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Abstract. Recently, in both the neuroscience and adaptive behaviour
communities, there has been growing interest in the interplay of mul-
tiple timescales within neural systems. In particular, the phenomenon
of neuromodulation has received a great deal of interest within neuro-
science and a growing amount of attention within adaptive behaviour
research. This interest has been driven by hypotheses and evidence that
have linked neuromodulatory chemicals to a wide range of important
adaptive processes such as regulation, reconfiguration, and plasticity.
Here, we first demonstrate that manipulating timescales can qualita-
tively alter the dynamics of a simple system of coupled model neurons.
We go on to explore this effect in larger systems within the framework
employed by Gardner, Ashby and May in their seminal studies of sta-
bility in complex networks. On the basis of linear stability analysis, we
conclude that, despite evidence that timescale is important for stabil-
ity, the presence of multiple timescales within a single system has, in
general, no appreciable effect on the May-Wigner stability /connectance
relationship. Finally we address some of the shortcomings of linear stabil-
ity analysis and conclude that more sophisticated analytical approaches
are required in order to explore the impact of multiple timescales on the
temporally extended dynamics of adaptive systems.

1 Introduction

Many of the model systems central to artificial life are explicit networks of simple
interacting elements. Cellular automata (CA), artificial neural networks (ANNs)
and random Boolean networks (RBNs), for instance, have become key tools in
understanding what it is for a system to exhibit complex adaptive behaviour.
Such models tend to be the subject of various different kinds of question. For
example, the generation of different classes of dynamic behaviour (fixed, cyclic,
complex, chaotic) has been of interest to CA and RBN researchers, e.g., [1I2]
whereas those working with ANNs have been interested in questions of evolv-
ability, problem solving and autonomous agent control, amongst others [3]. In-
terestingly, in answering these questions, the role of timescale within these sys-
tems has often been neglected. CA and RBNs typically comprise elements that
share the same timescale (and updated with the same frequency),[d]. Similarly,
while some continuous-time recurrent neural networks (CTRNNs) comprise neu-
rons with explicit and varied timescales, this property has not received as much
attention as others. For example, Beer [3] presents an extensive examination of
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the dynamics of recurrent CTRNN neurons, but only briefly mentions the impact
of their time constants. This tendency to downplay timescale is somewhat sur-
prising, since the natural adaptive systems that inspired these models typically
involve processes and mechanisms that operate at multiple timescales. In par-
ticular, there is growing recognition that slow chemical processes within neural
systems can be key to their ability to exhibit stable, sensitive, reconfigurable
adaptive behaviour [5-7].

Here, we adopt an approach to understanding stability in complex networks
inspired by classic cybernetics research, and adapt it to explore questions of
timescale raised by this current work. First, a brief and selective account of the
role of timescales in neural systems is presented, before a simple model exhibiting
timescale-sensitive dynamics is detailed. Subsequently, a numerical approach to
characterising the influence of timescale on stability is undertaken. The results
are discussed and future directions are suggested.

1.1 Neuromodulation and Multiple Timescales

Neuromodulation is a term used diversely by neuroscientists to identify non-
traditional processes acting alongside conventional neurotransmission. Although
the term has been in use for over 20 years, the ubiquity of such processes has
only recently been acknowledged. The action of a neuromodulator within the
nervous system differs significantly from that idealised within the traditional
connectionist paradigm: fast, point-to-point, excitatory/inhibitory [6]. Within
neuroscience, there is a large and growing literature that associates slow, diffu-
sive, modulatory, chemical mechanisms with a wide range of important adaptive
capacities. Turrigiano [7], for instance, suggests that this type of mechanism is
important for efficient lifetime adaptation within vertebrate nervous systems.
Neuromodulators have also been implicated in triggering plasticity, regulating
activity, governing reconfiguration, etc. [6]. However, conjectures on the role of
neuromodulation in adaptation are not solely the province of the neuroscience
community. There have also been treatments of this issue within the artificial life
and adaptive behaviour communities [8]9]. For instance, the success of GasNets,
a novel class of artificial neural network inspired by neuromodulation research
[10], as an evolutionary robotics control architecture has generated a number
of interesting theories regarding neuromodulation and adaptive behaviour [11].
GasNets consist of a traditional connectionist network over which the diffusion
of neuromodulatory gases is modeled. The underlying network is embedded in a
2D space, where each neuron has the potential to emit gas, which diffuses over
the network from a point source, affecting the properties of the gas-sensitive
neurons that it comes into contact with. This gas mechanism is inspired by the
neuromodulator nitric oxide (NO), which is small enough to pass freely through
lipid tissue. The emission of NO is thought to be ubiquitous throughout the ner-
vous system, but in general it is not accounted for in artificial models of neuronal
systems.

