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Abstract. The work presented in this paper is part of our ongoing re-
search on applying commonsense reasoning to elicit and maintain mod-
els that represent users’ conceptualisations. Such user models will enable
taking into account the users’ perspective of the world and will empower
personalisation algorithms for the Semantic Web. A formal approach for
detecting mismatches between a user’s and an expert’s conceptual model
based on Description Logic is outlined. OWL-based rules are then de-
rived and implemented in a demonstration prototype that is illustrated
in a geographical domain using a SPACE ontology from the NASA’s
SWEET suite of ontologies for the Geo-spatial Semantic Web.

1 Introduction

Many web services are now being automated so that they can understand con-
tent, are able to process a vast amount of knowledge, and can provide more
accurate and effective search of information resources [1]. The number of peo-
ple who use these services is expanding, and hence, dealing with user diversity
and providing personalisation functionality becomes paramount [2]. Users’ pref-
erences, expectations, goals and tasks differ. Moreover, people form different
conceptual models of the world and these models dynamically change over time.
On the other hand, knowledge-enhanced web services are normally driven by
some description of the world which is encoded in the system in the form of an
ontology defined by knowledge engineers[1]. The users’ conceptualisation of the
world may differ, sometimes significantly, from the conceptualisation encoded in
the system. If not taken into account, the discrepancies between a user’s and
a system’s conceptualisation may lead to the user’s confusion and frustration
when utilising Semantic Web services, which, in turn, can make these services
less popular.

The long-term goal of our research is to apply commonsense reasoning ap-
proaches to capture and maintain users’ conceptual models and to use these
models for personalised, semantically-enhanced search on the web. For this, we
consider that the domain expertise is encoded in some ontology (or several on-
tologies) pre-defined by domain experts and knowledge engineers. This expertise
is used to guide the intelligent behaviour of the system and is combined with a
model of the user that corresponds to the user’s conceptualisation of the domain.



One possible way to elicit a users’ conceptual model is by using interactive
diagnostic agents [3, 4]. In an earlier work, conceptual graphs were employed
to develop knowledge-enhanced user modelling techniques to elicit conceptual
models of users [3]. Several levels of conceptual discrepancies were dealt with,
such as misclassification, class misattribution, and individual misattribution,
which triggered corresponding clarification dialogues with the user. However,
the algorithms in [3] are based on conceptual graphs and are not interopera-
ble. To enable sharing and interoperability, the expert ontology and the user’s
conceptualisation should be represented in a commonly accepted Semantic Web
language, such as RDF or OWL. Denaux et al. [4] extended the interactive user
modelling approach and implemented a diagnostic agent capable of extracting
a user’s conceptual model in OWL. The diagnostic agent was integrated in an
adaptive learning content management system for the Semantic Web [4]. The
work showed the strong potential for OWL-based interoperable user modelling
approaches. However, although some discrepancies between a user’s conceptual-
isation and the system’s ontology were identified, there was no systematic study
of what discrepancies may occur and the patterns were chosen rather ad-hoc.

This paper presents a systematic analysis of discrepancies that may occur be-
tween a user and a system’s conceptualisation and proposes a formal approach,
based on description logic, to define these patterns. OWL-based rules are then
derived and implemented in a demonstration prototype that compares an ex-
pert ontology and a user’s conceptualisation, both represented in OWL. The
discrepancies are identified and registered as misconceptions.

2 Discrepancies between conceptualisations

Discrepancies between conceptualisations are inevitable in domains that are
largely unstructured, such as the geographic domain. A standard terminology
is not prevalent within such domains, and is dependent on the context of use
and user. Indeterminacy and ambiguity in meanings are key issues in the de-
velopment of ontologies in such domains. Smith [5] refers to this as the Tower
of Babel problem where the heterogeneity in terminology and meanings leads
to conceptual and terminological incompatibilities. Commonsense notions and
cognitive conceptualisations structure knowledge by determining much of the
conceptual and semantic content within the main categories. However, the inher-
ent vagueness encapsulated in the terms and concepts leads to variability in the
conceptualisations and causes conflicts and mismatches. Empirical results show
that individual conceptualisations are characterised by semantic heterogeneity
[6, 7], defined in [8] as naming heterogeneity (different names for identical con-
cepts, characterised by synonyms and homonyms) and cognitive heterogeneity
(different perceptions of real world phenomena).

Heterogeneity results in conceptual discrepancies (called also mismatches).
Shaw and Gaines[9] point out that mismatches between concepts include us-
ing the same term for different concepts, using different terms for the same
concept, or using different terms for different concepts. Wiederhold[10] extends



these types to include mismatches at a deeper, semantic level, including: Key dif-
ference (different terms for the same concept), Scope difference (distinct domain
coverage), Abstraction grain (varied granularity of detail among the definitions),
Temporal basis (differences based on time categories), Domain Semantics (dis-
tinct domains), and Value semantics (differences in the encoding of values).

