
Will sele
tion for mutational robustness signi�
antly retardevolutionary innovation on neutral networks?Seth Bullo
kInformati
s Resear
h Institute, S
hool of Computing, University of Leeds, Leeds, LS2 9JT, UKseth�
omp.leeds.a
.ukAbstra
tAs a population evolves, its members are under sele
tionboth for rate of reprodu
tion (�tness) and mutationalrobustness. For those using evolutionary algorithms asoptimisation te
hniques, this se
ond sele
tion pressure
an sometimes be bene�
ial, but it 
an also bias evolu-tion in unwel
ome and unexpe
ted ways. Here, the roleof sele
tion for mutational robustness in driving adap-tation on neutral networks is explored. The behaviourof a standard geneti
 algorithm is 
ompared with thatof a sear
h algorithm designed to be immune to sele
-tion for mutational robustness. Performan
e on an RNAfolding lands
ape suggests that sele
tion for mutationalrobustness, at least sometimes, will not unduly retardthe rate of evolutionary innovation enjoyed by a geneti
algorithm. Two 
lasses of random lands
ape are used toexplore the reasons for this result.Introdu
tionIt is well known that evolution will sele
t for solutionswith both high �tness and high robustness. That is, evo-lution favours volumes of sear
h spa
e asso
iated with�t phenotypes, rather than single points of high �tness.The robustness of a solution is here de�ned in terms ofits insensitivity to the a
tion of the geneti
 operators atwork during its evolution. By de�nition, then, perturb-ing a robust solution's genotype through mutation (orperhaps 
rossover) will not tend to perturb its �tness.It is easy to see why this type of robustness (hereaftertermed mutational robustness) is impli
ated in evolu-tionary adaptation. An individual's biologi
al �tness isoften equated with the number of progeny it leaves, butit might be more a

urate to use the propensity to leaveviable o�spring as an indi
ator of �tness (Mills & Beatty1994). This move en
ourages us to view �tness as theproperty of a lineage rather than a single genotype. Twogenotypes that give rise to equivalent phenotypes (andthus have an equivalent propensity to leave o�spring)may nevertheless di�er in �tness under this interpreta-tion. If the mutant o�spring of one tend to be non-viablewhereas those of the other tend to be viable, lineagesstemming from the latter will be more su

essful thanthose stemming from the former (see Figure 1). For the
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Figure 1: Two genotypes, A and B, a
hieve equivalent�tness s
ores (top). However, A's relative proximity toa �tness 
li� ensures that it is less mutationally robustthan B, and that, as a result, its e�e
tive �tness is some-what redu
ed, while B's is in
reased (bottom).remainder of the paper, I will reserve the term �tnessto refer to the proximal propensity to leave o�spring inthe next generation and e�e
tive �tness to refer to thetenden
y for lineages stemming from a genotype to besu

essful over generational time. A more detailed treat-ment of this type of issue is presented in asso
iation withthe 
on
ept of the quasi-spe
ies (Eigen & S
huster 1979;Eigen, M
Caskill, & S
huster 1988; 1989; Nowak 1992).For 
ertain optimisation problems, the tenden
y fora geneti
 algorithm (GA) to favour mutationally robustsolutions 
an be very useful. Consider a parametri
 de-sign problem in whi
h we assess the performan
e of ea
hsolution in simulation, but 
an only realise a solution inthe real world subje
t to 
ertain manufa
turing toler-an
es. If the geneti
 operators at work during evolutionmirror the nature of the real-world manufa
turing errors,it is possible that a standard GA will dis
over not only



