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Abstract

We report results from a series of studies coevolving pjarsimple Rock—Paper—Scissors games. These
results demonstrate that “Current Individual versus Atreé©pponent” (CIAO) plots, which have been pro-
posed as a visualization technique for detecting both dagwoary progress and coevolutionary cycling, suffer
from ambiguity with respect to an important but rarely dssed class of cyclic behavior. While regular cycling
manifests itself as a characteristic banded plot, irreguyleling produces an irregular tartan pattern which is also
consistent with random drift through strategy space. Altitothis tartan pattern is often reported in the literature
on coevolutionary algorithms, it has received little ati@mor analysis. Here we argue that irregular cycling will
tend to be more prevalent than regular cycling, and thatriesponds to a class of coevolutionary scenario that is
important both theoretically and in practice. As such, désirable that we improve our ability to distinguish its
occurrence from that of random drift, and other forms of abationary dynamic.



1 Introduction

The majority of adaptive systems on this planet are bioklgend as a result share several characteristics. Fore-
most among these is that they are all a product of naturatiggalry processes. More specifically, since popu-
lations of adaptive systems have not tended to evolve iatisnl, the selective pressures responsible for shaping
them have been significantly influenced by the presence amav/iwe of the other organisms in their environment:
competitors, predators, prey, offspring, mates, etc. Eénis coevolution rather than evolution per se, that is
responsible for adaptive behavior.

In an effort to either engineer artificial adaptive systemsetter understand natural systems, adaptive be-
havior researchers have employamkvolutionaryalgorithms as design tools and simulation models. However,
while this research remains promising, it has raised ségeshlematic issues. Perhaps the most pressing of these
concerns our ability to understand the dynamics of coeimiaty systems (e.g., Watson & Pollack, 2001).

In particular, there are inherent difficulties associateth wetecting coevolutionary progress. Often, it is
virtually impossible for an observer to know whether popiolas are improving over time. A short-term im-
provement in fitness, relative to contemporary competitogs not necessarily lead to long-term improvement
in some objective sense, since it is possible for coevatatip systems to cycle: coevolving populations may
follow a repeating sequence of adaptive transitions.

For instance, consider coevolving two populations of player the simple parlor game Rock—Paper—Scissors
(RPS). In each bout of the game, two players simultaneobslgse one of the three possible moves (Rock, Paper,
Scissors), the winner being decided according to an intre@superiority relationship (Rock blunts Scissors,
Scissors cuts Paper, Paper covers Rock—draws are shafdtugh the global optimum for either player is to
play each move with equal probability, any deviation froms 8trategy on the part of either population encourages
a complementary counter-deviation.

If one population is biased in favor of playing Paper, forraxée, the other will benefit from playing Scissors
more often than one third of the time. As the frequency witlchlIScissors is played increases, the first population
is under selection pressure to increase the frequency wiitthvits members play Rock. In response, the opponent
population will tend to favor Paper. In this way, while bothpulations are continually favoring offspring better
able to compete against their current opponents, in theeiclegm, the populations are continually and repetitively
cycling through a sequence of globally sub-optimal stigtegs they seek to exploit the temporary biases of
their opponents. Consequently there is no objective imgm@nt—one cannot guarantee that an individual will
outperform its ancestors.

In standard evolutionary algorithms, because the fitheas @rfidividual is measured against a static function,
continual progress can be detected as an improvement isdimesr time. However, this is not true of coevolu-
tionary systems, where an individual’s fitness is meastaladiveto its contemporary opponents. When this type
of relative fitness measure is plotted against time, indiaid from different generations are being compared using
a metric which is itself varying unpredictably over timenae the opponents against which they were assessed
will not, in general, have been the same. These considassioggest that such plots are not merely “difficult
to interpret”, but are effectively meaningless. Unforttahg this ensures that detecting the occurrence of cycling
in either natural or artificial systems is problematic, silan external observer cannot determine, on the basis of
relative fitness measures, whether a coevolutionary syistpnogressing, cycling, or drifting randomly.

In an attempt to circumvent this problem, Cliff and Miller9@5) proposed the “Current Individual versus
Ancestral Opponent” (CIAO) plot as a visualization tool fitecting coevolutionary progress. At the conclusion
of a coevolutionary run, CIAO plots can be constructed btingtthe elite (i.e., best-scoring) individual from
every generation against the elite opponent from each tratgeneration and plotting the results as shaded cells
in a matrix. In this way individuals are directly assessediagt the ancestors of their opponents. If, over many
generations, most individuals can beat their ancestrabiogipts, the matrix will exhibit a consistent gradation in
shading from dark cells at the origin to light cells at thedieg edge. This pattern suggests that there has been



continual progress over the course of coevolution, sindwiduals from later generations are outperforming their
ancestors. By contrast, coevolutionary cycling manifisedf as a diagonal “banded” pattern (see section 2).

In coevolutionary research, CIAO plots are a widely acagmeblem-independent visualization technique
with few alternatives. However, in the studies reportee@ivez explore whether they are as easy to interpret as has
previously been implied. We demonstrate that CIAO plots lmamisleading even in the simple coevolutionary
domain of Rock—Paper—Scissors. We show that coevolutayating can fail to produce a characteristic banded
CIAO plot, resulting instead in a “tartan” pattern. Thissdaf CIAO plot is commonly reported but has received
little attention. Here we establish that tartan-like CIA@tp can result from cyclic coevolution thatirsegular,
or even random drift. We argue that CIAO plots are thus vahkrto ambiguity and that, as a result, their use
should be accompanied by more problem-specific analysis.

2 The Red Queen & CIAO Plots

Appearing in Lewis Carroll'SThrough The Looking Glasthe Red Queen must continually run in order to main-
tain her position. No matter how fast she moves, the surriogridndscape always keeps up with her.

van Valen (1973) made an analogy between the Red Queen alodibad coevolution after discovering a
surprising trend concerning the probability of speciesnexibn. After analyzing huge data sets collected across
a wide range of biological taxa, van Valen (1973) noticed,thaunter to intuition, “all groups for which data
exist go extinct at a rate that is constant for a given grogssuming that species evolve in a relatively static
environment, one would expect beneficial adaptations toraatate over evolutionary time, enabling progressive
generations to be better equipped at defending againstcéigti. To explain his findings, van Valen proposed a
new evolutionary law of extinction, with the Red Queen Hyyastis as its central tenet: “biotic forces provide the
basis for self-driving . . . perpetual motion of the effeetenvironment”. Any beneficial adaptation by a particular
species is inevitably detrimental to other species infrapthe same effective environment. Coevolutionary forces
will, in turn, select for specific counter-adaptations iegh species. In this way, adaptive advantage is continually
eroded. In Red Queen fashion, species continually struggteintain their relative fitness.

One might expect Red Queen dynamics to drive a run-away gsagfecontinual counter-adaptation—a co-
evolutionaryarms race Such arms races are considered a profound force drivinigtemoary adaptation in the
natural world, and have sometimes been characterized as@esaf strong selection for novel adaptations capable
of accelerating evolutionary progress (Dawkins & Krebs79)9

In order to take advantage of arms-race dynamics, the fieklbolutionary computation has seized upon
coevolution as an attractive alternative to standard eislary optimization. Living up to expectation, artificial
coevolution has had success in several domains (e.gs,Hii00; Juille, 1995; Pollack, Blair, & Land, 1996; Pol-
lack & Blair, 1998). However, as an optimization techniguegvolutionary search suffers from the relative nature
of fitness assessment—coevolutionary systems can be Hiffiadrive in a consistent, objectively “progressive”
direction.

There are several ways in which an arms race can unfold. Qeersay “win” the race, discovering an
adaptation to which there is no available counter-adaptatif coevolution is within a species, evolutionary
stasis may be reached, but during between-species coevolbe disadvantaged species may be driven extinct.
Alternatively, one population may temporarily win by “otitpping” the other to such an extent that the opponents
are no longer discriminated by selection: whilst a couagigptation may exist, it has yet to be discovered.
Termed “coevolutionary disengagement” (and discusseithéuiin section 4.2), this type of outcome has been
studied elsewhere (Watson & Pollack, 2001; Cartlidge & 8cltl, 2002; Cartlidge & Bullock, to appear). Finally,
an arms race may cycle, as populations follow repeatecttmajes through strategy space, discovering strategies
that enjoy only a temporary advantage over their opponéntsn the perspective of coevolutionary optimization,
cyclic coevolution has gained the most attention. Sincedloyclic trajectories waste computational resources,



it would be useful to detect (and ultimately prevent) theicarrence; or, at least, to realize that the optimization
problem as-stated has a possibly unanticipated set ofhlastquilibria with no escape trajectory.

