
Modelling Biases and Biasing Models: The Role of `Hidden Preferences'in the Arti�cial Co-evolution of Symmetrical Signals�Seth Bullock and Dave Cli�School of Cognitive and Computing SciencesUniversity of Sussex, Brighton, BN1 9QH, U.K.sethb@cogs.susx.ac.uk, davec@cogs.susx.ac.ukMarch 1996AbstractRecently, within the biology literature, there has been considerable interest in exploring the evolutionaryfunction of animal displays through computer simulations of evolutionary processes (Arak & Enquist, 1993,1995a; Enquist & Arak, 1993, 1994; Johnstone, 1994; Hurd, Wachtmeister, & Enquist, 1995; Krakauer &Johnstone, 1995). Whilst we applaud biologists' adoption of the simulation techniques pioneered within thearti�cial sciences (see, for example, Meyer & Wilson, 1991; Meyer, Roitblat, & Wilson, 1993; Cli�, Husbands,Meyer, & Wilson, 1994, for collections of such research), and feel that bi-directional cross-fertilisation betweennatural and arti�cial sciences has a bright future, we suggest that the application of such techniques toevolutionary modelling may prove to be problematic. Some debate has accompanied the work (Cook, 1995;Johnstone, 1995; Arak & Enquist, 1995b; StampDawkins & Guildford, 1995) but attention to the methodologyemployed within this embryonic research paradigm has been cursory. Here we provide a critique of thismethodology, concentrating on Enquist and Arak's (1994) exploration of the evolutionary function of complexsymmetrical displays. We investigate their hypothesis that complex signal form, rather than being the productof evolutionary pressure for information exchange, is the product of `hidden preferences' inherent in sensorysystems (i.e. sensory biases). Through extending their work and relaxing their assumptions we reveal thatthe `hidden preference' for symmetry proferred by Enquist and Arak (1994) is in reality a preference forhomogeneity. We show that the 
aws present in Enquist and Arak's (1994) study are immanent in any suchevolutionary simulationmodel, and must be challenged if research within this paradigm is to prove worthwhile.1 IntroductionTraditionally much of the research falling under the auspices of the `International Conference on Simulation ofAdaptive Behaviour' (now entering its sixth year) derives inspiration from, or emulates, results in the biologicalsciences (Meyer & Wilson, 1991; Meyer et al., 1993; Cli� et al., 1994). This phenomenon is not without its detractors(Miller, 1995).Recently a small but rapidly increasing number of studies have marked the inception of an analogous trend;techniques pioneered within the arti�cial sciences are being adopted by evolutionary biologists in an e�ort to modelnatural evolutionary scenarios, and test hypotheses within evolutionary biology (Arak & Enquist, 1993, 1995a;Enquist & Arak, 1993, 1994; Johnstone, 1994; Hurd et al., 1995; Krakauer & Johnstone, 1995). Perhaps it shouldnot be surprising that such research (termed evolutionary simulation modelling throughout this paper) is (potentially)problematic.Here we replicate, discuss, and extend an evolutionary simulationmodel concerned with the evolutionary functionof naturally occurring symmetrical visual displays (Enquist & Arak, 1994). We conclude that the problems inherentin its design and execution can be expected to be typical of evolutionary simulation models implemented without anappreciation of the methodological issues surrounding the simulation of adaptive behaviour.2 SymmetryThat naturally occurring symmetry is both attractive and intriguing is attested to by at once the prevalence ofartistic work aimed at replicating or eulogising natural symmetry, and the body of academic literature attempting�Submitted to the Fourth International Conference on Simulation of Adaptive Behavior (SAB96), Cape Cod, Massachusetts, USA,September 9{13, 1996 1



to explain it (e.g. Stewart & Golubitsky, 1993). Within the discipline of evolutionary biology, recent speculationconcerning the possible role of animal symmetry as an honest indicator of viability has prompted an explosion ofinterest in the degree to which females (and to a lesser extent males) are interested in the symmetry of their suitors,and the degree to which such symmetry is correlated with factors deemed advantageous to a prospective mate (seeWatson & Thornhill, 1994, for a recent review).The degree of Fluctuating Asymmetry (FA) evidenced by a prospective suitor, de�ned as \random deviation fromperfect bilateral symmetry in a morphological trait for which di�erences between the right and left sides have a meanof