the
bioinformatics domain.

The needs of particular domains has led to the development of specific sys-
tems for recording domain dependent process documentation, which allow the
provenance of results to be retrieved. The majority of the systems are designed
for one particular domain and are not general in nature. However, they do pro-
vide insight on how a general provenance system might be designed to meet the
needs of a variety of domains. For example, the systems tend to use a workflow
centric approach. Also, the systems highlight the need to both record the set of
transformations as well as the data used in a process.
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11.2.3 Provenance in Database Systems

Provenance in database systems has focused on the data lineage problem |

This problem can be summarised as given a data item, determine the source data
used to produce that item. | | look at solving this problem through the use
of the technique of weak inversion. Given some output data and a weak inversion
function f~%*, f~" attempts to lazily recreate the input data used to generate
the output. Unfortunately, this requires that a user who creates a new database
view must also define an inversion function for that view. This technique has
been used to improve database visualization | . [ ] formalises the
data lineage problem and presents algorithms to generate lineage data in rela-
tional databases. The generation algorithms are similar to automatically creating
weak inversion functions for every new view in a database, which allows users to
“drill through” the lineage of a data item seeing the source data (tuples) that
contributed to the given data item | |. This work was also extended to deal
with general transformations of data sets inside a data warehouse | ]. An-
other system that looks at the data lineage problem in a data warehouse context
is AutoMed | |. Process documentation is recorded in AutoMed by recording
schema transformations. A series of schema transformations is termed a schema
transformations pathway. From these transformation pathways, the data lineage
of a data item can be retrieved. The granularity of this approach depends on the
granularity and number of schemas defined in the system.

[ | redefines the data lineage problem as “why-provenance” and defines
a new type of provenance for databases, namely, “where-provenance”. “Why-
provenance” is why a piece of data is in the database, i.e. what data sets (tuples)
contributed to a data item, whereas, “where-provenance” is the location of a
data element in the source data. Based on this terminology a formal model of
provenance was developed applying to both relational and XML databases. In
other work, [ | argue for a time-stamped based archiving mechanism for
change tracking in contrast to diff-based mechanisms. Diff-based mechanisms
may not capture the complete process of database modification because there
may be multiple changes between each archive of the database. Therefore, a
diff-based mechanism is not a reliable approach for the development of a general
provenance system.

The research into provenance in database systems is well grounded, system-
atic, and formal. Because databases have a well defined and fixed set of transfor-
mations, the community has focused mainly on the data lineage problem. How-
ever, in distributed systems the number of transformations is infinite, therefore,
work is needed in developing systems that can handle any kind of transformation.
[ ] is a first step toward addressing this problem but it only pertains to one
particular context, the data warehouse.
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11.2.4 Middleware Provenance Systems

Several middleware systems have been developed to provide provenance support
to applications. These systems aim to provide a general mechanism for recording
process documentation and retrieving provenance for use with multiple applica-
tions across domains and beyond the confines of a local machine.

[ | presents a system based around the concept of an e-notebook.
Each user is required to have an individual e-notebook which can record data and
transformations either through connections directly to instruments or via direct
input from the user. Data stored in an e-notebook is represented as a DAG and
can be shared with other e-notebooks via a peer-to-peer mechanism. A DAG may
span multiple e-notebooks to take in account multiple individuals participation in
a process. To enable support of trust views and credential tracking each node in
a DAG must be digitally signed by the node’s creator. This system is interesting
because of its use of the notebook metaphor and its approach to trust of the
stored process documentation. However, there are questions as to whether this
approach is appropriate for large scale distributed systems in terms of scalability.

Another system supporting provenance is Scientific Application Middleware
(SAM) | |. SAM provides facilities for storing and managing records,
metadata and semantic relationships and is built on the WebDav standard. Sup-
port for provenance is provided through adding metadata to files stored in a SAM
repository. SAM is of interest because it does not specify the format of the data
or metadata that it handles instead it acts as an open repository. However, this
lack of structure means that retrieving the provenance of a result in its entirety
may be difficult.

