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Abstract

As a population evolves, its members are under selection
both for rate of reproduction (fitness) and mutational
robustness. For those using evolutionary algorithms as
optimisation techniques, this second selection pressure
can sometimes be beneficial, but it can also bias evolu-
tion in unwelcome and unexpected ways. Here, the role
of selection for mutational robustness in driving adap-
tation on neutral networks is explored. The behaviour
of a standard genetic algorithm is compared with that
of a search algorithm designed to be immune to selec-
tion for mutational robustness. Performance on an RNA
folding landscape suggests that selection for mutational
robustness, at least sometimes, will not unduly retard
the rate of evolutionary innovation enjoyed by a genetic
algorithm. Two classes of random landscape are used to
explore the reasons for this result.

Introduction

It is well known that evolution will select for solutions
with both high fitness and high robustness. That is, evo-
lution favours wvolumes of search space associated with
fit phenotypes, rather than single points of high fitness.
The robustness of a solution is here defined in terms of
its insensitivity to the action of the genetic operators at
work during its evolution. By definition, then, perturb-
ing a robust solution’s genotype through mutation (or
perhaps crossover) will not tend to perturb its fitness.
It is easy to see why this type of robustness (hereafter
termed mutational robustness) is implicated in evolu-
tionary adaptation. An individual’s biological fitness is
often equated with the number of progeny it leaves, but
it might be more accurate to use the propensity to leave
viable offspring as an indicator of fitness (Mills & Beatty
1994). This move encourages us to view fitness as the
property of a lineage rather than a single genotype. Two
genotypes that give rise to equivalent phenotypes (and
thus have an equivalent propensity to leave offspring)
may nevertheless differ in fitness under this interpreta-
tion. If the mutant offspring of one tend to be non-viable
whereas those of the other tend to be viable, lineages
stemming from the latter will be more successful than
those stemming from the former (see Figure 1). For the
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Figure 1: Two genotypes, A and B, achieve equivalent
fitness scores (top). However, A’s relative proximity to
a fitness cliff ensures that it is less mutationally robust
than B, and that, as a result, its effective fitness is some-
what reduced, while B’s is increased (bottom).

remainder of the paper, I will reserve the term fitness
to refer to the proximal propensity to leave offspring in
the next generation and effective fitness to refer to the
tendency for lineages stemming from a genotype to be
successful over generational time. A more detailed treat-
ment of this type of issue is presented in association with
the concept of the quasi-species (Eigen & Schuster 1979;
Eigen, McCaskill, & Schuster 1988; 1989; Nowak 1992).

For certain optimisation problems, the tendency for
a genetic algorithm (GA) to favour mutationally robust
solutions can be very useful. Consider a parametric de-
sign problem in which we assess the performance of each
solution in simulation, but can only realise a solution in
the real world subject to certain manufacturing toler-
ances. If the genetic operators at work during evolution
mirror the nature of the real-world manufacturing errors,
it is possible that a standard GA will discover not only



a good solution, but one that is robust to manufactur-
ing errors. By exploiting the genetic algorithm’s natural
tendency to discover a fit volume of the search space,
we can automatically steer the search towards realisable
solutions.

Of course, if one wishes to discover the best point in a
search space, a GA’s tendency to be distracted by geno-
types that are not as fit but are more mutationally robust
can be frustrating (Schuster & Swetina 1998). In con-
trast, the behaviour of a hill-climbing algorithm (where
a single solution is repeatedly mutated until an improve-
ment is discovered at which point the improved mutant
is repeatedly mutated, and so on) will not be affected
by mutational robustness. Such a search process is able
to scale ridges of increasing fitness that would be diffi-
cult or impossible for a genetic algorithm to climb due to
their low mutational robustness. However, rather than
infer that one class of algorithm is better or worse than
another on the basis of these considerations, these dif-
ferent algorithmic biases should be understood to en-
sure that different algorithms are suited to different op-
timisation problems (Mitchell, Holland, & Forrest 1994;
Wolpert & Macready 1997). Characterising which algo-
rithms suit which problem types is the challenge that
arises from this perspective.

