Ontology Winnowing: A Case Study on the AKT Reference Ontology

Harith Alani, Stephen Harris, and Ben O’Neill
School of Electronics and Computer Science
University of Southampton, Southampton, UK
{h.alani,swh,bjon104} @ecs.soton.ac.uk

Abstract

Many ontologies are built for the main purpose of rep-
resenting a domain, rather than to meet the reguirements
of a specific application. When applications and services
are deployed over an ontology, it is sometimes the case that
only few parts of the ontology are queried and used. Identi-
fying which parts of an ontology are being used could useful
for realising the necessary fragments of the ontology to run
the applications. Such information could be used to win-
now an ontology, i.e., simplifying or shrinking the ontology
to smaller, more fit for purpose sizes. This paper presents a
study on the use of the AKT Reference Ontology by a num-
ber of applications and services, and investigate the pos-
sibility of using this information to winnow that ontology.

1 Introduction

Ontologies normally grow to large sizes when the main
purpose of building them is to provide an extensive repre-
sentation of a domain; such as CYC!, GO?, SUMO?, FMA*
to name just a few. However, when building ontologies for
the purpose of supporting certain applications, those ontolo-
gies are expected to be much smaller in size and be more
focused towards meeting the requirements of those applica-
tions and services, rather than to provide a generic repre-
sentation of a domain.

When designing an ontology, it is highly recommended
to keep in mind what the ontology is to be used for to avoid
over or under representing the domain [7]. This is meant to
assure a more fit-for-purpose scoping of the ontology. How-
ever, it is not uncommon to find ontologies that are much
larger than actually required by the SW applications and
services that the ontologies support. It is logical to expect
enduring much higher costs for hosting and running a large
and complex ontology than a trimmed-down version of that

Lhttp://www.cyc.com
Zhttp://www.geneontology.org/GO.biblio.shtml
3http://ontology.tecknowledge.com/
“http://sig.biostr.washington.edu/projects/fm/AboutFM.html

ontology. These costs include maintenance, documentation,
change management, visualisation, and scalability. Most
SW users only need to use small portions of existing on-
tologies to run their applications [8]. Tools to reduce an on-
tology to one that better fits certain needs can aid ontology
reuse [11].

In this paper, we will examine how our project’s main
ontology is being used by local and external applications
and services. The aim of this work is partly to get a bet-
ter understanding of how and where the ontology is being
queried, and more importantly, how this information can be
interpreted. We hope that this study will enable us to better
scope the ontology and provide some insight into whether
such analysis can be used to automatically winnow an ontol-
ogy without affecting its usage. We use the term winnowing
to refer to the process of removing any unused parts of an
ontology, keeping only the parts that are needed to represent
the existing data and run any dependent applications.

2 Reéated Work

There has been some work in recent years investigating
various approaches to trim ontologies for various purposes.
Stuckenschmidt and Klein [10] proposed the use of classical
clustering algorithms to partition ontologies based on how
strongly connected the classes are to each other, regardless
of any application use.

Other work suggested generating specific views on com-
plex RDFS ontologies using view-querying languages [12,
6]. The aim was to use these views to personalise or sim-
plify ontology structures by creating virtual ones, based on
given view-selection queries. Related to this work is an ap-
proach suggested by Noy and Musen [8], where they pro-
pose limiting the view of an ontology to only a user-selected
class and its neighbourhood.

Bhatt et al [2] developed a distributed architecture for ex-
tracting sub-ontologies. In this approach, users are expected
to specify manually which ontology entities to keep, which
to remove, and which to leave for the system to decide. In
[2], if a class is selected for keeping, then they also keep (a)
all its superclasses and their inherited relationships, (b) all
its subclasses and their relationships, and (c) all attributes

with cardinality more than zero. These rules are detailed in
[13].

Some work have considered analysing how an ontology
is being used to improve ontology management. In [9], the
authors analysed ontology use to help knowledge engineers
to increase the efficiency of knowledge search. They logged
user queries to the knowledge base as well as the answers
received, and analysed the results to find out which classes
and properties have been queried the most, and which have
not been queried at all. If an ontology class or property
is being queried at higher rates then this might indicate a
too-broadly represented class, which could be detailed fur-
ther in the ontology [9]. On the other hand, if the entity is
never queried, then it will be flagged as a good candidate for
removal, unless the entity is instantiated in the knowledge
base.

