
Smooth Operator?Understanding and Visualising Mutation BiasSeth Bullo
kInformati
s Resear
h Institute, S
hool of Computing, University of Leedsseth�
omp.leeds.a
.ukAbstra
t. The potential for mutation operators to adversely a�e
t thebehaviour of evolutionary algorithms is demonstrated for both real-valuedand dis
rete-valued genotypes. Attention is drawn to the utility of e�e
-tive visualisation te
hniques and explanatory 
on
epts in identifying andunderstanding these biases. The skewness of a mutation distribution isidenti�ed as a 
ru
ial determinant of its bias. For redundant dis
retegenotype-phenotype mappings intended to exploit neutrality in geno-type spa
e, it is demonstrated that in addition to the mere extent ofphenotypi
 
onne
tivity a
hieved by these s
hemes, the distribution ofphenotypi
 
onne
tivity may be 
riti
al in determining whether neutralnetworks improve the ability of an evolutionary algorithm overall.Mutation operators lie at the heart of evolutionary algorithms. They 
or-rupt the reprodu
tion of genotypes, introdu
ing the variety that fuels naturalsele
tion. However, until re
ently, the pro
ess of mutation has taken a ba
kseat to the more dramati
 geneti
 operators. Sexual re
ombination (the spli
ingtogether of geneti
 material from multiple parents) is often regarded as the ma-jor sour
e of an evolutionary algorithm's ability to dis
over �t phenotypes (theevolutionary programming paradigm being a notable ex
eption). While muta-tion is required to introdu
e novel geneti
 material, it is re
ombination's rolein assembling groups of well-adapted alleles that is often 
on
entrated upon [1℄.However, doubts 
on
erning the validity of this \building blo
k hypothesis" havere
ently undermined the notion that the power of evolutionary algorithms 
anbe identi�ed with the role of sexual re
ombination [2℄.Moreover, re
ent work on neutrality in geneti
 en
odings [3℄ suggests that mu-tation events and the 
hara
ter of an evolutionary algorithm's mutation spa
emay have a greater role to play in the dynami
s of evolutionary algorithms thanhad heretofore been appre
iated. Rather than 
onsidering evolving populationsto be engaging in some kind of hill-
limbing via parallel assessment of di�erent
ombinations of 
o-adapted alleles, Kimura's [4, 5℄ neutral theory of evolutionproposes that a more useful image is of populations per
olating through \neutralnetworks" of adja
ent points in genotype spa
e that ea
h 
ode for phenotypeswith equivalent �tness. It is 
ontended that su
h populations, rather than tend-ing to 
onverge at the peaks of lo
al optima, will 
ontinue to di�use through asu