Furthermore, comparing the behaviour of search algo-
rithms as they traverse flat fitness landscapes may also
reveal the presence of inherent biases. For example, the
manner in which a search algorithm’s mutation opera-
tors deal with illegal mutants may influence its search
behaviour (Bullock 1999; 2001). Biases such as these
can also be interpreted in terms of selection for muta-
tional robustness. For instance, consider a real-valued,
n-dimensional genotype where the value at each of the
loci must lie in the range [0, 1], and a mutation operator
that perturbs the value at each of the loci by a small
value drawn from a random distribution. Occasionally,
the mutation operator will generate a genotype featur-
ing one or more illegal values. Dealing with these illegal
mutants may introduce a mutation bias.

For example, replacing any illegal mutant offspring
with the nearest legal genotype increases the muta-
tional robustness of solutions at the edges of the search
space by lowering their effective mutation rate. In con-
trast, ignoring an illegal mutant offspring and replac-
ing it with the offspring of a newly chosen parent will
tend to reduce the mutational robustness of solutions
close to the edges of the search space. The former ap-
proach will tend to bias evolutionary search in favour
of extreme-valued genotypes, the latter away from these
genotypes. Although the landscape appears to be flat,
it is effectively warped by the mutation operator, which
imposes a gradient in effective fitness where none was
intended. The arbitrariness of these edge effects may
retard evolutionary optimisation or introduce artefacts

into an evolutionary simulation model (Bullock 1999;
2001).

Here this approach is extended to explore the impact
of selection for mutational robustness on the behaviour
of search algorithms trapped on neutral networks. First,
the notion of neutrality and its relation to mutational
robustness will be introduced.

Neutrality and Mutational Robustness

In the context of a search space, neutrality is the prop-
erty of adjacent genotypes enjoying equivalent fitness
scores. A neutral network consists of a set of genotypes
with equal fitness, where each member of the set neigh-
bours at least one other member. Again, these notions
of adjacency and neighbourhood must be cashed out in
terms of an algorithm’s genetic operators.

For specific real-world search spaces, such as the RNA
folding map, it has been demonstrated that the neutral-
ity present is of a useful kind (Huynen 1996; Huynen,
Stadler, & Fontana 1996; Fontana & Schuster 1998a;
1998b). Neutral networks percolate the search space,
neighbouring a large proportion of possible alternative
phenotypes. In addition, these neutral networks enjoy a
property of constant innovation in that, over many gen-
erations, a neutral walk across these neutral networks
tends to encounter novel phenotypes at a constant rate
comparable to that which would be achieved by a ran-
dom walk in the search space.

As such, a landscape exhibiting the right kind of neu-
trality will be much easier to search than the canoni-
cal rugged landscapes typically associated with complex
search problems (Kauffman 1993). Rather than conceive
a population to be hill-climbing in a rugged landscape,
the picture painted by recent studies of neutrality is one
of a population enduring periods of neutral drift punc-
tuated by brief transitions to higher-fitness neutral net-
works (Barnett 1998; 2001).

Within the field of evolutionary computation, re-
searchers have discovered that some difficult evolution-
ary optimisation problems already exhibit potentially
useful neutral networks (Harvey & Thompson 1996).
Others have attempted to encourage neutral networks
where there are none by introducing redundancy into
the genetic encoding, in the hope that this will improve
the ability of evolutionary algorithms to find optimal so-
lutions in general (Shipman et al. 2000). This research
has prompted analysis of both naturally occurring neu-
tral networks (Smith et al. 2002) and artificially crafted
ones (Bullock 2001).

Implicit in the description so far has been the as-
sumption that as genotypes on a neutral network code
for equivalent phenotypes, they are selectively neutral
with respect to one another. However, if a search al-
gorithm has a tendency to favour mutationally robust
genotypes this assumption does not hold. Rather than



drift at random across a neutral network, a genetic al-
gorithm will tend to favour those parts of the network
that have a higher degree of neutrality, since these parts
are more mutationally robust (van Nimwegen, Crutch-
field, & Huynen 1999; Wilke et al. 2001; Wilke 2001a;
2001b).

From the perspective of evolutionary optimisation,
this tendency raises a concern. If we are interested
in maintaining a high rate of constant innovation, we
might not want our drifting population to concentrate
on the most mutationally robust areas of the network,
since these are precisely the areas in which the rate of
innovation is at its lowest.

