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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

by W. T. Luke Teacy

Trust is a prevalent concept in human society. In essence, it concerns our reliance
on the actions of our peers, and the actions of other entities within our environment.
For example, we may rely on our car starting in the morning to get to work on time,
and on the actions of our fellow drivers, so that we may get there safely. For similar
reasons, trust is becoming increasingly important in computing, as systems, such as the
Grid, require computing resources to work together seamlessly, across organisational and
geographical boundaries (Foster et al., 2001). In this context, the reliability of resources
in one organisation cannot be assumed from the point of view of another. Moreover,
certain resources may fail more often than others, and for this reason, we argue that
software systems must be able to assess the reliability of different resources, so that they
may choose which resources to rely upon.

With this in mind, our goal here is to develop a mechanism by which software entities
can automatically assess the trustworthiness of a given entity (the trustee). In achieving
this goal, we have developed a probabilistic framework for assessing trust based on
observations of a trustee’s past behaviour. Such observations may be accounted for
either when they are made directly by the assessing party (the truster), or by a third
party (reputation source). In the latter case, our mechanism can cope with the possibility
that third party information is unreliable, either because the sender is lying, or because
it has a different world view. In this document, we present our framework, and show how
it can be applied to cases in which a trustee’s actions are represented as binary events; for
example, a trustee may cooperate with the truster, or it may defect. We place our work
in context, by showing how it constitutes part of a system for managing coalitions of
agents, operating in a grid computing environment. We then give an empirical evaluation
of our method, which shows that it outperforms the most similar system in the literature,
in many important scenarios.
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Chapter 1

Introduction

In this document, we present a model for reasoning about trust between intelligent
software agents, operating in a large open distributed system, such as the Grid, pervasive
computing and the semantic Web. In the present chapter, we introduce the concept
of trust, describe its relevance to computing and outline the objectives of our work.
Specifically, this chapter is structured as follows: Section 1.1 introduces our notion of
trust; Sections 1.2 and 1.3 highlight the relevance of trust in computing and the specific
set of problems we wish to address; Section 1.4 discusses why we are interested in agent
systems in particular; Section 1.5 specifies the objectives of our work; and finally, Section
1.6 sets the scene for the material covered in the subsequent chapters.

1.1 The Meaning of Trust

In human society, we constantly rely on the actions of other people. Whether we’re
concerned about getting our post delivered on time, or buildings not collapsing around
us, it is other people’s actions that determine such things. Unfortunately, there is often
a great deal of uncertainty surrounding the behaviour of our fellow humans. We cannot,
in general, read minds, so we cannot be certain about intentions. Likewise, we cannot
always tell whether others have the resources to fulfil their promises.

Managing this uncertainty is something we do almost subconsciously in our daily lives.
For instance, in the workplace when we need to delegate a task, we normally choose a
person who we believe is willing and able to do it (unless we have no option). Also,
we may choose not to disclose information to someone if we believe they will use that
information to our disadvantage. Both of these cases (and many more) involve assessing
the future action of a person or other entity, and in such cases it is common to use the
notion of trust (Misztal, 1996).

1



2 Chapter 1 Introduction

The concept of trust is thus prevalent in society and we use it in many contexts. As
with many words in natural language, it is a term that is used frequently, understood
implicitly, but not well defined. In this discussion, however, we are not concerned with
finding a universally accepted definition. Instead, we adopt the definition given by
Gambetta (1988), which captures the notion we are interested in:

“Trust is a particular level of the subjective probability with which an agent will perform
a particular action, both before she can monitor such an action, and in a context in
which it affects her own action.”

There a number of points in this definition that warrant elaboration.

1. Trust relates to a particular action — Although sometimes we talk generally
about our trust in an individual, a high level of trust in someone to perform one
type of action does not imply a high level of trust in them to perform another.
For example, just because we can trust a person to pick up a pen does not mean
we trust them to run the country!

2. Trust is a subjective probability — Trust is subjective, because it is assessed
from the unique perspective of the truster. It is dependent both on the individual
set of evidence available to the truster and her relationship with the trustee.

3. Trust is defined to exist before the respective action can be monitored

— Trust is a prior belief about an entity’s actions. It is an assessment made in a
context of uncertainty. Once the truster knows the outcome of an action, she no
longer needs to assess trust in relation to that outcome. Consider the difference in
the statements, ‘I know you have brushed your teeth’ and ‘I trust that you have
brushed your teeth’.

4. Trust is situated in a context in which it affects the truster’s own action

— By this, we mean that our interest is limited only to those actions of a trustee
that have relevance to the truster. Specifically, we are interested in trustee ac-
tions that, if their outcomes are known, would usefully inform the truster’s action
decisions.

We believe that this is a strong definition because it captures both the purpose of trust,
and its nature in a form that can be reasoned about. The purpose of trust is to aid an
entity make decisions, when the goals of those decisions are affected by the behaviour
of other entities (this is the subject of Point 4). Trust is by nature a probability of an
entity performing a particular action. Defining trust as a probability allows us to reason
about it analytically, much more readily than the loose concept that it is in natural
language.
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1.2 The Relevance of Trust in Computing

Issues of trust are becoming increasingly important in information technology, due to a
predominant trend in modern computing: the shift towards large-scale open distributed
systems. In such systems, users and software can interact with information services,
computing resources and other users with whom they are unfamiliar or have no physical
contact. Issues of trust arise from such interactions, just as they do in everyday life.
For instance, we may ask if we trust an information service to provide us with accurate
information, or a particular website to respect the privacy of credit card details. The
participation of large numbers of entities with conflicting interests in a large open system
means that these examples are not isolated. In particular, we identify three important
(possibly overlapping) areas in computing that trust concerns:

Security — Broadly, computer system security can be viewed as an attempt to limit
the actions that individuals or software can perform with a given computer system.
We can view this problem as reverse trust, or equivalently fear (see Section 2.2.1):
trust is concerned with a wish for an entity to perform an action, whereas fear is
concerned with a wish for an entity not to perform an action. In this respect, we
wish to avoid malicious actions, such as manipulation of important data or reading
of trade secrets, and therefore attempt to limit the ability to perform such actions
only to those who are unlikely to have incentive to act maliciously.

Traditionally, computer security has been concerned with lower level issues such
as authentication, whereby the identity of a user is determined; authorisation,
in which access to resources is granted; and data encryption (Gollmann, 1998;
Pfleeger, 2002). Recently, however, some in this field have started to refer ex-
plicitly to issues of trust, though in some cases, the term has been used merely
as a synonym for authorisation or authentication (Grandison and Sloman, 2000).
Others refer to it as a richer concept; they see it as a prerequisite condition for
authorisation. In this vein, Blaze et al. (1996) introduce the concept of trust man-
agement. Essentially, trust management is concerned with specifying and applying
security policies, which state precisely what actions can be performed by a given
entity.

Service Provision — In contrast to security, service provision concerns actions that a
trustee is obliged to perform. Prime examples of this can be found in the semantic
web (Berners-Lee et al., 2001), Pervasive Computing (Adelstein et al., 2004) and
the Grid (Foster and Kesselman, 2004), in which certain tasks may be automat-
ically delegated to systems that are outside the truster’s direct control. In this
context, there may be a number of competing systems that can fulfil a particu-
lar task, each providing a different quality of service. Obviously, it is in the best
interest of the truster to delegate in a way that maximises the probability of the
task being completed, with the highest possible quality of service.
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Human derived Trust — To assess a trustee, a truster usually gathers evidence
that supports one or more conclusions about the trustee’s likely behaviour. In the
preceding examples, this evidence gathering can, at least in part, be automated.
For instance, automatic intrusion detection indicates that a particular user account
is being used for malicious purposes, or that a service provider may be judged
on the quality of service it has provided in the past. In other cases, such as
online auction houses like e-bay1, trust may depend on intangible qualities, only
discernible from the subjective experience of a human user.

1.3 The Motivation for this Work

It is clear from the preceding section that trust affects a number of different areas
in computing. Potentially, each of these would benefit from automated methods for
addressing trust-related issues. However, in the case of the three areas that we have
identified above, each has its own distinct set of requirements, and deserves its own
specific treatment. Therefore, in this document, we have chosen to focus on just one of
these areas — service provision2. In particular, we are interested in service provision
in contexts in which human assessment of trust is impractical, either because too much
data is required to make a judgement, or because too little time is available. To justify
this choice, we shall expand on the importance of this area, by using the Grid as a
motivating example where it is of prime importance. Specifically, we discuss the central
role of service provision in grid systems, and the need to automate decisions involving
service provision trust on the Grid.

In Foster et al. (2001), the aim of the Grid is stated as facilitating, “coordinated re-
source sharing and problem solving in dynamic, multi-institutional virtual organisa-
tions.” Specifically, the Grid is concerned with direct access to computers, software,
data and other resources for multiple purposes that involve collaboration across geo-
graphical and institutional boundaries. In this context, a virtual organisation (VO) is
the set of individuals or organisations that are involved in such a collaboration. It is en-
visaged that the resources available to a VO may offer varying degrees of reliability, and
may leave and re-join the system at any time. In addition, the organisations that supply
these resources could have different, and possibly conflicting, interests. Together, these
properties imply an inherent unreliability in Grid resources; this is amplified further
when we consider that the Grid is intended to take on global scale.

We can see from this description that a variety of trust issues arise from the Grid. In
particular, resource failure should be taken as a rule, not an exception. Thus, we must

1http://www.ebay.com
2This focus does not preclude us from making some wider contributions; rather, it concentrates our

efforts on a more tractable set of problems.

http://www.ebay.com
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attempt to minimise the risk of failure by choosing trustworthy resources, and compen-
sate for component failure, when it does it occur, by finding replacements quickly and
accurately. To do so, we must be able to accurately assess and compare the trustwor-
thiness of competing providers. Both the requirement for accuracy and the requirement
for speed exceed the practical limits of human ability for any sizable system; thus, au-
tomation is an essential attribute to any solution to this set of problems.

1.4 Trust as a Multi-Agent System Problem

At the beginning of this chapter, we briefly stated that we are interested in assessing
trust between intelligent software agents. Although our motivation is to solve problems
associated with systems such as the Grid and the semantic web, it can be useful to frame
these systems as multi-agent systems. Here, we discuss the utility of this approach in
our domain.

First, we need to be clear about what a software agent is, and what purpose it serves.
We discuss the subject of agents in more detail in Section 2.1; for now, it suffices to note
the definition of an agent given by Wooldridge and Jennings (1995) as, “a computer
system that is situated in some environment, and that is capable of autonomous action
in that environment in order to meet its design objectives”.

The concept of an agent provides us with a metaphor for designing complex software
systems. We call a system composed of a number of interacting agents (each with
potentially different goals and capabilities) a multi-agent system.

Agents often need to form themselves into resource-sharing collectives that act in a
coordinated manner, effectively these are virtual organisations. Thus, agents and grid
computing share some common ground in that they both involve groups of software enti-
ties that can operate together as whole. Where the two fields differ is in their focus. Grid
computing has traditionally concentrated on underlying infrastructure: tools, protocols,
and middleware, which enable secure coordinated resource sharing. Agent-based com-
puting involves algorithms and methodologies for building autonomous problem solvers.
Grid systems have, for the most part, been inflexible in terms of the way their composite
resources can interact, and agents can provide a means to alleviate this situation (Foster
et al., 2004).

From this discussion, the relevance of agency as a metaphor in grid computing is clear.
However, this relevance also extends to pervasive computing environments and the se-
mantic web. Much pervasive computing research already makes use of agent technolo-
gies; examples are given in Ramchurn et al. (2004). There is also a current trend towards
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convergence, or at least integration, between semantic web and grid technologies; for in-
stance, recent work on the Grid, such as Tuecke et al. (2003), makes use of standards
developed by the semantic web community.

Returning to our own perspective, by considering trust in the context of agents, we can
draw upon existing concepts and technologies that have been developed in that field.
Moreover, the idea of an agent as an entity with individual goals and capabilities is an
appropriate metaphor for exploring issues of trust, particularly when placed in a social
context.

1.5 Research Requirements

In Section 1.3, we stated that the focus of our research is service-provision trust, specif-
ically in contexts in which human assessment of trust is not practical, and discussed the
importance of this type of trust in large open distributed systems, such as the Grid.
Against this background, the overall aim of our research is to develop a computational
model for assessing the trustworthiness of an agent, to provide a particular service. In
this section, we detail a set of requirements that are relevant to this goal, which we refer
to subsequently when assessing our own work and other computational trust models.

Essentially, assessing the trust in an agent can be viewed as an on-line learning prob-
lem, in which the future behaviour of that agent must be predicted given the available
evidence. Depending on the situation, there may be a variety of predictive information
sources that can be used to perform this task. These sources may have varying degrees
of predictive power, and may or may not be available in a given situation. For instance,
if a truster has previously interacted with a trustee before, then the truster can use past
observations of the trustee’s behaviour to estimate the outcome of a future interaction.
However, if a truster has not previously interacted with a trustee, it must rely on other
information, such as the behaviour of other similar trustees it has interacted with.

In light of this, the challenge for trust assessment is to identify sources of evidence, fuse
this information in a way that respects the relative predictive value of each source, and
find mechanisms to cope when any particular source is unavailable. Furthermore, this
must be done such that the opportunity for a trustee to outwit the learning process,
by behaving in a certain way, is minimised. In the following subsections we expand on
this by identifying three key sets of requirements: general requirements, that must be
addressed by any solution to this problem; additional requirements, imposed on solutions
aimed at large-scale distributed systems; and reputation requirements, which apply when
information about a trustee is gathered via a third party.

In the last set of requirements, we use the term reputation to refer to the overall opinion
of a community with regard to a trustee. We differentiate this from the concept of
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trust, which we consider to exist between two entities — a truster and a trustee. In a
large open system, the likelihood of a truster having information about a trustee may be
much lower than the likelihood of some other agent possessing such information. The
opinions of other agents about a trustee, which constitute the trustee’s reputation, are
therefore an important source of evidence for the truster. However, third party opinions
are inherently unreliable compared to directly observed evidence, for several reasons that
we discuss in Section 1.5.3.

1.5.1 General Requirements

1.1 Varying degrees of Evidence As a group of entities interacts over time, the
number and type of interactions that occur between group members may change.
A trust model should make use of this information, on average increasing the
accuracy of its results as the frequency of interactions in the system increases.
The system should not, however, be dependent on such information. In particular,
the system should be able to operate in the following situations:

1.1.1 The truster has direct experience of the trustee.

1.1.2 The trustee is not known directly by the truster, but is known by other entities
within the system.

1.1.3 The trustee is not known to any entity in the system.

1.1.4 No entity in the system is previously aware of any other entity.

Rationale: We should endeavour to make as much use of the information provided
by the environment as possible, but should also be able to provide reasonable
results when certain sources are not available. This is particularly important, for
instance, when a large system has just been initialised and no interactions have
yet taken place.

1.2 Context Dependence The decision of how much trust to place in an entity
should depend on the context in which that decision is being made. In particular,
it should be dependent on the following:

1.2.1 The truster’s individual preferences.

Rationale: Different agents may have different priorities in relation to service
provision, so what one agent considers a good service will not necessarily be
the same as another.

1.2.2 The truster’s relationship with trustee.

Rationale: An agent’s behaviour towards its peers may differ depending
on the relationship that holds between them; for example, behaving more
favourably to a friend than a foe.
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1.2.3 The type of action the trustee is entrusted to do, or refrain from.

Rationale: Our definition of trust relates to a particular action; trust to
perform one task does not imply trust to do something different.

1.2.4 Time of assessment

Rationale: In general we cannot assume that an agent’s behaviour will
remain constant over time. Consequently, the more time that has passed
since an observed interaction, the less predictive value it will have for future
predictions.

1.3 Incentive Compatibility If the proper functioning of a system relies on an agent
behaving in expected way, then it should not be in an agent’s interest to violate
that expectation. This requirement is referred to in the literature as incentive
compatibility (Jurca and Faltings, 2003).

Rationale: A rational agent will always attempt to further its goals by whatever
means possible, even if this means breaking the rules, or otherwise behaving in an
anti-social way. If we intend to rely on certain types of behaviour being prevalent
in a group of agents, we must provide or identify an explicit reason for which
agents will choose to act in the desired way.

1.4 Identity Changing If participants in a system are capable of changing their
identity in an environment in an attempt to increase their reputation, the average
utility of other members should not decrease due to such a change. Note that this
is a special case of Requirement 1.3.

Rationale: One objective behind assessing the future action of an agent is to
identify agents that behave in an unfavourable way. It is unlikely to be in an
agent’s interest to have such a poor reputation so, if by changing its identity it can
start again in a better position, it is likely to do so. Clearly this is not desirable, as
it allows deceitful agents to continually take advantage of other agents in a system,
without being penalised.

Some, for instance Friedman and Resnick (2001), argue that because of this, the
cost of starting again with a new identity should be made so great that it should
outweigh any benefit of doing so. In some cases, however, this constraint may be
too harsh as it could imply that valuable agents need to belong to a system for
significant period before being identified. Delaying recognition of good agents will
incur its own costs to the community as a whole.

The underlying metric we wish to maximise is the average utility of participants
in a system. Keeping in mind the situation described above, we believe this is a
more appropriate requirement, which allows for more pragmatic approaches to the
identity changing problem.

1.5 Trust Representation
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The way in which a trust model represents trust between agents should satisfy the
following requirements:

1.5.1 Representation of Uncertainty A representation of trust should quan-
tify the uncertainty surrounding a trustee’s behaviour. Moreover, it should
distinguish between two types of uncertainty: intrinsic uncertainty, due to
variability in a trustee’s behaviour; and evidential uncertainty, due to a lack
of evidence on the part of the truster, concerning the trustee’s behaviour.

Rationale: As stated in Section 1.1, trust is primarily concerned with the
uncertainty surrounding a trustee’s action, and how this uncertainty affects
the decisions made by the truster. It is therefore essential that a trust model
somehow captures this uncertainty. Furthermore, it is useful to distinguish
between uncertainty that is inherent in a trustee’s behaviour and uncertainty
that is due to a lack of evidence. Although both may have an impact on how
a truster behaves toward a trustee, the latter may prompt the truster to seek
more evidence before making further decisions.