In general, one would like to know how coevolution is progieg. Has there been steady and continuous
improvement, or transient bursts of progress amidst lomgpg@e of stasis? Is the system cycling, and, if it is, are
the cycles regular? Frustratingly, the Red Queen rendensiatd approaches to answering these questions (by
plotting individual fitness as it changes over time) obsolet

Consider a predator-prey arms race. As preddtopsoveover evolutionary time, one might expect them
to catch more prey. The prey, however, are improving too. ef€hs no general reason to expect the average
success of animals at out-running or out-wittc@ntemporaryenemies, victims, prey or competitors, to improve
over evolutionary time” (Dawkins & Krebs, 1979, our italjcsThis is a direct consequence of the Red Queen.
An improvement in any one species is countered by each cdagadpecies, resulting in a deterioration of the
effective environment (van Valen, 1973).

However, one might expect a progressive coevolutionarysaawe to result in an advantage for modern
predators and prey over theincestraladversaries. In nature, it is difficult to perceive how a cetfitjpn across
evolutionary time may arise, without the use of cloning arditravel. Yet, in simulation it is quite feasible to
carry out such ancestral opponent competitions. Cliff aflteMdeveloped this technique during a series of papers
in which they attempted to coevolve pursuer and evadeesgfies in continuous-time neural-network controllers
(Miller & Cliff, 1994a, 1994b; Cliff & Miller, 1995, 1996).

Once a coevolutionary run has terminated, ancestral oppaoaitests (competitions against ancestral op-
ponents) are carried out between the highest scoring thaViof each generation: the “elite”. The elite of
population A (the A-elite) is pitted against the elite of ptation B (the B-elite) in a series of contests. For each
generatiory of coevolution, the A-elitef) competes with the B-elite of the current, and each andegtaeration.
Hence, A-elite(5) plays B-elite(5), B-elite(4), ., B-elite(0). The resulting scores of each contest are nlizeth
and converted into gray-scale values and plotted on a 2rdiioeal grid: the greater the victory in favor of the
A-elite, the heavier the shading of the relevant matrix (ke figure 1, adapted from Cliff & Miller, 1995).

Along with the invention of CIAO plots, Cliff and Miller lefa lasting legacy—the idealized plot. Idealized
CIAO plots demonstrate the patterns that they predictedvamdd find, given either perfect continual coevo-
lutionary progress, or perfect coevolutionary cycling.aBbple schematics are shown in figure 2. Continuous
progress appears as continuous diaggnatiationfrom dark to light across the plot. Each individual beats its
ancestral opponents—the earlier the ancestor, the gtbateictory. In contrast, coevolutionary cycling produces
diagonalbanding Whilst recent ancestral opponents are easily beater, @hiponents from a few generations
earlier have the upper hand. As the contests span increasiiagls of evolutionary time, competitive advantage
repeatedly transfers between novel and ancestral popuogatithe system is cycling.

Since Cliff and Miller (1995) first introduced CIAO plots fpursuit and evasion, they have become widely
accepted as a standard tool for visualizing coevolutiopasgress. As such, CIAO plots have received extensive
use in the fields of evolutionary robotics, (Floreano & Nadlf§97a, 1997b; Nolfi & Floreano, 1998; Stanley &
Miikkulainen, 2002), the games of Go (Lubberts & Miikkulaim, 2001), 3-D Tic-Tac-Toe and Nim, (Rosin &
Belew, 1997), and in the coevolution of string generatosedictors (Ficici & Pollack, 1998).

However, the results obtained in these relatively complemains rarely resemble the idealized plots of
Cliff and Miller. Even discounting noise, real CIAO plot valizations are often qualitatively different from the
ideal schematics. Many CIAO plots exhibit a tartan patteenpatchwork of unpredictable lines and rectangles
across the plot (figure 3 presents a hypothetical exampléR2®lots found in the literature, 10 are tartan in
nature, 8 show progress (smooth gradation) and 4 show nage®@a largely homogeneous plot). There are no
examples of regular banding. In a tartan plot, blocks of amif shade represent periods of stasis bounded by
adaptive innovations. Consider Rock—Paper—Scissorgxample: if the elites in both populations play Rock
from generation 50 onwards, until population A's elite atboPaper at generation 55, and the B-elite adopts



Scissors at generation 60, then the resulting CIAO plotdigplay a gray rectangle with sidés 10 generations,
cornered 50, 50).

Tartan CIAO plots have sometimes been interpreted as stipg@vidence for cycling (Floreano & Nolfi,
1997a, 1997b; Nolfi & Floreano, 1998). The principle reasppears to be that, unlike the idealized progressive
CIAO plot, there is little correlation between gray-scague and time. It is difficult to imagine how a jumble
of dramatic jumps between winning and losing can occur acegslutionary time in a continuously progressing
coevolutionary system. How such a pattern relates to aycliowever, appears unclear. As we shall demonstrate,
although tartan plots of this kind are consistent with cda¥onary change that is cyclic but irregular, it is dan-
gerous to infer irregular cycling from them uncritically the following section we demonstrate that tartan plots
are, in fact, ambiguous with respect to showing irregulating and/or random drift.

3 Rock—-Paper-Scissors

In this section we explore coevolution (and resulting CIAGtg) in a simple domain specifically chosen to exhibit
cyclic coevolutionary trajectories. To better understdredunderlying coevolutionary dynamics, several différen
visualizations are presented. However, whilst each iddiily offers insight into the underlying coevolutionary
dynamics, one cannot interpret them with confidence urfrmation from the whole suite is considered. This
is particularly true if some are ambiguous.

3.1 Study 1: A Simple Encoding

In this baseline study the inherent intransitivity of thecRePaper—Scissors (RPS) game, in combination with
the smooth fitness landscape resulting from a simple geeetioding, produces regular coevolutionary cycling.
The visualizations that reflect this include CIAO plots thlaisely resemble the idealized banded plot (figure 2).
For the most part this section introduces fairly straigivfard results and visualizations which are intended to
contrast with the more complex results from the subsequedics.

For the simple encoding, each genome consists of threavymoisitegers that sum to 100. Each integer repre-
sents the probability of choosing one of the three game m&@sk (R), Paper (P), or Scissors (S). For example,
genome{50, 0,50} represents an individual that chooses to play Rock and@sisgth equal likelihood, but will
never play Paper. Genon{83, 33,34} represents a near-optimal individual that plays each mawdamly with
almost equal probability.

During reproduction, mutation occurs with probability @dr locus. A mutated gene is incremented by an in-
teger drawn at random from the uniform distributies80 . . . 30]. Following mutation, the genome®rmalized
to once again sum to 100.

Two reproductively isolated (initially randomized) poptibns, each containing 20 RPS players, are coevolved
for 256 generations. Each generation, every individualtiegh against every member of the opponent popula-
tion. Each game consists of 10 bouts, with each individuabsing R, P, or S probabilistically on the basis of
their genes. Throughout a generation, an individual actat®sia score from its 200 competitions. Individuals
reproduce asexually, with tournaments biasing selectidavor of high-scoring individuals. The winner of each
randomly assembled 5-member tournament is chosen to negeod

3.1.1 Feature Detection

To assist the detection of features within the CIAO plotsorégd in this paper, a three stage processing of the
raw images is employed. The method chosen (described bedl@eheralizable and easy to implement. Further,

Marr (1982) has suggested that it may have biological inagiiims as a model for the very first stages of visual

processing. For further details, one should refer to M&®B@l, chapter 2).



1. Gaussian Blur: A 2-dimensional Gaussian filter (radiu} is initially applied to the image; effectively
removing structures smaller than the standard deviatidhef>aussian distribution. As it is smooth and
omnidirectional, a Gaussian distribution is appropriatelflurring as it is unlikely to introduce structure
that was not present in the original image.

