Smooth Operator?
Understanding and Visualising Mutation Bias

Seth Bullock

Informatics Research Institute, School of Computing, University of Leeds
seth@comp.leeds.ac.uk

Abstract. The potential for mutation operators to adversely affect the
behaviour of evolutionary algorithms is demonstrated for both real-valued
and discrete-valued genotypes. Attention is drawn to the utility of effec-
tive visualisation techniques and explanatory concepts in identifying and
understanding these biases. The skewness of a mutation distribution is
identified as a crucial determinant of its bias. For redundant discrete
genotype-phenotype mappings intended to exploit neutrality in geno-
type space, it is demonstrated that in addition to the mere ezxtent of
phenotypic connectivity achieved by these schemes, the distribution of
phenotypic connectivity may be critical in determining whether neutral
networks improve the ability of an evolutionary algorithm overall.

Mutation operators lie at the heart of evolutionary algorithms. They cor-
rupt the reproduction of genotypes, introducing the variety that fuels natural
selection. However, until recently, the process of mutation has taken a back
seat to the more dramatic genetic operators. Sexual recombination (the splicing
together of genetic material from multiple parents) is often regarded as the ma-
jor source of an evolutionary algorithm’s ability to discover fit phenotypes (the
evolutionary programming paradigm being a notable exception). While muta-
tion is required to introduce novel genetic material, it is recombination’s role
in assembling groups of well-adapted alleles that is often concentrated upon [1].
However, doubts concerning the validity of this “building block hypothesis” have
recently undermined the notion that the power of evolutionary algorithms can
be identified with the role of sexual recombination [2].

Moreover, recent work on neutrality in genetic encodings [3] suggests that mu-
tation events and the character of an evolutionary algorithm’s mutation space
may have a greater role to play in the dynamics of evolutionary algorithms than
had heretofore been appreciated. Rather than considering evolving populations
to be engaging in some kind of hill-climbing via parallel assessment of different
combinations of co-adapted alleles, Kimura’s [4, 5] neutral theory of evolution
proposes that a more useful image is of populations percolating through “neutral
networks” of adjacent points in genotype space that each code for phenotypes
with equivalent fitness. It is contended that such populations, rather than tend-
ing to converge at the peaks of local optima, will continue to diffuse through a
succession of neutral networks of increasing fitness. While it has been suggested
that some difficult evolutionary optimisation problems already exhibit neutral
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Fig. 1. Probability density functions for two mutation operators that perturb a real-
valued parental gene, p, upwards or downwards with equal chance. Mean mutant des-
tination is denoted p. Mutants must lie within the legal range [0, 1]. For the Normal-
Balanced operator (left), once direction of mutation has been determined, values are
repeatedly drawn from the appropriate half of a normal distribution with mean p un-
til a legal mutant value is achieved. For the Flat-Balanced operator (right), upwards
mutants are drawn from a uniform distribution over all values in the range [p, 1] while
downwards mutants are drawn from the range [0, p]. Three additional operators are
explored in this paper, but are not depicted. Flat draws mutants from a flat distribu-
tion over the legal range [0, 1]. Absorb draws mutants from a normal distribution with
mean p, replacing illegal mutants by the nearest legal mutant value. Reflect behaves as
Absorb, but any illegal mutant lying a distance d beyond a legal boundary is replaced
by a value lying d within that boundary.

networks [6], others have sought to develop genetic encodings that encourage
neutral networks in the hope that this will improve the ability of evolutionary
algorithms to find optimal solutions in general [7, 8].

But how well do we understand the workings of mutation operators? Al-
though they are often very simple to code, they come in many flavours, and
previous work [9] has demonstrated that they often exhibit biases that may re-
main undetected, despite having appreciable effects on the course of artificial
evolution arbitrarily steering populations away from particular areas of the
search space and toward others, for example.

This paper will begin by exploring a very simple pair of mutation operators
(see Fig. 1). Since these operators, or ones like them, are used widely whenever
genotypes feature real values which are constrained to lie within some legal range,
analysing them serves a direct purpose in increasing our understanding of the
component parts of evolutionary algorithms. But furthermore, in demonstrating
their counter-intuitive behaviour and the biases that are inherent in even these
simple operators, we may be able to refine our intuitions and develop useful
explanatory concepts that allow us to gain insights into the more complex genetic
encodings explored in the latter half of the paper.