1.5.2 Trust Grounding Any model of trust should include a clear mechanism
through which a truster can derive a trust value for a trustee from relevant
information it obtains from its environment; for example, if a truster assesses
trust based on observations of a trustee’s past behaviour, there should be a
clear mechanism to derive a trust value based on these observations.

Rationale: This requirement is a clear prerequisite to our aim of fully au-
tomating trust assessment. If such a mechanism did not exist, the appropriate
trust value for a trustee could not be determined.

1.5.3 Minimisation of Arbitrary Model Parameters The specification of a
trust model can be simplified by introducing a set of parameters that should
be adapted to environmental conditions. In some cases the optimal values for
such parameters may be clear, but in others estimating optimal values may
be an intractable problem. Any model of trust should attempt to minimise
parameters that fall into the latter category.

Rationale: In many cases, a poor parameter setting may severely affects
performance. If estimating good parameter settings becomes a hard problem,
it may limit the usefuless of the model.

1.6 Exploration of Trustee Behaviour Rather than relying on its knowledge, a
truster should, in some circumstances, interact with a little-known agent, so that
it may learn about its behaviour.

Rationale: If a truster knows that certain interaction partners provide an accept-
able level of service, they might never choose to interact with any other agent that
they know less about. Viewed at a system level, this attitude may mean that new
agents never get a foothold in the environment, even if they offer a better service
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than other established agents. In reinforcement learning (Sutton and Barto, 1998),
this problem is known as the exploration exploitation trade-off.

1.5.2 Requirements for Large Scale Distribution Systems

2.1 Group Assessment The system should be able to assess the trustworthiness of a
coalition, based on information about the coalition members; this should include
cases in which only a subset of the members are known to the truster.

Rationale: One reason why a virtual organisation may be formed is to pool
resources from a number of agents to provide a service which could not otherwise
be provided. In such cases, all group members will impact on the quality on the
service provided. Since the members of a VO are likely to have existed before
the VO was formed, previous interactions with the members are obviously an
important source of information.

2.2 Scalability The model should be scalable; that is, its use should be practical and
useful regardless of the size of the system it is applied to.

Rationale: We envisage that our trust system could be used to enable trust-
aware decision-making on the Grid. The current vision of the Grid is of large,
geographically distributed system that will grow from the combination of many
smaller systems. The number of entities interacting in our target environment may
therefore vary by several orders of magnitude.

2.3 Robustness The model should be robust in the face of the failure of system
components.

Rationale: If the system is to operate successfully in a large distributed environ-
ment, we must assume that elements of the system may fail on a regular basis,
and take steps to minimise the effect of such failures on the performance of the
system as a whole.

1.5.3 Reputation Requirements

3.1 Assessment of Source Accuracy When accepting an opinion about a trustee
from a reputation source, the truster should judge how likely the opinion is to be
accurate, based on its origin. This should determine the impact of the opinion on
the truster’s overall assessment of the trustee.

Rationale: Sources of reputation will not always be reliable; for example, a close
colleague of a trustee is likely to have a strong incentive to exaggerate the trustee’s
credentials, and hence provide unreliable information.
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3.2 Heterogeneous Preferences The reputation mechanism should not depend on
the assumption that a truster’s preferences with regard to service provision are
similar to that of its reputation sources.

Rationale: Consider as an example a rock music fan and a classical music fan.
Assuming their musical preferences are mutually exclusive, if one asks the other
what they think of a particular composition, and the reply given is, “very good”,
this will not be consistent with the result if the roles were reversed. This is because
the reputation source’s evaluation is semantically dependent on its own preferences.
Any reputation mechanism should account for this problem.

3.3 Correlated Evidence Problem Consider two or more reputation sources that
have all witnessed the same set of interactions with a trustee, and then update their
opinions of the trustee in light of this evidence. Later, an agent wishing to assess
the trustee requests the opinion of all the reputation sources and, due to their
shared experience, all return similar results. Clearly, the combined information
from the reputation providers is smaller than if they had all based the their opinions
on separate evidence of similar magnitude. Failure to distinguish between these
cases is known as the correlated evidence problem (Pearl, 1988) A reputation-
sharing mechanism should provide a means to avoid this problem.

3.4 Witness Propagation Consider three agents α, β, and γ; α requests reputation
information from β and subsequently updates its beliefs. Later, γ requests reputa-
tion from α, who gives a reply based on the information it received from β. If the
original information given by β was misleading, then the information given to γ by
α will be misleading also. This is known as the false witness propagation problem,
itself an instance of the correlated evidence problem. A reputation system should
ensure that this does not occur.

Rationale: If information is allowed to propagate like this through the system,
it becomes very hard to control its impact and can result in highly correlated
evidence.

1.6 Document Structure

The remainder of the document is structured as follows: Chapter 2 gives a review of rel-
evant literature, and draws comparisons between existing models and our requirements;
consequently, we identify shortfalls that warrant our attention. Chapter 3 defines a
framework for reasoning about trust; Chapter 4 outlines our current trust model, and
provides an empirical evaluation. Finally, Chapter 5 draws our conclusions and details
our plans for further work.





Chapter 2

Literature Review

In this chapter, we present a review of the literature relevant to understanding and
evaluating our work. We divide our discussion into three parts. First, Section 2.1 puts
our motivations in context, by giving an overview of agent systems. Second, Section 2.2
describes some background theoretical work on trust, and evaluates existing models that
attempt to solve some of the requirements we set out in Section 1.5. Finally, we conclude
the chapter in Section 2.3, summarising the related work to date, and identifying key
outstanding issues.

2.1 Multi-Agent Systems

In this section, we revisit the topic of multi-agent systems for two reasons: (1) we need
to introduce terminology that will be used subsequently and (2) we need to understand
the role that trust plays within a multi-agent system. We begin by expanding on what
we mean by the terms, ‘agent’ and ‘multi-agent system’, and then introduce key issues
in multi-agent systems and introduce the role of trust.

The term, agent, has been used by many in computing over the years, but there has never
been a universally accepted definition. In (Smith et al., 1994) the term is defined as, “A
persistent software entity dedicated to a specific task”. In contrast, Russell and Norvig
(2003a) emphasise an agent’s awareness of its environment. They take an agent to be,
“anything that can be viewed as perceiving its environment through sensors and acting
upon that environment through actuators.” Despite this lack of consensus, the view
of Wooldridge and Jennings (1995) has been widely adopted. They state the following
minimal set of properties necessary for something to be classed as an agent:

autonomy — agents operate without the direct intervention of humans or others, and
have some kind of control over their actions and internal state

13
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social ability — agents interact with other agents (and possibly humans) via some
kind of agent-communication language

reactivity — agents perceive their environment (which may be the physical world, a
user via a graphical user interface, a collection of other agents, the Internet, or
perhaps all of these combined), and respond in a timely fashion to changes that
occur in it

pro-activeness — agents do not simply act in response to their environment, but
instead are able to exhibit goal-directed behaviour by taking the initiative

Agents provide us with an abstraction metaphor for designing and building complex
software systems. In this way, they can be compared to software objects, the main dif-
ference being that agents have control over their behaviour, whereas objects, in general,
do not. Typically, the objects in a system share the same goal, which is not necessarily
the case with agents. A multi-agent system is one that contains more than one agent,
and in which agents interact to achieve their goals. The combination of agents into
a collective raises a number of questions that are not present when a single agent is
considered in isolation — trust can be considered as one of these issues.

2.2 Computation Models of Trust

As stated previously, there are a number of areas for which trust is relevant. Generally,
these fall into three major categories: security issues, user-to-user trust and service
provision. In the work described here, we are concerned primarily with service provision,
and so in this section we focus our attention only on related work that is relevant to this
set of problems. Specifically, we divide our discussion into four areas. First, Section 2.2.1
identifies important issues and puts the proceeding discussion in context by reflecting
on the cognitive aspects of trust. Second, Section 2.2.2 surveys the major approaches
for forming trust based on information directly available to a truster. Third, Section
2.2.3 addresses the problems that arise when trust is based on third party opinions.
Finally, Section 2.2.4 outlines an alternative approach to trust assessment: it discusses
mechanisms that attempt to enforce trustworthy behaviour by making it in a trustee’s
best interest to be trustworthy.

2.2.1 Cognitive Viewpoint

If we wish to assess issues of trust, it is important that we are clear about precisely what
we are trying measure. We have already made some progress toward this in Chapter 1,
by formally defining trust as probability. However, we need to investigate deeper to find
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Figure 2.1: The three way relationship between trust, fear and authority

the conditions that must be present for a state of trust to exist between a truster and
trustee.

In this respect, we consider the work of Castelfranchi and Falcone (2001), who adopt the
same basic definition of trust as us (i.e. a subjective probability of a trustee’s action).
Building upon this, they make two things explicit: first, they identify beliefs that a
truster must hold before it can rationally believe a trustee will carry out a given action;
second, they identify a three-way relationship that exists between the concepts of trust,
fear and authority.

The core beliefs that are prerequisite to a belief of trust are as follows:

• the truster must believe that the trustee is willing to carry out the action;

• the truster must believe that the trustee is capable of carrying out the action.

In turn, these beliefs may be conditioned on a number of other beliefs that, for the
most part, are domain dependent. In general, however, we can distinguish between two
different sets of beliefs: internal beliefs, which relate to the trustee’s mental state, and
external beliefs, which concern environmental conditions. To illustrate the impact of the
latter, consider an entity, ‘Captain Joe’, who is capable of sailing a particular boat, the
‘Jolly Roger’. If something was to happen to the Jolly Roger so as to cause it to sink,
then Captain Joe will no longer be able to sail the boat, despite his skills as a sailor.

Figure 2.1 illustrates the relationship between trust, fear and authority mentioned ear-
lier. Fear can be said to be negative trust; it is trust in an entity to carry out an action
that has a negative effect on the truster. Like trust, fear in an entity requires the condi-
tions of willingness and capability to be present. When we introduce an authority, which
is capable of punishing unsolicited behaviour, an interesting dynamic is set up between
the authority, truster, and trustee. The fear a potential wrong-doer has in an authority
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decreases its likelihood of behaving illegally. On the other hand, if a victim trusts an
authority to protect its rights, and it can assume potential criminals hold similar beliefs
about the authority, then its trust in potential criminals can be increased.

The influence of authority on trust relationships is also acknowledged in Dasgupta
(1988), who argues that, if a rational agent is put in a position where it can choose
to benefit at the expense of others, it will always choose to benefit, unless it has reason
to fear retribution.

With these factors identified, the question is, how can we use them to develop an au-
tomated method for reasoning about trust. An attempt to do this has been made in
Falcone et al. (2003), in which they use a fuzzy logic approach (Zadeh, 1975, 1965) to
build the beliefs of trust, willingness and capability from other beliefs that are largely
domain dependent.

Although identifying the composite beliefs that make up trust gives us a better under-
standing of what we our attempting to measure, one major question remains unanswered:
how can a truster determine its core beliefs based on observations of its environment?
Clearly, factors such as trustee willingness and capability are not directly observable
in general; they must be estimated from observable evidence. Moreover, depending on
evidence that is observable, attempting to estimate separate beliefs about such factors
may not be practical at all. For example, consider a scenario in which all we can observe
is an agent’s external behaviour in the absence of any other environmental data. In this
case, the best we can do is quantify the uncertainty in the trustee’s behaviour directly;
we cannot possibly distinguish between the trustee defaulting on its obligations because
it wants to, or because it cannot do otherwise.

2.2.2 Learning from Direct Observations

In this section we turn our attention to methods of representing trust, and how to ground
such representations in evidence directly observable to a truster. We differentiate direct
evidence from evidence as reported by other agents, the latter of which raises a separate
group of problems that we address in Section 2.2.3.

Generally, existing trust models represent trust in one of three ways: (1) they adopt an
improvised representation, based on intuitive assumptions about the meaning of trust;
(2) they can apply probability theory; or (3) they apply Dempster-Shafer theory. For
the purposes of clarity, we separate our discussion according to this categorisation, and
discuss each in turn in the subsequent subsections.



Chapter 2 Literature Review 17

Value Meaning Description
-1 Distrust Completely untrustworthy
0 Ignorance Cannot make trust-related judgement about entity
1 Minimal Lowest possible trust
2 Average Moderate trustworthiness
3 Good More trustworthy than most entities
4 Complete Completely trust this entity

Table 2.1: Trust Value Semantics used by Abdul-Rahman et al.

2.2.2.1 Improvised Models of Trust

As mentioned earlier, although the concept of trust is prevalent in society, there is some
disagreement and confusion about its precise definition. Perhaps partially as a result, a
range of different representations have been adopted in existing computational models
of trust. In some cases, trust is modeled as belonging to a finite set of qualitative labels,
examples of which include the work by Azzedin and Maheswaran (2002c,b,a) and Abdul-
Rahman and Hailes (1997). In the case of the former, the trust of one entity in another
is a value belonging to the set {A,B, C, D, E, F}, and similarly in the latter, a member
of the set {−1, 0, 1, 2, 3, 4}. Typically, these values are associated with linguistic labels
that describe their intended meaning. For instance, Abdul-Rahman et al. attach labels
to trust values as described in Table 2.1.

This relatively coarse set of values reflects a perceived difficulty in choosing continuous
trust values with any meaningful degree of accuracy. In our view, however, this problem
is specific to cases in which trust is elicited from a user1. As should become clear from
what follows, there are meaningful methods of calculating continuous trust values when
trust assessment becomes a fully automated task. We therefore argue that the difficulty
in distinguishing between discrete trust levels compared to continuous levels limits the
former’s applicability to human elicited trust values.

Models that represent trust as a real-valued scalar include those developed by Marsh
(1994) and Zacharia et al. (1999). Representative of these, and one that makes a good
attempt to deal with many of the requirements outlined in Section 1.5, is the REGRET
system (Sabater and Sierra, 2001, 2002), which includes three dimensions of trust: an in-
dividual dimension, a social dimension, and an ontological dimension. We shall examine
each of these in turn below.

First, we consider the ontological dimension that is essentially concerned with the sub-
jectivity of trust with respect to an individual truster. A trust value in REGRET is
represented as a numeric value in the range [−1, 1], with a value of 1 interpreted as
absolute trust, and −1 interpreted as complete distrust. These values are attached to
a particular context by a label; examples of which are to overcharge, meaning that a

1To illustrate, consider trying to assess the probability of it raining tomorrow; is it possible to decide
whether this probability is more likely to be 2.1 or 2.2?
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trustee has a tendency to charge more for a service than the truster believes it is worth,
and quality swindler, meaning that, from the perspective of the truster, the trustee
tends to supply services with unacceptable quality. The intended interpretation is that
they relate to a particular trait of a trustee’s behaviour.

An important element of the ontological dimension is that behavioural traits2 of an agent
can be defined in terms of other, lower level traits. For instance, a service provider could
be assessed according to a trait labelled swindler, which is defined in terms of the traits,
to overcharge and quality swindler mentioned earlier. From an implementation
perspective, REGRET calculates trust values for such compositional traits as a weighted
average of the trust values calculated for the base traits. The weights used in this
calculation are considered to be dependent on an individual truster; they encode the
agent’s subjective definitions for these terms. Besides specifying how compositional traits
can have trust values calculated, the ontological dimension can serve a communication
role in that a reputation source can share its definition of compositional traits with other
agents, so that they can decide how best to interpret reputation information from that
provider.

The individual dimension of trust is based solely on the first-hand knowledge that a
truster has about a trustee. In REGRET this is calculated based on past interactions
that have occurred between the truster and trustee. For example, when a truster pur-
chases a service from a trustee, the truster will have expectations about how the trustee
will behave. Some of these expectations will be explicit, based on a contract between
the truster and trustee for what the trustee should provide. Others will be implicit,
based on the trustee’s personal perspective on the world. A truster’s individual trust
level (with respect to a particular trait) is a function of the difference between the utility
the truster would achieve if the trustee behaved according to these expectations and the
actual utility gained from the interaction.

As well as providing a method for calculating these trust values, REGRET also provides
two separate methods to measure the reliability of these values. Two different types of
uncertainty determine the reliability of a trust value:

intrinsic uncertainty in trustee behaviour , which is estimated based on the vari-
ance of observed trustee behaviour.

uncertainty due to lack of evidence , for which REGRET uses a function that de-
creases logarithmically until a minimum value, in line with the number of observed
interactions with a trustee and the time that has passed since those interactions.

In REGRET, both of these are measured using improvised functions. For example,
REGRET calculates evidential uncertainty using Equation 2.1 (adapted from Sabater

2In REGRET, these are referred to as ‘reputation types’. We use the term trait, so as not to confuse
it with the concept of reputation as a collective opinion of a group with regards a particular entity.
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and Sierra (2001)). Here, noObs is the number of observations a truster has made
of a trustee’s behaviour, and itm is a threshold number of observations, above which
the truster considers its knowledge of a trustee to be completely reliable. In a similar
way, intrinsic uncertainty is measured by another function, improvised from intuitive
conclusions about what factors should affect its value. An overall reliability factor is
then calculated as a weighted average of these two functions. One problem with this
scheme is that it is unclear what value should be chosen for itm, and what weight should
be used to generate the overall uncertainty value (counter to Requirement 1.5.3).

evidential uncertainty =

{
sin

(
π

2·itm · noObs
)

noObs ∈ [0, itm]
1 otherwise

(2.1)

Often, an agent will need to assess its trust in an entity with which it has little or no
previous experience with. In this case, REGRET can draw upon the social dimension
of trust, and there are three sources of information that fall under this heading: witness
reputation, neighbourhood reputation, and system reputation.

Witness reputation is, as the name suggests, based on the opinions of third parties
concerning a trustee. The influence of particular witness’s opinion on the overall trust
value is partly determined by the truster’s trust in the reputation source to provide
reliable information. This can be calculated by applying the formulae for individual
trust — effectively, treating the ability to give reliable reputation information as just
another trait.