The Chimera Virtual Data System is a virtual data catalogue, which is de-
fined by a virtual data schema and accessed via a query language | ]
The schema is divided into three parts a transformation: a derivation and a data
object. A transformation represents an executable, a derivation represents the
execution of a particular executable, and a data object is the input or output
of a derivation. The virtual data language provided by Chimera is used to both
describe schema elements and query the data catalogue. Using the virtual data
language a user could query the catalogue to retrieve the DAG of transformations
that led to a result. The benefit of using a common description language is that
relationships between entities can be extracted without understanding the under-
lying data by analysing the transformation descriptions. Process documentation
in Chimera is stored in the Provenance Transformation Catalog (PTC). The data
stored in the PTC is limited to a defined schema and does not allow for arbitrary
information. Likewise, there is currently no support for associating data in the
PTC making determining data lineage difficult. Chimera is of interest because it
is specifically designed to work with large scale distributed systems.

[ ] argued for infrastructure support for recording process documenta-
tion in Grids and presented a trial implementation of an architecture that was
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used to demonstrate several mechanisms for handling the documentation after
it was recorded. The system is based around a workflow enactment engine sub-
mitting data to a provenance service. The data submitted is information about
the invocation of various Web Services specified by the executing workflow script.
This system is of interest because it is both Web Services based and was designed
with Grid applications in mind. The drawbacks of this system include it relies
completely on a workflow enactment engine and it lacks a demonstration in any
large scale system.
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Chapter 12

Conclusion

12.1 Summary

In this document, we have presented a logical architecture for provenance systems
and the accompanying details required to understand how such an architecture
functions. We have proposed a definition of provenance suitable for representation
in a computational system, in Chapter 2, as “The provenance of an entity in
a given state is the process that led to that entity being in that state.”, and
a concrete representation of this concept, process documentation, in terms of
interactions between actors and states of those actors during interaction. In
Chapter 3, we present the logical architecture itself which defines the components
of a system for the recording, maintaining, visualising, reasoning and analysis of
process documentation.

Chapters 4 and 5 address the security and scalability aspects of the archi-
tecture respectively. A security architecture, complementary to the logical ar-
chitecture, is presented that provides secure transmission and access control to
provenance stores, and a series of scenarios is given to illustrate how different
modes of interaction with the secured system will take place. For scalability, the
need for distribution of provenance stores is emphasised, and a set of deployment
patterns for recording of process documentation to distributed stores is given.

In Chapters 6, 7, and 8, we provide more detail about the functionality of
the provenance architecture. Chapter 6 presents solutions to the problem of dis-
covering the provenance of a given entity: in particular, how an entity should be
identified in queries to provenance stores. Chapter 7 describes the underpinning
data model of the provenance architecture. In Chapter 8, we detail the function-
ality available through the three interfaces of a provenance store: recording, query
and management. In Chapter 9, we enumerate the constraints that application
actors have to satisfy in order to successfully record documentation of execution
and issue queries about the provenance of data.

Finally, Chapters 10 and 11 place the work in context. In the former chapter,
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we compare the logical architecture to the software requirements captured in the
EU Provenance project, showing how each is addressed by our design, and in
Chapter 11 we discuss related work.

12.2 Future Work

It should be emphasised that this document continues to evolve. Chapters will
be frozen following the timetable in Section 1.3. Along with this work, a set of
associated documents will be produced by the EU Provenance project.

e An instantiation of the logical architecture for the Web Services stack.

A standardisation proposal for the logical architecture.

A design for implementation of the architecture.

A methodology explaining how to deploy the provenance architecture.

An application of the methodology and architecture to an organ transplant
management system.

An application of the methodology and architecture to an aerospace engi-
neering system.
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Appendix A

Notes

This appendix refers to annotations introduced in the margin of the logical ar-
chitecture document.

Note 1. Specifically, the following are all considered as “services” because they
all take some inputs and produce some outputs: Web Service, Corba or RMI
objects, command line program.

Note 2: With such a broad definition, we see that WS-BPEL, WSFL, VDL,
Dagman’s DAGs or Gaudi are all workflow frameworks capable of expressing the
composition of services. Likewise, a script calling several command line com-
mands is also regarded as a workflow.