2. Laplacian of Gaussian (LoG): The Laplacian V2) is an isotropic second-order differential operator that
can be used to detect intensity changes in a blurred imageasat the scale of the particular Gaussian
employed (determined by the standard deviatign The Laplacian operator is used to locate the zero-
crossings of an image—changes from dark to light, or ligltatk—thus generating a contour map.

In mathematical notation, the blur of an image functigm, y) with a Gaussian functio& is denoted by
G * I, read as & convolved withI”. The Laplacian of this is denoted?(G = I) = (V2G) * I, read as
“the Laplacian of Gaussian (LoG) convolved with

3. Binarize: Finally, the direction of each zero-crossing is highlighby “binarizing” the image. Areas with
negative values are colored black whilst areas with p@sitalues are left white.

Whilst stages 1 and 2 of the feature detection process nigtacambine into one operation, throughout this
paper they will be performed independently. This enablesdkult of blurring to be viewed before zero-crossings
are detected. Throughoutando values are chosen through trial and error: values are reldoagetect smaller
features, for larger features they are increased.

3.1.2 Results

Throughout this section, all data is the result of one reggive coevolutionary run. Figure 4 displays four
CIAO plots. From left to right, plot 1 displays the raw daté sgth subsequent CIAO plots presenting the same
data after each stage of the image processing routine Heddrn section 3.1.1. In plot 1, regular patterns and
possible diagonal banding are discernable, potentiadligating regular coevolutionary cycling. After blurrintget
image with a large Gaussian of radius 20 pixels, small featare removed and diagonal banding becomes more
pronounced (plot 2). A contour map is produced using a Lagtaof Gaussian (LoG) with standard deviation
8 pixels: diagonal banding is clear (plot 3). Plot 4 showsrdgwmult of binarizing the contour map in order to
highlight the direction of any zero-crossings. The regtyand clarity of diagonal banding in the fully processed
plotis striking. A comparison with the idealized banded Olplot of figure 2 allows plot 4 to be easily classified
as demonstrating coevolutionary cycling with regular perithe feature detection routine has clearly enhanced
the interpretability of the original CIAO plot data.

However, to have confidence in the nature of cycling, furthisualizations were constructed. For this pur-
pose, an “event plot” is used to highlight each occurrencetific events during coevolution: evidence for (or
against) cycling is generated by the resulting sequencesrite. Assuming events are chosen adequately, regular
cycling should manifest as a repeated sequence of eveit$ixgtl period. The event plot of figure 5 records the
occurrence of events associated with the play of the beshgdndividual of each population: the A-elite and B-
elite. The plotis marked for each generation in which thelite@lays P, or the B-elite playsk, with probability
p > 0.66. Figure 5 clearly shows a repeated sequence. As expectee Barlites regularly play Rock, A-elites
quickly evolve to play Paper. After approximately 40 getierss, the system completes a full cycle with B-elites
once again predominantly playing Rock. The coevolutiorsyistem appears to be following a cyclic trajectory
with regular period. In general, if mutation rade selection pressure (in the form of tournament size) ina®gas
the cycle period decreases.

In figure 6, the elite (i.e., best-scoring) and average (teamof all individuals) strategy of each population
are depicted for a representative period of evolutionaneti The vertical axis represents the probability of
playing each of the three possible moves. One full cycledgiace during the 45 generations depicted. At



generation 120, the elite member of population B (bottoft)-#dways plays Paper (genotype, 100, 0}). Within

5 generations, Scissors dominates the elite strategy inlgtign A (top-left). As a counter-adaptation, population
B converges on Rock, which in turn drives the elite of popalaf to play Paper with 90% probability (genotype
{10, 90, 0}) by generation 140. This completes a half-cycle. Scissecomes dominant for population B elites
around generation 150, followed by Rock for population Ad &nally the cycle is completed around generation
165 as the elite strategy of population B returns to Paperdiype{3,91,6}). The mean population strategies
(right) lag their elite counterparts slightly, but demaast the same trend. Notice that each population is able to
counter-adapt to its opponents in a smooth, regular manner.

In summary, study 1 has (predictably) demonstrated thatlsimegular cycling can manifest itself on CIAO
plots as cyclic banding, closely resembling the idealizadded CIAO plot in figure 2. In conjunction, it has also
been demonstrated that greater insight into cyclic cogiamary behavior can be obtained through the additional
use of alternative, perhaps problem-specific, visuabreti In the following section, the complexity of the genetic
encoding is increased to demonstrate that, whilst cyclimy mersist, the ease with which it is visualized is
considerably reduced.

3.2 Study 2: A Complex Encoding

In this study a more complex genetic encoding scheme is graglo Although the strategic structure of the
RPS game remains unchanged, by increasing the complexttyedtrategies available to players, more com-
plex courses of coevolutionary adaptation are availatiles ihtended that this new encoding will influence the
system’s coevolutionary dynamics, ensuring that the sefmrccounter-adaptations more closely resembles that
experienced in more realistic models of coevolutionary getition.

Here, genomes code for a deterministic finite state macli8®]j. Example genomes are presented in fig-
ure 7. The start node defines the choice of play during thelfirat of a contest. In figure 7, both individuals
initially play Scissors. From each node there are exactigetout-edges (which may be self-connecting), with
each transition representing an opponent’s move. In figugnge both individuals begin by playing Scissors,
each follows the state transitich A returns to the start node (0) and continues to play Scissoitstu transfers
to a new node (1) with state Paper. In the second bout of thegais Scissors beatB’s Paper.A follows the
P transition associated witB’s play and once again returns to staténode 0). In response td's ScissorsB
follows the S transition to a new node (2) with state RodR.is victorious in bout three, as Rock beats Scissors.
A moves to statéd® (node 1) andB remains at stat® (node 2). Figure 7 details the full results of a five-bout
contest.

Each node contains a unique integer identifier, a play state in-edges and three out-edges, each associated
with an opponent’s play and each connecting to a legal nodth Bopulations are initialized with random, self-
connected, single-node FSMs. During reproduction, thretation operators are employed (described below).

Node Mutation: With probability 0.03 per genome, a node is either added moked. Any edges previously
connected to a removed node become self-connections. F&ksaonstrained to have between one and
one hundred nodes. In practice, however, FSMs rarely greweab0 nodes.

State Mutation: With probability 0.02 per node, a node state is mutated tooftiee other two states, chosen at
random.

Edge Mutation: With probability 0.02 per edge, edges are mutated by rangloh@dnging either of the nodes to
which the edge connects.

Note that the deterministic FSM encoding employed in thiglgt(and study 3) does not allow individuals to
reach the global optimum (available in study 1) of playingreaove randomly with equal probability, irrespective
of opponent play: to achieve this a non-deterministic FSMoeling is necessary. However, since we are not



interested here in a direct comparison between the redutsidies 1, 2, and 3, this is not problematic. What we
are interested in is the impact of regular and irregularingabn CIAO plot data. As we will see, the deterministic
encoding is a good choice in this respect.

Two reproductively isolated (initially randomized) poptibns, each containing 25 RPS players, are coevolved
for 256 generations. Each generation, every individualtiegh against every member of the opponent popula-
tion. Each game consists of 10 bouts, with each individuabsing R, P, or S deterministically on the basis of
their genes. Throughout a generation, an individual actat®sia score from its 250 competitions. Individuals
reproduce asexually, with tournament selection biasitegten in favor of high-scoring individuals. The winner
of each randomly-assembled 3-member tournament is choseprioduce.

3.2.1 Results

Throughout this section, all data is the result of one reprgtive coevolutionary run. Figure 8 displays four
CIAO plots. From left to right, plot 1 displays the raw data, sehilst subsequent CIAO plots display the same
data after each stage of the image processing routine Heddri section 3.1.1. Plot 1 (far left) presents a tartan
pattern qualitatively similar to the schematic shown in feg3: irregular blocks of uniform shading indicate
periods of competitive stasis separated by rapid tramsitin competitive advantage. Plot 1 resembles CIAO
plots obtained from more complex (practical) problem domgie.g., Floreano & Nolfi, 1997a, 1997b). The
patchwork effect suggests a lack of progress and may impngy. However, the image is difficult to interpret
with confidence.