Although GasNets have only been tested on a small range of tasks to date,
the ease with which high-quality solutions can be evolved suggests that the pres-
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ence of idealised neuromodulation may increase the evolvability of this class of
control system across a range of real-world problems [I2]. As yet there is little
understanding of why this should be the case. While GasNets have been explored
via a series of metrics, the contribution that neuromodulation makes to network
evolvability remains unclear [I3]. Aside from this postulated contribution to
GasNet evolvability, the inclusion of idealised neuromodulatory mechanisms in
a control system could result in greatly enhanced adaptive properties. However,
it is unclear whether these benefits are due to the specifics of the chosen abstrac-
tion or more fundamental principles underlying neuromodulation. There is some
evidence that it is the combination of fast (neurotransmission) and slow (neu-
romodulation) processes that may be responsible [14]. Indeed, the slow nature
of neuromodulation appears crucial to many of its postulated roles. Whether
regulating the gross activity in a neural circuit, or maintaining a neural variable
within critical bounds via homeostatic plasticity [7], or switching between dif-
ferent modes of circuit behaviour dynamics (e.g., the switch between swimming
and the escape reflex in Tritonia, [15]), neuromodulators are often best consid-
ered as slow processes that parameterise a fast sub-system. Understanding how
to model this interaction across temporal hierarchies remains an open question.

Of course, the presence of explicitly slow elements or processes is not nec-
essary in order to allow a system to exhibit multiple timescales. The flow of
activation through a large recurrent network of fast elements may allow differ-
ent timescales to arise. For instance, Harvey and Thompson [16] evolved circuitry
to discriminate between slow oscillatory inputs where the intrinsic timescale of
the components (a few nanoseconds) is five orders of magnitude shorter than
the dynamics exhibited by the evolved circuit. Furthermore, in small systems,
saddle node or homoclinic bifurcations can give rise to slow dynamics even if
the underlying nodes are intrinsically fast [I7]. For example, in most models of
spiking neurons the explicit timescales are fast, usually on the order of 10ms
or less [6], yet in many cases the dynamics of interest extend well beyond these
characteristic timescales. However, given that neural substrates support adap-
tive behaviour at many different temporal scales and that neuromodulators act
on a range of timescales typically slower than that of neurotransmission, it seems
intuitive that there may be some value in this explicit combination of multiple
timescales.

2 Stability Criteria for Complex Networks

In a now classic study, Gardner and Ashby [I8] investigated stability criteria for
large complex systems in terms of the effect of connectivity on the tendency of a
system to exhibit a stable point attractor. The relationship between a network’s
structure and its stability has been of long standing importance, particularly
in the field of ecology [19]. At the time, biologists typically assumed that the
stability of an ecosystem would increase with its biodiversity (due to mean field
averaging). The same issue has significance for systems ranging from traffic net-
works to the human brain. In each case, Gardner and Ashby argued, we should
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not necessarily expect to observe stability as systems grow in size. Their nu-
merical results characterised the way in which networks of interacting elements
become less stable as their interconnectivity increased. This tendency towards
stability was subsequently formalised by May [20], who derived a threshold for
stability in terms of the mean-square of the strength of the connections and the
degree of interconnectivity. In both these studies, the systems are assumed to
comprise elements that share a single intrinsic timescale.