ession of neutral networks of in
reasing �tness. While it has been suggestedthat some diÆ
ult evolutionary optimisation problems already exhibit neutral
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pFig. 1. Probability density fun
tions for two mutation operators that perturb a real-valued parental gene, p, upwards or downwards with equal 
han
e. Mean mutant des-tination is denoted �. Mutants must lie within the legal range [0; 1℄. For the Normal-Balan
ed operator (left), on
e dire
tion of mutation has been determined, values arerepeatedly drawn from the appropriate half of a normal distribution with mean p un-til a legal mutant value is a
hieved. For the Flat-Balan
ed operator (right), upwardsmutants are drawn from a uniform distribution over all values in the range [p; 1℄ whiledownwards mutants are drawn from the range [0; p℄. Three additional operators areexplored in this paper, but are not depi
ted. Flat draws mutants from a 
at distribu-tion over the legal range [0; 1℄. Absorb draws mutants from a normal distribution withmean p, repla
ing illegal mutants by the nearest legal mutant value. Re
e
t behaves asAbsorb, but any illegal mutant lying a distan
e d beyond a legal boundary is repla
edby a value lying d within that boundary.networks [6℄, others have sought to develop geneti
 en
odings that en
ourageneutral networks in the hope that this will improve the ability of evolutionaryalgorithms to �nd optimal solutions in general [7, 8℄.But how well do we understand the workings of mutation operators? Al-though they are often very simple to 
ode, they 
ome in many 
avours, andprevious work [9℄ has demonstrated that they often exhibit biases that may re-main undete
ted, despite having appre
iable e�e
ts on the 
ourse of arti�
ialevolution | arbitrarily steering populations away from parti
ular areas of thesear
h spa
e and toward others, for example.This paper will begin by exploring a very simple pair of mutation operators(see Fig. 1). Sin
e these operators, or ones like them, are used widely whenevergenotypes feature real values whi
h are 
onstrained to lie within some legal range,analysing them serves a dire
t purpose in in
reasing our understanding of the
omponent parts of evolutionary algorithms. But furthermore, in demonstratingtheir 
ounter-intuitive behaviour and the biases that are inherent in even thesesimple operators, we may be able to re�ne our intuitions and develop usefulexplanatory 
on
epts that allow us to gain insights into the more 
omplex geneti
en
odings explored in the latter half of the paper.1 Perturbing Bounded Continuous-Valued TraitsAlthough the 
anoni
al geneti
 algorithm (GA) employs binary genotypes, manypra
titioners �nd it useful to en
ode members of the evolving population asve
tors of real values. Often these values must lie within some legal range. For
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Fig. 2. Ea
h histogram depi
ts the distribution of trait values for 20 populations of 1000single-trait organisms after 5000 generations of evolution on a 
at �tness lands
ape. Forthe Normal-Balan
ed operator, perturbations were drawn from a normal distributionwith zero mean and standard deviation 0.2. An unbiased mutation operator is expe
tedto exhibit a 
at distribution, sin
e no value is more likely to evolve than any other.Both of the mutation operators simulated here favour extreme-valued traits.instan
e, 
onsider using a GA to evolve a population of images, ea
h en
odedas a ve
tor of real-valued RGB triples, e.g., ff0:1; 0:9; 0:3g; f0:4; 0:6; 0:9g; . . . g.Point mutations that perturb these RGB 
omponents by some small randomamount must generate mutant values that remain within the legal range [0; 1℄.In previous work [9℄, it was demonstrated that in dealing with illegal values,mutation operators 
an often introdu
e a mutation bias that either favours traitvalues 
lose to their legal limits, or values that are far from these limits. In either
ase, su
h biases may adversely a�e
t the 
ourse of evolution (tending to favourbold or dull images in the example being 
onsidered here) perhaps retardingevolutionary optimisation or introdu
ing artefa
ts into evolutionary simulationmodels.One mutation operator, here dubbed Normal-Balan
ed (whi
h was not 
on-sidered in [9℄, but was suggested in response to this work) is depi
ted in Fig. 1(left), alongside a similar but simpler Flat-Balan
ed mutation operator whi
hproves more amenable to formal analysis. Proponents of the former s
heme wereof the opinion that it would be able to deal with the possibility of illegal mutantswithout biasing a GA's evolutionary dynami
s.However, to some extent, intuitions regarding the behaviour of these muta-tion operators 
on
i
t. The fa
t that mutation rate remains 
onstant a
ross theparental range, and that the likelihood of upwards and downwards mutations arealways equal might be taken to indi
ate that the operators will not bias evolvingpopulations. However, the fa
t that, for any parental value, the expe
ted mutantvalue (denoted � in Fig. 1) lies towards the 
entre of the legal range might suggestthat the operators may bias populations away from extreme-valued traits.