Another work that took usage into account is reported in
[4]. The aim here was to monitor the use of a simple on-
tology (the ACM topic hierarchy) by several users, then try
to make change recommendations to the items in the hierar-
chy. The change recommendations were based on how the
hierarchy has been queried and modified by the users. How-
ever, the ACM ontology which they experimented with is a
simple isA hierarchy, and the user interactions and change
recommendations where equally simple.

None of the work reported in this section focussed on
processing queries sent by applications and services to their
supporting ontologies as an input to software to perform the
trimming of these ontologies. In this paper, we investigate
applying some variations of the rules proposed in previ-
ous work to winnow a locally-developed ontology that have
been in use by several applications for over three years.

3 Winnowing an Ontology: A Case Study

In this section we discuss a case study on the usage of a
locally maintained ontology; the AKT Reference ontology.

3.1 AKT Reference Ontology

The AKT Reference Ontology (AKTRO®) was devel-
oped over a period of six months by several partners of
the AKT® project. This ontology built on a number of
smaller ontologies previously developed at various AKT
sites. AKTRO is written in OWL and currently consists
of 175 classes and 142 properties. AKTRO models the do-
main of academia, and thus it contains representations for
people, conferences, projects, organisations, publications,
etc. AKTRO is stored in a triple store; namely 3Store [5],
and is instantiated with information drawn from various
databases and information gathering tools (currently stores
around 30M triples in the knowledge base).

Shttp://www.aktors.org/ontology/
Bhttp://www.aktors.org

The AKTRO and knowledge base is used to support a
number of on-site and off-site applications. When the AK-
TRO was first developed over three years ago, the intention
was to create a reference ontology for the whole AKT con-
sortium to avoid the use of several variant ontologies about
the same domain within the project. In other words, the aim
of that ontology was to provide a reference model, rather
than to meet the needs of any specific application or ser-
vice.

3.2 Usage of AKT Reference Ontology

There are different types of ontology utilisation that need
to be taken into account, such as instantiations, queries, di-
rect browsing, etc. Here we are mainly concerned with the
type of usage that is initiated by ontology-dependent appli-
cations and services. In the following we discuss our find-
ings for each of these type of usages of the AKT Reference
ontology.

321 Querylog

We logged the last 193 thousand RDQL queries that have
been posed to the AKTRO, and data cast in it by the afore-
mentioned applications. After analysing the logged queries,
we found that only 6 classes and 27 properties of our ontol-
ogy have been explicitly queried (i.e. the URIs of these
classes and properties were given in at least one RDQL
query). These classes and properties are given in tables 1
and 2 respectively.

Table 1. Queried classes from the AKT Refer-
ence Ontology and the number of times they
appeared in the logged queries

Class Queries Class Queries Class Queries
Technology 63462 Organization 7554 Research-Area 985
Person 750 Academic 9 Thing 3

3.2.2 Instantiations

As mentioned earlier, we maintain a knowledge base with
a large number of instantiations made against the AKTRO.
Even though some of these instances might not be required
for running our applications, they represent an important
and resourceful part of the knowledge base, and hence it
was deemed important to make sure that all these instances
remain intact.

For this reason, we need to include any class and prop-
erty that these instances are using. Many classes in the on-
tology have no instances, while others are heavily instanti-
ated. Figure 1 gives an idea on how sparsely instantiated the
AKTRO is in our repository.

Table 2. Queried properties from the AKT Ref-
erence Ontology and the number of times
they appeared in the logged queries

Property Queries Property Queries
has-title 22478 technology-builds-on 15092
has-key-document 14964 has-author 14809
addresses-generic-area-of-interest 13735 has-appellation 12620
has-email-address 12620 has-web-address 10386
has-date 10210 has-project-leader 9549
has-project-member 9551 owned-by 7602
family-name 7588 full-name 7562
has-relevant-document 7482 works-in-unit 5140
contributes-to 3133 has-telephone-number 2832
has-pretty-name 2034 has-research-interest 1543
sub-area-of 1288 unit-of-organization 960
has-affiliation-to-unit 110 contributes-to-rating 36
has-research-quality 36 given-name 1
has-academic-degree 1

3.2.3 Property Domainsand Ranges

In addition to instantiations and queries, we also need to
find all the classes that are domains or ranges of proper-
ties that were queried or used by instances (i.e assigned val-
ues for some instances). This is important to make sure the
properties remain semantically intact.