Gardner and Ashby [18] and May [20] considered the stability of a linear
system y = (y;,7 = 1...N), given by

dy

a =AY (1)

N
Yi = —y; + Zwijyj in vector form :
j=1

Here, A = Q — I, where 2 = (w;;) is a matrix of weighted interaction strengths
and I is simply the identity matrix. Such a system is said to be stable when every
eigenvalue of A has a negative real part [2I]. Gardner and Ashby [I§] employed
a numerical method to discover the stability of an ensemble of random networks,
varying network size, N, and network connectivity, C' (the probability that any
entry of the weight matrix €2 is non-zero or, equivalently, the probability that
any two elements interact). They were able to demonstrate that stability could
be compromised by high connectivity.

To derive a threshold for stability, May [20] used analytical results from the
field of random matrix theory [21I22]. He drew the entries of €2 from a statistical
distribution with zero mean and a mean-square value, . He then derived a
critical threshold above which any network has a high probability of instability.
Explicitly, he stated that in the limit of large system size (N > 1), a system is
almost certainly unstable if NCa? > 1.

This result, generally referred to as the May-Wigner stability theorem, corre-
sponds well with Gardner and Ashby’s original findings and still holds as a very
important threshold [23]. It has been extended recently to demonstrate that the
result stills holds for systems in which connections between elements exhibit
time delays [24]. However, as yet, the influence of timescale, as distinct from
time delay, has not been explored. Recent work within neuroscience and adap-
tive behaviour suggests that systems involving processes on multiple timescales
readily exhibit important classes of adaptive behaviour. Here we apply the ap-
proach introduced by Gardner and Ashby [I8] and formalised by May [20] to
such systems.

3 Timescale in a Two-Node System

The analysis described above assumes linearity, yet it is possible to apply the re-
sults to non-linear systems if we restrict our attention to behaviour in the vicinity
of a specific equilibrium. In this case, we can consider the local behaviour around
this equilibrium and determine the stability of the system under a (vanishingly
small) perturbation. This process is known as linear stability analysis. It will tell
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us about the local asymptotic behaviour of a non-linear system around a par-
ticular equilibrium but tell us nothing about global stability. For example, while
a limit cycle cannot be said to be locally stable, it may be globally stable such
that under perturbation the system always settles to the same cyclic trajectory.

May’s result has been criticised because it relies on this linearization around
equilibrium, which is thought to make it inapplicable where perturbations are
large or systems exhibit limit sets of higher dimension than a fixed point. While
this issue remains open, recent calculations of global dynamics have obtained
the May-Wigner stability thresholds as thresholds for global system stability.
These results suggest that the May-Wigner theorem may be more universal
than originally expected[23]. So, while this technique has restricted application
to non-linear systems, it may still has the potential to deliver general insight
into the dynamics of complex systems.

We will consider a system of equations used to describe continuous-time
recurrent neural networks (CTRNNs). The CTRNN is commonplace throughout
neuroscience (as a leaky integrator) and evolutionary robotics [3].

. n tanh |:Zj Wiy + 91:|
Yi=—_+
Ti Ti

(2)

Here y; represents activation at the i** neuron; w;; is a weight on the connection
between neurons i and j; ; is the bias value at the i** neuron; and 7; is the
time constant of the i** neuron, which defines the rate of leakage or decay of
activation. The equation is forward integrated with a simple Euler step method
with time slices of dt = 0.005. Note that 7 represents the explicit timescale of
each of the units and it is this parameter that we will concern ourselves with
in this work. In this formulation, the sigmoidal transfer function is a hyper-
bolic tangent rather than the more familiar exponential sigmoid (see e.g., REF
[3]. Note that, here, activation does not represent the membrane potential of a
neuron, but rather the firing rate, or mean number of spiking events per unit
time, averaged over some appropriate time window. In general we can think of
the CTRNN equation as a re-description of the firing rate of a given neuron (or
ensemble) averaged over some window, 7.