zero and are normally distributed" (ibid., p.21), is thought to reveal the fragility of the developmental mechanismwhich translated the suitor's genotype into its phenotype. This speculation is founded on the observation that \sinceboth sides of any bilateral trait are produced by the same genome, the degree of symmetry reveals an individual'sability to canalize development in the face of stress"(ibid., p.21).The hypothesis that the symmetry of secondary sexual ornaments or colouration functions as a signal, impartinginformation about the state of the signaller, is one of a family of related hypotheses which consider the primaryrole of signals to be one of information exchange (see, for example, Zahavi, 1975, 1977). Recently animal behaviourtheorists have taken pains to demonstrate that signal form may be the product of evolutionary forces which, far frominvolving pressures for information exchange, may simply drive signals to exploit `hidden preferences', or sensorybiases, inherent in the signal receivers (e.g. Arak & Enquist, 1993, 1995a; Enquist & Arak, 1993, 1994; Hurd et al.,1995). That the symmetry of natural signals may be amenable to an explanation in terms of such `hidden preferences'is the thesis of Enquist and Arak's (1994) study.3 A Sensory Bias for SymmetryEnquist and Arak (1994) attempt to show that symmetrical patterns are inherently favoured by perceptual mecha-nisms which must consistently classify objects despite viewing them from di�erent angles, at di�erent distances, indi�erent orientations, and so on, due to the perceptual invariance of such patterns across such situations.They model an arti�cial visual system using an array of receptive elements (a seven-by-seven grid of idealisedretinal cells each containing three receptors respectively sensitive to the red, green, and blue components of the lightfalling on their cell) and an arti�cial neural network consisting of 15 idealised neurons each receiving 147 weightedinputs (one from each of the three receptors in each of the 49 retinal cells) which in turn excite or inhibit a decisionneuron which responds `yes' or `no' according to whether the weighted activation of these `hidden' neurons, whensummed, and perturbed by a random internal factor, rises above a certain threshold.The visual system's task was to accurately discriminate between a signal pattern and various distractor patterns(each represented as a �ve-by-�ve array of coloured pixels; each colour being represented by a vector in the red-green-blue colour space) despite each being presented to the system in various positions on the system's `retina'and in various orientations, arrived at through subjecting the signal and the distractors to re
ection, rotation, andtranslation transformations (see Figure 1).Arti�cial selection pressures were applied to such visual systems and the signals they attempted to classify (bothof which were initially randomly con�gured). Repeatedly, the best of each (i.e. the network that discriminatessignal from distractor under the most transformations and the signal that is discriminated correctly under mosttransformations) were allowed to `reproduce', creating new patterns and networks that were similar to their parentsbut not identical due to low probability `mutation' events which arbitrarily corrupted the reproduction process.Under this arti�cial evolutionary paradigm impressive results were obtained. Patterns and networks co-evolvedover evolutionary time, reaching \... a quasi-stable situation in which the network discriminates almost perfectly ...and the signal itself changes slowly ... [The signals] consisted of purer, brighter colours than random patterns; theyalso displayed ... marked symmetries"(ibid., p.171).Prima facie these results are strong support for the hypothesis that symmetry \may arise as a by-product of theneed to recognise objects irrespective of their position and orientation in the visual �eld"(ibid., p.169).4 ReplicationIn replicating this study we re-implemented the stochastic hill-climbing algorithm employed by (Enquist & Arak,1994)1. Initially a random network (with connection weights drawn from a uniform distribution [�0:3; 0:3]) and arandom signal (colour components drawn from a uniform distribution [0:0; 1:0]) are generated. The algorithm thenrepeatedly carries out two consecutive periods of hill-climbing, one within the space of signal patterns and one within1Copies of the code, and a version of this paper with colour �gures, are available on request from the authors, or from the world-wide-web page URL: http://www.cogs.susx.ac.uk/users/sethb/sym.html2