Note that according to our query log, only 6 classes out
of 175 have been explicitly queried (table 1). However,
membership of many other classes has been indirectly con-
strained through properties. For example, if the property
has-project-member appears in a query, then it is implic-
itly restricting the bindings for its subject to members of the
class of Project and its object to the class of Person, which
are the domain and range of this property respectively.

Domain and range classes that have not been been ex-
plictly instantiated are shown in grey ovals in figure 1.

3.3 Winnowing the Ontology

As stated earlier, our aim is to study how an ontology can
be automatically trimmed down based on analysing how the
ontology has been queried by dependent applications and
services.

So to complete our experiment, we winnowed the AKT
Reference ontology following the rules below:

1. Keep all ontology classes that are instantiated with one
or more instances. This lead to the inclusion of 54
classes from AKTRO (figure 1).

2. Keep all the ontology properties that are assigned val-
ues by at least one instance in the knowledge base.
This totaled 69 properties.

3. Keep all classes and properties explicitly mentioned
in one or more queries (tables 1 and 2), that are
not already found in steps 1 and 2 above. This

<>
- s E
- - ®
_— > o
= - =
- S
— e
- e
= >
- - o>
= =
g
— L3 k=g o
R
>) —
e e . = B
- e e = R e TS
— - = - £ = R e =
= = = > = - o 2
@ — @ == = -
= i) - = -
o = B = @ = -
= = = }
s D s D - <
- @ -
e - o o
<> =))
= = S
- - G
S > = = =
S e o =-
- @

Figure 1. Space view of the AKT Reference
ontology. Classes that are instantiated are
shown in black. Grey classes are the do-
mains or ranges of instantiated properties

brought in 1 additional class; Thing, and 3 prop-
erties; has-academic-degree, has-key-document, and
has-rel evant-document.

4. Keep all classes that are domains or ranges of any
property found in steps 2 or 3 above. This lead to the
inclusion of 13 new classes. Note that some proper-
ties have multiple domains and ranges, not all of which
are used by our applications. However, for the sake of
completeness, all domains and ranges are included.

5. Remove classes and properties not identified in previ-
ous steps. Classes and properties will be shifted up the
hierarchy if their superclasses are removed.

Remember that AKTO has 175 classes and 142 proper-
ties. After applying the rules above, only 68 classes (38.8%
of AKTRO classes), and 72 properties (50.7% of AKTRO
properties) were left (figure 2). Checking the resulting on-
tology (lets call it winnAKTRO) with an OWL reasoner
(Pellet”) showed that the ontology remained consistent.

The AKTRO ontology is written in OWL, though 3store
is only capable of RDFS inferencing. As it happens, none

http://www.mindswap.org/2003/pellet/

of the restrictions present in the ontology were used in
queries, so they were not preserved by the winnowing pro-
cess. Clearly, for use with a more capable inferencing en-
gine a more sophisticated set of rules would be required to
maintain the OWL restrictions, see section 5.

77 NN |
i 919
k
3
¢

././

7

Figure 2. Space view of the winnowed AKT
Reference Ontology

4 Evaluation

To evaluate the effect of winnowing AKTRO on its sup-
ported application, we compared the results of the logged
queries using AKTRO against the results when using win-
nAKTRO.

We analysed the logged queries discussed in section 3.2
that have been sent to the original AKTRO. A list of RDQL
guery templates was distilled from the 193 thousand queries
in the log. The templating process consisted of removing all
literal constants and non AKTRO, OWL and RDFS schema
URIs. The remaining templates can then be grouped, pro-
ducing sets of queries with similar functions.