We will first consider a simple two-node system described by equation (). To
determine the linear stability of this system, we must first calculate the coordi-
nates of its equilibrium point. This is located at the intersection of the system’s
nullclines, each defined by y; = 0. Second, we must calculate the Jacobian of the
system at equilibrium,.J, given by equation (@), (further details can be found in
Refs. [I7] and [3].)
dy1 dyi
dy1 dyg
dyo dy2
dyr dy2/ gy, o
Here, 77 and g5 are the equilibrium activation values, and the matrix therefore
represents the instantaneous interaction between each element around the equi-
librium point, and can be analytically calculated. Under these conditions, this

J= (3)
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Fig. 1. Variation in the behaviour of a simple two-node circuit with recurrent links
(parameterized as shown, left), due to manipulating the timescale of its component
elements. In each case, the system is released from an initial condition (y1 = y2 = 0.01)
in the vicinity of the equilibrium at g7 = g2 = 0. A. 4 = 1,72 = 10: The system
exhibits stability. B. 71 = 72 = 1: the system diverges from equilibrium to a limit cycle.
Eigenvalues of the Jacobian for each system are shown alongside the plots.

matrix is equivalent to A in May’s formulation. We can now determine whether
the system is stable by requiring that the real parts of each eigenvalue of the
matrix are negative.

In Refs. [I8] and [20] the timescales of all the elements within a system are
assumed to be equal. Here we consider the consequences of relaxing this as-
sumption. In general determining the contents of the Jacobian matrix requires
us to calculate complex terms that depend on the first order differential of the
CTRNN sigmoidal transfer functions. By stipulating that ; = 65 = 0 we guar-
antee that there is a system equilibrium at y; = y2 = 0, which simplifies the
Jacobian, thus:

wip — 1 wie

— T1 1
S = w21 wzg—l (4>
T2 T2

We can rewrite equation (@) in vector form equivalent to equation () for a
system with multiple timescales as A = (2 —I)7~!, where 7 is a vector of the
damping times, 7;, for each of element. The question here is what effect this has
on the dynamics? To understand this we will consider an example of a coupled
two-node system parameterized as illustrated in figure [Il

Figure [l depicts the behaviour of the coupled system for 7, = 1 and 7 = 10
(holding 7, = 1 constant) from the same initial conditions (y; = 0.01, y = 0.01).
For 7 = 10 the system is locally stable, converging to equilibrium after a small
perturbation. In contrast, for 7o = 1 the equilibrium at y; = y» = 0 is unstable.
Even though the system is initially perturbed only a small distance from this
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equilibrium, the trajectory diverges to a limit cycle. In fact, as we alter 7 the
system undergoes a subcritical Hopf bifurcation [I7]. Is this bifurcation reflected
in the linear stability analysis? From equation () we can determine that the
real parts of each eigenvalue change from positive to negative as we increase 1
(see figure ), indicating a transition from local instability to local stability
In this simple case, timescale (as well as connectivity and weight strengths)
affects system stability. It is interesting to note the direction of this influence—
increasing timescale separation increases system stability. This begs the question:
what effect does timescale have on larger systems, and does it interfere with the
relationship described by Gardner and Ashby, and formalised by May?

4 Larger Systems

In the previous section, we have outlined how linear stability analysis can shed
light on the dynamics around an equilibrium position in a non-linear system.
For the small system considered above, varying the timescale parameters, T,
brought about a Hopf bifurcation, altering the system’s dynamics such that it
ceased to exhibit a stable equilibrium. Could timescale have a similar effect on
the stability of larger systems? Gardner and Ashby [18] and May [20] considered
the effect of both connectivity, C, and mean-square weight value, «, on stability,
but assumed that the damping time of each of the system’s elements was unity.
In this section we will relax this assumption. To achieve this, we will establish
numerically the relationships between probability of stability and both C' and «
for networks with all 7, = 1, and compare this with the same relationships for
networks with 7; uniformly distributed over three orders of magnitude.

The basic form of these relationships, depicted in figure Bl is intuitive. At
low a or C, networks have a high probability of stability, which decreases as
a or C increase. Figure PI's vertical dotted lines represent the critical threshold
derived by May. Predictably, the correspondence between the (asymptotically
derived) threshold and the numerical results increases with network size, as
does the steepness of the numerically derived “phase transition”. However, less
predictably, there appears to be little difference between the stability of networks
comprising elements with shared, unitary timescale and networks comprising
elements with widely varying timescale. In contrast to the example given in
section [3] above, multiple timescales have little effect on the stability threshold,
or on the general character of the relationship.