After carrying out the same image-processing process graglm study 1, the plot displays some vertical
banding and one diagonal band to the right of the image, boaires difficult to interpret. Whilst the vertical
banding may be a result of bias in the original CIAO plot desigadaptive mutations will necessarily appear as
banding on the horizontal (if A-elite) or vertical (if B-&d)—the black diagonal band to the right of the plot is
potentially interesting. Perhaps the diagonal reflectsnapstitive advantage enjoyed by each population over its
immediate ancestral opponents, or even regular cyclingcdrabe observed over short evolutionary time scales,
but that is lost over longer periods. Alternatively, perbétpe diagonal is an artifactual edge-effect of the CIAO
plot: a result of the dark plot meeting a white backgrounckither case, whilst the processed plot has highlighted
some potentially interesting structures, ideal bandimpisexhibited. Considering the intransitive dominance re-
lationships inherent within the RPS domain, however, onghirsuspect cycling to be taking place (particularly
when the genetic encoding does not allow global stabilityeageached). To investigate the underlying coevolu-
tionary dynamics, further analysis is necessary.

The simplicity of the RPS domain enables us to gain insightis its coevolutionary dynamics by direct
observation of genotypes and phenotypes as populatiomgehaver generations. At the beginning of a run,
when each player’'s FSM has only one node, all strategiesrapdes Each player repeatedly chooses the same
play irrespective of its opponent’s behavior. Over evalnéry time, more complex strategies arise. These multi-
node FSMs change state in response to an opponent’s playeugonas more time passes, simple strategies,
such as “always play Scissors”, again begin to dominates placess often repeats several times throughout a
coevolutionary run.

For a coevolutionary system to be described as cycling, gtmepeatedly enter the same or similar states in
the same or similar order. Regular cycling repeats with fig@dod, irregular cycling does not. Either class may
fail to enterexactlythe same set of states during each cycle, or mairggattlythe same ordering over these
states during each cycle. However, each is clearly distigible from random drift. Whilst a randomly drifting
system may return to previous states over evolutionary, imkess there is a heavy bias influencing the “random”
walk (perhaps due to some bias within the genetic encodimgoetic operators, e.g., Bullock, 1999, 2001), the
trajectory of change is unpredictable. Any useful methadifetecting coevolutionary cycling should be able to
distinguish cases of regular or irregular cycling from s@&gtic repetition that may arise due to random drift. As



we will show, when used in isolation, this is something CIABtp struggle to do.

Choosing suitable visualizations for complex problemsfterochallenging. The space of variable length
FSMs is difficult to represent graphically. In order to rephpsome of the graphing techniques used for the
simple encoding scheme, some extra work is necessary.

FSM networks can be re-described simply using three préibesi the likelihood of playing each of the three
possible moves. Since each FSM is a directed graphp-diut contest against an opponent can be described
by a path of lengthm through the graph. By traversing each of 818 possiblem-length paths through the
network—the equivalent of playing every possible game—etffiectiveprobability of a network playing each of
the three possible moves can be determined. Since theseljlités are comparable to the three probabilities
encoded in the simple genomes of study one, they can beglotéesimilar fashion. However, whilst the effective
probabilities of FSMs are comparable to the probabilitiestady 1, they are not equivalent: deterministic FSMs
do not behave probabilistically but are sensitive to oppoptay.

Figure 9 shows an event plot for study 2. The plot is marke@&mh generation in which the A-elite plays P,
or the B-elite plays R, with effective probabilipy> 0.66. The system repeatedly moves through the same states
in a similar sequence. “B-elite plays Rock” is always folemhby “A-elite plays Paper”. However, on 2 out of 8
occasions, the system enters “A-elite plays Paper” witlpassing through “B-elite plays Rock”. The repeating
event plot sequence provides some evidence for irregutdingy if cycling is occurring, it is not as regular as
that exhibited in figure 5.

Cycling can be directly observed by plotting the effectivelyabilities of each population’s elite and mean
strategies during a particular (representative) coeimiaty period (see figure 10). Whilst it is not perfectly
predictable, sequential cycling can be observed betwepargtons 22-57. The B-elites (bottom-left) and B-
means (bottom-right) complete one cycle with the expectegisnce SPRS. In response, the A-elites (top-left)
and A-means (top-right) also complete one cycle, but withl#ss predictable sequence RSRP. However, the
“unexpected” shift from S to R (rather than directly to P) a&ngration 49 can be explained by considering
the system as a whole at generation 48. With every individupbpulation A playing S (top-right) and every
individual in population B playing R (bottom-right), thestgm is disengaged in generation 48: every member of
population B is beating every member of population A. At fisnt, a novel mutation aéither Paperor Rock is
beneficial to population A: whilst Paper gives victory, Radlows a draw. Thus, the move from Scissors to Rock
is a direct result of disengagement and is not entirely “peexed” (for a further discussion of disengagement,
refer to section 4.2).

Comparing the graphs of elite strategies with those of thmifation mean strategies in figure 10 shows that
each population exhibits several variable-length perimfdstrategic stasis. Typically, during these periods, the
majority of population A (top) are being beaten by the mayoof population B (bottom). Unlike in figure 6,
population A appears unable to easily discover countepiatians to the successful adaptations of population
B. This is a result of the deterministic FSM encoding and timétations of the associated mutation operators.
A desired mutation may be difficult to achieve. The initialgaherations of study 2 are shown in the expanded
CIAO plot of figure 11. The rapid changes in strategy depidatefigure 10 clearly reflect the internal structure
of the CIAO plot. The patchwork nature appears because tieRStation operators tend to produce either no
change in player strategy, or very rapid changes in behavior

The different nature of the coevolutionary dynamics geteeran study 2 most likely result from the rugged-
ness and/or neutrality introduced into the fitness landsdgpthe more complex genetic encoding scheme and
associated genetic operators. Single mutations, suctea®tre node”, can result in large changes in player be-
havior. By contrast, it can often be difficult to make a smalhiege to a player’s behavior (e.g., increasing the
tendency to follow Rock with Paper) without altering severarts of the FSM, which requires several separate
mutation events. The simple genetic encoding scheme andiatsd mutation operator of study 1 ensured that
single mutations tended to have modest phenotypic impatmpst phenotypes were only a few mutations apart.



In general, for any population in study 2 some parts of siratgpace will be less attainable than others to a
larger degree than was the case in study 1. The resulting @I&ts difficult to interpret. However, alternative
visualizations have shown that cycling is occurring, bat ihis irregular.

3.3 Study 3: Random Drift

Do banded and tartan CIAO plots directly imply regular amddular cycling, respectively? Can other coevolu-
tionary trajectories lead to banded or tartan CIAO plotsadrticular, what kind of CIAO plot is generated by
the kind of walk through strategy space produced by randaft?dAs previously discussed, random drift can
generate trajectories that revisit earlier states debpiteg non-cyclic. Can this kind of repetition be distindugsd
from regular behavior using CIAO plots?

Random drift is simulated for the same complex encodingreetend mutation operators employed in study 2
(256 generations with 25 individuals in each populationjplitionary selection pressures are removed, allowing
each individual an equal chance of reproduction irrespedaf ability. Individuals reproduce asexually and at
random, irrespective of score. Figure 12 displays four C[AQs resulting from typical random drift. From left
to right, plot 1 displays the raw data set, whilst subseq@AO plots display the same data after each stage of
the image processing routine described in section 3.1dt. 1Rffar left) presents a patchwork pattern of a tartan
nature, but less regular than that shown in figure 8. Theutegdlocks of shading suggest a lack of progress,
but may imply cycling of some sort. The plot is difficult to @mpret with confidence. After image processing,
the binarized plot (far right) displays no diagonal bandifige most prominent features are the horizontal bands
across the center of the image. It is likely that these barelsuia artifact of the underlying grid structure of the
raw plot, similar to the horizontal banding seen in the hired plot of study 2 (figure 8). The most significant
difference between the binarized plots of study 2 and 3 idigagonal band to the right of figure 8 that is missing in
figure 12. The binarized plot of random drift shows no signyafling (diagonal banding) even in the short term.
However, whilst the processed plots highlight this feattiney still remain difficult to interpret. Can irregular
cycling and random drift be correctly classified on this badbne?