Here we will explore this issue by comparing the per-
formance of a GA, in terms of the rate at which it dis-
covers novel network neighbours, with that of a simi-
lar algorithm, termed a plateau crawler (PC), that has
been designed to be immune to selection for mutational
robustness.

A Simple Search Problem

In order to demonstrate the effects of selection for muta-
tional robustness on evolutionary dynamics, and to spec-
ify the two search algorithms we will concentrate on in
this paper, a very simple toy search problem will be in-
troduced. The thresholded counting ones problem is in-
tended to be a trivial example of a problem featuring
neutrality and neutral networks with which to introduce
the effects of selection for mutational robustness. It is
by no means intended to reflect the character of
neutrality as it occurs in typical real-world prob-
lems.

Each genotype is a binary string of length L with an
associated phenotype dependent on the number of geno-
typic bits that are set to one. Genotypes with more than
t bits set to one enjoy maximum fitness. All other geno-
types have zero fitness. (All problems explored in this
paper share the property that genotypes are assigned a
fitness of zero if they lie off the neutral network being
considered, and maximal fitness otherwise.)

As a result, the search space can be divided into two
neutral sets of genotypes. One sub-threshold set with
fitness zero, and one super-threshold set with maximum
fitness. We will consider the case in which L = 100 and
t = 50. For this problem, the search space comprises a
single neutral network associated with fitness zero and
a second neutral network associated with maximum fit-
ness.

We can expect a search algorithm that commences
searching somewhere on the upper network to drift
across this network in some manner. Periodically, the al-
gorithm may generate sub-threshold mutants that lie off
the upper network. Given that we are interested in the
rate at which algorithms discover novel genotypes that
neighbour a neutral network, i.e., the rate at which they

generate potentially useful innovations, we will record
the rate at which novel sub-threshold genotypes are gen-
erated as a measure of performance.!

The Algorithms

We will contrast the behaviour of two simple search al-
gorithms, a standard genetic algorithm and a plateau
crawler. The motivation for the design of the latter was
to create an algorithm that is identical to the genetic
algorithm in all respects save that it is provably immune
from selection for mutational robustness. The result-
ing algorithm shares similarities with both the random
mautation hill-climber (Forrest & Mitchell 1993) and the
Barnett’s (2001) net-crawler.

Genetic Algorithm

1. Initialise a population of S clones of a random chosen
genotype, G, with the phenotype P

2. Pick parents at random from the current generation
until one is found with phenotype P

3. With probability 1 — M: Copy the chosen parent un-
changed to the next generation

With probability M:

(a) Mutate the parental genotype, forming a mutant
genotype, G, , by replacing the value at a randomly
chosen loci with a randomly chosen legal alternative

(b) Determine the phenotype, P,,, of the resulting mu-
tant

(c) If P, 2 P and G,, has not been encountered be-
fore, increment C', a cumulative tally of the number
of novel off-network genotypes discovered by the al-
gorithm so far

(d) Add the resulting offspring to the next generation

4. Repeat steps 2 and 3 until a complete new generation
has been produced

5. Record the value of C for this generation, C),

6. Repeat steps 2 thru 5 until N generations of search
have been completed

Plateau Crawler

In order to implement a plateau crawler (PC), we need

only add the following step between 3(c) and 3(d):

e If P,, # P replace the mutant with an exact copy of
its parent.

'In reality, we are interested in the discovery of fit phe-
notypes, but in the absence of any information concerning
how phenotypes are distributed in the space, the discovery of
novel genotypes is a good proxy.



Notice that, for each algorithm, population size is
fixed, parents are chosen in a standard roulette-wheel
fashion, and reproduction involves only single point mu-
tations and no crossover. Mutation rate, M, was set to
0.5 for all runs reported in this paper - i.e., 50% of off-
spring were identical to their parents, while 50% differed
by exactly one allele.

This mutation rate is relatively low compared to rates
typically used in evolutionary computation. To the ex-
tent that error-free reproduction can occur, pressure for
mutational robustness will decrease. If every offspring
were a perfect copy of its parent there would be no pres-
sure to avoid genotypes that neighboured non-viable mu-
tants. However, such a situation would lack the heritable
variation that drives mutation there would be no se-
lection at all. As mutation rate is increased, we would
expect selection for mutational robustness to become a
more significant driver of evolutionary change. In the
case where every offspring is a mutant, selection for mu-
tational robustness will be critical. Fit points in geno-
type space will not be represented in a population unless
they are surrounded by similarly fit mutant genotypes.