In order to dis
over the behaviour of these mutation operators, we 
an evolvepopulations on a 
at �tness surfa
e, and 
he
k whether there exist parti
ulartrait values that are more likely to evolve than others (see Fig. 2). In addition,sin
e the Flat-Balan
ed operator is relatively simple, it is straightforward toderive the expe
ted probability density fun
tion for the trait values of a popula-tion after a period of mutation. Consider the mutant phenotype x of a parentalphenotype p (Fig. 1, right). If p < x, the probability density fun
tion f(x) takesthe value 12(1�p) , while if p > x, f(x) = 12p . After some period of mutation. . .f(x) = Z x0 f(p) 12(1� p)dp+ Z 1x f(p) 12pdpThat is, the value of the probability density fun
tion at x is equal to the
ontribution from every parental value lower than x added to the 
ontributionfrom every parental value higher than x. What shape is this fun
tion?f 0(x) = f(x) 12(1�x) � f(x) 12xf 0(x) = � 12f(x)� 1x + 1(x�1)�f(x) = Ce� 12 R x0 1y+ 1(y�1) dyf(x) = Ce� 12 (ln jxj+ln j1�xj)f(x) = Cp(x(1�x))
Sin
e it must be the 
ase that f(x) �0 8 x 2 [0; 1℄, it follows that C > 0,and thus that f(x) is a 
onvex parabolawith a minimum at x = 0:5. Hen
e wewould predi
t from this analysis thatthe mutation operator would tend topush populations towards the extremesof the legal range.The same general 
on
lusion 
ould be rea
hed (via a more involved analysis)for the Normal-Balan
ed mutation operator.Why do these mutation operators bias populations towards extreme-valuedtraits? Neither simulating their performan
e, nor deriving their 
hara
ter for-mally, gives us mu
h insight into the relationship between the form of the oper-ators and their behaviour. The frequen
y distributions in Fig. 3 begin to pointus in the right dire
tion by 
larifying the nature of the over-representation ofextreme-valued mutants, and highlighting the relative la
k of symmetry in thedistribution of mutants generated by the biased operators 
ompared to that ofan unbiased operator. Fig. 4 further demonstrates that, unlike 
onsiderationsof mutation drift (
al
ulated as the expe
ted mutant destination) attention tothe manner in whi
h skewness (
al
ulated as the di�eren
e between the meanand median values of mutant distributions) varies a
ross the range of possibleparental trait values allows us to distinguish biased from unbiased operators.When a distribution of mutant values is skewed away from the extremitiesof a range (i.e., the median mutant is further from the 
entre of the legal rangethan the mean mutant), mutants falling towards the boundary will also fall 
losertogether than mutants falling further from the boundary. For mutation operatorssu
h as Absorb, and the two Balan
ed operators, the in
reased density of themore extreme mutants 
reates a \hot-spot", with positive feedba
k ensuring thatmore and more mutants fall 
loser and 
loser to the boundary and to ea
h other.Although, as this is happening, the mean mutant may remain far from the legal
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0.0 0.1 0.2 0.3 1.00.90.50.4Fig. 3. For ea
h mutation operator, the manner in whi
h the distribution of mutantsvaries with parental trait value is plotted. The grey-level of ea
h 
ell (x; y) in a 200�200array represents the number of mutants in bin y after 10,000 randomly generated par-ents from bin x were ea
h mutated on
e. The resulting aggregate distribution of mutanttrait values is depi
ted as a histogram to the right of ea
h array (parental values beingdepi
ted by the uniform histogram beneath ea
h array). Deviation from uniformityin this right-hand histogram is indi
ative of mutation bias. Noti
e the dense areas inthe 
orners of the Normal-Balan
ed, Flat-Balan
ed, and Absorb plots, indi
ating ana