Neighbourhood reputation assumes that the truster maintains a sociogram, which is a
network structure describing the social relationships between agents in the environment.
To calculate neighbourhood reputation, REGRET applies a set of static3 fuzzy rules,
where the antecedent of each rule is a condition on the relationships connecting the
trustee to other agents. To illustrate, we might define a rule such as

IF coop(trustee, agent b) = high THEN socialTrust = very bad,

where high, and very bad are predefined fuzzy sets.

System reputation is also calculated according to a static set of fuzzy rules. In this case,
the rules are defined according to the role that a trustee plays within an institutional
structure — seller is an example of such a role. As with neighbourhood trust, system
trust assumes that information about social roles is available to the truster.

3By static, we mean that REGRET must be preconfigured with a set of rules. REGRET cannot
learn these rules for itself.
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REGRET combines these different sources — individual and social dimensions — based
on reliability functions defined over them. In addition, there is also an intrinsic pref-
erence ordering built in: direct interactions are intrinsically more reliable than wit-
ness reputation, witness reputation is more reliable than neighbourhood reputation, and
neighbourhood reputation is more reliable than system reputation.

From our perspective, REGRET is significant because it satisfies a broad number of the
requirements we described in Section 1.5. However, REGRET suffers limitations for at
least two reasons. First, it assumes that certain information (for example, a sociogram) is
available (Requirement 1.1). Second, there are several parameters in the model, optimal
values for which are not known, and may be domain dependent (Requirement 1.5.3).

2.2.2.2 Probabilistic Models of Trust

Aside from fuzzy logic, the trust models we have looked at so far all make use of,
essentially, hand-crafted representations of trust, and operations defined on these repre-
sentations. This is by no means an invalid approach — in the end — the goal of assessing
trust is to provide discriminatory information about trustees. If a solution works, then
the approach is reasonable; how it is achieved is of lesser importance. However, there are
existing formalisms for reasoning about uncertainty, which have well known beneficial
properties, and are well grounded in mathematical theory. Of these, perhaps the most
prominent is probability theory.

One noteworthy probabilistic trust model is detailed in Barber and Kim (2001). This
provides a well grounded method for assessing the reliability of information sources, and
shows how this can be used to combine conflicting information into a consist knowledge
base. Unfortunately, the model is designed specifically to deal with such conflicts: it uses
the statistical properties of the conflicts themselves to perform its task, and so cannot
be applied to a more general setting.

More generally, probabilistic models that attempt to assess trustees on a broad range of
services (which include those reviewed in the remainder of this section) have two things
in common: First, they represent the outcome of an interaction with a trustee as a
bistable event — either the trustee cooperates and fulfils its obligations to the truster,
or it defects and does not. Second, they estimate the probability distribution for this
binary variable based on direct or indirect (via reputation) observations of the trustee’s
past behaviour. Obviously, this simplification leaves clear room for improvement: if a
truster’s utility is dependent, not only on if a trustee performs a task, but also on how
well the task is performed, then a bistable representation will fail to capture the relevant
dynamics of the problem. Nevertheless, situations in which task performance does not
carry much significance over and above task completion constitute an important subcase.
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Agent A Agent B

successful 20 2
unsuccessful 20 2

Table 2.2: Frequencies of Successful and Unsuccessful Interactions with different
Agents.

An example of such a system can be found in Wang and Vassileva (2003). Here, a trust
mechanism is presented for use in a peer-to-peer file sharing environment. Trust in a
particular provider is assessed according to several quality attributes, such as type of file
requested, download speed and file quality. The system uses a näıve bayesian network, in
which the probability of the provider being trustworthy (modeled as a binary variable) is
dependent on each of the quality attributes considered. Here, näıve means that the effect
of each attribute on the trustworthiness of a provider is assumed to be independent. Such
assumptions are often made to simplify a problem domain, with solutions adopting them
generally being robust when faced with minor violations. Whether the assumption is
reasonable in the domain targeted by this model depends on the particular set of quality
attributes used in a given instance of the model.

One factor which Wang and associates fail to account for is evidential uncertainty. Here,
we differentiate evidential uncertainty from intrinsic uncertainty. We define intrinsic
uncertainty to be uncertainty that is due to inherit unpredictability of a stochastic
process. On the otherhand, we consider evidential uncertainty as uncertainty that is
due to a lack of knowledge. To illustrate, consider observing successful and unsuccessful
interactions with two agents, A and B, the frequencies for which are shown in Table
2.2. Using Wang’s model, we would consider there to be no difference in the uncertainty
surrounding agent A’s behaviour and agent B’s behaviour. However, intuition tells us
that this is not the case, because we have interacted with A ten times more than B and
can therefore be more certain about A’s true behaviour. This highlights a failing common
to all simple probabilities that is particularly important in domains where the frequency
of observations is relatively low. We believe that trust assessment in large multi-agent
systems is such a domain, because the likelihood of any two agents interacting a large
number of times is fairly low. We therefore argue that accounting for both types of
uncertainty is important and give further justification for this in Chapter 3.

Fortunately, to say that probability theory in general cannot account for evidential un-
certainty would be incorrect. This is illustrated by the trust model presented by Jøsang
and Ismail (2002), in which trust is modelled as a probability distribution for a binary
event, a class of distributions commonly referred to as Bernoulli distributions. In addi-
tion however, they also model the parameter distribution of the Bernoulli distribution
(DeGroot and Schervish, 2002a). Statistical models, such as Bernoulli distributions,
are characterised by a set of parameters that determine their shape. In the case of a
Bernoulli distribution, it is characterised by a single parameter — the probability of the
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variable being equal to one. The parameter distribution in this case, is the distribution
over the possible values of that probability.

For simplicity, the authors choose to represent the parameter distribution as a Beta dis-
tribution. The advantage of this is that there is a special relationship between Bernoulli
and Beta distributions. Specifically, consider a Bernoulli distribution for which the prior
parameter distribution is a Beta Distribution. If we draw samples from this Bernoulli
distribution under an i.i.d assumption4, then the posterior parameter distribution, given
the samples, will also be a Beta distribution. A family of distributions which exhibits
this property for a statistical model is known as the model’s conjugate family.

Effectively, the parameter distribution represents the evidential uncertainty surrounding
the true intrinsic probability of a random variable; in this case, the intrinsic probability
that a trustee will cooperate rather than defect. It can be used to reason about how
much evidence is required to make a particular decision, or to compare the confidence
levels different agents have in their knowledge about a trustee. Again, we discuss this
further in Chapter 3. Moreover, by choosing a conjugate prior, the authors simplify
the process of calculating, combining, and storing the parameter distribution associated
with a trustee. For this reason Beta distributions are also applied to the field of trust
by Mui et al. (2001) and Buchegger and Boudec (2003).

2.2.2.3 Dempster-Shafer Models of Trust

An alternative method for handling uncertainty can be found in Dempster-Shafer the-
ory (Shafer, 1976). Dempster-Shafer provides a mechanism for forming degrees of belief
about sets of hypotheses, based on available evidence. For example, imagine we have
a set of two competing hypotheses {A,B}, of which only one can be true. Dempster-
Shafer theory divides the total belief in the set between the elements of its superset5,
{{A}, {B}, {A,B}}. Essentially, belief in the set {A} (and likewise for set {B}) repre-
sents the evidence supporting A as the true hypothesis. On the otherhand, belief in the
set {A,B} is belief that cannot be divided between A and B. This can be said to repre-
sent the evidential uncertainty surrounding A and B; because of this, Dempster-Shafer
theory is often claimed as a solution to the inability of simple probabilities to capture
this notion.

In particular, this is the rationale given for its use in Yu and Singh (2002). Here, the
authors define a binary hypothesis set, in which the competing hypotheses are that
an agent is trustworthy, and that it is not trustworthy. They consider scenarios in
which trustees supply services, which are given a quality of service rating between 0

4This is a standard abbreviation for the assumption that samples are drawn independently from an
identical distribution.

5By definition, the superset of a set S, is the set comprised of all subsets of S.
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and 1. To gather evidence for the trustworthiness of an agent, they perform the fol-
lowing three steps. First, they break the range of quality values into three intervals,
[0 <= x < a], [a <= x < b], [b <= x <= 1], where a and b are arbitrary
constants. Second, they count the proportion of recent6 trustee interaction outcomes
that fall in each of these three intervals. Finally, they take the proportion of outcomes
in the lower interval as the belief that the trustee is untrustworthy, the proportion in the
higher interval as the belief that the truster is trustworthy, and the proportion in the
middle interval as the belief in the total set, {untrustworthy, trustworthy}. In line with
Dempster-Shafer theory, belief in the total set is interpreted as the degree of uncertainty
in whether the trustee is trustworthy or not.

The problem with this approach is twofold. First, there is no clear way to choose the
values for the constants a and b, which violates Requirement 1.5.3. Second, the notion
of trust that this representation captures is somewhat artificial. Consider as an example
a trustee with whom a truster has (recently) interacted 1000 times. On each of these
occasions, the trustee’s quality of service was precisely 0.5. Here, the truster has chosen
a = 0.3 and b = 0.7. According to Yu and Singh’s model, this means that the truster
is completely uncertain whether it trusts the trustee or not. Intuitively, this is not the
concept of trust we want, since it violates Requirement 1.5.1. A more useful conclu-
sion would be that the trustee provides an average quality of service of 0.5, with very
low variance, so that there is a large degree of certainty regarding its behaviour. Fur-
thermore, the rationale for using Dempster-Shafer, rather than probability, is somewhat
unsound: We have already seen that probability theory can be made to account for
evidential uncertainty in Section 2.2.2.2. In our view, Dempster-Shafer’s main strength
comes when the available evidence truly does support multiple hypotheses.

An alternative application of Dempster-Shafer, relevant to trust, is given by Jøsang
(2002, 2001). Here, it is extended to form a logic for reasoning about uncertain prob-
abilities, known as subject logic. This has grounding in both probability theory and
Dempster-Shafer theory, and has propositional calculus as a special case. Significantly,
from the perspective of trust, it defines two new operators for reasoning about third
party opinions: the consensus operator and the discounting operator. In particular,
they can be used to combine opinions from different sources, as is required when trust
is based on the opinions of others (Section 2.2.3). The consensus operator is used to
combine opinions from different sources when each source is equally and fully trusted
to provide accurate information. The discounting operator plays a supportive role to
the consensus operator: It is applied prior to the consensus operator, to any sources
which are not fully trusted to provided accurate information. Its effect is to increase
the evidential uncertainty surrounding the opinion. As a result it decreases the effect it
would otherwise have when combined with other opinions.

6In their model, Yu and Singh only use the x most recent observations of a trustee’s behaviour. This
allows for the possibility that a trustee’s behaviour changes over time, in which case old observations
would be poor predictors of behaviour.
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The justification for these two operates, is grounded in statistical theory. Specifically,
a mapping is provided between the Dempster-Shafer notion of evidential uncertainty,
and the beta distribution representation described in Section 2.2.2.2. The operators are
thus shown to be equivalent to operations on the parameter distribution. In the case of
the consensus operator, the grounding relation first assumes that each opinion concerns
a Bernoulli distribution, and that they are each based on disjoint sets of samples from
that distribution, under an i.i.d assumption. The result of the consensus operator is
then shown to be equivalent to the probability that would result, if all the data are
considered together. Although the assumptions behind this grounding are not expected
to hold in general, it is expected to give reasonable results, even when they do not hold.
The discounting operator is given a similar justification, which we do not describe in
full here. Briefly, under certain conditions, it is shown to be equivalent to multiplying
an opinion by the probability that it is true.

Overall, subjective logic provides a promising method for reasoning about uncertain
probabilities. In particular, its grounding in probability theory gives a good justification
for its use. There are, however, there are two points that must be brought to mind. First,
the discounting operator does not say how the probability that a source is accurate should
be calculated. This is an open question that may depend on the type of information
available. Second, the definition is subjective, particularly in the case of its consensus
and discounting operators, which make certain assumptions that may not be appropriate
in every case. These should be questioned with respect to any application subjective
logic is considered for.

2.2.3 Learning from Others

The basic problem of trust assessment is to estimate the behaviour of a trustee based
on the available evidence. When this evidence is gathered indirectly via third party
opinions (reputation), there are four additional factors that we must consider:

1. A third party may define observed properties in a different way from the truster.
For instance, what one agent considers a good service, may not be what another
considers good (Requirements 3.1 & 3.2).

2. Reports from several different reputation sources may be based on the same evi-
dence, resulting in the correlated evidence problem (Requirement 3.3).

3. The behaviour of a trustee towards a third party may be different from its be-
haviour towards the truster (Requirement 3.1).

4. A reputation source may have no incentive to provide reputation or, if it does, it
may have an incentive to misrepresent its knowledge about a trustee. We can sub-
divide the latter into positive discrimination (collusion) in which the reputation
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source over estimates the beneficial qualities of a trustee, and negative discrimina-
tion in which the trustee’s beneficial qualities are under estimated (Requirements
1.3 & 3.1).

Each of these factors manifests itself as a decrease in the predictive power of reputation
— in other words noise — when compared to direct evidence. Thus, many trust models
which employ reputation include noise reduction mechanisms to target one or more of
these factors. Essentially, there are two basic method for detecting reputation noise: (1)
endogenous methods, which attempt to identify noise from the statistical properties of
the opinions expressed about a trustee; (2) exogenous methods, which use information
other that the statistical properties of reputation7. The issue of incentives raised above
has wider consequences for trust which we discuss further in Section 2.2.4. Here, we
consider examples of exogenous and endogenous techniques that attempt to handle the
above factors.

2.2.3.1 Exogenous Techniques

In Zacharia et al. (1999) two complementary reputation systems are introduced, called
HISTOS and SPORAS. SPORAS is a simple trust model that is not context dependent,
and that a truster can use when there is little information available about the other
agents. To account for the unreliability of a reputation source, it simply weights its
opinion by the truster’s trust in the reputation source itself. The implicit assumption
here is that if an agent can be trusted in general — for example, to provide a particular
service — then it can be trusted to provide accurate information about other agents.
Clearly, this assumption does not hold in general.

HISTOS on the otherhand, is a more sophisticated model suited to environments in
which more information about a trustee’s peers are available. It suffers from the same
context independence as SPORAS, but takes on board the social relationships that
exist between the truster, its reputations sources, and the trustee. Specifically, it (like
SPORAS) treats trust as a transitive relationship, in which the trust of a truster in a
trustee is a function of the trust of each reputation source in the trustee, and the trust of
the truster in each reputation source. Unlike SPORAS, HISTOS builds a social network
from the pairwise ratings that have previously been reported between agents. This is
a directed graph, in which agents are represented by nodes, and edges between nodes
represent the direct trust value of the parent node in the child node. The transitive
trust relationship is then applied recursively along the directed paths between truster
and trustee.

7In Whitby et al. (2004) methods that use the trust of an agent in its reputation sources are considered
exogenous. Here, we prefer to consider these as endogenous, if trust is based on the accuracy of past
opinions expressed by reputation sources.
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The REGRET system (Section 2.2.2.1) applies two different exogenous techniques to
reputation noise reduction. The first of these applies the same transitive reasoning to
trust as HISTOS and SPORAS, weighting a reputation source’s opinion by the trust
the truster has in that reputation source. However, REGRET’s notion of trust is more
expressive: it takes on board contextual issues such as the time a rating was given, and
through its ontological dimension, can account for several different aspects of trust. For
example, the trust of an agent as a reputation source may be built on its trust as a
service provider, and the accuracy of any past opinions it has provided. Unfortunately,
REGRET does not give specific guidance on the relative importance of such factors, nor
how the accuracy of past opinions should be calculated, the latter of which, in itself, is
not a trivial issue.

The second mechanism adopted by REGRET, specifically attempts to deal with the cor-
related evidence problem. The majority of trust models recognise witness propagation
(Requirement 3.4) as a potentially severe source of correlation. The universal solution
is to specify that a reputation source should only share its direct knowledge, and not
pass on other agent’s knowledge as its own. Further than that, the solutions offered by
the literature vary. Most models assume independence, which can be justified if inter-
section between agent’s world views are small. REGRET’s solution is to carefully select
reputation sources based on social network analysis. To do this, it uses an algorithm
that divides a social network into groups of agents and then chooses reputation sources
which are representative of those groups. The intuition is that a highly connected group
of agents are likely to share the same knowledge, whereas loosely connected individuals
are unlikely to share knowledge.

2.2.3.2 Endogenous Techniques

Of the endogenous techniques that exist, there are two basic approaches: first, we can
estimate a reputation sources reliability by evaluating the accuracy of any past opinions
it has expressed; or second, we can assume that the majority of opinions received about
a trustee are representative of its behaviour. Examples of the latter include Whitby
et al. (2004) and Dellarocas (2000).

Whitby and associates extend the Beta Reputation System (Section 2.2.2.2) by applying
an iterative filtering algorithm. In each cycle, an interquantile range8 is calculated for
the set of opinions received about a trustee. Any opinions lying outside this range
— that is, opinions that deviate significantly from the mean — are discarded. In the
following cycle, the interquantile range is recalculated without the discarded opinions;
the process continues until all remaining opinions are in range. Although this approach
is reasonable, and has been shown to give encouraging results, there is no guarantee that

8The interquantile range of a dataset is a descriptive statistic that specifies a range of values in which
a given percentage of the data lie.
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any opinions will remain after the algorithm has been applied. This can occur when all
opinions differ significantly from the mean. Therefore, the approach is only applicable
when there is a clear consensus between a reasonable number of reputation sources.

Dellarocas adopts a slightly different approach. First, they attempt to prevent negative
discrimination by controlled anonymity, by which reputation and services are distributed
by a central institution that does not reveal the identity of producers or consumers to
each other. The intuition here is that, because a reputation source does not know the
true identity of the trustee, it cannot determine if it is friend or foe and so has no reason
to discredit it. This approach does not account for positive discrimination because if a
trustee and a reputation source collude, they could signal their identity to each other
by other means, breaking anonymity.