Although the plateau crawler algorithm is practically
identical to the genetic algorithm, in operation it more
closely resembles a population of S hill-climbers. It dif-
fers from the genetic algorithm in that every parent cho-
sen to reproduce is guaranteed to either leave a copy of
itself or a mutated offspring that shares its phenotype
and fitness. As such the plateau crawler ensures that all
offspring, and grandchildren, etc., have an equal chance
of being chosen as parents themselves. This implies that
the plateau crawler should be unaffected by mutational
robustness, spending on average an equal amount of time
at each point on a neutral network (Hughes 1996).

By contrast, the fact that the genetic algorithm al-
lows parents to leave mutant offspring that are not vi-
able ensures that lineages featuring genotypes with many
non-neutral neighbours will not leave as many descen-
dants as lineages featuring genotypes that are muta-
tionally robust. This implies that, on average, the ge-
netic algorithm should spend more time in the parts of
the neutral network that enjoy a high degree of neu-
trality (van Nimwegen, Crutchfield, & Huynen 1999;
Wilke 2001a).

Notice also that the plateau crawler differs slightly
from a population of S independent hill-climbers in that
rather than ensuring that each of the S members of
the population generate exactly one offspring, the algo-
rithm (like a GA) samples S parents at random from
the population with replacement. As a result of the
sampling error that this method entails, we can expect
that a plateau crawler population, like a GA popula-
tion, will tend to remain clustered rather than sim-
ply diffuse across the network as a population of in-
dependent hill-climbers would (Derrida & Peliti 1991;
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Figure 2: Mean (n=>500) discovery rate of a plateau
crawler (circles) and a genetic algorithm (squares) solv-
ing the thresholded counting-ones problem with geno-
type length 100 and threshold 50 for 100 generations of
search.

Barnett 2001).

Results

For our purposes, an algorithm should be rewarded for
discovering novel non-neutral genotypes quickly and of-
ten. As such, each algorithm’s performance is equated
with the cumulative frequency which it discovers unique
off-network genotypes (hereafter termed an algorithm’s
discovery rate). This value can be calculated as the area
under a cumulative plot of unique off-network genotypes
discovered over generational time,

N
Dal_q = Z Cn
n=1

The discovery rate of each algorithm for the thresh-
olded counting ones game with L = 100 and ¢ = 50, av-
eraged over 500 runs of 100 generations each, is depicted
in Figure 2. As might be expected given the above dis-
cussion, the genetic algorithm is outperformed by the
plateau crawler. We can see why when we consider the
manner in which the 500 populations were distributed
over the phenotype space at the end of the runs (Fig-
ure 3). The plateau crawler has, on average, distributed
the evolving population across the entire neutral net-
work, closely approximating a random sampling of the
high-fitness plateau. By contrast, the genetic algorithm
has tended to avoid genotypes associated with pheno-
types close to 50. For the genetic algorithm, this volume
of the search space suffers from poor mutational robust-
ness, and as a result is not successful.

These results, although drawn from a trivial search
problem, raise some interesting possibilities. Could the
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Figure 3: Three phenotypic frequency distributions for
the counting-ones problem with genotype length 100 and
threshold 50. The solid line represents the frequency
distribution that would result from a population of ran-
domly drawn super-threshold genotypes. Circles denote
the aggregate phenotypic frequency distribution, after
100 generations of search, achieved by 500 runs of a
plateau crawler. Squares denote the equivalent aggre-
gate distribution achieved by 500 runs of a genetic algo-
rithm. See text for details.

difference between the performance of the two algo-
rithm’s somehow be used as an on-line metric with which
to dynamically measure the strength of selection for mu-
tational robustness? With this type of information at
our disposal, could we dynamically alter a search algo-
rithm to control for this search bias? Perhaps increasing
or decreasing the mutation rate might allow us to counter
an algorithm’s tendency to concentrate on unproductive
volumes of search space (Barnett 1998)7 Alternatively,
perhaps this information might be used by a hybrid algo-
rithm to appropriately swapped from GA-style search to
PC-style search. Before we can assess these possibilities,
let us explore the performance of the same algorithms
on a more realistic search problem.