umulation of extreme-valued mutants, and that the Re
e
t operator has a plot thatis symmetri
al about y = x, and darker overall, indi
ating a more uniform distributionof mutants. (The values in ea
h array were log-s
aled to better reveal the stru
ture inthe distribution).
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FlatFig. 4. Depi
ting the manner in whi
h the strength and dire
tion of mutation drift(left) and mutation skew (right) vary with parental value. Considerations of mutationdrift 
annot distinguish those operators biased towards extreme values (Flat-Balan
ed,Normal-Balan
ed, and Absorb) from those that are unbiased (Flat and Re
e
t). How-ever, mutation skew varies inversely with parental value only for those operators favour-ing extreme values, tending to trap populations near trait boundaries.boundary, the asymmetri
al, skewed distribution of mutants ensures that this haslittle bearing on the lo
ation of the most densely populated mutant destination.In 
ontrast, operators su
h as Re
e
t 
ounter the tenden
y for populations toaggregate at the extreme values of a legal range, by de
reasing the skewness ofmutant distributions as parents approa
h trait boundaries.From this dis
ussion, it is tempting to 
on
lude that 
ertain mutation op-erators (perhaps Re
e
t) should be employed, rather than others (Absorb, oreither of the Balan
ed operators). While there may be some truth in this, sin
e
ertain mutation operators may be less biased than others, previous work [9℄strongly suggests that mutation bias in one form or another is part and par
elof the evolutionary pro
ess. Rather than attempt to eliminate these biases fromevolutionary algorithms, their presen
e should be anti
ipated and 
ontrolled for.The analysis and visualisation presented in this se
tion has revealed thatour intuitions 
on
erning the behaviour of mutation operators, and importantlythe sour
es of their biases, are often not to be trusted. Measures of behaviourthat at �rst sight appear sensible and instru
tive (e.g., mean mutant destinationas a measure of mutation drift) 
an be misleading. The skewness of mutationdistributions has been identi�ed as a 
ru
ial aspe
t of a mutation operator'sbehaviour, and has been used to explain the biases of mutation operators thatfavour extreme-valued traits.2 Understanding Mutation in Neutral NetworksDis
rete-valued genotypes require mutation operators that are perhaps simplerin stru
ture than the less orthodox operators analysed for real-valued genotypesin the previous se
tion. However, like the operators dis
ussed above, dis
rete(typi
ally binary) geneti
 en
odings also impose a stru
ture upon the mutation
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Fig. 5. S
hemati
 representation of a randomBoolean network as a developmental mapping.Ea
h of the eight bits representing the organism'sphenotype is asso
iated with three neighbours, anda look-up table with eight entries. The state of ea
hbit is updated by 
onsulting the entry in it's look-up table (only one look-up table is depi
ted) de-termined by the value of its three spe
i�ed neigh-bours. All eight bits are updated on
e per 
y
le.After 20 
y
les, the value of the eight phenotypi
bits is taken as the organism's phenotype. A 144-bit genotype represents the initial state of the phe-notype (8 bits), the entries in ea
h phenotypi
 bit'slook-up table (8 � 8), and ea
h phenotypi
 bit'sthree neighbours (8� 3� 3). Adapted from [7℄.spa
e, allowing some transitions but preventing others, and as a result havejust as mu
h potential to bias evolutionary dynami
s [9℄. In this se
tion we willemploy some of the te
hniques introdu
ed in se
tion 1 to explore the biasesinherent in a re
ently proposed massively redundant geneti
 en
oding s
heme[7, 8℄.Re
ently, en
ouraged by theoreti
al [3℄ and empiri
al [6℄ work suggestingthat neutrality in �tness lands
apes may improve the ability of evolutionaryalgorithms to dis
over �t phenotypes, resear
hers have begun to explore the in-trodu
tion of redundan
y into dis
rete geneti
 en
odings [7, 8℄. Although redun-dan
y (many genotypes mapping onto the same phenotype) in
reases the sizeof the sear
h spa
e, the 
orre
t kind of redundan
y may populate this sear
hspa
e with neutral networks that in
rease phenotypi
 
onne
tivity | enablingevolving populations to more easily explore a wider range of mutant phenotypesthan they would be able to under a regular non-redundant en
oding s
heme.Potentially, neutral networks might in
rease this 
onne
tivity to su
h an extentthat the overall performan
e of evolutionary algorithms is mu
h improved.However, is the mere extent of phenotypi
 
onne
tivity the only important
onsideration here? In this se
tion we will explore how the distribution of phe-notypi
 
onne
tivity may impa
t on the evolutionary dynami
s of algorithmsemploying redundan
y in this way.One manner in whi
h a massively redundant genotype-phenotype mappinghas been implemented is through the use of a random Boolean network (RBN)[10℄, spe
i�ed using 144 bits of geneti
 information, to generate an 8-bit phe-notype (see Fig. 5). Under this s
heme, it has been demonstrated [7, 8℄ thatneutral networks 
onne
t ea
h of the 256 possible phenotypes to the majorityof the 255 possible mutant phenotypes (see Fig. 6 left). However, employing thevisualisation te
hnique introdu
ed in the previous se
tion, we 
an show that thefrequen
y distribution over these neighbours is radi
ally non-uniform (see Fig. 6right). In fa
t, under the proposed en
oding s
heme, a large proportion (� 32%)
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Fig. 6. Depi
ting the a

essibility of mutant phenotypes from parental phenotypes forthe RBN en
oding s
heme. A random 144-bit parental genotype is generated and its
orresponding phenotype, x, determined. At random, one of the 144 bits is 
ipped andthe phenotype, y, of the resulting mutant is determined. The 
ell (x; y) is in
rementedby one. This pro
ess is repeated for 106 random parents. Left : non-empty 
ells aredepi
ted in bla
k, empty 
ells in white. This depi
ts the absolute a

essibility of mu-tant phenotypes from parental phenotypes. Right : empty 
ells are depi
ted in white,non-empty 
ells are depi
ted in grey levels with high-frequen
y 
ells shaded heavily.This depi
ts the relative a