A more comprehensive list of discrepancies between two conceptual mod-
els is presented by Visser et al. [11] in their explication mismatches proposal
which includes concept definiens and considers the following types of discrep-
ancies: Concept and Term mismatch (same definiens but different concepts and
terms); Concept and Definiens mismatch (same term but different concepts and
definiens); Concept mismatch (same term and definiens but different concepts);
Term and Definiens mismatch (same concept but different definiens and terms);
Term mismatch (same concept and definiens but different terms); and Definiens
mismatch (same concepts and terms but different definiens).

Algorithms for comparing two conceptualisations have been developed within
ontology mapping research. Klein [12] summarises the main issues involved in
combining ontologies, among which is the occurrence of ontology level mis-
matches which correspond to categories described above, such as domain cover-
age, concept scope, synonyms, homonyms, concept description, paradigm, and
encoding. However, despite a considerable amount of work on ontology mapping,
there is no formalisation available for comparing and finding semantic similarities
between two conceptualisations.

To sum up, the review shows that while several researchers have attempted to
describe mismatch patterns that may occur between two conceptualisations, the
descriptions provided are vague at times and there is a lack of formal descriptions
of these patterns. We will present below an initial formalisation that attempts to
capture possible mismatches between a user’s and an expert’s conceptualisations.
We aim to define a failry general framework that can incorporate most of the
patterns discussed above.

3 Mismatch patterns defined with Description Logic

Formal approaches allow the design of algorithms at levels higher than the spe-
cific applications, and therefore, bring considerable insights into the design of
intelligent system. In the next section, we will use Description Logic (DL) [13]
to define discrepancies between a user’s and a system’s conceptualisations.

3.1 Illustration Domain

We will use examples from a geograph domain to illustrate the definitions below.
This domain has been chosen because:

– it is a typical example of an unstructured domain with inherent vague con-
cepts where users’ conceptualisations may differ, see empirical studies in [6];

– geographical information systems are widely used on the web, and will be
part of the next generation knowledge-based web;



– there is a diversity of users in this domain and many of them come from the
general public;

– there exist geographical domain ontologies, for example the SWEET ontolo-
gies 1 from NASA, which is used in the illustrations below. The SPACE
ontology that forms a part of the SWEET suite of ontologies is a good case
example as SWEET (Semantic Web for Earth and Environmental Technol-
ogy) is meant to be a foundation block for the Semantic Web by providing a
common semantic interface for various web-based Environmental and Earth
Sciences initiatives and is aimed at integrating various heterogeneous infor-
mation sources.

3.2 Basic assumptions and notations

To avoid inconsistencies with the terminology (which differed across studies)
we will follow a set of fairly conventional assumptions. Concepts are the main
building blocks in a conceptual model and represent objects (either concrete or
abstract) from the world. Each concept consists of four parts - term, definiens
(also called definition), and properties - which define the intentional meaning
of a concept. We will first reason with definiens of two concepts for their set
relationship, and then check the term and property for misconception. If all
three parts of two concepts match, we consider that there is no misconception
between these two concepts. The following notations will be used:

Cu: the concept in the user’s conceptualisation.
Ce: the concept in the expert’s conceptualisation.
Iu: the individual of a concept in the user’s conceptualisation.
Ie: the individual of a concept in the expert’s conceptualisation.
Pu: the property identified in the user’s conceptualisation.
Pe: the property identified in the expert’s conceptualisation.
Term(C): the name of the concept
∀R · E(C): value restriction for the concept C.
=: equality, as owl:sameAs
≡: equivalence, as owl:equivalentClass
�: subsumption, as rdfs:subClassOf
�D: one concept is a parent of another,as directly rdfs:subClassOf in OWL
∩: partial overlap
◦: disjointness
The mismatch patterns will be defined as rules. The right hand side of � is

the relationship between two concepts. The left hand side of � is the original
information available to the proof system. We define five set relationships be-
tween two concepts, namely, equality, equivalence, subsumption, partial overlap,
and disjointness.

1 http://sweet.jpl.nasa.gov/ontology/



3.3 Mismatches based on equality

Equality indicates that two concepts have exactly the same intentional meaning.
Given the proof Cu =def D, Ce =def D � Cu = Ce where D can be either atomic
concept or combination of other concepts, we define:

Term Mismatch Term(Cu) �= Term(Ce) → Term Mismatch
This is the case when two concepts share the same intentional meaning

but have different names. For example, in a user’s conceptualisation, there is
Floor owl:sameAs Base whereas in an expert’s ontology there could be Bot-
tom owl:sameAs Base. Thus, Floor is equal to Bottom even though they have
completely different names.