Note 3 Such messages take the form of SOAP messages for Web services. In the
case of command line executables, we do not have explicit messages; instead, they
take some explicit arguments potentially representing both inputs and outputs.
We also see a memory shared by two threads as a way of implementing such
message-passing mechanism; the message itself is the information stored in the
shared memory.

Note 4: Our definition of process, like the Unix notion of process, refers to an
instance of a running program (workflow here). It has a beginning, and, if it is
finite, it has an end.

Note 5: At this stage of the specification, we do not make the distinction between
resource and service | | since they are defined in the context of the
specific Web Services technology. Our broad view of message allows us to include
in a message the necessary reference to resources, as required by WSREF.

Note 6: Should the actors involved in the process be the only one to document
it? The answer is yes. Indeed, if actors are not involved in the process, then no
message has been sent to them. Hence, they cannot be aware of the process, and
therefore could not possible provide any documentation relevant to this specific
execution.
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Note 7: In a grid application based on command line executables, an interaction
p-assertion can include the executable fully qualified name, its inputs and its
outputs, whereas in a Web Services based approach, interactions documentation
can include input and output SOAP messages, and a reference to the service,
port and operation being invoked. In the latter case, we note that an interaction
p-assertion potentially includes not only the SOAP message body, but also its
envelope, containing valuable information such as security, addressing, resource
or coordination contexts.

Note 8 We note that capturing such data dependencies in large scale databases
is the focus of research on data provenance in databases; techniques developed in
such a context may have to be integrated with the proposed approach.

Note 9. In a concrete instantiation of the logical architecture for Java and Web
Services technologies, interfaces will be specified by WsDL, whereas libaries will
be Java classes, generated by wsdl2java, implementing the stubs necessary to
communicate with the provenance stores, and extended with some hand written
convenience functions.
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Appendix B

Abbreviations

This appendix contains abbreviations used in this document.

CA
GPAK
GPID
IR
PReP
RBAC
Ul

Certificate Authority

Global P-Assertion Key

Global P-Assertion Identifier
Internal Representation
P-Assertion Recording Protocol
Role Based Access Control
User Interface
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Appendix C

XML Schema diagram format
description

Figure C.1 gives an example of a small XML Schema file displayed as a diagram.
We will now explain the format of the diagram with reference to this figure.

| test name

test number [=]
test ]

1”*

start test [=]

I
- stop test [=]

Figure C.1: An example XML Schema file diagram

Figure C.1 shows an element (i.e. an instance) named test that is a type
of ts:Test. The element definition is in the box to the left of the picture. The
type description is to the right of the element. The type Test extends the type
SuperTest as denoted by the arrow notation. The type Test contains a sequence
of elements, which we now detail. One element in the sequence is a test name
which can be any type and must occur once and only once in an instance of
Test. We note that the definition of the type anyType is in a lighter tone than
the definition of the Test type. This is because the type anyType is defined in
another schema and is referred to by this schema. Test also contains an element
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test number which is a simple type as denoted by the box next to the name. The
test number element must occur once and can occur as many times as needed.
This is denoted by the 1..* under the element. The sequence also contains a
choice between two elements; start test and stop test.

Below is a simple of description of each of the parts of the XML Schema
diagram format.

Represents an element (in-

test stance). The type of the ele-

; PR ment is defined underneath the
element name.

By default an element must oc-
cur once and only once. This
can be changed and is denoted

| test number ] by the 1..*%, 0..*, 0..1 under the

L ' : element box. If the element
is a simple type a small box
is put to the right of the ele-
ment’s name.

Represents a type. A type is
denoted by a box with a name
at the top left. All the graphi-
cal elements within the box are
a part of that type except for
other types.

g )
i Represents a sequence of ele
aE o ments.