RNA Folding Landscape

The manner in which different RNA sequences fold into
their associated secondary structures has been a useful
test case for assessing the role of neutrality and neutral
networks in adaptive evolution (Schuster et al. 1994;
Huynen, Stadler, & Fontana 1996; Schuster & Fontana
1999; Wilke 2001a). These studies have revealed that
many RNA sequences fold into equivalent secondary
structures and that the frequency distribution over these
secondary structures exhibits a Zipf-like power law, with
only a few very frequent secondary structures and very
many rare secondary structures. In addition, it is com-
mon that a phenotype is easily accessible from an ar-
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Figure 4: Discovery rate for a plateau crawler (circles)
and a genetic algorithm (squares) searching an RNA
folding landscape. Each algorithm was initialised with
a population of 100 clones of the same randomly chosen
RNA sequence of length 100.

bitrary point in sequence space, with randomly chosen
phenotypes being separated by only a small number of
point mutations. Recent studies have begun to explore
the role of mutational robustness in influencing adap-
tation on these landscapes (van Nimwegen, Crutchfield,
& Huynen 1999; Wilke 2001b; Wilke et al. 2001), con-
cluding that selection for mutational robustness is an
important driver at high mutation rates.

Here we compare the performance of the GA and
PC algorithms on neutral networks chosen at ran-
dom from a space of RNA sequences of length
100. Secondary structures were computed using ver-
sion 1.4 of the Vienna RNA Package (Hofacker et
al. 1994) which uses the free energies described in
(Mathews et al. 1999) and is freely available from
http://www.tbi.univie.ac.at/~ivo/RNA/. Folding
was calculated at 30°C, and secondary structures were
considered equivalent if the edit distance separating their
tree representations was zero.

Since we expect that, in practice, search algorithms
traversing a neutral network will not need to explore a
large proportion of the network before encountering a
transition to a higher-fitness phenotype, we will focus
on the relatively short- or medium-term behaviour of
search algorithms on neutral networks. In particular, we
will not be particularly interested in the behaviour of
these algorithms in the limit of infinite time.

Figure 4 shows the performance of the two algorithms
run from the same initial RNA sequence for 1000 gener-
ations of search. In marked contrast to the results from
the thresholded counting ones problem, both algorithms
perform comparably. Does this result hold in general
for neutral networks drawn at random from this search
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Figure 5: Scatterplot comparing the discovery rate of a
genetic algorithm with that of a plateau crawler. Each
of the 100 points represents a pair of 100-generation
runs from a randomly chosen ancestral RNA sequence
of length 100. The line y = z separates the graph into
a lower area in which the genetic algorithm outperforms
the plateau crawler and an upper area in which the con-
verse is true. On average, the genetic algorithm outper-
forms the plateau crawler across the sample.

space? Figure 5 shows the results obtained by running
each algorithm for 100 generations from the same 100
randomly chosen RNA sequences. The two algorithms
continue to perform comparably, with, on average, the
GA slightly outperforming the PC, discovering novel net-
work neighbours at a slightly higher rate.

Given that we expect the PC algorithm to sample the
neutral network evenly, spending the same amount of
time at each point on the network, whereas the GA is
expected to favour the less productive parts of the net-
work, how can we account for this result?

Figure 6 demonstrates that during the same runs de-
picted in Figure 5 the GA consistently visited a greater
number of unique genotypes on the neutral network.
The plateau crawler may, in the limit, visit the entire
network, but the genetic algorithm, in the short-term
is doing a better job of sampling the network. In ad-
dition, Figure 7 shows that the during the same runs,
the plateau crawler revisited already explored network
neighbours more frequently than the genetic algorithm.
While the plateau crawler is not confined to mutationally
robust volumes of the search space, it has a tendency to
repeatedly sample the same neighbours, and in doing so
wastes time that the genetic algorithm spends in novel
parts of the neutral network.

How generic are the results we have obtained for first
the thresholded counting ones problem and now the
RNA landscape? What are the properties of each that
are responsible for the performance of the two algorithms
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Figure 6: Scatterplot comparing the rate at which a ge-
netic algorithm discovers novel members of a neutral net-
work with the rate achieved by a plateau crawler. Points
represent the same runs depicted in Figure 5.
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Figure 7: Scatterplot comparing the rate at which a
genetic algorithm rediscovers genotypes that neighbour
a neutral network with the rate achieved by a plateau
crawler. Points represent the same runs depicted in Fig-
ures 5 and 6.

that we have tested? Clearly, there exist landscapes
for which genetic algorithms are significantly retarded
by selection for mutational robustness. Equally clearly
there exist, different landscapes for which this is not the
case. Before addressing these questions, a class of ran-
dom landscapes with which to explore these phenomena
further will be introduced.