Figure 13 shows an event plot for the random drift of study Zic®again, the plot is marked for each
generation in which the A-elite plays P, or the B-elite pl&;swith effective probabilityp > 0.66. Unlike
the event plot of study 2 (figure 9), random drift shows no obsisequence repetition. Events occur without
regularity. The event plot strongly suggests that the syssenot cycling.

Figure 14 displays the effective probabilities of each pgapon’s elite strategies during a particular (repre-
sentative) period. The state transitions of each populatilites appears random, suggesting that neither cycles.
Further, there is no obvious correlation between the twautadipns: knowing the state of one population does
not improve our ability to predict the state of the opponeaqydation. Thus, both populations vandependently
and at random: it imotthe case that one population changes randomly, with the atfepting to it in a regular
way.

Random drift allows populations to return to previouslylged strategies, but not systematically—the system
is notcycling. Despite this, random drift produces a CIAO plotwattartan nature, not dissimilar to that produced
by the irregular cycling of study 2. While we have not quaniiitely measured the differences between the CIAO
plots generated in studies 1, 2, and 3, the very fact that vglthiave to rely upon some such measure applied
to CIAO plots in order to discover what they have to tell us @haoevolutionary dynamics is disappointing.
To anybody using CIAO plots as their only method of coevoludiry visualization, the results reported here
are unfortunate. Not only can coevolutionary cycling regutartan, rather than banded, plots, but these tartan
patterns can also occur in the absence of any cycling af alkeld alone, CIAO plots are potentially ambiguous.



4 The Nature of Cycling

By highlighting the prevalence of cycling in natural systerthis section demonstrates that cycling, in general, is
a ubiquitous phenomenon of great importance to the studgaybtive behavior: cycling isot confined to “toy”
artificial coevolutionary systems, such as those studied@b\Vore specifically, this section considers the likely
prevalence ofrregular (as opposed teegular) cycling. Using the previous RPS studies as evidence,qudati
attention is given to coevolutionary systems.

4.1 Cycling in Nature

Ever since coevolution emerged as an independent diseiplithe 1970s, cyclic coevolutionary trajectories have
been anticipated (see Maynard Smith, 1982; Futuyma & $iatk983). Dawkins and Krebs (1979) suggest
that (in asymmetric systems) cycling may be common l@tweerandwithin species. They illustrate this by
highlighting the genetic model of parent-offspring coriffiostulated by Parker and Macnair (1979) and Parker
(1979). A dominant “conflictor” gene causes offspring to @eieh more investment than the parental optimum.
This is countered by the spread of a “suppressor” gene imgavwehich causes them to invest equally in offspring,
irrespective of demand. Assuming that the conflictor batréwvas a cost, then the direction of selection on children
is reversed once suppressor genes are frequent amongsisparen-conflictor genes spread and the cycle starts
again.

Dawkins and Krebs (1979) also present an example in the xiootg@redator-prey coevolution. Each indi-
vidual pays a cost of size: predators pay the cost of growiggbough to swallow prey and prey pay the cost
of growing big enough to prevent being swallowed. Henceigtlemsues a coevolutionary race as each species’
body size grows until their upper limit is reached; the size@kich cost outweighs reward. Given the “life-dinner
principle”,! prey are likely to invest more in getting bigger (and thusehawigher limit) than predators, which
are equally likely to divert scarce resources towards atldkaiptations (sexual attractiveness, for example). The
side that can afford to pay the highest cost will do so; at Wipicint selection will favor a rapid reduction in the
cost paid by the other side. Any return to the start state raaylt (after some possibly unpredictable period of
time) in a repeated bout of escalation. Maynard Smith (1886¢ribes such cycles as “sawtooth” oscillations and
suggests that they can occur in general when a variable,asusize, can vary continuously with no ESS: hence,
size may increase gradually until a threshold is reache@nvthe population can be invaded by much smaller
individuals.

Sawtooth oscillations have been observedimwlis lizard populations of the Caribbean islands (Roughgarden,
1983). The insects on whicAnolis lizards feed have food value proportionate to their size filgger the
better, as long as they can be swallowed), and abundanaséhy@roportional to size (smaller insects are more
common). A relationship between lizard size and insectekists such that larger lizards on average take larger
prey. On all islands inhabited by only one species, lizaaisetan equilibrium “solitary size” of approximately
50mm length in females and 60mm length in males. Where twaispexist, however, one population is generally
much larger than the solitary size whilst the othealisayssmaller. Where two species compete, it is assumed that
the larger species exerts a stronger pressure on the sisdieies tharice versa large lizards take more food
away; disputes over territory favor large lizards. To fistHata, Roughgarden (1983) proposed the “coevolution-
invasion turnover hypothesis”, suggesting that througérees of invasions and extinctions, the lizard populations
cycle in body length (see figure 15, adapted from Roughgat#88). On islands containing only one species,
lizard lengths approximate the optimum solitary size; liseaof the asymmetry in competition, only a larger
species can invade (figure 15.A). After invasion, the specievolve as competitors. The resident’s body size
reduces to avoid competition from the invader; an examplehafacter displacement. The invader’s body size

1The life-dinner principle states that coevolving speciegyime subject to asymmetric evolutionary pressures. Farins, consider foxes
and rabbits: “The rabbit runs faster than the fox, becauseathbit is running for his life while the fox is only runningrfhis dinner” (Dawkins
& Krebs, 1979, after Aesop).



also reduces to take advantage of the greater resourcdsylefe retreating residents (figure 15.B). Finally, the
resident species is driven to extinction by competitivdgsion. The invaders approach the optimum solitary size
and the system has completed one full cycle (figure 15.C).

Since the example of thénolis lizards requires species replacement (an intraspecifle ofthe same nature
would require invasion by an implausibly large mutant), Magd Smith (1996) suggests that the first example
of a population cycle arising from intraspecific interangds that reported relatively recently in side-blotched
lizards (Sinervo & Lively, 1996). Side-blotched lizardshéit three alternative male mating strategies, each
associated with a distinctive phenotypic trait: blue-tiesl males mate-guard females and are territorial; yellow-
throated “sneaker” males are non-territorial and roam afsealy, looking to copulate with the females of others;
and aggressive orange-throated males are polygynous anthmdarge territories. Whilst blue-throated lizards
avoid cuckoldry by yellow-throated sneakers, they ardyaserpowered by orange-throated males, which cosire
offspring with their females. Yellow-throated males aréeato sire offspring via secretive copulations with the
females of orange-throated males and often share patexhaffspring within a female’s clutch (Zamudio &
Sinervo, 2000). Sinervo and Lively (1996) showed that tlegdiencies of the three male morphs were found to
oscillate over a six year period.

The fitnesses of each morph relative to other morphs weretnaositive in that each morph could
invade another morph when rare, but was itself invadablenogheer morph when common. Con-
cordance between frequency-dependent selection and tbegayear changes in morph fithesses
suggest that male interactions drive a dynamic ‘rock-papessors’ game (Sinervo & Lively, 1996).

Using quantitative measures of the reproductive successitefs adopting each strategy, Zamudio and Sinervo
(2000) confirmed that the morphs were indeed playing RPS.ré@llagive fitness of each strategy during dyadic
interactions confirmed this.

Intransitive RPS dynamics have also been observed in pigusaof the bacterigEscherichia coli(Kerr,
Riley, Feldman, & Bohannan, 2002). Colicinogenic bactéippossess a ‘col’ plasmid, a toxin that kills colicin-
sensitive (S) bacteria. A third strain (R) is resistant ® ¢blicinogenic bacteria. In some cases, the growth rate
of R cells will exceed that of C cells, but be less than the ghawate of S cells.

In such cases, S can displace R (because S has a growthvatéage), R can displace C (because R
has a growth-rate advantage) and C can displace S (becaulée ®) KThat is, the C-S-R community
satisfies a rock-paper-scissors relationship (Kerr eR@D2).

Confirming the predictions of their simulation model, engat observations oE. coli (constrained to local
interactions in a petri dish) demonstrated the cyclicakigience of all three strains, with R outperforming C, C
outperforming S and (a suggestion of) S chasing R acrosdake p

Using the public goods game (applicable to theoreticabgig), cycling has also been demonstrated in exper-
imental economics; both in theory (Hauert, De Monte, Ho#lsa& Sigmund, 2002) and in practice (Semmann,
Krambeck, & Millinski, 2003).