Our paired design allows us to confirm that if a network below the May-
Wigner threshold is stable with unitary timescale elements, the same network will
generally be stable if those timescales vary widely. However, for networks above
the May-Wigner threshold, in all plots the probability of stability in timescale-
separated networks is slightly, but systematically, lower than the probability of

! As this analysis only concerns the local behaviour around the equilibrium, it tells
us nothing about subsequent trajectories. Nevertheless, the bounded nature of this
system and the fact that it can only exhibit one point equilibrium guarantees that,
where the original equilibrium is unstable, a cyclic attractor will surround it.
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Fig. 2. Probability of stability versus. (a) the root mean square of network weights,
a, and (b) network connectivity, C, for networks of size 4, 7, 10, 20, 50 and 100 nodes
(1000 random networks per data point). For (a), C = 50%. For (b), & = 1. Solid curves
depict results for networks with unitary 7 values, dashed curves for the same networks
with 7 values uniformly distributed across three orders of magnitude. Vertical lines
denote the stability threshold as predicted by the May-Wigner theorem for networks
of 100, 50, 20 and 10 nodes (reading left to right).

stability in equivalent unitary networks. This may indicate that the presence of
multiple timescales encourages the transition to instability. This effect is small,
less than 1% for all network sizes. Although this difference seems negligible in
the context of the overall character of the relationship, it would be interesting
to investigate its root cause since it is in opposition to the effect of timescale
separation demonstrated in section Bl

So far, we have concerned ourselves only with the real parts of a network’s
eigenvalues, since these reveal the presence of local stability. While the intro-
duction of multiple timescales has little effect on the probability that these real
parts are all negative (indicating local stability), it does have an effect on the
imaginary parts of these eigenvalues, which are far more likely to be non-zero in
this case. In a simple coupled system, these imaginary parts indicate the manner
in which the system transitions to or from equilibrium. If the imaginary parts
are zero, the equilibrium is said to be a node, otherwise it is a spiral [I7].

The increase in the number of non-zero imaginary eigenvalue parts brought
about by the introduction of multiple timescales implies that trajectories around
the equilibrium have little or no curvature. We can understand this in terms of
the strength of the effects of the different elements that comprise a network.
Because each element’s entry in the Jacobian matrix (3] is scaled by its inverse
timescale, i.e., by Tll , slower elements will have a weaker instantaneous influence.
Weakening or strengthening an element’s influence will not tend to affect local
stability, since even a weak effect can displace a system from equilibrium. How-
ever, the short-term behaviour of the system will appear to be dominated by
fast elements, although slow elements may have a large effect in the long term.

This observation is reminiscent of Ashby’s (1960) temporary independence,
[25], used to describe how trajectories in the phase space of a complex system
may evolve over low-dimensional manifolds if certain variables remain practically
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constant over some period of time. The utility, in this context, of a distinction
between interdependence over the short- and long-term is also reminiscent of
Simon’s [26] attempt to define functional modularity.

5 Conclusion

We have demonstrated that, in at least one example, altering the explicit
timescale of a network component can effect a transition between stability and
instability, despite connectivity and weight parameters remaining fixed. Con-
versely, we have shown that Gardner and Ashby’s stability/connectance rela-
tionship and May’s critical threshold are largely unaffected by the presence of
multiple timescales.

In order to characterise the influence of timescale more satisfactorily, we must
move beyond this initial linear stability analysis, and develop tools that allow
us to explore the temporally extended non-equilibrium dynamics of systems ex-
hibiting multiple timescales. One potential avenue is the extension of statistical,
information-theoretic measures of interdependence, such as mutual information
[27], to the task of determining whether sub-systems that are temporally sepa-
rated might be functionally modular in the sense of Simon [26] or Watson [28].
Such modularity is hinted at by some of the results presented here, and would go
a long way toward accounting for the different ways in which neuromodulation
has been implicated in underpinning temporally extended adaptive behaviour.
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