Random Landscapes

A useful class of fitness landscape has been proposed
by Barnett (1998) in order to study the role of neutral-
ity in adaptive evolution. Dubbed NKp landscapes they
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Figure 8: Variation in mean (n=>50) discovery rate of a
genetic algorithm (squares) and a plateau crawler (cir-
cles) after 100 generations of search on random graphs
as the degree of neutrality, p, is varied from low (p =~ 0)
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extend Kauffman’s (1993) NK landscape formalism to
include a tunable degree of neutrality. Future work will
explore replicating the results presented here on NKp
landscapes, but for the moment we will focus on a sim-
pler, and perhaps as a result less interesting, scheme.

Search commences at an arbitrary genotype which is
assigned a fitness of 1. Whenever, through mutation, a
search algorithm generates a novel genotype, we deter-
mine its fitness by reference to the landscape’s degree
of neutrality, p. With probability p, the mutant enjoys
fitness 1, otherwise it is assigned fitness zero. In this
manner, the fitness landscape is generated at random as
the population traverses it. In this simple random land-
scape, each point has, on average, an equivalent degree
of neutrality (although, of course, each offspring geno-
type may be adjacent to genotypes that have already
been encountered and thus have already had their fit-
ness specified). By varying p, we can specify landscapes
in which neutrality is rare or commonplace.

Figure 8 depicts how the two search algorithms per-
form across a range of landscapes, as we vary p. At
extreme values of p both algorithms perform compara-
bly since there are either very few off-network genotypes
to discover (p ~ 1) or very few neutral neighbours to
discover (p = 0). At intermediate values of p, both al-
gorithms improve, with the GA outperforming the PC
over the entire range. The genetic algorithm appears
more able to take advantage of the tendency for inter-
mediate degrees of neutrality to increase the number of
network neighbours available for discovery.

Figure 9 suggests that again an explanation for this
disparity is to be found in the PCs tendency to resample
network neighbours at a higher rate than the GA. Even

though, on average, no point on the neutral network is
more mutationally robust than any other, and hence no
more productive, there still appears to be a significant
difference between the ability of each algorithm to tra-
verse the network.

In fact, the PC suffers a tendency to linger at each
point in the neutral network that is inversely propor-
tional to the degree of neutrality at that point. This
tendency is necessary if the algorithm is to sample the
entire network equally. Since, by definition, there are
fewer neutral transitions to genotypes with a low degree
of neutrality, they are hard to find. As a result, an al-
gorithm that must spend equal amounts of time at each
point on a neutral network must linger at these points
when they are discovered. Unfortunately, during these
periods there is a tendency to repeatedly generate the
same mutant offspring.

In contrast, the GA has a tendency to desert points in
the network that suffer a low degree of neutrality, expos-
ing it to the complementary risk of repeatedly generating
the same neutral mutants in an area of mutational ro-
bustness. However, it appears that these complementary
risks do not negate one another in these landscapes
eschewing the most peripheral parts of a neutral network
does not prohibit the GA encountering novel network
neighbours at a higher rate than the PC.

Introducing Local Structure

By slightly altering the manner in which a random land-
scape is generated, we can introduce some of the local
structure that is absent from the random landscapes ex-
plored above, but is presumably present in real search
spaces such as that of the RNA folding problem. In this
way, rather than tending to distribute neutrality evenly
across the landscape, we can ensure that different parts
of the network exhibit different degrees of neutrality, and
can alter the degree to which genotypes with a high de-
gree of neutrality tend to cluster together.