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Figure 1: Depicting (a) the retina, (b) an example signal, Enquist and Arak's (1994) (c) translation, (d) 90� rotation,and (e) re
ection transformations, and (f) the higher resolution rotation transformation we employ in this paper(n.b. in (c) four of the nine possible translations are depicted, and in (f) �ve of the 16 orientations are depicted).the space of retinal networks. In order to avoid biasing the simulation through preferentially evolving either thenetwork or the signal �rst, the order in which the evolutionary `steps' were carried out was counter-balanced acrosssimulations.Hill-climbing is carried out within the space of retinal networks in the following manner. A mutant of the currentbest network is generated by copying each of the best retina's network weights with probability 0.01 of a weightbeing perturbed by a normally distributed value (zero mean, s.d. 0.02). The mutant is assessed with respect tothe current best signal, and, if discovered to be �tter than the current best network, takes the best network's place,acting as model for the next mutant. Once n mutants have been generated and tested in this manner, attentionis switched to the best signal pattern. The signal is tested with respect to the current best network and comparedto a mutant which is generated by copying each colour component of the signal with probability 0.05 of perturbingit with a normally distributed value (zero mean, s.d. 0.3)2. If a mutant is assessed as �tter than the current bestsignal, it takes the best signal's place and acts as model for the next mutant. After n mutants have been generatedattention reverts to the best retinal network and the process repeats.Enquist and Arak (1994) dub one cycle of the above process (in which, arbitrarily, n=100) a `generation', andrun their simulations for 500 such `generations'. The simulations described here employed shorter run-times (n=50for 100 `generations') in response to time pressure, and the fact that there was no signi�cant progress made by eitherthe networks or the signals after the �rst 50 (n=100) generations.Fitness was calculated thus: f(s; r) = 1p pXi=1 24�(�r(�i(s))) � 1q qXj=1 �(�r(�i(dj)))352Perturbations which produced colour component values outside the legal range [0:0;1:0] were truncated to the nearest extreme value.This e�ectively means that the mutation rate is not uniform over the range of colour component values, but decreases as values approacheither 0 or 1 due to the more frequent generation of perturbations which must be truncated. This could account for the \purer, brightercolours" observed by Enquist and Arak (1994, p.169). 3



Where f(s; r) denotes the �tness score ascribed to signal and retina fs; rg under an assessment regime comprisingp presentations of di�erent transformations of both signal s and q distractor patterns (dj denotes the jth distractorpattern). The compound function �r(�i(x)) denotes the output of retinal network r when presented with pattern xunder transformation �i.This output is calculated as follows. The output of a retinal receptor was equal to the intensity of its input, whilstthat of a network neuron was calculated as a sigmoid function of y, the sum of its weighted inputs, thus:output = � 1� 1=2[1=(1+ y)] y � 01=2[1=(1� y)] y < 0The function �(w) is an error function which smoothes the network output (w) by modelling a stochastic internalvariable (�) which perturbs the network output by a value normally distributed with zero mean (�=0), and standarddeviation 0.02 (�=0.02).Rather than draw a random value from this distribution for each trial, the e�ect of this internal factor wascalculated in the limit, thus: �(w) = P (w +� � �) = 1� Z 1� e�� z�w�p2�2dzWhere � is a scaling constant used to normalise the function's output to between 0 and 1, and � is a thresholdvalue above which the network is said to have responded positively to its input. The value returned by the errorfunction was thus a deterministic measure of the proportion of trials in which a network output value (w), afterperturbation by an internal stochastic variable (�), would exceed the arbitrarily designated threshold value (�).For all simulation runs considered here, �=0.5, q=3 (one white, one black, and one random distractor).Enquist and Arak's (1994) presentation regime was replicated. Each pattern was presented to a network under 36di�erent transformations (nine translations by four orientations, see Figures 1c and 1d). The results of 20 simulationruns are displayed in Figure 2. Evolved signals exhibited signi�cantly more bilateral symmetry (t=6.526, d.f.