4.1 Query Subset

After collapsing identical query templates, only 928
unique templates remained (of which only 152 had been
used twice or more). However, many of the remaining tem-
plates were only slightly different in syntax, but represented

the same query. Example:

SELECT ?r,?1

WHERE (?s,?r,<aktro-uris>,?m), (?r,<rdf:label>, ?1)
SELECT ?r,?1

WHERE (?s,?p,<aktro-uris,?r), (?r,<rdf:label>,?1)

Furthermore, some queries in the log were found to be
erroneous and also had to be filtered out. From the remain-
ing templates, a set of 42 distinguished query templates
where chosen for our experiment. These templates were
selected carefully as representative of our query log. For
each selected template, up to 50 original queries from the
log were randomly chosen. The queries for this experiment
totalled 1724 queries.

A copy of our AKTRO-based knowledge base was made,
then AKTRO was replaced by winnAKTRO. A PHP script
was written to run the selected queries on both knowledge
bases and compare the results to find out how well they
match. The script compares each binding returned for each
query from both ontologies to determine whether the results
obtained from the two ontologies are an exact match or not.
The script produces a list of all affected queries (different
results from both ontologies), the differing bindings, and
the time it took to run each query on each of the two ontolo-
gies.

4.2 Results Comparison

The comparison of query results obtained from both on-
tologies revealed that:

e Out of the total of 1724 queries, 1674 were unaffected
(97.1%). In other words, the results returned for these
queries from winnAKTRO matched exactly the results
from AKTRO. The results of 50 queries were different
from winnAKTRO than from AKTRO (2.9%).

e The 50 affected queries belonged to 1 query template,
out of the total 42 templates (2.4%). The number of
query templates for which none of its queries failed is
41 (97.6% of all selected query templates).

e Running the 1724 queries on winnAKTRO took 4:02
minutes, while it took 9:13 minutes with AKTRO. In
other words, there was a 44% reduction in query pro-
cessing time when using the winnowed ontology.

The failed template queried the rdf:type of instances, as in:
SELECT ?type
WHERE (<instance-uris>, rdf:type, ?type)

This query could be issued by applications that use the
type to choose how to render data relating to the instance.
For example, an application might ask the above query, then
search the returned types for the Project class, as a way of
verifying if the instance in hand is a project or not. If the
Project class is no longer in winnAKTRO, then this query
will return a different answer than before. Note that accord-
ing to our query log, 2080 of the queries involved rdf:type,
but only 654 of them belong to the failing template above.

Other templates that include rdf:type passed the test, be-
cause the binging for rdf:type was further used in the query
constraints, rather than being projected as a result. This
meant that the interesting types had to either be explicitly
mentioned in the query (in which case they were included
in the required classes) or some property of the class was
being constrained.

Ontological queries such as this one should be handled
carefully to ensure that there is no significant difference in
the results due to the winnowing process.

The increased speed of the execution of the queries is
due to the reduced level of inference required of the query
engine. 3store uses a mixture of forward— and backward—
chaining [5], and the complexity of inference rules covered
by either technique affects the query execution time. In the
case of forward-chaining the reduction in complexity of the
ontology creates fewer inferred triples, and in the case of
backward chained rules the application of the rules can be
optimised out in more cases, and/or the size of the interme-
diate candidate set can be smaller.

5 Discussion

A number of approaches have been suggested in the lit-
erature to trim down ontologies to simply make them easier
to manage (sec. 2). However, we noticed that none of this
work investigated using application queries as a guideline to
how an ontology should be winnowed, nor they studied the
effect of winnowing an ontology on its current use. Unlike
user queries, application queries tend to be fixed at devel-
opment time. Therefore, analysing how an application is
making use of an ontology can be a good base for deciding
how the ontology is to be winnowed. This, of course, is only
possible if the applications are fully developed and their use
of the ontology is not expected to change very frequently.
However, it is always possible to revert to the original on-
tology if, for example, the requirements of the applications
changed, or new applications are developed.