essibility of mutant phenotypes from parental phenotypes.Note the dark leading diagonal indi
ating the prevalen
e of neutral mutations. Theuniformity of the left-hand plot indi
ates that almost all transitions are possible, theright-hand plot shows how misleading this 
on
lusion is, sin
e only a limited number ofidiosyn
rati
 transitions are at all probable. (The values in the right-hand image havebeen log-s
aled to better reveal the stru
ture in the frequen
y distribution.)of non-neutral mutations are equivalent to 
ipping a single bit of the 8-bit phe-notype, i.e., identi
al to those transitions that would be a
hieved under a regularnon-redundant binary en
oding (see Fig. 7). The remaining non-neutral muta-tions are distributed (non-uniformly) a
ross the remaining 247 possible mutants.Whilst it is possible that the RBN s
heme may enjoy advantages over a regularbinary en
oding s
heme (perhaps it responds well to 
rossover, for instan
e),these results suggest that the 
ost of moving from a regular 8-bit representationto this redundant 144-bit s
heme (an in
rease of sear
h spa
e size by a fa
tor of2136) is perhaps not 
ompensated for by the in
reased phenotypi
 
onne
tivitythat is a
hieved.In order that neutral networks improve the performan
e of evolutionary al-gorithms, it must be the 
ase that in addition to 
onne
ting ea
h phenotype tomany others they 
onne
t these phenotypes roughly equally, rather than favour-ing some transitions mu
h more than others. What is important is not just
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Fig. 7. Left : the distribution of the eight one-bit mutant neighbours of ea
h of the 256possible eight-bit phenotypes under a regular non-redundant binary en
oding s
heme.Right : the distribution of non-neutral neighbours 
ollated for 256 neutral networks ex-plored under the RBN en
oding s
heme. For ea
h phenotypi
 value a random genotypeen
oding that value was generated. Ea
h of the 144 one-bit mutants of this genotypewere generated and their 
orresponding phenotypes determined. A neutral mutant was
hosen at random and its 144 neighbours assessed, and so on. In this way 100 adja
entmembers of ea
h neutral network were explored. Although ea
h neutral network neigh-bours many phenotypi
 values, the similarity between the left- and right-hand plotsindi
ates that a large proportion (32% in this 
ase) of non-neutral mutation events areequivalent to 
ipping a single bit of the 8-bit phenotype. (The values in the right-handimage have been log-s
aled to better reveal the stru
ture in the frequen
y distribution.)the number of phenotypes that neighbour a neutral network, but the frequen
ydistribution over this neighbourhood, and whether it is signi�
antly biased.In this se
tion we have dis
overed that an en
oding s
heme whi
h promiseda massive in
rease in phenotypi
 
onne
tivity brings with it a hidden 
ost interms of a radi
ally biased distribution over this 
onne
tivity. Although manyphenotypes are a

essible from ea
h neutral network, a population per
olatingthrough su
h a neutral network will tend to repeatedly explore only a few of thepossible transitions, with many transitions o

urring infrequently if at all.How 
an we improve upon this situation? To a
hieve a more uniform distribu-tion of phenotypi
 a

essibility, we might explore in
reasing the 
onne
tivity ofthe random Boolean network whi
h underlies the genotype-phenotype mapping,en
ouraging it to manifest 
haoti
 behaviour whi
h may be more sensitive tosingle genotypi
 bit 
ips. Moreover, if the RBN's behaviour is 
haoti
, runningit for more 
lo
k 
y
les might also allow single genotypi
 bit 
ips to exert morein
uen
e on the end state of the RBN. However, this would result in a mu
hlonger genotype, and mu
h larger neutral networks. Determining whether the



trade-o� between in
reased phenotypi
 
onne
tivity and in
reased sear
h spa
efavours redundant genotype-phenotype mappings of the kind explored here willrequire further theoreti
al and empiri
al enquiry.3 Con
lusionsMutation bias is a little-explored and little-understood aspe
t of evolutionary al-gorithms. As the role of neutral mutation be
omes in
reasingly signi�
ant in ourtheories of evolution and evolutionary 
omputing, our ability to identify, visualiseand understand these biases will itself be
ome in
reasingly important. This pa-per has demonstrated that our intuitions regarding mutation bias and genotype-phenotype mappings are 
urrently under-developed and has 
ontributed analyti
and visualisation te
hniques whi
h may help us improve upon this state of a�airs.A
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