=19,p<0.01), four-fold rotational symmetry (t=9.638, d.f.=19, p<0.01), and `brightness' (t=10.825, d.f.=19, p<0.01)than random signals (see Figure 3a)3. Under the conditions employed by Enquist and Arak (1994), symmetricalsignals do indeed evolve.5 DiscussionThe predictions made by the hypothesis that object discrimination inherently favours symmetrical patterns wereupheld by our replication of Enquist and Arak's (1994) study. However, we were interested in exploring the possibilitythat the preferences that the networks were exhibiting might not tell the whole story. Were there `hidden' preferencesthat could be revealed through further simulation?The transformations that Enquist and Arak's patterns undergo are intended to mimic the di�erent ways in whichthe light re
ected from a real-world object falls onto a retina. Objects are not always seen at the same orientation,or from the same distance, etc., but visual systems have evolved to cope with such variation in the retinal image.As Enquist and Arak's retinae and patterns are square, re
ections in the vertical and horizontal axes seem naturaltransformations to perform. However, what situations are these transformations analogous to? Natural visual systemsare very rarely exposed to a pattern and then, subsequently, a re
ection of that pattern. The only situations wecan envisage involve still, mirror-like, bodies of water, which surely comprise a vanishingly small proportion of mostvisual systems' experience4.Rotations of 90 degrees also seem natural transformations to perform upon square patterns. In response to suchrotations, Enquist and Arak's simulation produces patterns with four-fold rotational symmetry (not a frequentlyoccurring pattern in nature { although strongly resembling the bilateral symmetry that is prevalent). However, innaturally occurring situations, the rotation transformations that images undergo are continuously distributed between0� and 360�. Presumably (extrapolating from Enquist and Arak's results) patterns exhibiting continuous rotationalsymmetry (i.e. concentric circles) should arise under such conditions.3Bilateral asymmetry was calculated as the average geometric distance in the red-green-blue colour space between correspondingpixels. Rotational asymmetry was calculated as the mean of the standard deviations of the groups of pixels invariant under the rotationtransformation. Brightness or boldness was calculated as the average geometric distance in the red-green-blue colour space between eachpixel and the nearest corner of the colour space.4Enquist (pers. comm.) has suggested that the re
ection transformation might correspond to situations in which the visual systemis presented �rst with one (patterned) side of a creature (e.g. a thin tropical �sh), and subsequently with the other side, on which thereexists a symmetrical version of the �rst side. 4
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Figure 4: Five signals typical of the 20 evolved under a presentation regime comprising nine translation, and sixteen22.5� rotation transformations. Each signal is shown as a colour composite and three colour separates in which theincreasing intensity of each colour component is represented as increasingly heavy shading.If invariance under transformations is what makes a signal easy to discriminate, then biological signals whichare selected for conspicuity should exhibit maximum symmetry. Under de�nitions of symmetry provided by Stewartand Golubitsky (1993) such patterns should be one solid colour (i.e. invariant under the most transformations).Enquist and Arak's patterns are occasionally uniform, but the naturally occurring patterns that they are attemptingto account for exhibit a high degree of symmetry breaking, i.e. they are both symmetrical and complex.Could it be the case that the networks evolved under these conditions had preferences for structure (e.g. com-plex symmetry), only insofar as they were subjected to unnaturally structured sets of transformations during theirevolution? As the set of transformations was naturalised, would the `hidden preference' for homogeneity emerge?In order to test these hypotheses we extended Enquist and Arak's (1994) paradigm to incorporate more naturaltransformations and explored the system's sensitivity to initial conditions.6 ExtensionIn order to explore the e�ect of more continuous rotational transformations, we relaxed the rotation regime to includetransformations that fell at 22.5� intervals (see Figure 1f) rather than the 90� intervals employed by Enquist and Arak(1994). This quadrupled the number of presentation trials per assessment (i.e. p=144), as, under each translationtransformation, each signal was now presented in sixteen rather than four di�erent orientations. All other parametervalues were held constant. The results of 20 simulation runs are displayed in Figures 4 and 3b.Evolved signals display signi�cantly greater rotational symmetry, both sixteen-fold (t=5.07, d.f.