Semmann et al. (2003) demonstrate that voluntary partioip#n the game can lead to cooperation amongst
sizable groups; despite anonymity, random assortment andepetition of interactions. Three strategies exist
within a population: defectors (D) and cooperators (C)hbatlling to engage in the public goods game and
speculate on the success of a joint enterprise; and lowensds (L) who choose to reject participation and settle
for a small, but guaranteed, return. From time to time, gsaffindividuals are offered the choice to compete in
a public goods game; loners will always refuse.

In every group, defectors outperform cooperators, butli€abperate, they are better off than if all defect.
Whilst it is better to be a loner than in a group of defectdris, better still to be in a group of cooperators. Hence,
in a well-mixed population, strategies display a RPS cyiflmost play C, then it is better to play D, but if most
play D, then it is better to play L. However, if most play L, themall groups can form, increasing the chance of



mutual cooperation. Thus, C dominates if group size is srbatlominates if group size is large, and the option
to be a loner preserves a balance between the two optionsystem cycles (Hauert et al., 2002). An empirical
study involving 280 students playing a 57-round strategngaonfirmed these results (Semmann et al., 2003).

4.2 lrregular Cycling

The three RPS studies of section 3 demonstrated that althong particular kind of coevolutionary cycling is
easily detected using CIAO plots, a second class of cycli@mbier is much harder to detect without resorting
to alternative visualizations. Whilst CIAO plotan give valuable insights into coevolutionary dynamics, they
should preferably be used amongst a suite of techniquesler to enhance their interpretability.

In general, these results contribute to a growing reabizetiat our understanding of coevolutionary dynamics
in artificial systems is far from complete. More specificatlyeir significance hinges, to some extent, on how
important irregular coevolutionary cycling turns out ta lbéere we argue that there are good reasons to suppose
that this class of dynamic will be more frequently encouediehan regular cycling, and that for many kinds of
interesting system, when these irregular dynamics aréggti they will often be of both theoretical and practical
significance.

First, as evidenced by the different results of studies 123ra$ search problems become increasingly com-
plex, their search spaces are increasingly structuredégehetic encodings and genetic operators employed, in
addition to the strategic advantages of different pheregy his ensures that some (perhaps most) adaptations
will only be discovered after a period of evolutionary expliton. The stochastic nature of this exploration cou-
pled with the rugged and/or neutral structure of the segpeleses ensures that the time that this takes is variable.
Under such conditions, if a coevolving system finds itseflicg, and hence repeatedly rediscovering the same
or similar adaptations in the same or similar order, thermiguarantee that the period of coevolutionary cycling
will be constant—indeed it is likely not to be. For these mees regular cycling should be regarded as a rarely
attainable special case of the more general class of imegytling. Perhaps unsurprisingly, of the 22 CIAO
plots found in the literature, none display regular cycli@gjff & Miller, 1995; Floreano & Nolfi, 1997a, 1997b;
Rosin & Belew, 1997; Ficici & Pollack, 1998; Nolfi & Florean®998; Lubberts & Miikkulainen, 2001; Stanley
& Miikkulainen, 2002).

Second, many coevolutionary phenomena currently of istéoeadaptive behavior researchers are character-
ized by irregular cycling. Neutrality and disengagemeateach discussed below.

Search-space neutrality occurs when many genotypes s$teasarme fitness, perhaps as a result of redundancy
in the genetic encoding. A neutral set contains all the ggrest that achieve a particular fithess score, while a
neutral network comprises evolutionarily adjacent mermsioéia neutral set. It has been argued that the presence
of neutral networks may have profound consequences for yhandics of evolutionary search. For instance,
the neutrality exhibited by natural RNA search spaces haa demonstrated to be of a potentially useful kind,
allowing more efficient search (Huynen, Stadler, & Fontdr#896). More generally, neutrality of the right kind
is thought to reduce the chance of premature convergencedyi& Thompson, 1996; Barnett, 1998). However,
since evolving populations tend to drift at random acrosgnaénetworks (but see Bullock, 2002, for analysis of
the biases that this drift is subject to) it is difficult to giet how long a population will spend on each one. If a
coevolutionary system cycles through a repeated sequémaritral networks each population will spend some
time drifting across each neutral network, before traositig to the next. As such, although a particular sequence
of phenotypes may be generated over evolutionary timerejpistition is unlikely to exhibit a constant period.

Coevolutionary disengagement occurs in a competitive @ogwenary system when one populatioatper-
formsthe other to the extent that different individuals are ngtdminated from their contemporaries in fithess
terms, i.e., floor or ceiling effects (Watson & Pollack, 20Cartlidge & Bullock, 2002; Cartlidge & Bullock, to
appear). For instance, in the coevolution of pursuit angdiewa disengagement could occur if evaders discover a
simple hiding strategy that defeats all contemporary oppbpursuers—each hiding evader would score 100%,



while all opponent pursuers would score 0%, despite varidti their strategies. When disengagement occurs,
selective pressure disappears, leaving populationsdreésft until such time as populations happen to re-engage.
Re-engagement takes place when mutant strategies arisacthiave distinctive fitness scores (e.g., a pursuer
able to discover hidden evaders, or an evader unable to bimessfully). The time taken for such mutants to
arise via neutral drift, and hence the duration of disengey, is variable for the reasons described above. As
a result, a cycling coevolutionary system suffering frometigagement is also likely to cycle with non-fixed pe-
riod. In short, irregular cycling is likely to be evolutiorilg typical because useful evolutionary innovations and
counter-innovations are not typically discovered at a tamtgate.

The data collected during study 2 exhibits these variabl®ge of coevolutionary disengagement and neutral
drift (in coevolutionary systems the two concepts are djosslated). At generation 23, for example, figure 10
shows the elite strategy in population one plays Rock, wittiks elite strategy of population two plays Paper. In
contrast with the immediate and smooth coevolutionaryarses reported for study 1, it is not until generation
37 that the elite strategy of population one discovers thigsScs counter-adaptation. The intervening period is
one in which the populations have disengaged, and arergyificross neutral networks of equivalent strategies.
Disengagement can be directly observed in figure 16, whesnrfimess (left) and fitness variance (right) in
both populations is plotted over time. During generatioB28 and 44-49, fitness diversity is very low and
occasionally falls to zero (right): here population B isigasutperforming population A (left).

In the following section, CIAO plots are used (for the firshé, as far as the authors are aware) to analyze
simulation data from a biological model: a replication of tRock—Paper—ScissoEs coli experiments of Kerr
etal. (2002, refer to section 4.1). Itis demonstrated thaOlots, whilst specifically developed for evolutionary
computation, may benefit evolutionary biology (and the niodeof adaptive behavior more generally).

5 Study 4: A Simulation of E. coli

Rock—Paper—Scissors cycling has been demonstratectioli populations (Kerr et al., 2002). However, practical
problems forced experiments on real bacteria to end aftat sime periods. To collect more “data” (and gain
a better understanding of the coevolutionary dynamicsy Keal. (2002) ran a simulation. This was shown to
behave realistically and suggested that RPS dynamicsatbaraed the system. However, it is our belief that more
effective visualization techniques could have affordezbggr insight into the underlying dynamics. To test this,
the simulation of Kerr et al. (2002) is replicated in thistsmt. The resulting data is then investigated using the
visualizations discussed in this paper (CIAO plots, evédotspand probability graphs). The reason for this is two
fold: firstly, the lessons learned in previous studies caagdied to a biological system; secondly, this is a proof
by example that techniques designed for evolutionary caimggan have relevance in evolutionary biology.

5.1 Replication

Three strains oE. coli exist on a (toroidal) lattice grid dfo0? cells. At the start of each run, each cell is initialized
at random (equal probability) to one of four states: ocadifnig C, S, R, or “empty”. Cells are asynchronously
updated. A focal cellg, is randomly chosen and updated probabilistically baseshupcal interactions (the
relative states of the 8 nearest neighboring cells): iff empty a bacteria of straine {C, S, R} is chosen to
occupy the cell. The probability of choosings given by f;, the fraction of the local neighborhood occupied by
each strain. I is occupied, the bacteria is killed with probability;. Throughout the simulation\¢ andAg
are fixed. However) g varies with fo (the fraction of neighboring’ cells) such thaf\s = Agy + 7 fc, where
Ag, is the probability of death for S cells with no neighboringéllg, andr is the toxicity of C cells.