1 Perturbing Bounded Continuous-Valued Traits

Although the canonical genetic algorithm (GA) employs binary genotypes, many
practitioners find it useful to encode members of the evolving population as
vectors of real values. Often these values must lie within some legal range. For
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Fig. 2. Each histogram depicts the distribution of trait values for 20 populations of 1000
single-trait organisms after 5000 generations of evolution on a flat fitness landscape. For
the Normal-Balanced operator, perturbations were drawn from a normal distribution
with zero mean and standard deviation 0.2. An unbiased mutation operator is expected
to exhibit a flat distribution, since no value is more likely to evolve than any other.
Both of the mutation operators simulated here favour extreme-valued traits.

instance, consider using a GA to evolve a population of images, each encoded
as a vector of real-valued RGB triples, e.g., {{0.1,0.9,0.3},{0.4,0.6,0.9}, ... }.
Point mutations that perturb these RGB components by some small random
amount must generate mutant values that remain within the legal range [0, 1].
In previous work [9], it was demonstrated that in dealing with illegal values,
mutation operators can often introduce a mutation bias that either favours trait
values close to their legal limits, or values that are far from these limits. In either
case, such biases may adversely affect the course of evolution (tending to favour
bold or dull images in the example being considered here) perhaps retarding
evolutionary optimisation or introducing artefacts into evolutionary simulation
models.

One mutation operator, here dubbed Normal-Balanced (which was not con-
sidered in [9], but was suggested in response to this work) is depicted in Fig. 1
(left), alongside a similar but simpler Flat-Balanced mutation operator which
proves more amenable to formal analysis. Proponents of the former scheme were
of the opinion that it would be able to deal with the possibility of illegal mutants

without biasing a GA’s evolutionary dynamics.

However, to some extent, intuitions regarding the behaviour of these muta-
tion operators conflict. The fact that mutation rate remains constant across the
parental range, and that the likelihood of upwards and downwards mutations are
always equal might be taken to indicate that the operators will not bias evolving
populations. However, the fact that, for any parental value, the expected mutant
value (denoted pu in Fig. 1) lies towards the centre of the legal range might suggest
that the operators may bias populations away from extreme-valued traits.



In order to discover the behaviour of these mutation operators, we can evolve
populations on a flat fitness surface, and check whether there exist particular
trait values that are more likely to evolve than others (see Fig. 2). In addition,
since the Flat-Balanced operator is relatively simple, it is straightforward to
derive the expected probability density function for the trait values of a popula-
tion after a period of mutation. Consider the mutant phenotype = of a parental
phenotype p (Fig. 1, right). If p < z, the probability density function f(z) takes

1 s 1 - .
the value Tp) while if p > z, f(z) = 25 After some period of mutation. . .
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That is, the value of the probability density function at z is equal to the
contribution from every parental value lower than z added to the contribution
from every parental value higher than z. What shape is this function?

Since it must be the case that f(z) >

fl@) = f@)sg — f(@)5z 0V 2 e [0,1], it follows that C > 0,

o 1 1 1 and thus that f(z) is a convex parabola

f@) = —3f() (7 + (“*1)) with a minimum at z = 0.5. Hence we

flz) = C’ef%fom 1ttydy would prefiict from this analysis that

L the mutation operator would tend to

f(z) = Ce—z(nlel+In1—z[) push populations towards the extremes
flz) = —<— of the legal range.

(z(1—2))

The same general conclusion could be reached (via a more involved analysis)
for the Normal-Balanced mutation operator.

Why do these mutation operators bias populations towards extreme-valued
traits? Neither simulating their performance, nor deriving their character for-
mally, gives us much insight into the relationship between the form of the oper-
ators and their behaviour. The frequency distributions in Fig. 3 begin to point
us in the right direction by clarifying the nature of the over-representation of
extreme-valued mutants, and highlighting the relative lack of symmetry in the
distribution of mutants generated by the biased operators compared to that of
an unbiased operator. Fig. 4 further demonstrates that, unlike considerations
of mutation drift (calculated as the expected mutant destination) attention to
the manner in which skewness (calculated as the difference between the mean
and median values of mutant distributions) varies across the range of possible
parental trait values allows us to distinguish biased from unbiased operators.