=19, p<0.01),and four-fold (t=3.3, d.f.=19, p<0.01), and are signi�cantly more homogeneous (t=4.87, d.f.=19, p<0.01) thanthose evolved under the conditions employed by Enquist and Arak. They also feature signi�cantly brighter coloursthan random signals (t=10.135, d.f.=19, p<0.01). In a further 20 simulation runs, introducing a bilateral re
ectiontransformation (see Figure 1e), which doubled the number of presentation trials per assessment (i.e. p=288), didnot result in evolved signals signi�cantly di�erent in any way from those generated under this sixteen-fold rotationalregime (see Figure 5a).These results demonstrate that the networks evolve a preference for bold homogeneous signals. The sensorybias that Enquist and Arak propose as a pressure for complex symmetry cannot be responsible for natural complexbilateral symmetries. Furthermore, seeding 20 simulations with initially perfectly bilaterally symmetrical signals also6
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(a) (b)Figure 5: Initially (a) random, and (b) bilaterally symmetrical signals were subjected to a presentation regimecomprising nine translation, and sixteen 22.5� rotation transformations. In addition, signals depicted in graphs (a)were subjected to a bilateral re
ection transformation. Graphs depict metrics as per Figure 3.
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(a) (b)Figure 6: Initially (a) homogeneous signals and (b) maximally bold homogeneous signals were subjected to a presen-tation regime comprising nine translation, and sixteen 22.5� rotation transformations. Graphs depict metrics as perFigure 3.resulted in evolved signals not signi�cantly di�erent from those generated from random initial conditions, indicatingthat, as well as failing to generate symmetrical structure, the sensory bias presented by Enquist and Arak (1994)could not maintain pre-existing bilateral symmetries (see Figure 5b).Further experimentation reveals that not any homogeneous signal suits any network. Seeding 20 simulationsinitially with signals homogeneous in a random colour resulted in evolved signals not signi�cantly di�erent fromthose evolved from random initial signals under the same presentation regime. However, as networks evolve to prefersignals of above average brightness, the �nal evolved signals were signi�cantly more bold than their earliest ancestors(t=10.734, d.f.=19, p<0.01; see Figure 6a).Seeding 20 simulations with signals initially homogeneous in one colour chosen randomly from the six maximallybold colours that the networks were not penalised for favouring (i.e. one of green, red, blue, magenta, cyan, oryellow, but not white or black) also resulted in evolved signals not signi�cantly di�erent from those evolved frominitially random signals (see Figure 6b). However, the corner of the colour space occupied by the initial signalwas not necessarily the same as that occupied by the �nal signal. Thus, the networks were not merely favouringany homogeneous, bold signal, but initially had innate biases which could result in signals evolving from one bold,homogeneous pattern (e.g. solid green) to another (e.g. solid blue).In summary, signal form was shown to be a result of pressure, not for symmetry per se, but for homogeneitycoupled with arbitrary boldness (the nature of which being determined by the initial constitution of the network),which coincidentally results in signals which exhibit a high degree of both rotational and bilateral symmetry. As such,7