To set up a Rock—Paper—Scissors intransitivity, it is nemgsforAso < Ar < A¢ < Agg + 7, which
ensures S displaces R, R displaces C, and C (if sufficientigadedisplaces S. Following Kerr et al. (2002), the



following parameter values were chosex:: = 1; Ago = §; Ag = 13; andr = 2.
An “epoch”is defined as the mean turnover time across ak cillthe100? lattice used here, an epoch occurs

every10* updates. We consider each epoch to be 1 timestepETbeli simulation was run for 5000 timesteps.

5.2 Results

Adopting the visualization scheme employed by Kerr et &10@), figure 17 shows four instantaneous “snapshots”
taken of the simulation at timesteps (from left to right) 200200, 1400, and 1600. The state of each cell in the
lattice is denoted by its color. Whilst empty cells are whitese occupied by C, R, or S strains are colored light
gray, dark gray, and black, respectively. It is possiblelisasve areas of black replaced by light gray, light gray
by dark gray, and dark gray by black. The bacteria are folgythe relationship SR>C>S (analogous to RPS).
Between timesteps 1000-1600, one full cycle takes plagesybtem returns to a similar state.

These results qualitatively map those of Kerr et al. (2008)p whowed the same succession sequence both
in simulation and in real bacteria populations. Whilst tlemtinued coexistence of all three strains and the
S>R>C>S relationship are adequately demonstrated, the vistialimaare not wholly satisfying. One cannot
determine the nature of cycling from a series of snapshots.

To further visualize thee. coli data, the local density of each strain was recorded forsore portion of
the lattice. Since the three strains coexist without langetdiations in global density, plotting CIAO plots for the
entire lattice is uninformative. Due to the Rock—PapersSumis intransitivity oE. coli strains, each local density
can be considered equivalent to the probability of playipgueicular move in RPS. For example, equal densities
of each strain{Col = 33% Resistant= 33% Sensitive= 33%} is equivalent to the optimum RPS strategy of
playing each move with equal probability, whilst a neighimrd containing only Resistant bactefia 100, 0}
is equivalent to the strategy “always play Paper”. Figuresti8ws four CIAO plots of théc. coli simulation.
The CIAO plot data is calculated by comparing the local dgregieach timestep against the local density at each
previous timestep. To reduce the size of the CIAO plot, datampled every 50 timesteps (hence the plot is 100
pixels wide and deep). Each density comparison is evalusedtie expected result in a Rock—Paper—Scissors
contest: results in favor of the later timestepakis) are dark. For example, if local density = {100,0,0}
is compared with théater local densityD» = {50, 50, 0}, the expected result will be 0.75 in favor bk; thus
giving pixel (D¢, D-) a gray value 75% of maximum darkness.

From left to right, the CIAO plots display the raw data, Gaaislur, zero-crossings, and fully processed
image. The raw data plot (far left) exhibits both diagonaidiag and tartan structures. The binarized image (far
right) is much easier to interpret. The clear diagonal bapdiuggests that the system is exhibiting fairly regular
cycling in this region of the lattice. The vertical “faulthle down the center of the plot is an artifact of sampling:
without sampling this feature does not exist. However, mpad CIAO plots are too large to appear here.

The event plot of figure 19 highlights the points (sampled &Ddimestep resolution) at which the local
density of strain R, or strain C, exceeds 66%. The sequenesisRnce follows Col toxic” occurs regularly
enough to again suggest fairly regular cycling in this ragibthe lattice.

Finally, figure 20 displays the local density of each straiardghe first 1000 timesteps (plotted at a 50-timestep
resolution). Regular cycling is clear.

In summary, a suite of visualization techniques, includiiog the first time) CIAO plots, have enabled us to
explore the nature of the cycling suggested in the initiatesyn snapshots of a biological model. In particular, we
have been able to confirm the regularity of cycling and deitegrthe period of this cycling. The image processing
techniques introduced in section 3.1.1 have been very Lisedichieving this.

Given the discussion in section 4.2 of reasons why we woutdrpect regular cycling to be exhibited par-
ticularly often by coevolutionary systems, why is it that owodel of E. coli coevolution generates such regular,
periodic behavior? There are two candidate explanatioist, fhe E. coli simulation employs a very simple
representation of the space of possible strategies. Ewesitiple RPS system analyzed in study 1 employed



a discrete three-dimensional spacel 66 possible strategies, whereas tBecoli system implements what is
basically a simple set containing three strategies. Then®iequivalent of the genotype space employed in our
previous studies.

However, even if thé. coli model involved a more complex treatment of genotype spam/atutionary cy-
cles could remain regular, since the three bacterial mapdgy/pically always present in the evolving population.
While the strategy being played in each cell of the @00 world varies over time, the global frequency of each
strategy remains non-zero and roughly constant.

The update rules for the model ensure that if, for instank& mdividuals were to die, this strategy could
never re-enter the population—only strategies that assaédiy present may reproduce and spread to unoccupied
cells since the model includes no analogue of mutation.eSifoe the particular parameter values reported here,
all three possible strategies are ever present, the systeen sapends time searching genotype space for adapta-
tions and counter-adaptations; they are already presem\gbere in the population. The cycling evident in the
population time-series data reflects the time taken forategyy to “migrate” across the grid, exploiting inferior
competitors. At the relatively high population densitiespdoyed in the model, this leads to regular, periodic
waves of succession.

The game-theoretic Evolutionarily Stable Strategy modélevolutionary dynamics typically employed in
theoretical biology (Maynard Smith, 1982) also have no iexgkepresentation of genotype space or mutation. In
effect, such models assume that every possible strategiyagapresent at some non-zero (but perhaps infinites-
imal) frequency within the population. All that varies inckumodels are the rates of reproduction enjoyed by
these strategies. This ensures that the factors herefiddras responsible for the irregular period of coevolution-
ary cycling (disengagement, neutrality, etc.) are notdsity considered. The very different nature of the finite
(co)evolving populations simulated in the adaptive betwaltierature offers an important opportunity to explore
these factors.

6 Conclusions

Cycling occurs in many adaptive systems. Mutational ststitity, neutrality, disengagement, and rugged fitness
landscapes each contribute to the irregularity of thestesy@s a result, irregular cycling may characterize the
adaptive behavior of many unstable coevolutionary syst@masmay contribute to the failure of coevolutionary
optimization. Detecting and characterizing this type afi@yic is difficult within modeling paradigms that priv-
ilege stable states (e.g., evolutionary game theory). Asalt, coevolutionary adaptive behavior simulation and
visualization are good candidates for improving our unideding of these types of irregular cycling.

We have demonstrated that CIAO plots, a widely acceptedftmolisualizing coevolutionary progress, are
difficult to interpret with respect to irregular coevolutiry cycling. Further, we claim that there are reasons to
believe that irregular coevolutionary cycling is a commaud aignificant category of coevolutionary dynamics.
Hence, CIAO plots should preferably be used in conjunctiah ather visualizations: problem-specific analysis
methods can usefully complement CIAO plots and can aid iim thierpretation.