To deal with this, the authors apply a clustering algorithm to separate a trustee’s repu-
tation into an upper and lower group of opinions. Since positive discrimination should
appear more complementary of the trustee, such opinions are assumed to be in the up-
per cluster, which is discarded. In most cases discarding the upper cluster introduces
a negative bias. Through empirical study, the authors argue that this bias is within
acceptable bounds.

In our view, the main limitations of the Dellarocas approach lie in the applicability
and effectiveness of controlled anonymity. Obviously, there are many cases in which a
provider and consumer must be aware of each others identity for a transaction to take
place, which limits the situations in which this can be applied. Where it can be applied,
it cannot account for a reputation source who wishes to discredit all trustees other than
itself, or assumes that any agent that does not signal its true identity is a foe.

More generally, however, the assumption that majority opinion is reliable does not hold,
when there is a trustee with whom no agent has significant experience. In this case
all benevolent reputation sources will report no information, while reputation sources
with an incentive to lie, will report information. In light of this, most, if not all, of the
reputation provided will be unreliable.

To alleviate these problems, we can consider the alternative endogenous approach, of
assessing a reputation source based on the accuracy of its past opinions, as adopted by
Yu and Singh (2003), who extend their previous work (Section 2.2.2.3) by applying a
modified version of the Weighted Majority Algorithm (Littlestone and Warmuth, 1994).
Essentially, their approach consists of three steps: first, the reputation of a trustee
is calculated as a weighted average of reputation source opinions, with initially equal
weights; second, after the result of an interaction with the trustee has been observed,
the differences between each opinion and the observed result are calculated; third, the
weights applied to each reputation source are adjusted relative to the difference between
their stated opinion and the observed result.
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There are two main advantages of this approach: First, under the reasonable assumption
that a reputation sources past and future accuracy are correlated, the relative weight
placed in inaccurate reputation sources will gradually decrease towards zero. Second,
unlike Dellarocas and Whitby, this approach does not require the majority of reputation
opinions to be accurate, and so does not suffer the consequences associated with that
assumption.

2.2.4 Mechanism Design

The techniques described so far have all addressed trust by attempting to assess trust
based on available knowledge. An alternative approach, mechanism design (Dash et al.,
2003), is to design a system in such a way that it is in the best interest of the agents to
behave favourably towards each other. An established research area in its own right, this
is not always explicitly tied to issues of trust, but from a trust perspective, it reduces the
uncertainty surrounding a trustee’s willingness to behave well. However, uncertainty in
trustee behaviour cannot be removed completely. Generally, to manipulate a trustee’s
interests, we must assume that it is rational, which may not be the case for a variety
of reasons, not least that an agent may have contracted a virus. Also, affecting an
agent’s willingness does not affect the uncertainty surrounding its capabilities. In light
of this, we view mechanism design as complementary to trust assessment, rather than a
replacement for it. Here, we illustrate how it can be used to simplify trust assessment
problems, by reviewing some of the methods that lie in the intersection between trust
and mechanism design.

Many of the trust models considered above include recommendations that can be consid-
ered as mechanism design. For instance, in HISTOS and SPORAS, it is not be possible
for an agent to have a reputation value lower than that of a new unknown agent enter-
ing the system for the first time. If this were possible, and agents were able to change
identity at no cost, then agents with low reputation would simply create a new identity
to improve their standing. Unfortunately, this approach may lead agents never to trust
new agents if measures are not taken to ensure otherwise9.

An important problem not addressed above, is the incentive that an agent has to act as
a reputation source. Clearly, if agents share information about trustee behaviour, they
can increase their combined expected utility. However, this is not sufficient to persuade
individual agents not to freeload, taking advantage of any available information, while
not sharing any of their own. Jurca and Faltings attempt to alleviate this problem by
introducing side payments for reputation (Jurca and Faltings, 2003). This obviously
provides an incentive for an agent to supply reputation information. However, it does

9Perhaps an alternative approach could be to charge agents a penalty if they choose to leave the
system with a reputation value less than that of a new agent.
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not distinguish between accurate and inaccurate reputation. To rectify this, they suggest
following conditions should be guaranteed.

• Agents that report truthfully the result of every interaction with another agent,
should not lose utility.

• Agents that report reputation incorrectly should gradually lose utility.

To ensure these conditions, Jurca and Faltings suggest that agents should only be paid
for their opinion if it matches the next opinion received about the same trustee, from
a different source. Unfortunately, this approach fails if most agents provide false infor-
mation, if agents collude to provide matching false reports, or if agents hold multiple
identities to outwit the truster.

A more robust solution is provided by Dash et al. (2004), who introduce the concept of
trust-based mechanism design, which attempts to explicitly handle issues of trust through
mechanism design. In their approach, suppliers are allocated to consumers by a central
institution (henceforth referred to as the centre). To aid the centre in making a good
allocation, the consumer informs the centre of its preferences with regards the allocation
and all the information it currently knows about potential suppliers. Furthermore, the
consumer either receives or makes a payment to the institution based on the effect its
information has on the overall utility of the system. Based on these two components,
it can be shown that it is in the best interest of a consumer to provide its reputation
information fully and accurately.

One notable exception, however, is the possibility of agents colluding under certain
conditions. A key premise is that agents will truthfully reveal their utility functions
for an allocation, because to do otherwise risks decreasing the agent’s utility in the
allocation. This does not preclude the agent from omitting preferences it may hold that
do not effect its allocation. For instance, suppose an agent wishes to decrease or increase
the chances of another agent receiving a good allocation, and that it may further this
goal by reporting inaccurate reputation. Provided the effect of this inaccuracy does not
affect its own allocation, then it may do so without penalty, and for this reason, the
approach only satisfies Requirement 1.3 when all an agent’s preferences concern its own
allocation.

2.3 Discussion

In this chapter, we have addressed four key points. First, we set the scene by giving an
overview of multi-agent system research. Second, we considered methods for representing
trust, and assessing trust based on evidence directly available to the truster. Third, we
reviewed mechanisms for taking account of third party opinions, bearing in mind the
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extra challenges this source of trust imposes. Finally, we described the complementary
role of mechanism design with regards trust assessment; that is, how it can simplify
the trust assessment problem, by reducing the uncertainty in a trustee’s behaviour a
priori. In this section, we summarise the main points made throughout the chapter,
and identify key challenges for future research into trust assessment.

In Section 2.2.1 we considered work that concentrates on the cognitive aspects of trust
— the core beliefs that a truster must hold to rationally be in a state of trust with a
trustee. The main contribution of this work, is that is helps to better understand the
nature of trust, and the factors that contribute to it. However, it is not always clear
how these core beliefs can be elicited from a truster’s environment.

In contrast to this, the REGRET system demonstrates how a wide range of evidence
can be brought together and used to assess trust in a given context. These sources
include previous interactions with a trustee, third party opinions, information about
other agents in the same group as the trustee, the relationship between the truster and
the trustee, and general assumptions about trustee behaviour. REGRET thus gives a
reasonable assessment of a trustee, both when there is a significant amount of information
available, and when information is scarce. The main disadvantage of REGRET is that
it is based on ad-hoc formulae, which require many parameter settings with no obvious
optimal values.

The two main alternatives to ad-hoc formulae, as found in REGRET, include Dempster
Shafer theory, and probability theory. An example application of Dempster-Shafer the-
ory to trust is given by Yu and Singh who show how Dempster Shafer theory can be used
to assess trust, based on previously observed interactions with a trustee. Although their
method is sound in general, the way in which they ground trust in observed interactions
is somewhat arbitrary.

Of the probabilistic trust models, the majority represent trust as the probability of
a binary event; that is, the probability that a trustee will cooperate or defect. These
models generally provide a sound statistical basis for calculating trust biased on available
evidence, and offer an attractive alternative to ad-hoc formulae for trust assessment.
However, by modelling a trustee’s possible actions simply as co-operation or defection,
they ignore the effect that quality of service provided by a trustee may have on a trustee.
In addition, they remain dependent on (direct or indirect) observations of the trustee’s
own behaviour, and do not consider other sources of information, such as those explored
by REGRET.

The vast majority of these trust models rely on third party opinions. Using such opinions,
however, imposes several addition concerns that do not arise from knowledge directly
available to the truster, because a third party’s own preferences and world view inflict
a bias on its opinions. To deal with this, there are two types of approaches: exogenous
approaches, which is based on the statistical properties of the opinions received by a
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truster; and endogenous techniques, which make use of other information available to
the truster.

Examples of endogenous techniques can be found in REGRET, which uses information
about social relationships between the truster, its reputation sources, and the trustee,
to assess the reliability of a given source. Exogenous techniques can be divided into two
sets, according to the assumptions they make. First, we can assume that the majority
of opinions received about an agent will be representative of its behaviour. Models that
adopt this approach can run into problems in several scenarios; for example, if no agents
have knowledge about a trustee, the only agents that will report information about the
trustee will be those that have an incentive to lie. Second, we can assume that the
accuracy of a given reputation source will be correlated with its previous accuracy (as
done by Yu and Singh). This is an altogether more reasonable assumption, particularly if
we account for the length of time that has past between opinions from a given source10.
Significantly, if a reputation source attempts to mislead a truster, it will decrease its
opportunity to do so in the future.

Against this background, we identify the following key challenges that we believe should
be addressed by future research. We consider each of these in turn, in the proceeding
Chapters.

Assessing reputation source accuracy — The approach taken by Yu and Singh of
judging reputation sources by the perceived accuracy, we believe, is promising.
However, some other elements of their model, particularly how they ground trust
in observed opinions, leave room for improvement. Therefore, in our view, the
general principle of accuracy assessment warrants further investigation, and so we
adopt it as part of our own mechanism for inaccuracy filtering (see Sections 3.2,
3.3 and 4.1.3).

Combining different types of evidence — The multitude of information sources
employed by REGRET give this model great flexibility. However, its ad-hoc formu-
lae leave a lot to be desired. We believe that further work is needed to investigate
the combination of heterogeneous types of evidence in a more principled manner.
We discuss one possible method for this in Section 5.2, in which information based
on observations of a trustee’s behaviour is combined with information about other
agents similar to the trustee.

Exploring trustee behaviour — None of the models that we have reviewed have
considered the plight of new service providers entering an already well estab-
lished system. Such service providers may never be given the opportunity to
have their trustworthiness assessed, since existing agents may choose to stick with

10By accounting for the length of time between opinions received from a reputation source, we allow
for the possibility that its mean accuracy may have changed during the intermitting period.
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the providers they already know (Requirement 1.6). This type of problem is ad-
dressed by reinforcement-learning, but we believe there are interesting problems
when trust and exploration are considered together. We discuss this further in
Section 5.2.



Chapter 3

A Probabilistic Framework for

Modelling Trust & Reputation

One of the key questions we identify in the previous chapter, is how to assess the accuracy
of a reputation source, so that we can determine the influence it should have on a truster’s
judgement of a trustee. How we address this problem is intimately tied to how the precise
semantics of a reputation source’s opinion; that is, to assess the accuracy of a statement,
we must be clear about its exact meaning. Meaning and accuracy can therefore not be
considered in isolation, and any means of assessing the accuracy of an opinion must do so
with reference to its meaning. With this in mind, we present in the current chapter a set
of guidelines for assessing reputation source accuracy with reference to one particular
representation of trust. Specifically, we have chosen to represent trust using a set of
probability distributions relating to a trustee’s behaviour, similar to the beta Reputation
System (Section 2.2.2.2). We have chosen to frame trust in this way, because we believe
it provides unambiguous semantics, and that it captures the important aspects of trust
(Requirement 1.5).

Furthermore, we believe that the framework discussed in this chapter provides an im-
provement of the Beta Reputation System, because it suggests how to assess trust in
an agent, when its actions are not treated as binary events. This does not mean that
binary action spaces do not present an important problem. For instance, in many cases,
a truster may not care how a trustee fulfils its obligations, but only that it does so.
Thus, it may be appropriate to record only that a trustee fulfils its obligations, or that
it does not. In Chapter 4 we show how the framework presented in this chapter can be
applied to such cases; however, in Chapter 5, we discuss the application of the framework
beyond this case.

The current chapter consists of three parts. First, Section 3.1 outlines how a truster
can assess and represent its trust in an agent, based on direct observations of its past
behaviour. Second, Section 3.2 shows how, based on this representation, the knowledge
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that different agents hold about a trustee can be communicated as reputation. Finally,
Section 3.3, describes the process of assessing reputation source accuracy, and thus how
to adjust the effect that an third party opinion has on a truster’s judgement of a trustee.
Underpinning the discussion in each of these sections is some basic basic statistical
terminology, which is detailed in Appendix A.

3.1 Trust Assessment based on Direct Observations

Before we can discuss our basic approach, we must give a formal definition of our prob-
lem. In a MAS consisting of n agents, we denote the set of all agents as {a1, a2, ..., an} =
A. Over time, distinct pairs of agents may interact with one another. Each such inter-
action consists of a truster, atr ∈ A; a trustee, ate ∈ A; and a context, C. The context C
specifies state information that is relevant to the outcome of the interaction; for instance,
C could include the type of service that ate is requested to provide, and specify terms of
agreement that define acceptable quality of service (QoS). In this context, we refer to
quality of service as the measurable aspects of a service which affect its desirability; for
example, frame rate could be considered a QoS measure for a video stream.

During an interaction, ate is obliged to provide a service to atr. The actions that ate

takes during an interaction, determines the QoS characteristics of the service provided
by ate, and ultimately the reward that atr receives for the interaction. For the purposes
of trust, atr therefore monitors and records QoS information during service provision.
Specifically, let SC be the set of possible actions that ate can take during an interaction,
in context C; for instance, if the requested service is to provide movie content, then SC
would be the set of all possible data streams. Agent atr monitors service provision by
using a function Q(atr, C,SC) that maps SC onto a set of QoS measurements, denoted
OC . The QoS measurement taken by atr for an interaction with ate at time t in context
C is denoted as Ot

atr,ate
∈ OC ; in some cases, we may omit the time superscript if the

interaction time is irrelevant to the discussion. The set of all observations made by atr

of ate, between times t and t + n, is denoted Ot:t+n
atr,ate

. Furthermore, we define time to be
positive, and denote the current time as t′; in this way, all outcomes observed between
a truster and trustee up until the current time are denoted O0:t′

atr,ate
.

Against this background, we model the behaviour of ate towards atr in context C, as a
probability distribution, b(x|θatr,ate) where x ∈ OC and θatr,ate ∈ ΘC . Here, θatr,ate is a
parameter vector which specifies the shape of the distribution and ΘC is the parameter
space, for context C. Essentially, b(x|θatr,ate) characterises the intrinsic probability with
which ate chooses its actions. In general, atr cannot determine the true value of the
parameter θatr,ate , because it does not necessarily have complete information about the
trustee’s intentions and capabilities; instead, we estimate θatr,ate by Bayesian Analysis.
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In Bayesian analysis, we estimate the true value of a parameter, such as θatr,ate by
first estimating its distribution, which we call the parameter distribution. Essentially,
the parameter distribution tells us about the evidential uncertainty surrounding ate’s
behaviour: if we know little about ate, then the parameter distribution will be close to
uniform; on the other hand, if we know much about ate, then the parameter distribution
may be highly peaked around one possible value for θatr,ate .

We assess the parameter distribution in two cases: first, we define θatr,ate ’s prior dis-
tribution, d(θatr,ate), which summarises the assumptions that atr has about ate before
observing its actual behaviour; second, once atr has interacted with the ate it updates
the prior-parameter distribution to form the posterior distribution, d(θatr,ate |O0:t′

atr,ate
);

here, if O0:t′
atr,ate

= ∅, then d(θatr,ate) = d(θatr,ate |O0:t′
atr,ate

). Like, b(x|θatr,ate), the shape
of the parameter distribution is also determined by its own parameter vector. To dis-
tinguish between these two vectors, we refer to the latter as the hyperparameter, and
denote it as φatr,ate ∈ ΦC , where ΦC is the hyperparameter space, for context C.

Now, to find an appropriate estimate of θatr,ate , we choose a value ϑ ∈ ΘC , which min-
imises an appropriate loss function, L(θatr,ate , ϑ), according to the posterior-parameter
distribution d(θatr,ate |O0:t′

atr,ate
). Thus, ϑ is a bayes estimate of θatr,ate (Appendix A).

Essentially, this gives us a basic level of trust based on a truster’s direct interaction
history with the trustee, and any prior assumptions that the truster may hold.

There are two important points about this that we make use of in subsequent sections.
First, the posterior distribution is a function of the prior distribution and the dataset
(Equation 3.1). Second, since the estimate ϑ is based on the parameter distribution, ϑ

is also a function of the hyperparameter, φatr,ate . Moreover, in this case of the posterior
distribution, ϑ is a function of the prior distribution’s hyperparameter, denoted φprior

atr,ate ,
and the observed data O0:t′

atr,ate
(Equation 3.2).

φpost
atr,ate

= f(O1:t
atr,ate

, φprior
atr,ate

) (3.1)

θatr,ate ≈ ϑ = g(φpost
atr,ate

) (3.2)

3.2 Reputation Communication Framework

By concentrating on trustee observations, we can frame the challenge of assessing trust
using reputation, as a generalisation of the basic technique we describe in the preceding
section. In this case however, we no longer have one set of observations, but multiple,
possibly overlapping datasets. This situation is illustrated in Figure 3.1. Here, atr

has three sets of data on which to base its assessment of ate: its own dataset O1:t
atr,ate

,
and the dataset of two other agents, a1 and a2. The ideal solution to this situation
would be to apply Equation 3.1 to the union of these datasets; in this case, the problem
becomes equivalent to direct trust assessment. However, there are two basic obstacles
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Agent atr

Agent a1

Agent a2

Figure 3.1: Venn Diagram of Overlapping Reputation Datasets

to this. First, in most scenarios of interest, we expect there to be a cost associated
with communication between agents. Therefore, it would generally not be practical for
agents to transmit their entire datasets to each other. Second, for reasons we have
already covered, we can expect datasets for reputation sources to contain noise not
associated with direct sources (Section 2.2.3). In this section, we concentrate on how
and what information should be communicated between trusters and their reputation
sources to alleviate these issues.