Some ontology-trimming rules have already been pro-
posed (e.g. [1, 13]). However, it was apparent that new
winnowing rules are required when applications are in-
volved in the process. For example, the authors of [2] pro-
posed keeping all subclasses and superclasses of preserved
classes (sec. 2). In our study, this would mean keeping
the entire AKTRO class hierarchy, simply because the top
class, Thing, is selected for preservation. Another rule pro-
posed in [13] is to transfer properties of unrequested classes
to other classes following certain guidelines. Such modifi-
cation to the ontology might be required if a class is explic-
itly selected for removal. However, this will certainly break
many application queries to the ontology.

In [9], the authors suggested removing classes that are
not explicitly instantiated or queried. According to our
study, such classes should not be removed if they are asso-

ciated with any required property. They also suggested
that classes that are queried very often should be broken
down to further subclasses. When analysing our query log,
we noticed that most queries targeted more general classes,
rather than their subclasses. For example, there were 750
queries to the class Person, but only one of its 13 instan-
tiated subclasses was queried, 9 times. This matches the
observation reported in [3], which states that people tend to
formulate their queries more generally than actually needed.
Query frequency of classesis therefore not a reliable indi-
cation of whether the class needs further subclassification
or not.

Another possible explanation of the high use of certain
classes rather than others is, as mentioned earlier, that mem-
bership of many classes has been indirectly constrained
through properties, rather than explicitly mentioned in the
query. For example, the property has-project-member ap-
peared in 9551 queries, while the class Project (the domain
of this property) has never been explicitly queried.

One crucial element in our ontology-winnowing ap-
proach is of course the query logs. That is, the logs of
queries sent to the ontology by the applications. For the log
to be complete, one has to make sure that all the applica-
tions to winnow the ontology for, have been running long
enough to ensure that all their query templates are logged.

From the experiment described in section 4.2, the
rdf:type query template failed to return the same results
before and after winnowing the ontology. This shows that
for this query template (and perhaps others yet to be discov-
ered), it is important not only to look at the log of queries,
but also to log query answer s when deciding what to keep
in the winnowed ontology and what to remove. This finding
agrees with the approach taken in [9], where they analyse
query results to acquire information that could potentially
be used to tune the ontology.

However, the danger is that by preserving all the results
of all queries, there might not be much left to remove from
the ontology. The point to consider here is how acceptable
it is that certain queries return different results. For some
queries, it might not be important for the application to re-
ceive the same answer every time. For example, if the sole
aim of a query or a set of queries is to retrieve the ontology
structure to display it on the screen, then it might not be a
problem if the structure has changed. However, if the aim of
the query is, say, to search for all Person instances with 10
or more publications, then some consistency is more likely
to be expected.

There is no easy way of finding out from the query log
which query results have to be preserved (i.e. unchanged
before and after winnowing), and which are more flexible.
Such knowledge will most likely require some analysis of
the applications themselves.

When winnowing an ontology, it might be important to
maintain its semantic completeness and consistency. In

our approach, our main focus was to preserve only the nec-
essary parts of the ontology to keep the applications run-
ning, rather than to hold on to any specific semantics in the
ontology. For example, our winnowing process removed
some of the restrictions in AKTRO because they were not
used by any application. So even though winnAKTRO re-
mained consistent, some detailed semantics have been lost.
In our study, we have chosen to keep all instantiated
classes and properties in the winnowed ontology, irrespec-
tive of whether they have been queried or not by our appli-
cations. Stojanovic and colleague [9] believe that unused
instances indicates a lack of awareness of their existence.
However, to minimise the ontology further, one can remove
any such entities, along with their instances, if none of these
instances have ever been retrieved by the applications.

6 Conclusionsand Future Work

If the ultimate goal of building an ontology is to serve
certain applications, then it seems sensible to use these ap-
plication to trim the ontology to smaller and easier to man-
age sizes. In this paper we described a preliminary study we
performed on the AKT Reference Ontology, which is being
used by several applications. We logged over 193 thousand
queries sent to the ontology from these applications, and
applied some rules to winnow the ontology (i.e. to throw
away any useless parts) based on the analysis of our query
log. The winnowed ontology turned out to have only 38.8%
of the classes, and 50.7% of the properties of the original
ontology.