a good solution, but one that is robust to manufa
tur-ing errors. By exploiting the geneti
 algorithm's naturaltenden
y to dis
over a �t volume of the sear
h spa
e,we 
an automati
ally steer the sear
h towards realisablesolutions.Of 
ourse, if one wishes to dis
over the best point in asear
h spa
e, a GA's tenden
y to be distra
ted by geno-types that are not as �t but are more mutationally robust
an be frustrating (S
huster & Swetina 1998). In 
on-trast, the behaviour of a hill-
limbing algorithm (wherea single solution is repeatedly mutated until an improve-ment is dis
overed at whi
h point the improved mutantis repeatedly mutated, and so on) will not be a�e
tedby mutational robustness. Su
h a sear
h pro
ess is ableto s
ale ridges of in
reasing �tness that would be diÆ-
ult or impossible for a geneti
 algorithm to 
limb due totheir low mutational robustness. However, rather thaninfer that one 
lass of algorithm is better or worse thananother on the basis of these 
onsiderations, these dif-ferent algorithmi
 biases should be understood to en-sure that di�erent algorithms are suited to di�erent op-timisation problems (Mit
hell, Holland, & Forrest 1994;Wolpert & Ma
ready 1997). Chara
terising whi
h algo-rithms suit whi
h problem types is the 
hallenge thatarises from this perspe
tive.Furthermore, 
omparing the behaviour of sear
h algo-rithms as they traverse 
at �tness lands
apes may alsoreveal the presen
e of inherent biases. For example, themanner in whi
h a sear
h algorithm's mutation opera-tors deal with illegal mutants may in
uen
e its sear
hbehaviour (Bullo
k 1999; 2001). Biases su
h as these
an also be interpreted in terms of sele
tion for muta-tional robustness. For instan
e, 
onsider a real-valued,n-dimensional genotype where the value at ea
h of thelo
i must lie in the range [0; 1℄, and a mutation operatorthat perturbs the value at ea
h of the lo
i by a smallvalue drawn from a random distribution. O

asionally,the mutation operator will generate a genotype featur-ing one or more illegal values. Dealing with these illegalmutants may introdu
e a mutation bias.For example, repla
ing any illegal mutant o�springwith the nearest legal genotype in
reases the muta-tional robustness of solutions at the edges of the sear
hspa
e by lowering their e�e
tive mutation rate. In 
on-trast, ignoring an illegal mutant o�spring and repla
-ing it with the o�spring of a newly 
hosen parent willtend to redu
e the mutational robustness of solutions
lose to the edges of the sear
h spa
e. The former ap-proa
h will tend to bias evolutionary sear
h in favourof extreme-valued genotypes, the latter away from thesegenotypes. Although the lands
ape appears to be 
at,it is e�e
tively warped by the mutation operator, whi
himposes a gradient in e�e
tive �tness where none wasintended. The arbitrariness of these edge e�e
ts mayretard evolutionary optimisation or introdu
e artefa
ts

into an evolutionary simulation model (Bullo
k 1999;2001).Here this approa
h is extended to explore the impa
tof sele
tion for mutational robustness on the behaviourof sear
h algorithms trapped on neutral networks. First,the notion of neutrality and its relation to mutationalrobustness will be introdu
ed.Neutrality and Mutational RobustnessIn the 
ontext of a sear
h spa
e, neutrality is the prop-erty of adja
ent genotypes enjoying equivalent �tnesss
ores. A neutral network 
onsists of a set of genotypeswith equal �tness, where ea
h member of the set neigh-bours at least one other member. Again, these notionsof adja
en
y and neighbourhood must be 
ashed out interms of an algorithm's geneti
 operators.For spe
i�
 real-world sear
h spa
es, su
h as the RNAfolding map, it has been demonstrated that the neutral-ity present is of a useful kind (Huynen 1996; Huynen,Stadler, & Fontana 1996; Fontana & S
huster 1998a;1998b). Neutral networks per
olate the sear
h spa
e,neighbouring a large proportion of possible alternativephenotypes. In addition, these neutral networks enjoy aproperty of 
onstant innovation in that, over many gen-erations, a neutral walk a
ross these neutral networkstends to en
ounter novel phenotypes at a 
onstant rate
omparable to that whi
h would be a
hieved by a ran-dom walk in the sear
h spa
e.As su
h, a lands
ape exhibiting the right kind of neu-trality will be mu
h easier to sear
h than the 
anoni-
al rugged lands
apes typi
ally asso
iated with 
omplexsear
h problems (Kau�man 1993). Rather than 
on
eivea population to be hill-
limbing in a rugged lands
ape,the pi
ture painted by re
ent studies of neutrality is oneof a population enduring periods of neutral drift pun
-tuated by brief transitions to higher-�tness neutral net-works (Barnett 1998; 2001).Within the �eld of evolutionary 
omputation, re-sear
hers have dis
overed that some diÆ
ult evolution-ary optimisation problems already exhibit potentiallyuseful neutral networks (Harvey & Thompson 1996).Others have attempted to en
ourage neutral networkswhere there are none by introdu
ing redundan
y intothe geneti
 en
oding, in the hope that this will improvethe ability of evolutionary algorithms to �nd optimal so-lutions in general (Shipman et al. 2000). This resear
hhas prompted analysis of both naturally o