When a reputation source provides an opinion about a trustee, the important point is
not that it should transmit the data on which it bases its opinion; rather, it should
express only information relevant to assessing the trustee, and the opinion itself. To
enable this, each reputation source, arep ∈ A, should have a function r, such that
Rarep,ate = r(O0:t

arep,ate
). Here, Rarep,ate is the opinion of arep about ate, and r is the

opinion function. In the interest of simplicity, we assume there is one shared definition
of r for all agents, and that the datasets on which each agent bases its reported opinion
do not intersect. Note that these are not general requirements: different definitions of
r may be acceptable, provided agents communicate the differences and interpret them
appropriately; if agents’ data do intersect then intersections could either be estimated
or specified as part of Rarep,ate . Despite this, we consider it outside the scope of our
work to offer solutions in cases were these assumptions do not hold. With this in mind,
we now specify the basic conditions that the opinion function r should satisfy.

Condition 1 (Objectivity). In general, trust is a subjective quality because it is assessed
from the unique perspective and experience of the truster; for instance, a trustee may
behave differently towards one agent than it does towards another. Subjectivity causes
problems when assessing reputation because a truster must account for the differences
between its own perspective, and the perspective of its reputation sources. That said,
the opinion function is one source of subjectivity that we can control, by insisting that
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it is based only on objective measures1. Many existing trust models allow for trust to
be expressed using subjective terms such as good or bad, and mention that the meaning
of such terms may be different for different agents. Usually, such terms are subjective
because they depend on bias or preferences that are individual to the truster. If a truster
is human, then such subjectivity may be hard to tease apart from the underlying facts.
However, in our case, we are only interested in software agents; so, we believe that
subjectivity can be avoided, by not introducing it into the opinion function in the first
place.

Condition 2 (Composition). When we assess trust based on direct observations, Equa-
tion 3.1 states that we require two things: the prior hyperparameter, φprior

atr,ate ; and the
observations, O0:t′

atr,ate
. When we wish to take on board reputation, the set of observa-

tions is now Ocomplete = O0:t′
atr,ate

⋃n
i=1 O1:t

ai,ate
, where agents a1, ..., an are atr’s reputation

sources. However, since we can only obtain information about O1:t
ai,ate

through Rai,ate , we
must find a way of calculating φpost

atr,ate based on the opinions, rather than the complete
dataset itself. To do this, we choose a function h such that:

∃f φpost
atr,ate

= f(s(Ocomplete), φprior
atr,ate

) where,

s(Ocomplete) = h(Ratr,ate ,Ra1,ate , ...,Ran,ate)
(3.3)

Here, we use the function h to combine all information obtained from a truster’s repu-
tation sources. For convenience, we make h a function of truster’s own opinion, so that
it can be treated in the same way; then, we ensure that s is a decomposable statistic of
Ocomplete (Definition 3.1), for which h is a comprisal function, and the opinion function
r is a corresponding constitute function. In this way, we ensure that, no matter which
way the observations in Ocomplete divided between the reputation sources, the result
will always be as if the truster made all the observations directly. This however, makes
certain assumptions which we address in the proceeding section.

Definition 3.1 (Decomposable Statistic). Assume that X is a set of random vari-
ables corresponding to a set of observations. Then, a statistic is any function s(X) of X

(derived from Upton and Cook (2002)). Now assume that X1, ..., Xn are disjoint subsets
of X, such that

⋃n
i=1 Xi = X. A function s(X) is a decomposable statistic, if it is a

statistic and Equation 3.4 holds.

∃h ∃r s(X) = h(r(X1), ..., r(Xn)) (3.4)

In this case, a function r is called a constitute function of s(X) and the corresponding
function h is called the comprisal function.

Condition 3 (Minimal Communication). In itself, Condition 2 does not guarantee the
cost of communicating an opinion is within any bound of optimal. Rather, it formally

1This actually follows from the assumption that all agents share a common definition of the opinion
function r; however, we believe that objectivity is an important condition, which warrants an explicit
mention.
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defines a set of functions which would produce the same result, had all the observations
been made directly by the truster. To further ensure that only the required information
is sent, we should attempt to choose a reputation function r, such that it is a minimal
constitute function of statistic s(Ocomplete) (Definition 3.2).

Definition 3.2 (Minimal Constitute Function). Assume that s is a decomposable
statistic and r is a constitute function of s. Then, r is a minimal constitute function of
s if and only if r is a function of every other constitute function of s. Put formally,

∀v ∈ C ∃f r = f(v), where C is the set of constitute functions for s.

3.3 Coping with Inaccurate Reputation

From the previous section, we have a fully specified framework for assessing trust based
on reputation. However, for this framework to provide reasonable results for a given
truster-trustee pair, then the following conditions must hold.

Condition 4. If atr ∈ A is a truster and R ⊆ A is the set of all reputation sources which
atr consults about a trustee ate ∈ A, then the behaviour of ate towards all members of
{atr}

⋃
R must be equal.

Condition 5. If atr ∈ A is a truster and R ⊆ A is the set of all reputation sources
which atr consults about a trustee ate ∈ A, then all members of R must report their
information about ate truthfully and accurately.

Essentially, Conditions 4 to 5 ensure that observations made by a truster’s reputation
sources are representative of the actual behaviour a trustee is likely to have towards
the truster. Unfortunately, we cannot expect these conditions to hold in general, so we
must develop methods for coping with cases in which they are violated. Many of the
trust models we review in Chapter 2 include methods for coping with some of these
conditions. However, as we state in Section 2.3, each has its own set of downfalls. To
address some of these downfalls, we define a two-step filtering mechanism: First, we
calculate the probability that an agent will provide an accurate opinion given its past
opinions, and later observed interactions with the trustees, for which those opinions were
given. Second, based on this value, we reduce the distance between a rater’s opinion and
a prior belief that all possible values for an agent’s behaviour are equally probable. Once
all the opinions collected about a trustee have been adjusted in this way, the opinions
are aggregated using the techniques described in Section 3.2.

To describe our reputation filtering mechanism in more detail, we must introduce some
additional notation. The way in which we assess the accuracy of a reputation source’s
opinion is dependent on its actual value. For simplicity, we refer to the current opinion (of
reputation source arep) under consideration as Rr. With this in mind, we base decisions
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on five parameter distributions, all of which are defined for the trust parameter vector
θatr,ate (Section 3.1). First, d(θatr,ate |φc) is the parameter distribution that results when a
truster assesses a trustee, based on its direct observations and all the opinions it receives
about that trustee (Equation 3.3). Second, d(θatr,ate |φr) is the parameter distribution
that results when trust is based only on the considered opinion, Rr, assuming a uniform
prior. Third, d(θatr,ate |φc−r) is equivalent to d(θatr,ate |φc), except that the opinion Rr is
ignored. Fourth, d(θatr,ate |φo) is a distribution based on directly observed interactions
of trustee behaviour (Section 3.3.1). Finally, d(θatr,ate |φuni) is the uniform distribution,
which represents an opinion of no information. In this discussion, we need to refer
to the following properties for each of these distributions: the hyperparameter vector,
denoted φ; the estimate based on the parameter distribution, ϑ; the standard deviation,
denoted σ; and the expected value, denoted E. In each case, we link each property to the
appropriate distribution by giving the corresponding subscript; for instance, d(θatr,ate |φc)
has expected value E[θatr,ate |φc], standard deviation σc, hyperparameter vector φc, and
estimate ϑc. In the following subsections we describe this technique in more detail:
Section 3.3.1 details how the probability of accuracy is calculated and then Section 3.3.2
shows how opinions are adjusted and the combined reputation obtained.

3.3.1 Estimating the Probability of Accuracy

The first stage in our solution is to estimate the probability that a rater’s stated opinion
of a trustee is accurate. However, to do this we need to be more precise about what
it means for an opinion to be accurate. Recall that an opinion Rarep,ate , is essentially
a summary of the observations an opinion source has had of a trustee’s behaviour. If
an opinion is fully trusted, the effect that the opinion has on the overall distribution
d(θatr,ate |φatr,ate) is as if the underlying observations had been made directly by the
truster. For this to produce reasonable results, those observations should be represen-
tative of the trustee’s true behaviour towards the truster; we therefore require some
measure of how representative an opinion is of a trustee’s behaviour.

One way of doing this is to consider what an opinion actually tells us about the likely
value of θatr,ate . Specifically, it tells us that, according to the current knowledge of arep,
the distribution of the parameter θatr,ate is d(θatr,ate |φr). What we would like to do,
is verify how correct this distribution is. Unfortunately, this is, in general, impossible
because the distribution d(θatr,ate |φr), is not only a function of the trustee’s behaviour,
but also a function of the number of interactions arep has had with ate. If we did somehow
know how many interactions have occurred between arep and ate, we could verify this
element of the opinion immediately. However, we assume that this information is not
generally available to the truster.
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What we can validate to an extent is E[θatr,ate |φr]. Imagine for the moment that
d(θatr,ate |φr) is the true distribution of θatr,ate . Then, if we estimate our own distribu-
tion for θatr,ate (through repeated interactions with ate) we should find that the expected
value of our own distribution, converges on E[θatr,ate |φr] as the number of observations
increases. In our scenario, we have a very limited number of trustee observations with
which to validate a given opinion in this way. This is because an agent has the right to
change its opinion about a trustee: we could compare an opinion to observations of a
trustee’s behaviour indefinitely, but if the reputation source has since changed it mind,
we would be judging it on a belief it no longer holds.

Fortunately, if we are interested in a reputation source’s general accuracy, we don’t
have to consider its beliefs about any particular trustee in isolation: if we estimated a
parameter distribution based on all observations (regardless of the trustee’s identity), for
which arep gave an opinion with a corresponding expected value E′, then the expected
value of our distribution would still converge on E′, if arep generally provides accurate
opinions. This result clearly follows because if we have n sets of samples, each with
mean E′, then the union of those sets will also have mean E′.

This still leaves us with one outstanding problem: since ΦC can in general be infinite, the
probability of arep giving the same value for E[θatr,ate |φr] twice is essentially zero. This
again thwarts our attempts to gather enough observations to form a reliable parameter
distribution with which to validate E[θatr,ate |φr]. Instead, the best we can do is consider
all opinions for which E[θatr,ate |φr] lies in a certain interval, and thus estimate the
probability that the true mean lies within that interval; we call this probability the
probability of accuracy, and denote it as ρatr,arep . Bearing in mind that this only validates
E[θatr,ate |φr], we must assume that if E[θatr,ate |φr] is unreliable, then so is d(θatr,ate |φr),
and if E[θatr,ate |φr] is reliable, then d(θatr,ate |φr) is likely to be reliable also. However, in
Section 3.3.2, we take steps to prevent reputation sources manipulating trust assessment,
by exaggerating the elements of d(θatr,ate |φr) we cannot directly validate.

We now describe this process in more detail. First, let Hatr,arep be the complete set of
pairs of form (Rarep,ax , Oatr,ax). Here, ax is any member of A, and Oatr,ax is the outcome
of an interaction for which, prior to atr observing this outcome, arep gave the opinion
Rarep,ax . Second, divide the parameter space ΘC into disjoint intervals ΘC

1 , ...,ΘC
n, such

that
⋃n

i=1 ΘC
i = ΘC . Third, calculate E[θatr,ate |φr], and find the interval ΘC

r which
contains its value. Fourth, find the subset Hr

atr,arep
⊆ Hatr,arep , which comprises all

pairs for which the opinion falls in ΘC
r . Now, we use the observations contained in

Hr
atr,arep

to calculate the hyperparameter vector of d(θatr,ate |φo); using this parameter
distribution we now calculate ρatr,arep as the portion of the total mass of d(θatr,ate |φo)
that lies in the interval ΘC

r .

An example of this process is illustrated in Figure 3.2. Here, the parameter space ΘC

is instantiated as the set of real numbers in the range [0, 1]; this is then divided into
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Figure 3.2: Illustration of ρatr,arep Estimation Process, for sparamvec ∈ [0, 1]

five intervals, ΘC
1 = [0, 0.2], ...,ΘC

5 = [0.8, 1]. The reputation source, arep, has provided
atr with an opinion for which E[θatr,ate |φr] is in ΘC

4 ; thus, we calculate φo based on all
previous interaction outcomes, for which arep provided an expected value in ΘC

4 to arep.
As can been seen in the figure, the parameter distribution based on these outcomes,
d(θatr,ate |φo), is peaked inside ΘC

4 , with a significant proportion of its mass also in ΘC
4 .

Integrating d(θatr,ate |φo) over ΘC
4 will thus give us a significantly high value for ρatr,arep .

If subsequent outcome-opinion pairs were also to follow this trend, then d(θatr,ate |φo)
would become increasingly peaked inside this interval; therefore ρatr,arep would converge
to one. On the other hand, if subsequent outcomes disagreed with their corresponding
opinions, then ρatr,arep would approach 0. One implication of this technique is that the
number of bins effectively determines an acceptable margin of error in opinion provider
accuracy: a larger set of opinion providers will have their estimated accuracy converge
to 1 if bin sizes are large, compared to if bin sizes are small.

3.3.2 Adjusting Reputation Source Opinions

Once we have calculated ρatr,arep , we then adjust Rr such that its effect on trust is de-
creased in line with its probability of accuracy; to do this, we define a mapping function
Ra = m(Rr, ρatr,arep), where Ra is the adjusted opinion, with corresponding hyperpa-
rameter φa. Intuitively, if ρatr,arep = 1, then the effect thatRr has on d(θatr,ate |φc) should
remain unchanged; if ρatr,arep = 0, Rr should have no effect; and if 0 < ρatr,arep < 1,
the effect should be reduced by some proportion. Apart from this, the precise definition
of the mapping function depends on the way in which the parameter distribution is
modelled; therefore, we cannot define it completely here. Instead, in this section, we
give a set of guidelines which we believe any instantiation of the function must satisfy.
Specifically, we identify three aspects of an opinion that the mapping function should
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account for: (1) the size of dataset the opinion is (reportedly) based on, (2) the conclu-
sion the opinion supports, (3) the ability of a reputation source to manipulate the trust
assessment process. In the remainder of this section, we shall consider each of these
points in turn.

Dataset size — If the size of a reputation source’s dataset is large compared to all
other data a truster bases its decision on, then the truster’s opinion will move
significantly towards that reputation sources opinion. On the other hand, if the
reputation sources dataset is empty, the truster’s opinion will not change at all2.
This shows that we can reduce the effect an opinion has, by adjusting it so that
the size of the underlying data we pay attention to, is effectively reduced.

Opinion Conclusion — The conclusion that a reputation source’s opinion supports
is also significant. Mainly, this is because the opinion’s effect is relative to the
amount of data the truster has from other sources; if the truster has little alter-
native evidence, then it would move its opinion significantly in the direction of
the reputation source opinion — even if the reputation source opinion was itself
based on little evidence. This means only adjusting an opinion such that the size
of the underlying dataset is reduced, will not prevent a truster placing undue em-
phasis on an untrustworthy opinion. This is particularly important when little is
known by anyone about a certain trustee, in which case the only opinions based
on reportedly high datasets, will be from agents with an incentive to lie.

Opinion Manipulation — Imagine halving the size of the dataset to reduce its im-
pact on trust; if a reputation source knew that this was our intention, it could
simply double the reported size of its dataset, to counteract our adjustment. This
is one example of how a reputation source could potentially manipulate its opinion
to counteract the adjustment procedure; any instantiation of the mapping function
should therefore include measures to prevent such interference. One way to do this
is to use the standard deviation, or the variance, of the opinion parameter distri-
bution, d(θatr,ate |φr). The change in the parameter distribution decreases as the
size of the dataset increases: as the parameter distributions variance approaches
zero (due to increase in dataset size) the effect of any new data becomes minimal;
moreover, when the variance is zero, no new data will change the distribution.
This means that by adjusting according to the distribution variance, we make it
increasingly hard for a reputation source to bias a truster, by exaggerating the
weight of its own evidence.

From these three points, we conclude that the mapping function should decrease the size
of the adjusted dataset according to the distribution variance, and move the conclusion

2This result is due to the way we combine reputation: recall for Section 3.2 that trust based on
opinions is equivalent to trust based on the union of the truster’s own observations, and those of its
reputation sources.
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it supports in the direction of the truster’s own prior opinion. This latter condition will
introduce a bias towards the trusters own opinion, but we believe this bias is justified
to guard against the effect of unreliable opinions.





Chapter 4

TRAVOS: A Trust Model for

Boolean Action Spaces

In this chapter, we introduce a trust model called TRAVOS (Trust and Reputation sys-
tem for Agent Based Virtual OrganisationS), which instantiates the framework described
in the previous chapter for boolean action spaces. By this we mean we concentrate on
scenarios in which a trustee can only behave in one of two ways during an interaction:
either it can cooperate, and fulfil its obligations to the truster; or it can defect, break-
ing its obligations to the truster. In turn, we assume that the truster’s utility is only
dependent on which of these actions a trustee takes, and we define its quality of service
function Q(atr, C,SC) as a binary function that simply records which action a trustee
took, during a given interaction.

We divide the chapter into four sections. First, Section 4.1 describes the process of
instantiating the framework in general, and then describes the boolean instantiation used
in TRAVOS. Second, Section 4.2 presents a method for collecting reputation information
that can be used to calculate trust using the framework instantiation. Third, Section 4.3
describes how TRAVOS is applied as part of a system for management agent-based
VOs, including a walk-through scenario outlining its use. Finally, Section 4.4 gives an
empirical evaluation of TRAVOS, through computer simulation.