—E"'E‘ Represents a choice between

e elements.
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Appendix D
The Actor State Model

Different applications might need roughly the same types of information to rep-
resent an actor’s state but could use different terminology. To enhance interop-
erability and use of provenance systems, it is essential for applications to assert
actor states based on as much as possible the commonly agreed information items
as well as their models. We have analysed provenance user requirements | ]
and identified a number of common information that, once recorded through actor
state p-assertions, can satisfy provenance use cases. The information is described
below.

e The Profile, which provides basic information on an asserting actor such as
contact information, actor’s attributes, status, version, etc.

e The Site, which provides location information about an asserting actor. A
site can hosts zero or more actors.

e The Cluster, which provides information about the set of subclusters or
hosts that offer an execution environment for an asserting actor.

e The ComputingElement, which provides information about the characteris-
tics, resource set and policies of the underlying scheduling system in which
an asserting actor is running.

e The InvocationMetadata and ResultMetadata, which provide metadata about
an asserting actor’s invocation and result messages. They include message
receiving and sending time, inputs/outputs metadata and their storage in-
formation, and their semantics.

e The Functionality, which provides information about the algorithms, exe-
cutables and resources an asserting actor uses to realise its functionality.

e The WorkflowInfo, which provides information about the workflow in which
an asserting actor is invoked and executed.
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e The WasBeforelnteraction, which specifies the temporal relation between
an actor state p-assertions and its corresponding interaction.

We define data types for the above information items. Given that the Grid
Laboratory Uniform Environment, i.e., the GLUE schema [Glu], has been com-
monly accepted as an information model for grid resources and already incor-
porated into Globus toolkits, we have reused some data types from the GLUE
schema. We also draw ideas from the ongoing work on the semantic rich Grimoires
service registry | | and the research results in semantic web service, in partic-
ular, the OWL-S service ontology. Our design rationale is to make data models
for describing actor states compatible with available or forthcoming standards
or endorsed specifications. The benefit is that an open standards-based model
enables the provenance infrastructure to coexist with other service-oriented in-
frastructure so that provenance systems can interact and integrate with other
systems and application seamlessly.

To provide design guidance and a template for creating actor state p-assertions,
an abstract, generic model for actor state p-assertions, called ActorStatePAsser-
tion, is defined in Section 7.7. Any application-specific actor state p-assertions
model should be derived from this model to guarantee consistency and extensi-
bility. Furthermore, we have designed an example actor state p-assertions model,
which is derived from the generic ActorStatePAssertion model and named as Ac-
torStateModel. The ActorStateModel consists of all the information we identified
above, as depicted in Figure D.1.

We recommend using ActorStateModel as a general actor state p-assertion
model. However, we do realise that different domains and applications have their
own characteristics and may need to capture and record specific or proprietary
data. Therefore, we do not mandate any actor state data model to contain the
identified information nor do we limit it for adding any extra information. The
idea is that we encourage applications to adopt the general actor state p-assertion
model so as to achieve some degree of interoperability. However, applications have
the flexibility to add their own data types and even to develop their own actor
state p-assertions model.

An application can design its own actor state p-assertions model in the fol-
lowing three ways.

e Derive the actor state p-assertion model from the ActorStateModelType
by extension or restriction, define and add its own application-specific data
types into the model to meet its specific provenance needs.

e Derive the actor state p-assertion model from the ActorStatePAssertion
data type, reuse part (or all) of these pre-defined data types as described
above, define its own application-specific data types if necessary, and use
them in the model.
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ActorstateModel

genericDescription

bvpe = skring
0.1
hasProfile
| type = ap:Profile
0.1
locatedAk
T tvpe = se:SiteType [
0.1
runln
|| tvpe = ce:ClusterType *
|:|. .*
useResources
| tvpe = ce:ComputingElement Type
actorstateModel i 0.+
type = ap:AckorStateiModel . )E‘

hasInvocation™Metadata
|| tvpe = ap:InvocationMetadata

0.1

R hasResultMetadata .

bype = ap:ResulkMetadaka
0.1

hasFunctionality
a H +|
kype = ap:Funckionality

D. I*
workflowInfo

| tvpe = ap:workflowInfo |-
0.1

wasBeforelnteraction
| type = ap:WasBeforelnterackion

Figure D.1: The actor state p-assertion model in XML Schema
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e Derive the actor state p-assertion model from the ActorStatePAssertion
data type, define its own data types and use them in the model.
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