urring neu-tral networks (Smith et al. 2002) and arti�
ially 
raftedones (Bullo
k 2001).Impli
it in the des
ription so far has been the as-sumption that as genotypes on a neutral network 
odefor equivalent phenotypes, they are sele
tively neutralwith respe
t to one another. However, if a sear
h al-gorithm has a tenden
y to favour mutationally robustgenotypes this assumption does not hold. Rather than



drift at random a
ross a neutral network, a geneti
 al-gorithm will tend to favour those parts of the networkthat have a higher degree of neutrality, sin
e these partsare more mutationally robust (van Nimwegen, Crut
h-�eld, & Huynen 1999; Wilke et al. 2001; Wilke 2001a;2001b).From the perspe
tive of evolutionary optimisation,this tenden
y raises a 
on
ern. If we are interestedin maintaining a high rate of 
onstant innovation, wemight not want our drifting population to 
on
entrateon the most mutationally robust areas of the network,sin
e these are pre
isely the areas in whi
h the rate ofinnovation is at its lowest.Here we will explore this issue by 
omparing the per-forman
e of a GA, in terms of the rate at whi
h it dis-
overs novel network neighbours, with that of a simi-lar algorithm, termed a plateau 
rawler (PC), that hasbeen designed to be immune to sele
tion for mutationalrobustness.A Simple Sear
h ProblemIn order to demonstrate the e�e
ts of sele
tion for muta-tional robustness on evolutionary dynami
s, and to spe
-ify the two sear
h algorithms we will 
on
entrate on inthis paper, a very simple toy sear
h problem will be in-trodu
ed. The thresholded 
ounting ones problem is in-tended to be a trivial example of a problem featuringneutrality and neutral networks with whi
h to introdu
ethe e�e
ts of sele
tion for mutational robustness. It isby no means intended to re
e
t the 
hara
ter ofneutrality as it o

urs in typi
al real-world prob-lems.Ea
h genotype is a binary string of length L with anasso
iated phenotype dependent on the number of geno-typi
 bits that are set to one. Genotypes with more thant bits set to one enjoy maximum �tness. All other geno-types have zero �tness. (All problems explored in thispaper share the property that genotypes are assigned a�tness of zero if they lie o� the neutral network being
onsidered, and maximal �tness otherwise.)As a result, the sear
h spa
e 
an be divided into twoneutral sets of genotypes. One sub-threshold set with�tness zero, and one super-threshold set with maximum�tness. We will 
onsider the 
ase in whi
h L = 100 andt = 50. For this problem, the sear
h spa
e 
omprises asingle neutral network asso
iated with �tness zero anda se
ond neutral network asso
iated with maximum �t-ness.We 
an expe
t a sear
h algorithm that 
ommen
essear
hing somewhere on the upper network to drifta
ross this network in some manner. Periodi
ally, the al-gorithm may generate sub-threshold mutants that lie o�the upper network. Given that we are interested in therate at whi
h algorithms dis
over novel genotypes thatneighbour a neutral network, i.e., the rate at whi
h they