45
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4.1 Instantiating the Framework for Boolean Action Spaces

Essentially, the process of instantiating the framework starts by considering the defi-
nition of the quality of service function Q(atr, C,SC), followed by finding appropriate
definitions for the various elements described in Chapter 3. Overall, the process involves
the following six steps:

1. define Q(atr, C,SC) and thus define the quality of service space OC

2. find a suitable parameter model to represent the behaviour distribution,
b(x ∈ OC |θatr,ate)

3. choose an appropriate parameter model for the parameter distribution,
d(θatr,ate |φatr,ate)

4. choose an appropriate loss function L(θatr,ate , ϑ), and thus derive the optimal def-
inition for the bayes estimator function, ϑ

5. define the reputation function, r, according to the conditions set out in Section 3.2

6. instantiate the reputation mapping function, Ra = m(Rr, ρatr,arep)

To describe the instantiation used in TRAVOS, we now discuss each of these steps
in turn: Section 4.1.1 describes the parameter models used in TRAVOS (Steps 1 to
3); Section 4.1.2 defines the optimal estimator for θatr,ate (Step 4); and Section 4.1.3
instantiates the reputation mechanism (Steps 5 to 6).

4.1.1 Parameter Models for Binary Action Space

As we have already stated, in TRAVOS, both the trustee action space and the quality
of service function are binary: either a trustee cooperates, constituting a successful
interaction for the truster, or the trustee defects, constituting an unsuccessful interaction
for the truster. The definition of the quality of service space is thus given by Equation 4.1.

OC =

{
1 if contract is fulfilled by ate

0 otherwise
(4.1)

This binary definition means that a series of observations of trustee behaviour, such as
O0:t′

atr,ate
can be considered as a set of Bernoulli trials, and thus is drawn from a Bernoulli

distribution; that is, the (intrinsic) probability distribution is completely described by
the probability that Oatr,ate = 1 — we simply subtract this from 1, to obtain the
probability that Oatr,ate = 0. The parameter θatr,ate is therefore a real number in the
range [0, 1], which represents p(Oatr,ate = 1) (Equation 4.2).

θatr,ate = p(Oatr,ate = 1), where θatr,ate ∈ [0, 1] (4.2)
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In the interest of simplicity, we adopt the standard practice of choosing a conjugate prior
for the parameter distribution (DeGroot and Schervish, 2002a). In case of Bernoulli dis-
tributions, the conjugate family is the set of beta distributions. In this respect TRAVOS
is therefore similar to the Beta Reputation System (Section 2.2.2.2). The hyperparame-
ter space, ΦC , now takes on the form of the standard parameters of the beta distribution
(Equation 4.3). Specifically, the beta distribution has two parameters, typically denoted
α and β, both of which are positive real numbers. These parameters determine the
shape of the distribution through the probability density function (Equation 4.4), the
expected value of the distribution (Equation 4.5) and the variance (Equation 4.6).

ΦC = {(α, β)|α > 0 ∧ β > 0} (4.3)

d(θ|α, β) =
θα−1(1− θ)β−1∫

Uα−1(1− U)β−1dU
(4.4)

E[θ|α, β] =
α

α + β
(4.5)

σ2 =
α · β

(α + β)(α + β + 1)
(4.6)

With this in mind, we can now show how the various aspects of the beta distribution can
be applied to the framework. In particular, for a given prior, φprior

atr,ate = (αprior, βprior),
the posterior hyperparameter, φpost

atr,ate = (αpost, βpost), is calculated by counting the num-
ber of successful interactions (Equation 4.7) and the number of unsuccessful interactions
(Equation 4.8) in the interaction history, O0:t′

atr,ate
; and then adding these values to the

α and β parameters as shown in Equations 4.9 & 4.10. This is a well known result, a
derivation of which is given in DeGroot and Schervish (2002a).

matr,ate = |{o ∈ O0:t′
atr,ate

|o = 1}| (4.7)

natr,ate = |{o ∈ O0:t′
atr,ate

|o = 0}| (4.8)

αpost = αprior + matr,ate (4.9)

βpost = βprior + natr,ate (4.10)

The effect of updating the parameter distribution in light of observations is illustrated
in Figure 4.1. Here, adding observations, and thus increasing α and β, decreases the
distribution variance, making the distribution more peaked. The proportion of successful
and unsuccessful interactions, along with the prior, determine where on the interval
[0, 1] the distribution peaks. A high α value compared to β (usually resulting from
a high proportion of successful outcomes) causes the distribution mode to occur close
to 1. Intuitively, this is correct, because it supports the conclusion that the intrinsic
probability of Oatr,ate = 1 is also close to 1.
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Figure 4.1: Example beta pdf plots; note that when α = 1, β = 1 (top-left) the
distribution is uniform on the interval [0, 1].

4.1.2 The Parameter Estimator

Now that we have defined the distribution parameter distribution, we can derive the
estimator function for the parameter vector. To do this, we choose the mean squared
error as the loss function because this encourages our estimate to be, on average, as
close to the true parameter value as possible. To find the estimator, we find the value
which minimises the expected value of this loss function. Through Theorem 4.1, we
see that, in general, the estimator which minimises mean squared error, is the expected
value, E[θatr,ate ]; therefore, in this case, the optimal estimate ϑ is given by Equation 4.5.

Theorem 4.1 (Bayes estimate using mean squared error). Assume that θ is a
parameter with probability distribution p(θ), where a ≤ θ ≤ b. Then, the bayes estimate
(which we denote ϑ) that minimises the expected mean squared error (Equation 4.11) is
the expected value E[θ] according to the distribution p(θ).

mean squared error = L(θ, ϑ) = (ϑ− θ)2 (4.11)
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proof: First, we differentiate the expected mean squared error with respect to ϑ. Then,
we set the derivative equal to 0 to find the minimum point.

E[L(θ, ϑ)] =
∫ b

a
(ϑ− θ)2 · p(θ) dθ (by definition) (4.12)

d

dϑ
E[L(θ, ϑ)] =

d

dϑ

∫ b

a
(ϑ− θ)2 · p(θ) dθ = 0 (4.13)

d

dϑ
E[L(θ, ϑ)] =

∫ b

a

[
d

dϑ
(ϑ− θ)2 · p(θ)

]
dθ = 0 (4.14)

evaluating the derivative we get

d

dϑ
(ϑ− θ)2 · p(θ) = p(θ) ·

[
d

dϑ
(ϑ− θ)2

]
+ (ϑ− θ)2 ·

[
d

dϑ
p(θ)

]
(4.15)

d

dϑ
(ϑ− θ)2 · p(θ) = p(θ) ·

[
d

dϑ
(ϑ− θ)2

]
+ (ϑ− θ)2 · 0 (4.16)

d

dϑ
(ϑ− θ)2 · p(θ) = p(θ) ·

[
d

dϑ
(ϑ− θ)2

]
(4.17)

d

dϑ
(ϑ− θ)2 · p(θ) = p(θ) ·

[
d

d(ϑ− θ)
(ϑ− θ)2

]
·
[

d

dϑ
ϑ− θ

]
(4.18)

d

dϑ
(ϑ− θ)2 · p(θ) = p(θ) · [2 · (ϑ− θ)] · 1 (4.19)

(4.20)

substituting into the integral we get

0 =
∫ b

a
2(ϑ− θ) · p(θ) dθ (4.21)

0 =
∫ b

a
2ϑ · p(θ)− 2θ · p(θ) dθ (4.22)

0 = 2 ·
[∫ b

a
ϑ · p(θ) dθ

]
− 2 ·

[∫ b

a
θ · p(θ) dθ

]
(4.23)∫ b

a
ϑ · p(θ) dθ =

∫ b

a
θ · p(θ) dθ (4.24)∫ b

a
ϑ · p(θ) dθ = E[θ] (4.25)

ϑ ·
∫ b

a
p(θ) dθ = E[θ] (4.26)

ϑ · 1 = E[θ] (probability distribution integrates to 1) (4.27)

ϑ = E[θ] (4.28)

Hence, the bayes estimator which minimises expected mean squared error is E[θ].
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4.1.3 Instantiating the Reputation Mechanism

To allow reputation to be used during trust assessment, we must define the reputation
function (Section 3.2), and instantiate the opinion mapping function. First, let us con-
sider the reputation function. In Section 3.2, we state that there three three conditions
that the reputation function should satisfy: objectivity, composition and (optionally)
minimalism. One function which satisfies all of these conditions is the pair of frequen-
cies for successful and unsuccessful interactions observed by the reputation source with
the trustee (Equation 4.29).

r(O0:t′
arep,ate

) = (marep,ate , narep,ate), where marep,ate = successful frequency

and narep,ate = unsuccessful frequency
(4.29)

This function is objective because it is dependent only on the behaviour of the trustee,
and not directly1 on the identity of the observing reputation source. The function
satisfies the composition condition, because the posterior parameter distribution can be
written as follows.

φpost
atr,ate

= f(s(Ocomplete), φprior
atr,ate

) (from Equation 3.3) (4.30)

φpost
atr,ate

=
(
αprior + Matr,ate , βprior + Natr,ate

)
, where (4.31)

s(Ocomplete) = (Matr,ate , Natr,ate) (4.32)

Matr,ate =
∑

ai∈S
S
{atr}

mai,ate (4.33)

Natr,ate =
∑

ai∈S
S
{atr}

nai,ate (4.34)

Here, S, is the set of reputation sources consulted by atr; φpost
atr,ate is a function of the prior

φprior
atr,ate = (αprior, βprior) and is a statistic of the complete set of observations, Ocomplete.

The statistic s(Ocomplete) is a decomposable function for which r is a constitute function,
because s can be obtained by summing the elements of r from each reputation source
(Equation 4.31). Finally, r is a minimal function of s because r and s have identical
definitions:

s : O = {o|o = 1 ∨ o = 0} −→ {(m,n)|m > 0 ∧ n > 0},

r : O = {o|o = 1 ∨ o = 0} −→ {(m,n)|m > 0 ∧ n > 0},

where m =
∑
o∈O

o and n =
∑
o∈O

(1− o)

This means that r is a decomposable statistic, for which all constitute functions of s are
also constitute functions of r; hence, r is a minimal constitute function of s.

1Of course, the trustee may change its behaviour depending on the identity of the observer, but the
function itself is still objective.
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Our final task is to instantiate the reputation mapping function. To do this, we first map
the parameter space on to the expected value and variance of the parameter distribution
(Equations 4.5 and 4.6). Now, to define the opinion mapping function, we reduce the
euclidean distance between the vector (E[θatr,ate |φr], σ2

r ) for the opinion distribution,
and the equivalent vector for the uniform distribution, (E[θatr,ate |φuni], σ2

uni) (Equations
4.35 and 4.36). From this, the adjusted opinion, Ra, can be determined using Equations
4.37 to 4.40; in all of these equations, we use the over bar to denote properties belonging
to the adjusted opinion (see Appendix B for a derivation of Equations 4.37 and 4.38).

Ē = E[θatr,ate |φuni] + ρatr,arep · (E[θatr,ate |φr]− E[θatr,ate |φuni]) (4.35)

σ̄2 = σ2
uni + ρatr,arep · (σ2

r − σ2
uni) (4.36)

ᾱ =
Ē2 − Ē3

σ̄2
− Ē (4.37)

β̄ =
(1− Ē)2 − (1− Ē)3

σ̄2
− (1− Ē) (4.38)

m̄arep,ate = ᾱ− 1 , n̄arep,ate = β̄ − 1 (4.39)

Rr = (m̄arep,ate , n̄arep,ate) (4.40)

Defining the mapping function in this way, satisfies the guidelines described in Sec-
tion 3.3.2 for the following reasons. First, adjusting the variance effectively reduces the
size of the underlying dataset which we pay attention to. Second, since we adjust the
variance linearly, we are increasingly skeptical of ever larger datasets; thus, we reduce
the ability of a reputation source to counteract the adjustment process by manipulating
its opinion. Finally, by moving the expected value of the distribution towards uniform
(i.e. a value of 0.5) we make the adjusted opinion more conservative, thus reducing the
effect of untrusted opinions in cases where no other information is available.

4.2 Reputation Gathering in TRAVOS

In the preceding sections, we show how, by using the framework, reputation information
can be used along with a truster’s direct experience to assess the trustworthiness of
an agent. However, apart from assessment, there are two other issues that a practical
trust and reputation system should include: (1) agents require some mechanism to
obtain opinions from reputation sources, and (2) agents must decide when it is necessary
to obtain reputation information. The latter is important, because if a truster has
sufficient direct evidence with which to judge a trustee, the cost of obtaining reputation
information may outweigh its benefits. We now consider each of these issues in turn.
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Figure 4.2: Reputation Brokering System

4.2.1 Reputation Brokering

The problem with obtaining opinions in large systems, is that directly querying many
agents may entail a significant communication overhead. Therefore, agents must do one
or more of the following: (1) choose a subset of agents to query, (2) employ some method
of streamlining reputation. Our solution to this problem is illustrated in Figure 4.2.

We assume that each agent in a system belongs to exactly one primary domain. Here,
a domain may correspond to an organisation or department in the real world, to which
the agent is responsible. This view is in line with the vision of systems, such as the
Grid, in which computing resources belonging to different organisations may be used
together. Within each domain, there is a reputation broker agent, which is responsible
for aggregating the opinions of all other agents within its domain; that is, the opinion
of a reputation broker about a trustee is an aggregation of the opinions of all other
agents within its domain. In addition, domains can be arranged in a hierarchy such that
brokers in subdomains report to a broker in an overall domain. It this way, a top level
broker aggregates all the opinions of agents in each of its subdomains.

Reputation Brokers provide a point of contact for external agents looking to receive rep-
utation information. When a truster requires reputation, it first uses a service discovery
system (such as described in Section 4.3) to identify domains that advertise having infor-
mation about trustee’s in some general context2. For example, companies which make
use of grid-based storage space, may advertise having knowledge about vendors of such
storage space.

2Here, we do not address the issue of at what level domains should advertise information. For
example, if a department within a company is mainly responsible for certain information, should the
department be the advertised point of contact, or the organisation it belongs to?
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=======================================================================

Each time an interaction outcome is observed do the following

=======================================================================

IF interaction successful

SET m[trustee id] = m + 1

ELSE

SET n[trustee id] = n + 1

END IF

=======================================================================

Periodically do the following

=======================================================================

FOR ALL i = trustee id

IF m[i] 6= 0 OR n[i] 6= 0

add m[i] and n[i] to update message

END IF

SET m[i] = 0

SET n[i] = 0

END LOOP

SEND update message to reputation broker

Figure 4.3: Reputation broker update algorithm, performed by reputation sources

Once a truster has received a list of appropriate domains, it can choose to request an
opinion from either the main reputation broker for that domain, or other brokers or
individual agents within that domain. Although we do not specify how a truster should
make this choice, there is an obvious trade-off in granularity. By requesting information
from a top-level broker, the truster can receive all the information known by the domain
in a single message. However, in this case, a truster can only judge the accuracy of the
broker’s domain as a whole (using the techninques described in Section 4.1.3). On the
other hand, if a truster contacted several agents within a domain, it could judge their
accuracy individually, thus identifying the most reliable contacts within an organisation.
Here, it is important that a truster should avoid using a reputation source at the same
time as any reputation broker, which that source reports to. The reason for this is
correlated evidence (Requirement 3.3): since the broker’s opinion is based on those
agents which report to it, using a reputation source along with its broker would amount
to counting the reputation source’s opinion twice!

We now describe how a reputation broker’s opinion is formed. Each broker periodically
receives updates regarding any newly observed interaction outcomes, from the agents
within its own domain of responsibility. These updates take the same form as normal
reputation opinions in TRAVOS (Equation 4.29) except that they are only based on
observations that have occurred since the last update the observer sent to its broker.
This process is summarised algorithmically in Figure 4.3. When a reputation broker
receives an opinion from within its domain about a trustee ate, it updates its own
opinion about ate using Equations 4.41 and 4.42. In this way, the broker’s opinion can
be compared to that of a single agent, which has observed all the interaction outcomes
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recorded by the agents within the broker’s domain.

mabroker,ate = mabroker,ate +
∑
ai∈D

m∗
ai,ate

(4.41)

nabroker,ate = nabroker,ate +
∑
ai∈D

n∗ai,ate
(4.42)

where (m∗
ai,ate

, n∗ai,ate
) is the update message from ai about ate,

and D is the set of agents in abroker’s domain.

4.2.2 When to Seek Reputation

In some cases, an agent may decide that it is sufficiently confident in its own knowl-
edge about a trustee, to avoid acquiring reputation information to improve its estimate.
Two reasons for this are the communication cost of reputation acquisition, and the in-
herit unreliability of reputation compared to direct observations. One simple method
of doing this is to calculate the posterior probability that the true value for θatr,ate lies
within an acceptable margin of error around the estimate. We can calculate this using
the parameter distribution as follows. First, we decide on an acceptable error margin,
ϑatrate ± ε, where ε is the acceptable distance from ϑatrate. Second, we integrate the
parameter distribution over the area define by the error margin. To do this, we use the
beta probability density function as shown in Equation 4.43. We refer to the resulting
value as the confidence value of ϑatrate, which we denote as γatr,ate . Finally, we choose
a threshold for this probability, above which we consider the accuracy of the estimate
as acceptable; we denote this threshold as τ .

γatr,ate =

∫ ϑatr,ate−ε
ϑatr,ate+ε Bα−1(1−B)β−1dB∫ 1

0 Uα−1(1− U)β−1dU
, where (α, β) = φatr,ate (4.43)

4.3 An Application to Agent-Based VOs

In this section, we describe the role of TRAVOS in the CONOISE-G system (Patel
et al., 2005; Shao et al., 2004). The CONOISE-G system (Constraint Oriented Ne-
gotiation in Open Information Seeking Environments for the Grid) seeks to, “support
robust and resilient virtual organisation formation and operation. It aims to provide
mechanisms to assure effective operation of VOs in the face of disruptive and potentially
malicious entities in dynamic, open and competitive environments.”3 More specifically,
CONOISE-G provides methods by which agents operating in a grid environment can
form dynamic resource coalitions (VOs), in order to fulfil their goals. Here, by dynamic
we mean that the membership of a VO may change over its lifetime. This can happen
for various reasons; for instance, a particular member’s resources may fail, requiring a

3This quote is taken from http://www.conoise.org/
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new member to make up the shortfall. In the following subsections we give an overview
of the CONOISE-G system (Section 4.3.1), following by a trust-orientated scenario of
how TRAVOS is used in CONOISE-G (Section 4.3.2).