complex signal form cannot be explained as a product of the sensory bias that Enquist and Arak (1994) propose.7 Exploitation, Biases, and `Hidden Preferences' in Modelling ParadigmsThe debate concerning the status of biological signals vis a vis their role as informative indicators has focused inpart on alternative explanations for signal form based on the observation that evolution will exploit biases in receiversystems, resulting in signals which, although carrying no information, e�ectively manipulate their recipients to theadvantage of the signallers.Gulls brooding basketballs, �sh tempted by angler �sh lures, and bees fooled by bee-orchid stamen, are allexamples of sensory systems being `deceived' by both natural and arti�cial (supernormal) stimuli. In this section weexplore the possibility that evolutionary simulation models are susceptible to the very same exploitation.Evolution's penchant for exploiting simplistic mechanisms is not limited to the natural world. The forces respon-sible for naturally occurring exploitation are just as e�ective within arti�cial evolutionary models. This leads us toask of simulation models the same questions that advocates of sensory bias explanations ask of signal form. Are suchsimulations informative or exploitative? Can they usefully support or refute evolutionary hypotheses, or do theymerely exploit weaknesses, loop-holes, biases, or `hidden preferences' in the simple mechanisms and methodologythat modellers currently employ?5Unfortunately, whereas the debate over the informative vs. exploitative role of signal form is (literally) academic,the consequences of the analogous debate over the theoretical status of evolutionary simulation modelling paradigmsare much more serious.If models are to provide theoretically worthwhile results, the methodology employed in their design and executionmust be rigorous enough to withstand critical accusations of artefactual results due to poor simplifying assumptions.Although simplifying assumptions are a necessary part of modelling (whether through simulation, or formal analyticmethods), they must be explicit, justi�ed and, any conclusions drawn from such models must be quali�ed with respectto those simplifying assumptions.The assumptions made by Enquist and Arak (1994) involving their presentation regime, their implementationof noise, their use of colour, and their model evolutive process, all fail to survive close scrutiny and in drawingconclusions from their results the authors fail to appreciate the considerable part played by these assumptions.We have shown herein, that the form of the signals that Enquist and Arak (1994) evolve is dependent on thepresentation regime that they undergo. As Enquist and Arak's (1994) unnatural regime is relaxed so as to moreclosely approximate that experienced by natural signals, the interesting structure of the arti�cial patterns, whichmarks them as possible candidate exemplars in a theory of symmetry as sensory exploitation, dissolves, until blandhomogeneity is reached. We have shown that Enquist and Arak's (1994) signals exploited the structure inherent inthe presentation regime rather than any `hidden preferences' inherent in their arti�cial retinae and, by extension,visual systems in general.The random internal factor implemented by Enquist and Arak (1994) serves to smooth the �tness landscape and,in combination with rank-based selection, enables evolutionary progress over areas of the landscape which have avery low �tness gradient. Modelling the `noise' more traditionally, as a random value drawn independently from thenormal distribution speci�ed by Enquist and Arak (1994) each time the internal stochastic variable is invoked, resultsin poorer evolutionary progress and, as a result, evolved signals only slightly more symmetrical than random ones.Progress is impeded because slight improvements in discriminatory ability on the part of the retinal networks ordiscriminability on the part of signal patterns are not consistently scored �tter than marginally poorer competitors.For example, a network responding slightly more positively to a particular signal presentation, but still failingto overcome the output unit's threshold, will enjoy an increase in �tness only if a random noise value perturbs theoutput such that the threshold is now exceeded. The fact that noise values are typically very small ensures thatsuch occurrences will be vanishingly infrequent for any output not extremely close to the threshold. This contrastsstarkly with Enquist and Arak's (1994) deterministic model which rewards any improvement in performance withan improvement in �tness on the basis that over an in�nite number of trials any improvement, however small, mustresult in more correct discriminations. Whether natural evolutionary systems enjoy a similar selection dynamic isnot discussed, and the (poorer) results of di�ering models of noise are not presented.Enquist and Arak (1994) mention the bright colours of their evolved signals but wisely provide no adaptiveexplanation for them. The fact that colours in their simulation are represented as vectors in a simple three-dimensionalcolour space, and evolve by means of large mutations, typically along a single dimension of this space, render any5Anecdotal evidence abounds suggesting that evolutionary simulations will mercilessly exploit modellers' errors. For example, KarlSims tells of creatures evolved in a realistically simulated world (e.g. Sims, 1995) which exploit his model's failure to conserve momentumcorrectly by banging bits of their body together in order to get around.8