generate potentially useful innovations, we will re
ordthe rate at whi
h novel sub-threshold genotypes are gen-erated as a measure of performan
e.1The AlgorithmsWe will 
ontrast the behaviour of two simple sear
h al-gorithms, a standard geneti
 algorithm and a plateau
rawler. The motivation for the design of the latter wasto 
reate an algorithm that is identi
al to the geneti
algorithm in all respe
ts save that it is provably immunefrom sele
tion for mutational robustness. The result-ing algorithm shares similarities with both the randommutation hill-
limber (Forrest & Mit
hell 1993) and theBarnett's (2001) net-
rawler.Geneti
 Algorithm1. Initialise a population of S 
lones of a random 
hosengenotype, G, with the phenotype P2. Pi
k parents at random from the 
urrent generationuntil one is found with phenotype P3. With probability 1�M : Copy the 
hosen parent un-
hanged to the next generationWith probability M :(a) Mutate the parental genotype, forming a mutantgenotype, Gm, by repla
ing the value at a randomly
hosen lo
i with a randomly 
hosen legal alternative(b) Determine the phenotype, Pm, of the resulting mu-tant(
) If Pm 6� P and Gm has not been en
ountered be-fore, in
rement C, a 
umulative tally of the numberof novel o�-network genotypes dis
overed by the al-gorithm so far(d) Add the resulting o�spring to the next generation4. Repeat steps 2 and 3 until a 
omplete new generationhas been produ
ed5. Re
ord the value of C for this generation, Cn6. Repeat steps 2 thru 5 until N generations of sear
hhave been 
ompletedPlateau CrawlerIn order to implement a plateau 
rawler (PC), we needonly add the following step between 3(
) and 3(d):� If Pm 6� P repla
e the mutant with an exa
t 
opy ofits parent.1In reality, we are interested in the dis
overy of �t phe-notypes, but in the absen
e of any information 
on
erninghow phenotypes are distributed in the spa
e, the dis
overy ofnovel genotypes is a good proxy.



Noti
e that, for ea
h algorithm, population size is�xed, parents are 
hosen in a standard roulette-wheelfashion, and reprodu
tion involves only single point mu-tations and no 
rossover. Mutation rate, M , was set to0:5 for all runs reported in this paper - i.e., 50% of o�-spring were identi
al to their parents, while 50% di�eredby exa
tly one allele.This mutation rate is relatively low 
ompared to ratestypi
ally used in evolutionary 
omputation. To the ex-tent that error-free reprodu
tion 
an o

ur, pressure formutational robustness will de
rease. If every o�springwere a perfe
t 
opy of its parent there would be no pres-sure to avoid genotypes that neighboured non-viable mu-tants. However, su
h a situation would la
k the heritablevariation that drives mutation { there would be no se-le
tion at all. As mutation rate is in
reased, we wouldexpe
t sele
tion for mutational robustness to be
ome amore signi�
ant driver of evolutionary 
hange. In the
ase where every o�spring is a mutant, sele
tion for mu-tational robustness will be 
riti
al. Fit points in geno-type spa
e will not be represented in a population unlessthey are surrounded by similarly �t mutant genotypes.Although the plateau 
rawler algorithm is pra
ti
allyidenti
al to the geneti
 algorithm, in operation it more
losely resembles a population of S hill-
limbers. It dif-fers from the geneti
 algorithm in that every parent 
ho-sen to reprodu
e is guaranteed to either leave a 
opy ofitself or a mutated o�spring that shares its phenotypeand �tness. As su
h the plateau 
rawler ensures that allo�spring, and grand
hildren, et
., have an equal 
han
eof being 
hosen as parents themselves. This implies thatthe plateau 
rawler should be una�e
ted by mutationalrobustness, spending on average an equal amount of timeat ea
h point on a neutral network (Hughes 1996).By 
ontrast, the fa
t that the geneti
 algorithm al-lows parents to leave mutant o�spring that are not vi-able ensures that lineages featuring genotypes with manynon-neutral neighbours will not leave as many des
en-dants as lineages featuring genotypes that are muta-tionally robust. This implies that, on average, the ge-neti
 algorithm should spend more time in the parts ofthe neutral network that enjoy a high degree of neu-trality (van Nimwegen, Crut
h�eld, & Huynen 1999;Wilke 2001a).Noti
e also that the plateau 
rawler di�ers slightlyfrom a population of S independent hill-
limbers in thatrather than ensuring that ea
h of the S members ofthe population generate exa
tly one o�spring, the algo-rithm (like a GA) samples S parents at random fromthe population with repla
ement. As a result of thesampling error that this method entails, we 
an expe
tthat a plateau 
rawler population, like a GA popula-tion, will tend to remain 
lustered rather than sim-ply di�use a
ross the network as a population of in-dependent hill-
limbers would (Derrida & Peliti 1991;
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GenerationFigure 2: Mean (n=500) dis
overy rate of a plateau
rawler (
ir
les) and a geneti
 algorithm (squares) solv-ing the thresholded 
ounting-ones problem with geno-type length 100 and threshold 50 for 100 generations ofsear
h.Barnett 2001).ResultsFor our purposes, an algorithm should be rewarded fordis
overing novel non-neutral genotypes qui
kly and of-ten. As su
h, ea
h algorithm's performan
e is equatedwith the 
umulative frequen
y whi
h it dis
overs uniqueo�-network genotypes (hereafter termed an algorithm'sdis
overy rate). This value 
an be 
al
ulated as the areaunder a 
umulative plot of unique o�-network genotypesdis
overed over generational time,Dalg = NXn=1CnThe dis
overy rate of ea
h algorithm for the thresh-olded 
ounting ones game with L = 100 and t = 50, av-eraged over 500 runs of 100 generations ea
h, is depi
tedin Figure 2. As might be expe
ted given the above dis-
ussion, the geneti
 algorithm is outperformed by theplateau 
rawler. We 
an see why when we 
onsider themanner in whi
h the 500 populations were distributedover the phenotype spa
e at the end of the runs (Fig-ure 3). The plateau 
rawler has, on average, distributedthe evolving population a
ross the entire neutral net-work, 
losely approximating a random sampling of thehigh-�tness plateau. By 
ontrast, the geneti
 algorithmhas tended to avoid genotypes asso
iated with pheno-types 
lose to 50. For the geneti
 algorithm, this volumeof the sear
h spa
e su�ers from poor mutational robust-ness, and as a result is not su