4.3.1 System Overview

In essence, the CONOISE-G architecture comprises several different agents, including
system agents and service providers (SPs), as shown in Figure 4.4. The former are those
needed to achieve core system functionality for VO formation and operation, while the
latter are those involved in the VO itself. Moreover, SPs are responsible for overseeing
the life cycle of a VO, which consists for three stages: (1) formation, (2) operation and
(3) dissolution. The formation of a VO consists of three steps:

1. Resource Discovery — A particular SP, acting either on its own behalf, or
on behalf of a user, identifies a need for a number of resources, which it cannot
supply (efficiently) by itself. To fulfil this need, the SP instigates VO formation, by
requesting a list of other SPs, which can supply the required resources; it obtains
this list from the Yellow Pages Agent (YP), which performs a service discovery
role (Deora et al., 2004). At this point, the SP which places the request for
service, takes on the VO Manager (VOM) role for the potential VO, as illustrated
in Figure 4.4.

2. Resource Assessment – After receiving a response from the YP, the VOM
invites the identified providers to bid for the requested services. Once, all such
bids are received, the VOM generates an expected utility function for each bid
based on the price offered per resource unit, trust and the advice given by the
Quality of Service Assessor (QoSA). The QoSA, based on Deora et al. (2003), is
an external service which rates how well a given SP is likely to perform. Its role
can be viewed as similar to that of a reputation provider in TRAVOS, in that
it provides extra information about a trustee’s likely behaviour. However, the
nature of its assessment and its underlying assumptions are different from that of
reputation sharing in TRAVOS, and therefore it must be treated differently.

In our approach, we first estimate the SP’s behaviour distribution (as described
in Section 4.1.2) thereby estimating the probability that the SP will fulfil its obli-
gations to the VOM. Then, we use the QoSA’s assessment of an SP to provide
an alternative estimate of this probability, and combine these two estimates using
a suprabayesian Approach (Keeney and Raiffa, 1976). In general, the combined
probability should be more accurate than either of the individual estimates, since
it incorporates the knowledge of both the QoSA, the VOM (in its role as a truster)
and the VOM’s reputation sources. The combined probability is then used to
calculate the expected utility for the VOM, for each possible number of resource
units it can purchase from the bidding SP.
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3. Resource Allocation – Once we have an expected utility function for each bid-
der, we employ the Clearing Agent (CA), which finds the optimal resource al-
location4 for the set of bidding SPs (Dang and Jennings, 2002). The resulting
allocations are reported back to the VOM, which then sends ‘hired’ messages to
each of the successful bidders, informing them of the quantity of each resource
they are asked to provide.

Once the VO is formed, the operational phase begins. During this stage, the VOM may
request the QoS Consultant (QoSC) to monitor any services provided by any members of
the VO. The QoSC informs the VOM if and when an SP diverges from its agreed service
level. When the QoS provision of a service in the VO falls below an acceptable level of
service, or some breach of contract is observed, the QoSC alerts the VOM, which initiates
a VO re-formation process. During this stage, the Contract Management component of
the VOM, decides whether a breach of contract has actually occurred; and if so, which
SP is to blame. Based on this result, the VOM updates its trust component, recording
either a successful of unsuccessful outcome for any terminated contracts.

Meanwhile, the VOM issues another message to the YP requesting a list of SPs that
can replace the resources of the failed SP. As before, the YP identifies possible SPs, bids
are received and evaluated, resulting in the CA determining the best SP to replace the
failed provider. At this point, the VOM re-forms the VO with the new SP replacing
the old one, and instructs the QoSC to stop monitoring the old SP and to monitor the
new one instead. A similar process may also take place if another SP, not currently in
the VO, sends the VOM a competitive offer on resources it receives from current VO
members. This process is facilitated by a publish and subscribe service offered by the
YP: the VOM may register interest in SPs that provide particular resources, in response
to which the YP will inform the VOM any time a new SP offering such services appears
in the system.

4.3.2 Walk-through Scenario

This section provides an agent-based VO scenario in which we demonstrate the use of
TRAVOS. We begin by stating that there is a need to create a VO to meet a specific
requirement to provide a composite multimedia communication service to an end user.
This consists of the following basic services: text messaging, HTML content provision
and phone calls (this example is taken from Norman et al. (2003)). Now, assume agent
a1 has identified this need and wishes to capitalise on the market niche. However, a1

only has the capability to provide a text messaging service. It can only achieve its
goal by forming a VO with an agent that can supply a service for phone calls and one

4Alternatively, if there are significant time constraints, the CA can find an allocation which is within
some bound of optimal.
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for HTML content. For simplicity, we assume that each agent in the system has the
ability to provide only one service. Agent a1 is aware of three agents that can provide a
phone call service, and its interaction history with these is shown in Table 4.1. Similarly,
it is aware of three agents that are capable of providing HTML content, and its past
interactions with these entities are given in Table 4.2. We also assume that a trusters
prior parameter distribution for all agents is uniform:

αprior = 1, βprior = 1

Agent Past interactions
Successful Unsuccessful

a2 17 5
a3 2 15
a4 18 5

Table 4.1: Agent a1’s interaction history with phone call service provider agents.

Agent Past interactions
Successful Unsuccessful

a5 9 14
a6 3 0
a7 18 11

Table 4.2: Agent a1’s interaction history with HTML content service provider agents.

Agent a1 would like to choose the most trustworthy phone call and HTML content
service provider from the selection. The following describes how this is achieved using
TRAVOS.

4.3.2.1 Calculating Trust

Using the information from Tables 4.1 and 4.2, a1 can determine the number of successful
interactions n, and the number of unsuccessful interactions m, for each agent it has
interacted with. Feeding these into Equations 4.9 and 4.10, a1 can obtain a parameter
distribution which summarises each agent’s likely behaviour in future interactions; for
example, the shape parameters α and β, for a2, are calculated as follows:

Using Table 4.1: na1,a2 = 17, ma1,a2 = 5.

Using Equations 4.9 & 4.10: α = 17 + 1 = 18 and β = 5 + 1 = 6.

The hyperparameter for each agent is then used estimate the probability that each agent
would cooperate on any future interaction. In line with Section 4.1.2, we calculate this
estimate as the expected value of the parameter distribution (Equation 4.5); for example,
the estimate, ϑa1,a2 , for a2 is calculated as follows:
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Using Equation 4.5: ϑa1,a2 = α
α+β = 18

18+6 = 0.75.

The above estimate gives a1 an assessment of a2’s likely behaviour based on direct inter-
actions. However, as discussed in Section 4.2, a1 may wish to determine if the accuracy
of this estimate is sufficient to avoid the need to gather reputation. To do this, we
calculate the posterior probability that the true value for θa1,a2 lies within an acceptable
margin of error around the estimate. We can calculate this using the parameter distri-
bution as follows. First, we decide on an acceptable error margin, ϑa1a2 ± ε, where ε is
a suitable value, such as 0.2. Second, integrate the parameter distribution over the area
define by the error margin. Finally, we decide upon some threshold for this probability,
above which we decide the estimate as an acceptable level of accuracy; for example, we
could define a threshold τ as 0.95. The proceeding example illustrates this calculation
for a1’s estimate for a2, using ε = 0.2; we denote the resulting confidence value as γa1,a2 .

γa1,a2 =

∫ ϑa1,a2−ε

ϑa1,a2+ε Bα−1(1−B)β−1dB∫ 1
0 Uα−1(1− U)β−1dU

=

∫ 0.55
0.95 Bα−1(1−B)β−1dB∫ 1

0 Uα−1(1− U)β−1dU
= 0.98

Agent α β ϑa1,ax γa1,ax

a2 18 6 0.75 0.98
a3 3 16 0.16 0.98
a4 19 6 0.76 0.98
a5 10 15 0.40 0.97
a6 4 1 0.8 0.87
a7 19 12 0.61 0.98

Table 4.3: Agent a1’s calculated trust and associated confidence level for HTML
content and phone call service provider agents.

The hyperparameters, estimate and associated confidence for each agent, a2 to a7, which
a1 computes using TRAVOS, are shown in Table 4.3. From this, it is clear that the trust
values for agents a2, a3 and a4, all have a confidence above τ (=0.95). This means that
a1 does not need to consider the opinions of others for these three agents. Agent a1 is
able to decide that a4 is the most trustworthy out of the three phone call service provider
agents and chooses it to provide the phone call service for the VO.

4.3.2.2 Calculating Reputation

The process of selecting the most trustworthy HTML content service provider is not
as straightforward. Agent a1 has calculated that out of the possible HTML service
providers, a6 has the highest trust value. However, it has determined that the confidence
it is willing to place in this value is 0.87, which is below that of τ and means that a1

has not yet interacted with a6 enough times to calculate a sufficiently confident trust
value. In this case, a1 has to use the opinions from other agents that have interacted
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with a6, and form a reputation value for a6 that it can compare to the trust values it
has calculated for other HTML providers (a5 and a7).

Lets assume that a1 is aware of three agents that have interacted with a6, denoted by
a8, a9 and a10, whose opinions about a6 are (15, 46), (4, 1) and (3, 0) respectively. Agent
a1 can obtain hyperparameters based solely on the opinions provided as follows.

Opinions from providers: a8 = (15, 46), a9 = (4, 1) and a3 = (3, 0)

Using Equations 4.33 & 4.34: N = 15 + 4 + 3 = 22, M = 46 + 1 + 0 = 47

Using Equation 4.31: α = 22 + 1 = 23, β = 47 + 1 = 48

Having obtained the shape parameters, a1 can obtain an estimate for a6 using Equation
4.5, as follows:

Using Equation 4.5: ϑa1,a6 = α
α+β = 23

23+48 = 0.32

Now a1 is able to compare the trust in agents a5, a6 and a7. Before calculating the
trustworthiness of a6, agent a1 considered a6 to be the most trustworthy (see Table
4.3). Having calculated a new trust value for agent a6 (which is lower than the first
assessment), agent a1 now regards a7 as the most trustworthy. Therefore a1 chooses a7

as the service provider for the HTML content service.

4.3.2.3 Handling Inaccurate Opinions

The method a1 uses to assess the trustworthiness of a6, as described in Section 4.3.2.2,
is susceptible to errors caused by reputation providers giving inaccurate information.
In our scenario, suppose a8 provides the HTML content service too, and is in direct
competition with a6. Agent a1 is not aware of this fact, which makes a1 unaware that a8

may provide inaccurate information about a6 to influence its decision on which HTML
content provider agent to incorporate into the VO. If we look at the opinions provided
by agents a8, a9 and a10, which are (20, 46), (4, 1) and (3, 0) respectively, we can see
that the opinion provided by a8 does not correlate with the other two. Agents a9 and
a10 provide a positive opinion of a6, whereas agent a8 provides a very negative opinion.
Suppose that a8 is providing an inaccurate account of its experiences with a6. We can
use the mechanism discussed in Section 3.3 to allow a1 to cope with this inaccurate
information, and arrive at a better decision that is not influenced by self-interested
reputation providing agents (such as a8).

Before we show how TRAVOS can be used to handle inaccurate information, we must
assume the following. Agent a1 obtained reputation information from a8, a9 and a10

on several occasions, and each time a1 recorded the opinion provided by a reputation
provider and the actual observed outcome (from the interaction with an agent to which
the opinion is applied). Each time an opinion is provided, the outcome observed is
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Agent Weighting Adjusted Values
µ σ α β

a8 0.0039 0.5 0.29 1.0091 1.0054
a9 0.78 0.65 0.15 5.8166 3.1839
a10 0.74 0.62 0.17 4.3348 2.6194

Table 4.4: Agent a1’s adjusted values for opinions provided by a8, a9 and a10.

[0, 0.2] [0.2, 0.4] [0.4, 0.6] [0.6, 0.8] [0.8, 1] Total
n m n m n m n m n m

a8 2 0 11 4 0 0 0 0 2 3 25
a9 0 2 1 3 0 0 22 10 6 4 30
a10 1 3 0 2 0 0 18 8 5 3 25

Table 4.5: Observations made by a1 given opinion from a reputation source. n rep-
resents that the interaction (to which the opinion applied) was successful, and likewise

m means unsuccessful.

recorded by updating a frequency bin corresponding to the interval ΘC
r , which the re-

ceived opinion belongs to. Agent a1 keeps information of like opinions in bins as shown
in Table 4.5. For example, if a8 provides an opinion that is used to obtain a trust value
of 0.3, then the actual observed outcome (successful or unsuccessful) is stored in the
0.2 < E[θatr,ate |φr] ≤ 0.4 bin.

Using the information shown in Table 4.5, agent a1 can calculate the weighting to be
applied to the opinions from the three reputation sources by applying the technique
described in Section 3.3.1. In so doing, agent a1 uses the information from the bin,
which contains the opinion provided, and integrates the beta distribution between the
limits defined by the bin’s boundary. For example, a8’s opinion falls under the 0.2 <

E[θatr,ate |φr] ≤ 0.4 bin. In this bin, agent a1 has recorded that n = 15 and m = 3.
These n and m values are used to obtain a beta distribution, d(θatr,ate |φo), which is then
integrated between 0.2 and 0.4 to give a probability of accuracy ρa1,a8 = 0.0039 for a6’s
opinion. Then, by using Equations 4.35 and 4.36, agent a1 can calculate the adjusted
mean and standard deviation of the opinion, which in turn gives the adjusted α and β

parameters for that opinion. The results from these calculations are shown in Table 4.4.

Summing the adjusted values for α and β from Table 4.4, a1 can obtain a more reliable
value for the trustworthiness of a6. Using Equation 4.5, a1 calculates an estimate ϑa1,a6 =
0.62 for a6. This means that from the possible HTML content providers, a1 now sees a6

as the most trustworthy and selects it to be a partner in the VO. Unlike a1’s decision
in Section 4.3.2.2 (when a7 was chosen as the VO partner), here we have shown how a
reputation provider cannot influence the decision made by a1 by providing inaccurate
information.
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4.4 Empirical Study

In this section, we demonstrate the advantages that TRAVOS offers to the state of the
art, through empirical evaluation. We divide our discussion into three parts. First,
Section 4.4.1 describes the simulation environment and overall methodology used to
perform our experiments. Second, Section 4.4.2 compares the reputation component
of TRAVOS to the Beta Reputation System (BRS) (see Sections 2.2.2.2 & 2.2.3.1 for
more detail). We have chosen this model as a benchmark, because it shares the same
basic representation of trust as TRAVOS. Any difference in performance can therefore be
attributed to the novel properties of TRAVOS, rather than those it shares with the earlier
system. Finally, Section 4.4.3 investigates the component performance of TRAVOS; that
is, how TRAVOS performs when a truster uses both its direct experience of a trustee
and reputation, and when it uses either source of evidence in isolation. This allows us
to show how TRAVOS behaves when different types of information are available, and
that using both types of information is in general better than using one or the other
independently.

4.4.1 Experiment Methodology

Evaluation of TRAVOS took place using a simulated marketplace environment, consist-
ing of three distinct sets of agents: provider agents P ⊂ A, consumer agents C ⊂ A, and
reputation source agents S ⊂ A. For our purposes, the role of any c ∈ C is to evaluate
ϑc,p for all p ∈ P. The behaviour of each provider and reputation source agent is set
before each experiment. Specifically, the behaviour of a provider p1 ∈ P is determined
by the parameter θc,p1 as described in Section 3.1. Here, reputation sources are divided
into three types that define their behaviour: accurate sources report the number of
successful and unsuccessful interactions they have had with a given consumer without
modification; noisy sources add gaussian noise to the beta distribution determined from
their interaction history, rounding the resulting expected value if necessary to ensure
that it remains in the interval [0, 1]; and lying sources attempt to maximally mislead
the consumer by setting the expected value E[θc,p|φr] to 1− E[θc,p|φr].

Against this background, all experiments consisted of a series of episodes in which a
consumer was asked to assess its trust in all providers P. Based on these assessments,
we calculate the consumer’s mean estimation error for the episode (Equation 4.44). This
gives us a measure of the consumer’s performance on assessing the provider population
as a whole. The value of this metric will vary depending on the distribution of values
of θc,p over the provider population. For simplicity, all the results described in the next
sections have been acquired for a population of 101 providers with values of θc,p chosen
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experiment no. lying no. noisy no. accurate
1 0 0 20
2 0 10 10
3 0 20 0
4 10 0 10
5 20 0 0

Table 4.6: Reputation Source Populations

uniformly between 0 and 1 at intervals of 0.01.

avg estimate err =
1
N

n∑
i=1

abs(ϑc,pi − θc,pi) (4.44)

In each episode, the consumer may draw upon both the opinions of reputation sources
in S and its own interaction history with both the providers and reputation sources.
However, to ensure that the results of each episode are independent, the interaction
history between all agents is cleared before every episode, and re-populated according
to set parameters. All the results that we will discuss have been tested for statistical
significance using Analysis of Variance techniques and Scheffé tests.

4.4.2 TRAVOS Against the Beta Reputation System

Like TRAVOS, BRS uses the beta family of probability functions to calculate the pos-
terior probability of an agent ate’s behaviour holding a certain value, given past inter-
actions with ate. However, the models differ significantly in their approach to handling
inaccurate reputation. TRAVOS assesses each reputation source individually, based on
the perceived accuracy of past opinions. In contrast, BRS assumes that the majority of
reputation sources provide an accurate opinion, and it ignores any opinions that deviate
significantly from the average. Since BRS does not differentiate between reputation and
direct observations, we have focused our evaluation on scenarios were consumers have
no personal experience, and must therefore rely on reputation only.