When a distribution of mutant values is skewed away from the extremities
of a range (i.e., the median mutant is further from the centre of the legal range
than the mean mutant), mutants falling towards the boundary will also fall closer
together than mutants falling further from the boundary. For mutation operators
such as Absorb, and the two Balanced operators, the increased density of the
more extreme mutants creates a “hot-spot”, with positive feedback ensuring that
more and more mutants fall closer and closer to the boundary and to each other.
Although, as this is happening, the mean mutant may remain far from the legal
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Fig. 3. For each mutation operator, the manner in which the distribution of mutants
varies with parental trait value is plotted. The grey-level of each cell (z, y) in a 200 x 200
array represents the number of mutants in bin y after 10,000 randomly generated par-
ents from bin z were each mutated once. The resulting aggregate distribution of mutant
trait values is depicted as a histogram to the right of each array (parental values being
depicted by the uniform histogram beneath each array). Deviation from uniformity
in this right-hand histogram is indicative of mutation bias. Notice the dense areas in
the corners of the Normal-Balanced, Flat-Balanced, and Absorb plots, indicating an
accumulation of extreme-valued mutants, and that the Reflect operator has a plot that
is symmetrical about y = z, and darker overall, indicating a more uniform distribution
of mutants. (The values in each array were log-scaled to better reveal the structure in
the distribution).
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Fig. 4. Depicting the manner in which the strength and direction of mutation drift
(left) and mutation skew (right) vary with parental value. Considerations of mutation
drift cannot distinguish those operators biased towards extreme values (Flat-Balanced,
Normal-Balanced, and Absorb) from those that are unbiased (Flat and Reflect). How-
ever, mutation skew varies inversely with parental value only for those operators favour-
ing extreme values, tending to trap populations near trait boundaries.

boundary, the asymmetrical, skewed distribution of mutants ensures that this has
little bearing on the location of the most densely populated mutant destination.
In contrast, operators such as Reflect counter the tendency for populations to
aggregate at the extreme values of a legal range, by decreasing the skewness of
mutant distributions as parents approach trait boundaries.

From this discussion, it is tempting to conclude that certain mutation op-
erators (perhaps Reflect) should be employed, rather than others (Absorb, or
either of the Balanced operators). While there may be some truth in this, since
certain mutation operators may be less biased than others, previous work [9]
strongly suggests that mutation bias in one form or another is part and parcel
of the evolutionary process. Rather than attempt to eliminate these biases from
evolutionary algorithms, their presence should be anticipated and controlled for.

The analysis and visualisation presented in this section has revealed that
our intuitions concerning the behaviour of mutation operators, and importantly
the sources of their biases, are often not to be trusted. Measures of behaviour
that at first sight appear sensible and instructive (e.g., mean mutant destination
as a measure of mutation drift) can be misleading. The skewness of mutation
distributions has been identified as a crucial aspect of a mutation operator’s
behaviour, and has been used to explain the biases of mutation operators that
favour extreme-valued traits.

2 Understanding Mutation in Neutral Networks

Discrete-valued genotypes require mutation operators that are perhaps simpler
in structure than the less orthodox operators analysed for real-valued genotypes
in the previous section. However, like the operators discussed above, discrete
(typically binary) genetic encodings also impose a structure upon the mutation
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Each of the eight bits representing the organism’s
‘@ ‘ 1 ‘ 0]1 ‘ 0 ‘@ ‘ ‘ 1 phenotype is associated with three neighbours, and
a look-up table with eight entries. The state of each
bit is updated by consulting the entry in it’s look-
up table (only one look-up table is depicted) de-
termined by the value of its three specified neigh-
bours. All eight bits are updated once per cycle.
After 20 cycles, the value of the eight phenotypic
bits is taken as the organism’s phenotype. A 144-
bit genotype represents the initial state of the phe-
notype (8 bits), the entries in each phenotypic bit’s
look-up table (8 x 8), and each phenotypic bit’s
three neighbours (8 x 3 x 3). Adapted from [7].
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space, allowing some transitions but preventing others, and as a result have
just as much potential to bias evolutionary dynamics [9]. In this section we will
employ some of the techniques introduced in section 1 to explore the biases
inherent in a recently proposed massively redundant genetic encoding scheme
[7,8].

Recently, encouraged by theoretical [3] and empirical [6] work suggesting
that neutrality in fitness landscapes may improve the ability of evolutionary
algorithms to discover fit phenotypes, researchers have begun to explore the in-
troduction of redundancy into discrete genetic encodings [7, 8]. Although redun-
dancy (many genotypes mapping onto the same phenotype) increases the size
of the search space, the correct kind of redundancy may populate this search
space with neutral networks that increase phenotypic connectivity — enabling
evolving populations to more easily explore a wider range of mutant phenotypes
than they would be able to under a regular non-redundant encoding scheme.
Potentially, neutral networks might increase this connectivity to such an extent
that the overall performance of evolutionary algorithms is much improved.

However, is the mere ezxtent of phenotypic connectivity the only important
consideration here? In this section we will explore how the distribution of phe-
notypic connectivity may impact on the evolutionary dynamics of algorithms
employing redundancy in this way.