essful.These results, although drawn from a trivial sear
hproblem, raise some interesting possibilities. Could the
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PhenotypeFigure 3: Three phenotypi
 frequen
y distributions forthe 
ounting-ones problem with genotype length 100 andthreshold 50. The solid line represents the frequen
ydistribution that would result from a population of ran-domly drawn super-threshold genotypes. Cir
les denotethe aggregate phenotypi
 frequen
y distribution, after100 generations of sear
h, a
hieved by 500 runs of aplateau 
rawler. Squares denote the equivalent aggre-gate distribution a
hieved by 500 runs of a geneti
 algo-rithm. See text for details.di�eren
e between the performan
e of the two algo-rithm's somehow be used as an on-line metri
 with whi
hto dynami
ally measure the strength of sele
tion for mu-tational robustness? With this type of information atour disposal, 
ould we dynami
ally alter a sear
h algo-rithm to 
ontrol for this sear
h bias? Perhaps in
reasingor de
reasing the mutation rate might allow us to 
ounteran algorithm's tenden
y to 
on
entrate on unprodu
tivevolumes of sear
h spa
e (Barnett 1998)? Alternatively,perhaps this information might be used by a hybrid algo-rithm to appropriately swapped from GA-style sear
h toPC-style sear
h. Before we 
an assess these possibilities,let us explore the performan
e of the same algorithmson a more realisti
 sear
h problem.RNA Folding Lands
apeThe manner in whi
h di�erent RNA sequen
es fold intotheir asso
iated se
ondary stru
tures has been a usefultest 
ase for assessing the role of neutrality and neutralnetworks in adaptive evolution (S
huster et al. 1994;Huynen, Stadler, & Fontana 1996; S
huster & Fontana1999; Wilke 2001a). These studies have revealed thatmany RNA sequen
es fold into equivalent se
ondarystru
tures and that the frequen
y distribution over thesese
ondary stru
tures exhibits a Zipf-like power law, withonly a few very frequent se
ondary stru
tures and verymany rare se
ondary stru
tures. In addition, it is 
om-mon that a phenotype is easily a