conclusions drawn from their results at best tenuous. We feel that the colours present in the evolved signals arethe result of their non-uniform mutation operator (which e�ectively favours mutations towards the extremes of thecolour space and suppresses mutations away from those extremes6) and the predispositions of simple arti�cial neuralnetworks to favour extreme valued inputs, rather than any evolutionary force analogous to that responsible for thegeneration of naturally occurring brightly coloured signals.The hill-climbing algorithm employed by Enquist and Arak (1994) su�ers from problems typical of local searchalgorithms. Roughly 1 in 20 simulations failed to make any progress, as no mutant retina could discriminate theinitial signal at above chance, and no mutant signal was discriminated at above chance by the initial retina. Arakand Enquist (1995a, p.340) seem predisposed to attribute evolutionary, functional explanations for this type ofphenomenon rather than explain it as a consequence of the simplicity of their model evolutive process. A populationsize of greater than one (i.e. a parallel search algorithm more typical of evolutionary simulation models) reducesthe incidence rate of such `sterile' initial conditions, which rapidly falls to near zero as the size of each populationincreases beyond 100.The two-step nature of Enquist and Arak's (1994) algorithm also proves problematic. As has already been stated,precautions must be taken in order to avoid preferentially evolving either network or signal. Furthermore the notionof successive `generations' in Enquist and Arak's (1994) description of their algorithm is suspect, as individuals donot exist concurrently. This approach precludes the appreciation of frequency-dependent selection e�ects, or othere�ects of the interaction between individuals. In addition, the arbitrary length of each evolutionary `step' (i.e. thevalue given to n in this paper) is a free parameter, the e�ect of which is di�cult to predict or explore e�ectively.In a wider sense these problems are symptomatic of a failure on the part of modellers within the evolutionarysimulation modelling paradigm to appreciate the methodological issues pertaining to the use of neural networksand genetic algorithms in the modelling of adaptive evolutionary processes. As has been shown here, evolutionarysimulation models are not tolerant of poor simplifying assumptions, or simple adaptive mechanisms. The results ofsuch models are always potential artefacts, the products of exploitation, bias and what (Arak & Enquist, 1993) havedubbed `hidden preferences'.8 ConclusionIn conclusion, Enquist and Arak's (1994) model of the evolution of symmetrical patterns was found to be seriously
awed in a manner which suggests problems for evolutionary simulation models in general. In light of this, althoughthe hypothesis that symmetrical patterns may be the result of sensory exploitation is still healthy (see Osorio, 1996,for an alternative formulation of this hypothesis), the prospect of evolutionary simulationmodels su�ering exploitativeevolutionary dynamics is a less welcome challenge for researchers working within this paradigm.Therefore, in order that evolutionary biologists can usefully employ the techniques being developed within thesimulation of adaptive behaviour community, two commitments must be undertaken. First, a commitment to moretightly-coupled interdisciplinary collaboration between scientists studying natural and arti�cial systems. Secondly, acommitment to the wider dissemination of studies explicating the methodological issues pertaining to research withinwhat we have referred to here as the evolutionary simulation modelling paradigm.AcknowledgementsWe thank Magnus Enquist, Geo�rey Miller, and Daniel Osorio for discussions, and Henrietta Wilson for her metic-ulous proof reading.ReferencesArak, A., & Enquist, M. (1993). Hidden preferences and the evolution of signals. Phil. Trans. R. Soc. Lond. B, 340,207 { 213.Arak, A., & Enquist, M. (1995a). Con
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