The University of Southampton
University of Southampton Institutional Repository

Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering

Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering
Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering
The process of bone growth, regeneration, and remodeling is mediated, in part, by the immediate cell-matrix environment. Osteoblast stimulating factor-1 (OSF-1), more commonly known as pleiotrophin (PTN), is an extracellular matrix-associated protein, present in matrices, which act as targets for the deposition of new bone. However, the actions of PTN on human bone progenitor cells remain unknown. We examined the effects of PTN on primary human bone marrow stromal cells chemotaxis, differentiation, and colony formation (colony forming unit-fibroblastic) in vitro, and in particular, growth and differentiation on three-dimensional biodegradable porous scaffolds adsorbed with PTN in vivo. Primary human bone marrow cells were cultured on tissue culture plastic or poly(DL-lactic acid-co-glycolic acid) (PLGA; 75:25) porous scaffolds with or without addition of recombinant human PTN (1 pg-50 ng/ml) in basal and osteogenic conditions. Negligible cellular growth was observed on PLGA scaffold alone, generated using a super-critical fluid mixing method. PTN (50 ?g/ml) was chemotactic to human osteoprogenitors and stimulated total colony formation, alkaline phosphatase-positive colony formation, and alkaline phosphatase-specific activity at concentrations as low as 10 pg/ml compared with control cultures. The effects were time-dependent. On three-dimensional scaffolds adsorbed with PTN, alkaline phosphatase activity, type I collagen formation, and synthesis of cbfa-1, osteocalcin, and PTN were observed by immunocytochemistry and PTN expression by in situ hybridization. PTN-adsorbed constructs showed morphologic evidence of new bone matrix and cartilage formation after subcutaneous implantation as well as within diffusion chambers implanted into athymic mice. In summary, PTN has the ability to promote adhesion, migration, expansion, and differentiation of human osteoprogenitor cells, and these results indicate the potential to develop protocols for de novo bone formation for skeletal repair that exploit cell-matrix interactions.
0884-0431
47-57
Yang, Xuebin
3030c19f-22e3-4dc6-9c12-dbcc66ceb694
Tare, Rahul S.
587c9db4-e409-4e7c-a02a-677547ab724a
Partridge, Kris A.
034d205b-2718-4503-b2e6-85d2dee4af80
Roach, Helmtrud
1c34f427-ea30-43a1-af00-48fde3a7b9fa
Clarke, Nicholas M.P.
76688c21-d51e-48fa-a84d-deec66baf8ac
Howdle, Steven M.
ec70f53e-a5df-4e99-9da2-f90582dde80b
Shakesheff, Kevin M.
5b9ed879-e2c5-4c62-bb38-abd2bb4960ac
Oreffo, Richard O.C.
ff9fff72-6855-4d0f-bfb2-311d0e8f3778
Yang, Xuebin
3030c19f-22e3-4dc6-9c12-dbcc66ceb694
Tare, Rahul S.
587c9db4-e409-4e7c-a02a-677547ab724a
Partridge, Kris A.
034d205b-2718-4503-b2e6-85d2dee4af80
Roach, Helmtrud
1c34f427-ea30-43a1-af00-48fde3a7b9fa
Clarke, Nicholas M.P.
76688c21-d51e-48fa-a84d-deec66baf8ac
Howdle, Steven M.
ec70f53e-a5df-4e99-9da2-f90582dde80b
Shakesheff, Kevin M.
5b9ed879-e2c5-4c62-bb38-abd2bb4960ac
Oreffo, Richard O.C.
ff9fff72-6855-4d0f-bfb2-311d0e8f3778

Yang, Xuebin, Tare, Rahul S., Partridge, Kris A., Roach, Helmtrud, Clarke, Nicholas M.P., Howdle, Steven M., Shakesheff, Kevin M. and Oreffo, Richard O.C. (2003) Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering. Journal of Bone and Mineral Research, 18 (1), 47-57. (doi:10.1359/jbmr.2003.18.1.47).

Record type: Article

Abstract

The process of bone growth, regeneration, and remodeling is mediated, in part, by the immediate cell-matrix environment. Osteoblast stimulating factor-1 (OSF-1), more commonly known as pleiotrophin (PTN), is an extracellular matrix-associated protein, present in matrices, which act as targets for the deposition of new bone. However, the actions of PTN on human bone progenitor cells remain unknown. We examined the effects of PTN on primary human bone marrow stromal cells chemotaxis, differentiation, and colony formation (colony forming unit-fibroblastic) in vitro, and in particular, growth and differentiation on three-dimensional biodegradable porous scaffolds adsorbed with PTN in vivo. Primary human bone marrow cells were cultured on tissue culture plastic or poly(DL-lactic acid-co-glycolic acid) (PLGA; 75:25) porous scaffolds with or without addition of recombinant human PTN (1 pg-50 ng/ml) in basal and osteogenic conditions. Negligible cellular growth was observed on PLGA scaffold alone, generated using a super-critical fluid mixing method. PTN (50 ?g/ml) was chemotactic to human osteoprogenitors and stimulated total colony formation, alkaline phosphatase-positive colony formation, and alkaline phosphatase-specific activity at concentrations as low as 10 pg/ml compared with control cultures. The effects were time-dependent. On three-dimensional scaffolds adsorbed with PTN, alkaline phosphatase activity, type I collagen formation, and synthesis of cbfa-1, osteocalcin, and PTN were observed by immunocytochemistry and PTN expression by in situ hybridization. PTN-adsorbed constructs showed morphologic evidence of new bone matrix and cartilage formation after subcutaneous implantation as well as within diffusion chambers implanted into athymic mice. In summary, PTN has the ability to promote adhesion, migration, expansion, and differentiation of human osteoprogenitor cells, and these results indicate the potential to develop protocols for de novo bone formation for skeletal repair that exploit cell-matrix interactions.

This record has no associated files available for download.

More information

Published date: January 2003

Identifiers

Local EPrints ID: 26138
URI: http://eprints.soton.ac.uk/id/eprint/26138
ISSN: 0884-0431
PURE UUID: eb06ecf9-1dca-46af-af55-36c3146e1060
ORCID for Rahul S. Tare: ORCID iD orcid.org/0000-0001-8274-8837
ORCID for Richard O.C. Oreffo: ORCID iD orcid.org/0000-0001-5995-6726

Catalogue record

Date deposited: 12 Apr 2006
Last modified: 16 Mar 2024 03:39

Export record

Altmetrics

Contributors

Author: Xuebin Yang
Author: Rahul S. Tare ORCID iD
Author: Kris A. Partridge
Author: Helmtrud Roach
Author: Steven M. Howdle
Author: Kevin M. Shakesheff

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×