essible from an ar-
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GenerationsFigure 4: Dis
overy rate for a plateau 
rawler (
ir
les)and a geneti
 algorithm (squares) sear
hing an RNAfolding lands
ape. Ea
h algorithm was initialised witha population of 100 
lones of the same randomly 
hosenRNA sequen
e of length 100.bitrary point in sequen
e spa
e, with randomly 
hosenphenotypes being separated by only a small number ofpoint mutations. Re
ent studies have begun to explorethe role of mutational robustness in in
uen
ing adap-tation on these lands
apes (van Nimwegen, Crut
h�eld,& Huynen 1999; Wilke 2001b; Wilke et al. 2001), 
on-
luding that sele
tion for mutational robustness is animportant driver at high mutation rates.Here we 
ompare the performan
e of the GA andPC algorithms on neutral networks 
hosen at ran-dom from a spa
e of RNA sequen
es of length100. Se
ondary stru
tures were 
omputed using ver-sion 1.4 of the Vienna RNA Pa
kage (Hofa
ker etal. 1994) whi
h uses the free energies des
ribed in(Mathews et al. 1999) and is freely available fromhttp://www.tbi.univie.a
.at/�ivo/RNA/. Foldingwas 
al
ulated at 30ÆC, and se
ondary stru
tures were
onsidered equivalent if the edit distan
e separating theirtree representations was zero.Sin
e we expe
t that, in pra
ti
e, sear
h algorithmstraversing a neutral network will not need to explore alarge proportion of the network before en
ountering atransition to a higher-�tness phenotype, we will fo
uson the relatively short- or medium-term behaviour ofsear
h algorithms on neutral networks. In parti
ular, wewill not be parti
ularly interested in the behaviour ofthese algorithms in the limit of in�nite time.Figure 4 shows the performan
e of the two algorithmsrun from the same initial RNA sequen
e for 1000 gener-ations of sear
h. In marked 
ontrast to the results fromthe thresholded 
ounting ones problem, both algorithmsperform 
omparably. Does this result hold in generalfor neutral networks drawn at random from this sear
h
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 algorithm with that of a plateau 
rawler. Ea
hof the 100 points represents a pair of 100-generationruns from a randomly 
hosen an
estral RNA sequen
eof length 100. The line y = x separates the graph intoa lower area in whi
h the geneti
 algorithm outperformsthe plateau 
rawler and an upper area in whi
h the 
on-verse is true. On average, the geneti
 algorithm outper-forms the plateau 
rawler a
ross the sample.spa
e? Figure 5 shows the results obtained by runningea
h algorithm for 100 generations from the same 100randomly 
hosen RNA sequen
es. The two algorithms
ontinue to perform 
omparably, with, on average, theGA slightly outperforming the PC, dis
overing novel net-work neighbours at a slightly higher rate.Given that we expe
t the PC algorithm to sample theneutral network evenly, spending the same amount oftime at ea
h point on the network, whereas the GA isexpe
ted to favour the less produ
tive parts of the net-work, how 
an we a

ount for this result?Figure 6 demonstrates that during the same runs de-pi
ted in Figure 5 the GA 
onsistently visited a greaternumber of unique genotypes on the neutral network.The plateau 
rawler may, in the limit, visit the entirenetwork, but the geneti
 algorithm, in the short-termis doing a better job of sampling the network. In ad-dition, Figure 7 shows that the during the same runs,the plateau 
rawler revisited already explored networkneighbours more frequently than the geneti
 algorithm.While the plateau 
rawler is not 
on�ned to mutationallyrobust volumes of the sear
h spa
e, it has a tenden
y torepeatedly sample the same neighbours, and in doing sowastes time that the geneti
 algorithm spends in novelparts of the neutral network.How generi
 are the results we have obtained for �rstthe thresholded 
ounting ones problem and now theRNA lands
ape? What are the properties of ea
h thatare responsible for the performan
e of the two algorithms
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hieved by a plateau
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ted in Fig-ures 5 and 6.that we have tested? Clearly, there exist lands
apesfor whi
h geneti
 algorithms are signi�
antly retardedby sele
tion for mutational robustness. Equally 
learlythere exist di�erent lands
apes for whi
h this is not the
ase. Before addressing these questions, a 
lass of ran-dom lands
apes with whi
h to explore these phenomenafurther will be introdu
ed.Random Lands
apesA useful 
lass of �tness lands
ape has been proposedby Barnett (1998) in order to study the role of neutral-ity in adaptive evolution. Dubbed NKp lands
apes they
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lude a tunable degree of neutrality. Future work willexplore repli
ating the results presented here on NKplands
apes, but for the moment we will fo
us on a sim-pler, and perhaps as a result less interesting, s
heme.Sear
h 
ommen
es at an arbitrary genotype whi
h isassigned a �tness of 1. Whenever, through mutation, asear
h algorithm generates a novel genotype, we deter-mine its �tness by referen
e to the lands
ape's degreeof neutrality, p. With probability p, the mutant enjoys�tness 1, otherwise it is assigned �tness zero. In thismanner, the �tness lands
ape is generated at random asthe population traverses it. In this simple random land-s
ape, ea
h point has, on average, an equivalent degreeof neutrality (although, of 
ourse, ea
h o�spring geno-type may be adja
ent to genotypes that have alreadybeen en
ountered and thus have already had their �t-ness spe
i�ed). By varying p, we 
an spe
ify lands
apesin whi
h neutrality is rare or 
ommonpla
e.Figure 8 depi
ts how the two sear
h algorithms per-form a
ross a range of lands
apes, as we vary p. Atextreme values of p both algorithms perform 
ompara-bly sin
e there are either very few o�-network genotypesto dis
over (p � 1) or very few neutral neighbours todis
over (p � 0). At intermediate values of p, both al-gorithms improve, with the GA outperforming the PCover the entire range. The geneti
 algorithm appearsmore able to take advantage of the tenden
y for inter-mediate degrees of neutrality to in
rease the number ofnetwork neighbours available for dis
overy.Figure 9 suggests that again an explanation for thisdisparity is to be found in the PCs tenden
y to resamplenetwork neighbours at a higher rate than the GA. Even