Attribute Mismatch ∀R · E(Cu) �= ∀R · E(Ce) → AttributeMismatch
This is the case when two concepts share the same intentional meaning but

have different attributes. For example, the user can say a region is above Y-
coordinate, while the expert ontology says a region is over Y-coordinate.

3.4 Mismatches based on equivalence

Two concept are considered equivalent if they have the same set of individuals,
i.e. Cu ≡def D, Ce ≡def D � Cu ≡ Ce where D can be either atomic concept or
combination of other concepts.

Term Mismatch Term(Cu) �= Term(Ce) → TermMismatch
Two concepts have the same sets of individuals, however, the concepts may

have different intentional meaning. There are many examples in the space on-
tology. For instance, edge is equivalent to boundary, yet these two concepts have
different intentional meanings in their own rights.

Attribute Mismatch Cu ≡def D 	 ∀R · E, Ce ≡def F 	 G,� Ru ≡ Re where
D, F, G can be any concepts.

F � ∀R · E, Term(Cu) = Term(Ce) → AttributeMismatch
This is so-called attribute assignment mismatch[11], which is a property mis-

conception occurring when two properties are the same except the domains, with
one being a subset of another. For instance, a user assigns to HorizontalCoordi-
nate the attribute of hasDirection, which could be assigned to Coordinate in the
expert ontology.

Value Mismatch Cu ≡def D 	 ∀R · E, Ce ≡def F 	 ∀R · G � Ru ≡ Re where
D, F, G can be any concepts.

Term(E) �= Term(G), T erm(Cu) = Term(Ce) → V alueMismatch
Similar to the previous pattern, the two properties have everything equivalent

except the range.



Individual Mismatch Cu ≡def D, Ce ≡def D � Cu ≡ Ce where D can be
either atomic concept or combination of other concepts

Cu(Iu), Ce(Ie), ∀i, T erm(Iui) �= Term(Ie) → IndividualMismatch
Individuals of the same class may have different names, but they should not

affect the equivalence of two concepts with the same extension. For example,
for the concept longitude, one conceptualisation assumes its instances to be a
number of miles whereas another conceptualisation with the same class assumes
its instances to be a number of kilometers.

Abstraction Mismatch Cu ≡def (D1 
 D2 
 · · · 
 Dm), Ce ≡def (D1 
 D2 

· · · 
 Dm) � Cu ≡ Ce where Di can be either atomic concept or combination of
other concepts

Cu does not exists → Abstraction Mismatch
This mismatch occurs when user has a concept whose abstraction does not

exist in expert ontology. For example, Coordinate usually include HorizontalCo-
ordinate and VerticalCoordinate, but Coordinate could be missing in the user’s
conceptualisation, that is, the user is not aware that both of coordinates form
the whole coordinate for a location.

3.5 Misconceptions based on subsumption

Subsumption shows that one concept is a sub-class of another.

Structure Mismatch Cu ≡def (D1 	D2	· · · 	Dm 	∀R1 ·F1 	∀R2 ·F2 	· · · 	
∀Rk ·Fk), Ce ≡def (E1	E2	· · ·	En	∀S1 ·G1	∀S2 ·G2	· · ·	∀Sl ·Gl) � Cu � Ce

where Di, Ei can be either atomic concept or union of other concepts

∀i, 1 ≤ i ≤ m, ∃j, 1 ≤ j ≤ n, Di � Ej , and
∀i, 1 ≤ i ≤ k, ∃j, 1 ≤ j ≤ l, Ri = Sj , Fi � Gj

Term(Cu) = Term(Ce) → StructureMismatch
The description is similar to a subsumption problem. The only difference

is the last condition, which indicates concept subsumption with structure mis-
match or Definiens Mismatch. For instance, the user may define Top as maximal
height(Top ≡def ∀hasHeight ·Maximum) whereas expert ontology defines Top as
Maximum with up direction(Top ≡def Maximum 	 ∀hasDirection · Up).

3.6 Misconceptions between partially overlapping concepts

Scope Mismatch Cu ≡def (C 	 D), Ce ≡def (E 	 F ) � Cu ∩ Ce where C,
D, E, F can be atomic concepts or complex concepts; C, E can also be bottom
concepts; and (C 	 E) �⊥, D ∩ F

Term(Cu) = Term(Ce) → ScopeMismatch
Note that this is a recursive definition. If two concepts share most of in-

stances, then they overlap with one another. There could be a possible miscon-
ception between two equivalent concepts.



3.7 Misconceptions between Disjoint Concepts

Definiens Mismatch Cu ≡def (C 	 D), Ce ≡def (E 	 F ) � Cu ◦ Ce where C,
D, E, F can be atomic concepts or complex concepts; C, E can also be bottom
concepts; and (C 	 E) �⊥, D ◦ F

Term(Cu) = Term(Ce) → DefiniensMismatch

This could be a huge misconception, in that two concepts in the same name
have completely different definiens. The mismatch reflects that the user’s view
of a concept is totally different from the expert’s point of view. For example,
the user may consider profile as outline, but profile is defined as horizon in the
expert ontology.