When a novel genotype is generated by a search algo-
rithm, we assign it a fitness value as before, but assign
that point in the search space a unique p value as follows:

' _ or (pparent < 05)
Poffspring 1— (‘I>K) (ppa'r‘ent 2 05)

Where @ is a uniformly distributed random variate in
the range [0,1], and « is a clustering parameter used to
control the extent to which genotypes with a high degree
of neutrality tend to neighbour genotypes with a similar
high degree of neutrality. For k = 1 the degree of neu-
trality associated with each point in the space is chosen
at random from the range [0,1], and as such is inde-
pendent of its neighbours. As k increases, a genotype’s
degree of neutrality becomes increasingly determined by
that of its “parent”.
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Figure 10: Variation in mean (n=>50) discovery rate of a
genetic algorithm (squares) and a plateau crawler (cir-
cles) after 100 generations of search on random graphs
as a clustering parameter, k, is varied from no clustering
(k = 1) to highly clustered (x & 50).

Figure 10 depicts the manner in which the perfor-
mance of each algorithm varies with the clustering pa-
rameter, k. For Kk = 1 the GA outperforms the PC. As &
increases, the performance of each algorithm falls to an
equivalent asymptotic level. However, PC performance
declines at a slower rate than GA performance, ensur-
ing that the PC enjoys an advantage for the majority of
the range explored. Here we begin to see the deleterious
effects of selection for mutational robustness that were
expected given the results from the thresholded counting

ones problem.

Where there is a degree of local structure to the search
space, the tendency for a genetic algorithm to concen-
trate on mutationally robust genotypes tends to retard
the rate at which it discovers off-network novelty, at least
by comparison with a plateau crawler.

It is likely that the locally structured random land-
scapes characterised by intermediate values of x resem-
ble that of the thresholded counting ones problem with
which this study opened. Such landscapes will feature
densely interconnected neutral networks separated by
relatively sharp boundaries.

Discussion

The results presented here are preliminary in the sense
that they should be regarded as the precursor to analyti-
cal work. Currently it is unclear what definitive answers
can be given to the question raised in the title of this
paper. Nevertheless, these simulations serve to demon-
strate that different search algorithms cope with different
types of neutrality in different ways. As such they sug-
gest the potential for algorithms to be tailored to suit
particular classes of neutrality, or to dynamically recon-
figure themselves to cope with changes in the character
of the landscape they find themselves searching.

Moreover, these results show that although selection
for mutational robustness will impede evolutionary in-
novation on a neutral network, that this is a significant
problem for evolutionary optimisation is by no means
a foregone conclusion. It may well be that significant
numbers of real-world search problem share the struc-
tural properties of the RNA landscape such that stan-
dard evolutionary algorithms will remain largely untrou-
bled by selection for mutational robustness.

The extent to which the topology of a neutral net-
work is a critical determiner of the dynamics of evolution
adaptation is beginning to be appreciated (van Nimwe-
gen, Crutchfield, & Huynen 1999). Here, we identify
the character of a network’s local structure as critical in
determining the impact of selection for mutational ro-
bustness on the performance of a search algorithm.

We have also highlighted the difference between an
algorithm’s search properties in the limit and its short-
term behaviour on a neutral network. While a plateau
crawler is guaranteed to be immune to selection for mu-
tational robustness and to sample an entire neutral net-
work in an unbiased manner, this guarantee does not pre-
vent its short-term behaviour from being inefficient. For
certain landscapes, including the RNA folding map, this
inefficiency is such that a search algorithm impeded by
selection for mutational robustness is nevertheless able
to outperform it.



Conclusion

Selection for mutational robustness (alongside selection
for rate of reproduction) drives the evolutionary adap-
tation of natural and artificial populations. While this
selection pressure may sometimes appear serendipitous,
it is capable of frustrating evolutionary progress towards
fit solutions (Schuster & Swetina 1998) or biasing sim-
ulation results (Bullock 1999). Here, numerical simula-
tions were used to demonstrate the role of selection for
mutational robustness in the dynamics of two classes of
population-based search algorithm. Rather than suffer
from selection for mutational robustness, the genetic al-
gorithm achieved a level of performance comparable to
or exceeding that of a plateau crawler designed to be
immune to selection for mutational robustness.

A formal analysis of the manner in which selection for
mutational robustness influences the dynamics of real
search algorithms on neutral networks is still required,
but the current study suggests that in comparison to an
unbiased search algorithm and for real-world problems
with fitness landscapes that resemble that of the RNA
folding problem, the ability of a standard genetic algo-
rithm to generate potentially useful innovations will not
be significantly retarded by selection for mutational ro-
bustness.
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