though, on average, no point on the neutral network ismore mutationally robust than any other, and hen
e nomore produ
tive, there still appears to be a signi�
antdi�eren
e between the ability of ea
h algorithm to tra-verse the network.In fa
t, the PC su�ers a tenden
y to linger at ea
hpoint in the neutral network that is inversely propor-tional to the degree of neutrality at that point. Thistenden
y is ne
essary if the algorithm is to sample theentire network equally. Sin
e, by de�nition, there arefewer neutral transitions to genotypes with a low degreeof neutrality, they are hard to �nd. As a result, an al-gorithm that must spend equal amounts of time at ea
hpoint on a neutral network must linger at these pointswhen they are dis
overed. Unfortunately, during theseperiods there is a tenden
y to repeatedly generate thesame mutant o�spring.In 
ontrast, the GA has a tenden
y to desert points inthe network that su�er a low degree of neutrality, expos-ing it to the 
omplementary risk of repeatedly generatingthe same neutral mutants in an area of mutational ro-bustness. However, it appears that these 
omplementaryrisks do not negate one another in these lands
apes|es
hewing the most peripheral parts of a neutral networkdoes not prohibit the GA en
ountering novel networkneighbours at a higher rate than the PC.Introdu
ing Lo
al Stru
tureBy slightly altering the manner in whi
h a random land-s
ape is generated, we 
an introdu
e some of the lo
alstru
ture that is absent from the random lands
apes ex-plored above, but is presumably present in real sear
hspa
es su
h as that of the RNA folding problem. In thisway, rather than tending to distribute neutrality evenlya
ross the lands
ape, we 
an ensure that di�erent partsof the network exhibit di�erent degrees of neutrality, and
an alter the degree to whi
h genotypes with a high de-gree of neutrality tend to 
luster together.When a novel genotype is generated by a sear
h algo-rithm, we assign it a �tness value as before, but assignthat point in the sear
h spa
e a unique p value as follows:poffspring = � �� (pparent < 0:5)1� (��) (pparent � 0:5)Where � is a uniformly distributed random variate inthe range [0; 1℄, and � is a 
lustering parameter used to
ontrol the extent to whi
h genotypes with a high degreeof neutrality tend to neighbour genotypes with a similarhigh degree of neutrality. For � = 1 the degree of neu-trality asso
iated with ea
h point in the spa
e is 
hosenat random from the range [0; 1℄, and as su
h is inde-pendent of its neighbours. As � in
reases, a genotype'sdegree of neutrality be
omes in
reasingly determined bythat of its \parent".
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ir-
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h on random graphsas a 
lustering parameter, �, is varied from no 
lustering(� = 1) to highly 
lustered (� � 50).Figure 10 depi
ts the manner in whi
h the perfor-man
e of ea
h algorithm varies with the 
lustering pa-rameter, �. For � = 1 the GA outperforms the PC. As �in
reases, the performan
e of ea
h algorithm falls to anequivalent asymptoti
 level. However, PC performan
ede
lines at a slower rate than GA performan
e, ensur-ing that the PC enjoys an advantage for the majority ofthe range explored. Here we begin to see the deleteriouse�e
ts of sele
tion for mutational robustness that wereexpe
ted given the results from the thresholded 
ounting