4 Implementation

Because the misconception patterns have been defined in Description Logic, they
can be applied to conceptualisations defined in OWL. The ontology can be taken
from any domain. In the current trials, we have used the NASA SPACE ontology
that incoporates concepts from the Earth and Environment terminology. The
illustrations in Section 3 were based on this ontology. A snapshot of this ontology,
used as the expert ontology in the context of our work, is given in figure ??.

Fig. 1. An extract from the NASA space ontology, shown in Protege.



Based on the formal descriptions of mismatches, we have implemented algo-
rithms to capture a user’s misconceptions defined as the discrepancies between
the user’s and the expert’s perspective of the world. For this we have used the
rule-based OWL inference engine Jena2[14].2 The five types of relationship are
defied in OWL, as follows

owl:same equality
owl:eq equivalence
owl:subsume subsumption
owl:po partial overlap
owl:dj disjointness

Following the triple-based nature of Jena, we have defined a set of rules to
capture the mismatches defined in Section 3. For example, to check for Structure
Mismatch based on subsumption relation between two concepts, the following
rule will be passed to Jena:

[pattern8: (?C owl:and ?X), (?C owl:and ?Y), (?D owl:and ?U), (?D
owl:and ?V) , (?X owl:eq ?U), (?Y owl:eq ?V), notEqual(?C, ?D),
notEqual(?X, ?Y), notEqual(?U, ?V) -> (?C owl:eq ?D)]

To illustrate, let us consider two concepts from the user’s and the expert’s
conceptualisations, respectively. Let both concepts have the same term that is
HorizontalCoordinate. In the expert’s ontology HorizontalCoordinate is defined
as Coordinate and hasNormal Up (see Figure 1), whilst in the user’s conceptual
model, it is defined as Axis and hasNormal Up. However, Axis and Coordinate
can be proved to be equivalent. Hence, the two concepts are still equivalent
but with structure mismatch. Figure 2 shows the interface of a Java applica-
tion we have implemented to test the misconception detection patterns. In this
application, both the user’s and the expert’s conceptualisations are passed as
OWL-models (i.e. a collection of OWL statements). The figure shows that the
algorithm identifies the pattern of ontology misconceptions and compares the
two concepts considering their neighbourhoods, i.e. their terms, properties, chil-
dren, and parents.

5 Current state and future work

The work presented in this paper is part of our ongoing research on applying
commonsense reasoning to elicit and maintain models that represent users’ con-
ceptualisations of the real world. Such user models will enable taking into account
the users’ perspective of the world and will empower personalisation algorithms
for the Semantic Web. A formal approach for detecting mismatches between a
user’s and an expert’s conceptual model is outlined. The formalisation is used
as the basis to develop algorithms to compare two conceptualisations defined in
OWL. The algorithms are illustrated in a geographical domain using a SPACE

2 Jena can be downloaded from http://jena.sourceforge.net, and a comprehensive doc-
umentation is available there.



Fig. 2. A screen shot of the Java prototype for misconception detection.

ontology developed as part of the SWEET initiative for the Semantic Web by
NASA, and have been tested by simulating possible user misconceptions.

Our immediate plans are to conduct more appropriate evaluation of the al-
gorithms based on real data of possible user’s conceptualisations. Because we
experiment with a fairly intuitive domain of earth sciences categories, it is fea-
sible to conduct studies where people (naive domain users) are asked to identify
the main concepts and their relations, on the basis of which user conceptual
models can be extracted, see for example [6]. These conceptualisations may be
used to test and fine-tune the algorithms.

There are three possible Semantic Web applications of the algorithms pre-
sented in this paper. Firstly, algorithms that highlight discrepancies between a
user’s conceptualisation and an existing ontology can be used to fine-tune the
expert ontology. We are also looking into the possibilities of using the mismatch
detection algorithms in combination with some additional reasoning to deal with
vagueness and heterogeneity problems, as discussed in section 2. Secondly, a
systematic approach for detecting mismatches can be combined with dialogue
planning, such as OWL-OLM [4], to develop robust interactive diagnostic agents
that extract and validate a conceptual model of the user. Finally, any user mod-
elling approaches that take into account different viewpoints of the world can
benefit from the algorithms presented here. It is worth noting that although the
conceptualisation discrepancies have been called misconceptions in this paper
(for consistency with the user modelling terminology), these discrepancies are
by no means a sign of erroneous beliefs. The Semantic Web paradigm and the



open world assumption requires the deployment of appropriate user modelling
approaches that capture and maintain different user perspectives.
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