Finally, we have applied CIAO plots to biological simulatidata, affording valuable insights into the under-
lying coevolutionary dynamics that agree with empiricat@tvations. This exemplifies the potential cross-over
between techniques designed for evolutionary computatiohadaptive behavior more generally.
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Figure 1: Schematic of a “Current Individual versus AncasBpponents” (CIAO) plot. At each squafe, y)
the result of competition between the A-elite from generati and the B-elite from generationis plotted as
a gray-scale value, with increasingly heavy shading regmtasg an increasing margin of victory in favor of A.
The leading diagonal (far-right) plots A-eligg(against B-eliteg) for all generations) < g < N. The diagonal
immediately to the left plots each generation’s A-eliteingbthepreviousgeneration’s B-elite. Horizontal rows
plot the results of A-elitef) againstll ancestral B-elite§(. . . y) (adapted from Cliff & Miller, 1995).
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Figure 2: Idealized CIAO plots showing smooth progresg)(kaid cycling with regular period (right). With each
horizontal row depicting the performance of one A-eliteingbeach ancestral B-elite, smooth progress produces
a gradation in intensity from dark to light: A-elites beatastral opponents, the more ancestral the greater the
victory (i.e., the further left, the darker the cell). In ¢ast, regular cycling manifests as diagonal banding. gvhil
the latest A-elites beat recent ancestral B-elites (diafgoto the right are dark), they perform less-well against
more ancestral B-elites (middle diagonals are light), huiperform even earlier ancestors (diagonals further left
are dark), etc.
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Figure 3: Schematic of a “tartan” CIAO plot. Periods of cortifpee stasis (blocks of uniform shade) are separated
by sharp transitions in competitive advantage (block bawmied). Such an irregular pattern is referred to as
“tartan” throughout this paper.
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Figure 4: Study 1 results. CIAO plots depicting one represtare run overN = 256 generations. From left to
right: (1) Diagonal banding in the raw data plot suggestsili@gycling; (2) A large Gaussiam & 20) removes
fine detail; (3) LoG § = 8) produces a contour map; (4) The image is binarized. Thg fubcessed plot displays
clear diagonal banding.



0 50 100 150 200 250
generation

Probability A-elite plays Paper > 0.66 O
Probability B-elite plays Rock > 0.66 #

Figure 5: Study 1 results. Event plot for a single represamtaun, labeling the generations in which the A-elite
plays Paper or the B-elite plays Rock with probability 0.8@&eater. The repeated “Paper follows Rock” event
sequence suggests regular cycling.
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Figure 6: Study 1 results. Graphs plotting the probabiliipes of playing each RPS move. Top-left: the A-elites.
Top-right: the mean probabilities for all individuals ingdation A. Bottom-left: the B-elites. Bottom-right: the
mean probabilities for all individuals in population B. Tegstem completes one full cycle between generations
120 and165.
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Figure 7: Complex genotypes encode a deterministic fingte shachine (FSM) that governs player behavior.
State transitions are dictated by an opponent’s play (semted by transition labels). Here we see that machine
A beats machin® over a five-bout contest. The final score is 3:2 in favoAofAs both machines have returned
to their initial states, further bouts will produce repebpéay.



z

0

Pop B Generations

N

0

Pop B Generations

N

Pop B Generations

N

0

Pop B Generations

N

z

z

0

z

Il

W

1| Il_l_H

e

' ﬂH{#ﬂw

Pop A Generations
Pop A Generations
Pop A Generations
Pop A Generations

.
i

0 0 0 o

Figure 8: Study 2 results. CIAO plots depicting one represére run overN = 256 generations. From left to
right: (1) The raw data plot exhibits a tartan pattern thatif§cult to interpret; (2) A large Gaussiam = 20)
removes fine detail; (3) LoGo( = 8) produces a contour map; (4) The image is binarized. WHilstftlly
processed plot does not exhibit diagonal banding, somé&gakhanding is clear. However, one cannot predict
regular cycling from this image.
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Figure 9: Study 2 results. Event plot for a single repres&taun, labeling the generations in which the A-elite
plays Paper or the B-elite plays Rock with effective probigh0.66 or greater. The strong correlation between
events suggests (perhaps irregular) cycling.
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Figure 10: Study 2 results. Graphs plotting the effectiv@bpbilities associated with playing each move. Top-
left: the A-elites. Top-right: the mean probabilities fdriadividuals in population A. Bottom-left: the B-elites.
Bottom-right: the mean probabilities for all individuats population B. The populations evolve in response to
each other, resulting in an irregular cycle.
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Figure 11: Enlarged CIAO plot depicting the coevolutionpgriod graphed in figure 10. The rapid strategy
transitions depicted in figure 10 clearly reflect the bouiedan the CIAO plot pattern.
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Figure 12: Study 3 results. CIAO plots depicting one repné&se/e run ovetN = 256 generations. From left to
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right: (1) The tartan pattern of the raw data plot is diffidoltinterpret; (2) A large Gaussian & 20) removes

fine detail; (3) LoG ¢ = 8) produces a contour map; (4) The image is binarized. WHilstet is no diagonal
banding, some horizontal banding is clear. However, onenedther predict nor rule out cycling on the basis of

the fully processed plot.
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Figure 13: Study 3 results. Event plot labeling the genenatof one representative run in which the A-elite plays
Paper or the B-elite plays Rock with effective probabilitg® or greater. Given the lack of correlation between
events, the likelihood of cycling appears small.
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Figure 14: Study 3 results. Graphs plotting the effectiv@bpbility values of playing each move during random
drift. Left: the A-elites. Right: the B-elites. The poputats do not appear to evolve in response to each other.

Cycling is not observed.
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Figure 15: Invasion-extinction cycles iAnolis lizards of the Caribbean islands. (A) Islands containing on
resident population evolve to the equilibrium solitaryesiZB) Lizard populations with larger body size are able
to invade. Both populations evolve towards smaller bodg.si¢C) The resident population becomes extinct,
leaving the invaders to evolve to the solitary size. Theejgkomplete (adapted from Roughgarden, 1983).
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Figure 16: Study 2 results. Graph showing the mean fitneft} dled fitness variation (right) within populations
A and B. Periods of zero variance signify disengagementoth populations, there is very little fithess variation
during generations 28-36 and 44-49. During these periaggylption B is easily outperforming population A. As
expected, disengagement coincides with stasis (homogsis&ading) on the enlarged CIAO plot of figure 11.
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Figure 17: Study 4 results. Adopting the visualization secheemployed by Kerr et al. (2002), we plot the
locations of each bacterial strain during one represamtatin of theE. coli simulation (toroidal grid siz¢002).
Sensitive (S) bacteria are colored black, Resistant (Rjlare gray and Col toxic (C) are light gray. Empty cells
are white. From left to right: (1) At timestep 1000 the thraaiss coexist across the grid; (2) By timestep 1200,
C (light gray) have moved into areas occupied by S (blackg\w@Imoved to areas originally occupied by R (dark
gray), and R have replaced C; (3) S continue to replace R, RaeiC and C replace S; (4) By timestep 1600,
the three strains have returned to roughly the same locati@y occupied at timestep 1000. One full cycle is
complete.
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Figure 18: Study 4 results. CIAO plots depicting one repnegéve run of thek. coli simulation ovetN = 5000
timesteps (sampled at a resolution of 50 generations). kefiito right: (1) Some diagonal banding is observable
in the raw data plot; (2) A large Gaussian= 5) removes fine detail; (3) LoGs(= 2) produces a contour map;
(4) The image is binarized. The fully processed plot exhibiear diagonal banding.
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Figure 19: Study 4 results. Event plot labeling the pointsr(gled at a 50-timestep resolution) at which the
local density of Resistant (R) bacteria or Col toxic (C) leaiet exceeds 66% during one representative run. The
repeated “R follows C” event sequence suggests regulaingycl
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Figure 20: Study 4 results. Graph plotting the local densftgach of the three bacterial strains during the first
1000 timesteps (at a 50-timestep resolution). Cycling @abserved with regular sequence CRSCRS.



Biography of Authors

John Cartlidge graduated (first class honours) in Artificial IntelligenceMathematics at the Centre for Joint
Honours in Science, University of Leeds, in 2000. He subeetiybecame a Ph.D. candidate at the School of
Computing, University of Leeds, under the supervision of &&th Bullock. His research interests primarily focus
upon the application of artificial coevolutionary algorith to complex problem solving and his recently submitted
doctoral thesis is entitleules of Engagement: Competitive Coevolutionary DynaimiCemputational Systems

Figure 21: John Cartlidge.

Seth Bullock has a B.A. in Psychology & Computer Models (1993) and a D.RhiComputer Science & Arti-
ficial Intelligence (1997), both from the University of SegsUK. He currently works as a University Research
Fellow at the University of Leeds, where he leads the Bi@systresearch group within the School of Computing.
His research has focused on interdisciplinary problentssthbundary between the computational, biological and
psychological sciences, developing evolutionary and taapomputation techniques, game theory, and agent-
based evolutionary simulation models.

Figure 22: Seth Bullock.