ones problem.Where there is a degree of lo
al stru
ture to the sear
hspa
e, the tenden
y for a geneti
 algorithm to 
on
en-trate on mutationally robust genotypes tends to retardthe rate at whi
h it dis
overs o�-network novelty, at leastby 
omparison with a plateau 
rawler.It is likely that the lo
ally stru
tured random land-s
apes 
hara
terised by intermediate values of � resem-ble that of the thresholded 
ounting ones problem withwhi
h this study opened. Su
h lands
apes will featuredensely inter
onne
ted neutral networks separated byrelatively sharp boundaries.Dis
ussionThe results presented here are preliminary in the sensethat they should be regarded as the pre
ursor to analyti-
al work. Currently it is un
lear what de�nitive answers
an be given to the question raised in the title of thispaper. Nevertheless, these simulations serve to demon-strate that di�erent sear
h algorithms 
ope with di�erenttypes of neutrality in di�erent ways. As su
h they sug-gest the potential for algorithms to be tailored to suitparti
ular 
lasses of neutrality, or to dynami
ally re
on-�gure themselves to 
ope with 
hanges in the 
hara
terof the lands
ape they �nd themselves sear
hing.Moreover, these results show that although sele
tionfor mutational robustness will impede evolutionary in-novation on a neutral network, that this is a signi�
antproblem for evolutionary optimisation is by no meansa foregone 
on
lusion. It may well be that signi�
antnumbers of real-world sear
h problem share the stru
-tural properties of the RNA lands
ape su
h that stan-dard evolutionary algorithms will remain largely untrou-bled by sele
tion for mutational robustness.The extent to whi
h the topology of a neutral net-work is a 
riti
al determiner of the dynami
s of evolutionadaptation is beginning to be appre
iated (van Nimwe-gen, Crut
h�eld, & Huynen 1999). Here, we identifythe 
hara
ter of a network's lo
al stru
ture as 
riti
al indetermining the impa
t of sele
tion for mutational ro-bustness on the performan
e of a sear
h algorithm.We have also highlighted the di�eren
e between analgorithm's sear
h properties in the limit and its short-term behaviour on a neutral network. While a plateau
rawler is guaranteed to be immune to sele
tion for mu-tational robustness and to sample an entire neutral net-work in an unbiased manner, this guarantee does not pre-vent its short-term behaviour from being ineÆ
ient. For
ertain lands
apes, in
luding the RNA folding map, thisineÆ
ien
y is su
h that a sear
h algorithm impeded bysele
tion for mutational robustness is nevertheless ableto outperform it.



Con
lusionSele
tion for mutational robustness (alongside sele
tionfor rate of reprodu
tion) drives the evolutionary adap-tation of natural and arti�
ial populations. While thissele
tion pressure may sometimes appear serendipitous,it is 
apable of frustrating evolutionary progress towards�t solutions (S
huster & Swetina 1998) or biasing sim-ulation results (Bullo
k 1999). Here, numeri
al simula-tions were used to demonstrate the role of sele
tion formutational robustness in the dynami
s of two 
lasses ofpopulation-based sear
h algorithm. Rather than su�erfrom sele
tion for mutational robustness, the geneti
 al-gorithm a
hieved a level of performan
e 
omparable toor ex
eeding that of a plateau 
rawler designed to beimmune to sele
tion for mutational robustness.A formal analysis of the manner in whi
h sele
tion formutational robustness in
uen
es the dynami
s of realsear
h algorithms on neutral networks is still required,but the 
urrent study suggests that in 
omparison to anunbiased sear
h algorithm and for real-world problemswith �tness lands
apes that resemble that of the RNAfolding problem, the ability of a standard geneti
 algo-rithm to generate potentially useful innovations will notbe signi�
antly retarded by sele
tion for mutational ro-bustness.A
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