One manner in which a massively redundant genotype-phenotype mapping
has been implemented is through the use of a random Boolean network (RBN)
[10], specified using 144 bits of genetic information, to generate an 8-bit phe-
notype (see Fig. 5). Under this scheme, it has been demonstrated [7,8] that
neutral networks connect each of the 256 possible phenotypes to the majority
of the 255 possible mutant phenotypes (see Fig. 6 left). However, employing the
visualisation technique introduced in the previous section, we can show that the
frequency distribution over these neighbours is radically non-uniform (see Fig. 6
right). In fact, under the proposed encoding scheme, a large proportion (=~ 32%)
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Fig. 6. Depicting the accessibility of mutant phenotypes from parental phenotypes for
the RBN encoding scheme. A random 144-bit parental genotype is generated and its
corresponding phenotype, =, determined. At random, one of the 144 bits is flipped and
the phenotype, y, of the resulting mutant is determined. The cell (z,y) is incremented
by one. This process is repeated for 10° random parents. Left: non-empty cells are
depicted in black, empty cells in white. This depicts the absolute accessibility of mu-
tant phenotypes from parental phenotypes. Right: empty cells are depicted in white,
non-empty cells are depicted in grey levels with high-frequency cells shaded heavily.
This depicts the relative accessibility of mutant phenotypes from parental phenotypes.
Note the dark leading diagonal indicating the prevalence of neutral mutations. The
uniformity of the left-hand plot indicates that almost all transitions are possible, the
right-hand plot shows how misleading this conclusion is, since only a limited number of
idiosyncratic transitions are at all probable. (The values in the right-hand image have
been log-scaled to better reveal the structure in the frequency distribution.)

of non-neutral mutations are equivalent to flipping a single bit of the 8-bit phe-
notype, i.e., identical to those transitions that would be achieved under a regular
non-redundant binary encoding (see Fig. 7). The remaining non-neutral muta-
tions are distributed (non-uniformly) across the remaining 247 possible mutants.
Whilst it is possible that the RBN scheme may enjoy advantages over a regular
binary encoding scheme (perhaps it responds well to crossover, for instance),
these results suggest that the cost of moving from a regular 8-bit representation
to this redundant 144-bit scheme (an increase of search space size by a factor of
2136) is perhaps not compensated for by the increased phenotypic connectivity
that is achieved.

In order that neutral networks improve the performance of evolutionary al-
gorithms, it must be the case that in addition to connecting each phenotype to
many others they connect these phenotypes roughly equally, rather than favour-
ing some transitions much more than others. What is important is not just
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Fig. 7. Left: the distribution of the eight one-bit mutant neighbours of each of the 256
possible eight-bit phenotypes under a regular non-redundant binary encoding scheme.
Right: the distribution of non-neutral neighbours collated for 256 neutral networks ex-
plored under the RBN encoding scheme. For each phenotypic value a random genotype
encoding that value was generated. Each of the 144 one-bit mutants of this genotype
were generated and their corresponding phenotypes determined. A neutral mutant was
chosen at random and its 144 neighbours assessed, and so on. In this way 100 adjacent
members of each neutral network were explored. Although each neutral network neigh-
bours many phenotypic values, the similarity between the left- and right-hand plots
indicates that a large proportion (32% in this case) of non-neutral mutation events are
equivalent to flipping a single bit of the 8-bit phenotype. (The values in the right-hand
image have been log-scaled to better reveal the structure in the frequency distribution.)

the number of phenotypes that neighbour a neutral network, but the frequency
distribution over this neighbourhood, and whether it is significantly biased.

In this section we have discovered that an encoding scheme which promised
a massive increase in phenotypic connectivity brings with it a hidden cost in
terms of a radically biased distribution over this connectivity. Although many
phenotypes are accessible from each neutral network, a population percolating
through such a neutral network will tend to repeatedly explore only a few of the
possible transitions, with many transitions occurring infrequently if at all.

How can we improve upon this situation? To achieve a more uniform distribu-
tion of phenotypic accessibility, we might explore increasing the connectivity of
the random Boolean network which underlies the genotype-phenotype mapping,
encouraging it to manifest chaotic behaviour which may be more sensitive to
single genotypic bit flips. Moreover, if the RBN’s behaviour is chaotic, running
it for more clock cycles might also allow single genotypic bit flips to exert more
influence on the end state of the RBN. However, this would result in a much
longer genotype, and much larger neutral networks. Determining whether the



trade-off between increased phenotypic connectivity and increased search space
favours redundant genotype-phenotype mappings of the kind explored here will
require further theoretical and empirical enquiry.

3 Conclusions

Mutation bias is a little-explored and little-understood aspect of evolutionary al-
gorithms. As the role of neutral mutation becomes increasingly significant in our
theories of evolution and evolutionary computing, our ability to identify, visualise
and understand these biases will itself become increasingly important. This pa-
per has demonstrated that our intuitions regarding mutation bias and genotype-
phenotype mappings are currently under-developed and has contributed analytic
and visualisation techniques which may help us improve upon this state of affairs.
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