To examine how the applications might have been af-
fected by the winnowing process, we selected 1724 repre-
sentative queries from the log and compared their results be-
fore and after winnowing the ontology. Even though most
of the queries returned identical answers (in 44% less time),
the queries that asked for rdf:type without any further filter-
ing failed, due to the removal of some classes or constraints
from the ontology.

In future work we plan to experiment with logging not
just the queries, but also the answers to these queries, and
use that to feed into the winnowing process. We also plan
to log larger amount of queries, and to compare the whole
set against the winnowed ontology.

Acknowledgment

This work is supported under the Advanced Knowledge
Technologies (AKT) Interdisciplinary Research Collabora-
tion (IRC), which is sponsored by the UK Engineering and
Physical Sciences Research Council under grant number
GR/N15764/01. The AKT IRC comprises the Universi-
ties of Aberdeen, Edinburgh, Sheffield, Southampton and
the Open University. The views and conclusions contained

herein are those of the authors and should not be inter-
preted as necessarily representing official policies or en-
dorsements, either express or implied, of the EPSRC or any
other member of the AKT IRC.

References

[1] M. Bhatt, A. Flahive, C. Wouters, W. Rahayu, D. Taniar, and
T. Dillon. A distributed approach to sub-ontology extraction.
In 18th Int. Conf. on Advanced Information Networking and
Applications (AINA), pages 636-641, Fukuoka, Japan, 2004.

[2] M. Bhatt, C. Wouters, A. Flahive, W. Rahayu, and D. Taniar.
Semantic completeness in sub-ontology extraction using
distributed methods. In Proc. Int. Conf. on Computational
Science and its Applications (ICCSA), pages 508-517, Pe-
rugia, Italy, 2004. LNCS, Springer Verlag.

[3] H. Chen and V. Dhar. Cognitive process as a basis for in-
telligent retrieval systems design. Information Processing &
Management, 27(5):405-432, 1991.

[4] P. Haase, A. Hotho, L. Schmidt-Thieme, and Y. Sure. Col-
laborative and usage-driven evolution of personal ontolo-
gies. In Proc. Second European Semantic Web Conference
(ESWC), pages 486-499, Crete, 2005.

[5] S. Harris and N. Gibbins. 3store: Efficient bulk rdf storage.
In Proc. 1st Int. Workshop on Practical and Scalable Se-
mantic Systems (PSSS 03), pages 1-20, Sanibel Island, FL,
USA, 2003.

[6] A. Magkanaraki, V. Tannen, V. Christophides, and D. Plex-
ousakis. Viewing the semantic web through rvl lenses. In
Proc. Second Int. Semantic Web Conf. (ISWC), pages 98—
112, Sanibel Island, Florida, 2003.

[7]1 N. F. Noy and D. L. McGuinness. Ontology development
101: A guide to creating your first ontology. Technical
Report KSL-01-05, Stanford Medical Informatics, March
2001.

[8] N. F. Noy and M. A. Musen. Specifying ontology views
by traversal. In 3rd Int. Semantic Web Conf. (IS\VC'04),
Hiroshima, Japan, 2004.

[9] N. Stojanovic and L. Stojanovic. Usage-oriented evolution
of ontology-based knowledge management systems. In Int.
Conf. on Ontologies, Databases and Applications of Seman-
tics (ODBASE), pages 230-242, Irvine, CA, 2002.

[10] H. Stuckenschmidt and M. Klein. Structure-based partition-
ing of large concept hierarchies. In 3rd Int. Semantic \Web
Conf. (ISMC2004), Hiroshima, Japan, 2004.

[11] M. Uschold, P. Clark, M. Healy, K. Williamson, and
S. Woods. An experiment in ontology reuse. In Proc.
Eleventh Knowledge Acquisition Workshop (KAW), Banff,
Canada, 1998.

[12] R. Volz, D. Oberle, and R. Studer. Implementing views for
light-weight web ontologies. In Proc. |EEE Database Engi-
neering and Application Symposium (IDEAS), Hong Kong,
China, 2003.

[13] C.Wouters, T. Dillon, W. Rahayu, and E. Chang. A practical
walkthrough of the ontology derivation rules. In Proc. 13th
Int. Conf. on Database and Expert Systems Applications
(DEXA), pages 259-268, Aix-en-Provence, France, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