To show variation in performance depending on reputation source behaviour, we ran
experiments with populations containing accurate and lying reputation sources, and
populations containing accurate and noisy sources. In each case, we kept the total
number of sources equal to 20, but ran separate experiments in which the percentage of
accurate sources was set to 0%, 50% and 100% (see Table 4.6). Now figure 4.5 shows
the mean estimation error of TRAVOS and BRS with these different reputation source
populations averaged over 50 independent episodes in each experiment. To provide a
benchmark, the figure also shows the mean estimation error of a consumer c0.5, which
keeps ϑc0.5,p = 0.5 for all p ∈ P. Results are plotted against the number of previous
interactions that have occurred between the consumer and each reputation source.
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TRAVOS vs BRS with Noisy Sources
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TRAVOS vs BRS with Lying Sources
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TRAVOS (100% acc. sources)
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BRS (0% acc. sources)Constant 0.5 estimate

Figure 4.5: TRAVOS Reputation System vs BRS
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As can be seen, in populations containing lying agents, the mean estimation error of
TRAVOS is consistently equal to or less than that of BRS. Moreover, estimation errors
decrease significantly for TRAVOS as the number of consumer to reputation source
interactions increases. In contrast, BRS’s performance remains constant, since it does
not learn from past experience. Both models perform consistently better than c0.5 in
populations containing 50% or 0% liars. However, in populations containing only lying
sources, both models were sufficiently misled to perform worse than c0.5, but TRAVOS
suffered less from this effect than BRS. Specifically, when the number of past consumer
to reputation interactions is low, TRAVOS benefits from its initially conservative belief
in reputation source opinions. The benefit is enhanced further as the consumer becomes
more skeptical with experience.

Similar results can be seen in populations containing noisy sources. In general, per-
formance is better because noisy source opinions are not as misleading as lying source
opinions on average. TRAVOS still out performs BRS in most cases, except when the
population contains only noisy sources. In this case, BRS has a small but statistically
significant advantage when the number of consumer to reputation source interactions
are less than 10.

4.4.3 TRAVOS Component Performance

To evaluate the overall performance of TRAVOS, we compared three versions of the
system that used the following information respectively: direct interactions between
the consumer and providers; direct provider experience and reputation; and reputation
information only. In these experiments, we varied the number of interactions between
the consumers and providers, and kept the number of consumer to reputation source
interactions constant at 10. We used the same reputation source populations as described
in Section 4.4.2. The mean estimation errors for a subset of these experiments are shown
in Figure 4.6. Using only direct consumer to provider experience, the mean estimation
error decreases as the number of consumer to provider interactions increases. As would
be expected, using both information sources when the number of consumer to provider
interactions is low, results in similar performance to using reputation information only.
However, in some cases, the combined model may provide marginally worse performance
than using reputation only.5 This can be attributed to the fact that TRAVOS will always
put more faith in direct experience than reputation.

With a population of 50% lying reputation sources, the combined model is misled enough
to temporarily increase its error rate above that of the direct only model. This is a
symptom of the relatively small number of consumer to reputation source interactions

5This effect was not considered significant under a Scheffé test, but was considered significant by
Least Significant Difference Testing. The latter technique is, in general, less conservative at concluding
that a difference between groups does exist.
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TRAVOS Components with Noisy Sources
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TRAVOS Components with Lying Sources

no. truster/trustee interactions

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0 2 4 6 8 10 12 14 16 18 20

Constant 0.5 estimate Combined (50% acc. sources)
Direct Only Rep Only (100% acc. sources)
Rep Only (50% acc. sources) Combined (100% acc. sources)

Figure 4.6: TRAVOS Component Performance
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(10), which is insufficient for the consumer to completely discount all the reputation
information as unreliable. The effect disappears when the number of such interactions
is increased to 20. However, these results are not illustrated graphically here.





Chapter 5

Future Work and Conclusions

5.1 Current Research Contribution

In this section we consider the main contributions to the state or the art, which are
presented in this document. With respect to the requirements set out in Section 1.5, our
trust model TRAVOS (Chapter 4), together with the framework (Chapter 3), provide
at least a partial solution to many of the outlined conditions. However, many existing
trust models also satisfy a significant number of these requirements, at least to some
extent. Therefore, we concentrate our discussion here to those requirements to which
we provide a significant advancement over competing models. In particular, we look at
trust representation (Requirement 1.5), and reputation accuracy assessment (Require-
ment 3.1). To contrast our work against existing systems, we also consider three other
models which, in our view, are representative of the status of the art: REGRET (Sec-
tion 2.2.2.1), the Beta Reputation System (BRS) (Sections 2.2.2.2 and 2.2.3.1) and Yu
and Singh’s model (Section 2.2.2.3 and 2.2.3.1). We divide the section into two sub-
sections: (1) Section 5.1.1 considers trust representation issues and (2) Section 5.1.2
considers reputation issues.

5.1.1 Trust Representation

To show that our work satisfies the representation requirement (Requirement 1.5), we
show that we provide a solution to each of its three subrequirements. First, in Chapter 3,
we show how the uncertainty surrounding a trustee’s behaviour can be represented using
two separate probability distributions: (1) the probability distribution of a trustee’s
behaviour during an interaction with the truster, denoted as b(x ∈ OC |θatr,ate); and
(2) the distribution of the parameter θatr,ate , which models the uncertainty surrounding
the true distribution of the trustee’s behaviour. In effect, the behaviour distribution
b(x ∈ OC |θatr,ate) models the intrinsic uncertainty surrounding the trustee’s behaviour,
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while the parameter distribution represents the evidential uncertainty; thus we satisfy
Requirement 1.5.1.

Second, we satisfy the grounding requirement (Requirement 1.5.2) by applying Bayesian
Analysis. Specifically, in Section 3 we show how standard statistical theory can be used
to estimate of a trustee’s behaviour distribution, given a set of observations from past
interactions with the trustee. In Section 4.1, we show how this general approach can be
applied to cases where the trustee’s behaviour is treated as a binary event: either the
trustee cooperates, fulfilling its obligations to the truster, or it defects.

Third, our model does not include any parameters for which there is no obvious way to
choose a reasonable value (Requirement 1.5.3). The choice of statistical models used to
represent trustee behaviour (an example of which is found in Section 4.1), the defini-
tion of the reputation adjustment function (Section 3), and the choice of loss function
(Section 3.1), can be made intuitively by considering the properties of the target do-
main. Furthermore, the size of interval used to split up the parameter distribution
(Section 3.3.1) is a trade off between margin of error deemed acceptable for a reputa-
tion source’s opinion, and how fast to model learns to disregard in accurate reputation
sources.

The Beta Reputation System satisfies Requirement 1.5, for similar reasons, since it shares
the same basic representation of trust as TRAVOS. However, through our framework,
we provide a clear path to developing probabilistic models of trust in non-binary cases;
the Beta Reputation System on the other hand, is limited to binary cases. In com-
parison to this, Yu and Singh’s model does not satisfy Requirement 1.5 for the reasons
stated in Section 2.2.2.3. Similarly, the REGRET system suffers from its requirement
for a number of parameter settings, with no obvious way to choose reasonable values
(see Section 2.2.2.1). For instance, the way in which REGRET measures evidential un-
certainty (Equation 2.1) requires a threshold to be specified for the number of trustee
observations, above which it is assumed their is no evidential uncertainty. In is unclear
how this threshold should be determined.

This problem is compounded when complete uncertainty is calculated, and when repu-
tation is taken into account. Complete uncertainty is calculated as a weighted average of
intrinsic uncertainty and evidential uncertainty. Similarly, when reputation is accounted
for, complete uncertainty is calculated as a weighted average of the complete uncertainty
measurements reported by each reputation source and the truster itself. Again, it is un-
clear how these weights should be determined. Moreover, the validity is this approach
is open to question. Intuitively, evidential uncertainty should decrease monotonically as
evidence increases, a condition which is not upheld by the weighted mean approach. In
contrast, TRAVOS has clear justifications for its uncertainty representations, grounded
in statistical theory.
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One additional advantage also results from adopting a probabilistic approach is that we
provide a clear path toward guiding decision making in two ways. First, probability
theory underpins decision theory (Russell and Norvig, 2003b), in which it is stated that
a rationale agent should always make a decision such that it maximises its expected
utility. Expected utility calculations rely upon the existence of a probability distribu-
tion over the possible states of the world that effect the actual utility a decision maker
receives. In the context of trust, a trustee’s behaviour constitutes at least part of the
state information relevant to decision making. In this respect, both the behaviour dis-
tribution, and the parameter distribution can potentially take part in expected utility
calculations (an example of how the behaviour distribution can be used in this way is
given in Section 4.3.1). Finally, the parameter distribution also summarises how much
the truster’s current knowledge decreases the uncertainty in the trustee’s behaviour. In
this way, it can be used to decide when extra evidence is required to make a reasonable
decision; a simple method for doing this is presented in Section 4.2.

5.1.2 Reputation

Then main problem with using reputation to assess trust is that reputation sources may
be unreliable. In Sections 3.3 and 4.1.3 we present a solution to Requirement 3.1 which
has the following key properties.

Statistical grounding — When all a truster’s reputation sources are considered accu-
rate, a truster’s assessment is the same as if it directly observed all the interactions
reported by its reputation sources. This gives a sound justification for this particu-
lar combination scheme, which is shared by the Beta Reputation System (although
as stated in the preceding section, we also offer a path toward non-binary action
spaces). Additionally, when some reputation sources are not completely accurate,
the result is as if all such sources made a smaller number of more conservative
observations. Thus, we reduce the effect of unreliable sources on the final result.

Accuracy assessed on individual basis — Many existing mechanisms for handling
inaccurate reputation, including the BRS, assume that the majority of reputation
sources are accurate. One important case where this assumption does not hold is
when no agents are familiar with a trustee. In this case, the only opinions that
will be reported, will be from agents with an incentive to mislead the truster. Yu
and Singh’s solution is similar to ours, in that it compares past opinions given by
a particular source to subsequent observations of trustee behaviour. In general,
this approach does not rely on the majority accurate assumption, and so provides
a significant advance over methods which do. However, as stated in the previous
section, Yu and Singh’s model does not additionally satisfy Requirement 1.5.
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5.2 Future Work

In our future work, we wish to build upon the assessment capability of our current
system in the following four ways. First, we plan to develop methods for assessing a
trustee based on the behaviour of similar agents, especially when there is little direct
information about the trustee available. Second, we plan to enhance the mechanism by
which a truster decides if it needs to seek reputation about a trustee (see Section 3.1).
Third, we plan to extend TRAVOS so that it can handle non-binary representations of
a trustee’s behaviour. We discuss each of these in more detail in the subsections below.

5.2.1 Group Behaviour Priors

In Section 3.1, we mention that a truster’s assessment of trustee is, not only based on
observations of the trustee’s behaviour, but also on the preconceptions a truster has
about a trustee. In line with Bayesian Analysis, these preconceptions are summarised
by a prior distribution over the trustee’s possible behaviour. However, we did not specify
how a truster should come about such a prior. One way to do this, would be to consider
observations of other agents that are somehow similar to the trustee under consideration.
Obviously, such observations will not be as informative as observations of the trustee
itself, so we can not simply treat them as if they were. Instead, we plan to find a suitable
method for forming the prior, which accounts for the amount of evidence we have about
agents similar to a trustee, and the variance in the behaviour that occurs between such
agents. Clearly, both these factors should influence the effect of such evidence on our
assessment of a trustee: the amount of evidence we have about a group tells us how much
we actually know about the group’s behaviour, while the variance tells us how similar we
should expect the behaviour of the trustee to be to the average behaviour of the group.
Although other models such as REGRET already provide mechanisms for considering
group behaviour along with individual behaviour, these mechanisms generally require the
specification of large numbers of arbitrary parameters thus breaking Requirement 1.5.3.
We believe we can over come this downfall by stronger use of statistical techniques, just
as we have done in our current work.

5.2.2 Assessment of Truster Knowledge

In Section 4.2.2, we describe how a truster can decide if it has sufficient knowledge to
judge a trustee, by calculating the probability that the true behaviour of the trustee lies
within some bound of the truster’s estimate. However, we do not specify how high this
bound should be, or how high the probability value should be to indicate a sufficient
amount of information. To rectify this limitation, we need to quantify the accuracy
required by the truster, during the decision making process of which trustee assessment
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is part. To do this, we assume that when an agent must make a decision, it is presented
with a finite number of alternative actions, of which it must choose one. We further
assume that an agent makes this choice using decision theory, by choosing the option
which maximises its expected utility. For example, when a truster must choose between
several competing service providers it performs the following three steps: (1) using
TRAVOS, estimate the probability distribution for each service provider’s behaviour;
(2) based on this estimate, calculate the expected utility for each possible choice of
service provider; (3) choose the service provider which maximises expected utility.

Unfortunately, since we can only estimate the true behaviour distribution of a service
provider, we can only estimate expected utility. Thus, there remains a risk that a
truster will not choose the best service provider. Our intention is to quantify this risk
by considering the evidence we have about all competing service provider’s as a whole.
In particular, we wish to identify, which, if any, of the competing service providers the
truster does not know enough about to make a sound decision. We can then use this as
a basis for deciding when to seek reputation, and which agents to seek reputation for.

5.2.3 A Trust Model for Continuous Action Spaces

A binary representation of a trustee’s behaviour is appropriate when a truster only cares
about whether or not a trustee fulfils its obligations. However, if there is some notion of
how well a trustee fulfils its obligations that affects a trusters utility, then non-binary
cases should be considered. Therefore, it is our intention to extend the TRAVOS model
to include a non-binary instantiation of our framework.

5.2.4 Implications of Reputation in Group Learning

An important implication of trust assessment is that a truster will generally choose to
interact with agents which, according to the knowledge of the truster, provide better
than average performance. Although this seems reasonable, it raises the possibility that
a small number of service providers could quickly gain a monopoly position for certain
types of service: new agents entering a system may never get a foothold in the market,
because no clients will be willing to take a chance on unknown entities (Requirement 1.6).
In human society, this problem is solved by exploration. Although people may generally
stick with suppliers that they know, they may occasionally take a risk with a new sup-
plier to judge its performance. In machine learning, such exploration usually falls under
the domain of Reinforcement Learning (Sutton and Barto, 1998), which traditionally
considers the problem of individual learners exploring their environment. Recently how-
ever, research in Reinforcement Learning has progressed to consider groups of learning
entities. Generally, this type of work considers one of two types of problem: (1) agents
are self-interested entities, which attempt to learn about each other’s behaviour in a



74 Chapter 5 Future Work and Conclusions

competitive environment (Tran and Cohen, 2004); (2) agents are co-operative members
of a team, which attempt to increase group knowledge efficiently, by coordinating their
actions (Dutta et al., 2004). In the former case, agents do not generally share the knowl-
edge that they learn. In the latter, agents do share knowledge, however they assume
that all such knowledge is expressed truthfully.

In our view, agents which share reputation information, effectively bridge the gap be-
tween these two types of problem. To some extent, trusters are self-interested agents
which attempt to learn about the behaviour of other agents, to choose the best interac-
tion partners. To achieve this however, trusters may share information they have about
their piers in the form of reputation. This is therefore a cooperative learning prob-
lem, with the complication that reputation cannot be assumed to be accurate. With
this in mind, we plan to investigate the use of our current work in combination with
reinforcement techniques.

5.3 Summary

In this document, we review the current state of the art in automated trust assessment
techniques, and identify several key requirements that such techniques should satisfy. In
Section 2.3 we highlight three of these that warrant further investigation: (1) assessing
reputation source accuracy, which is required when a truster judges a trustee based on
third party opinions; (2) combining different types of evidence, which is required when
there is not enough of any one type of evidence for a truster to assess a trustee; (3)
exploration of trustee behaviour, which involves taking a calculated risk and interacting
with certain agents, to better assess their true behaviour.

Our current research has focused on the first of these problems. Specifically, we have
developed a probabilistic framework for assessing trust based on direct observations of
a trustee’s behaviour and indirect observations, made by a third party (reputation). A
significant contribution of this framework is that it provides a well founded mechanism
for estimating reputation source accuracy. We have instantiated this framework for cases
in which a trustee’s behaviour is representation as a binary event (for example, coop-
erate or defect) and, through empirical evaluation, we show that this is robust against
inaccurate reputation sources. In future work, we intend to enhance the assessment
capability of our current system, in particular addressing the final two issues identified
above.
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Underpinning much of the work in this document are some standard techniques from
statistical estimation, and bayesian analysis in particular. Thus, knowledge of these
techniques is beneficial to understanding our work. For this reason, we now give a brief
overview of some of the basic statistical techniques we use in the previous chapters. A
more detailed treatment of this topic can be found in Lee (2004); DeGroot and Schervish
(2002b).

A common problem in statistics is to estimate the (population) probability distribution of
a random variable; that is, for some random variable X, we wish to know the probability
that X will take on a given value from its domain of possible values. Although, generally
speaking, we do not know the true distribution, we may be able to observe a sample
of values drawn from that distribution. Usually, we assume that each sample value has
been independently drawn from the same distribution, which is commonly referred to
as the i.i.d. assumption (independently drawn from the same identical distribution).
This is useful because, providing it holds, the distribution of the sample will converge
on the population distribution as the size of the sample increases, which simplifies the
estimation process.

Given a sample drawn from a distribution under an i.i.d. assumption, there are many
competing ways for estimating the population distribution; for example maximum like-
lihood estimation (DeGroot and Schervish, 2002c) and bayes estimation (DeGroot and
Schervish, 2002d). What these techniques have in common is that they start with the
assumption that the population distribution can be completely characterised by a pa-
rameter vector θ and that estimating the population distribution amounts to finding the
best value for θ. The main difference between them can be seen by considering Bayes
rule (Equation A.1).

P (θ|X) =
P (X|θ)P (θ)

P (X)
(A.1)

An ideal way to estimate θ would be to choose a value for θ that maximises P (θ|X);
that is, the posterior probability of the parameter vector, given the sample data. Bayes
rule tells us that this is proportional to P (X|θ)P (θ), because P (X) must be chosen such
that the distribution integrates to 1. To do this directly requires that we know the prior
distribution P (θ), which summarises all the information we have about θ, excluding the
information provided by the sample data. In maximum likelihood estimation, we choose
to ignore any prior information and instead choose an estimate that maximises the
likelihood function, P (X|θ). This avoids the sometimes difficult issue of specifying P (θ)
and works particularly well when the sample size is large, which thus reveals significant
information about the population distribution.

Bayes estimation on the other hand, chooses to tackle the problem head on. Here, we
do specify the prior distribution for the parameter θ, allowing us to calculate the full
posterior distribution P (θ|X). Based on this parameter distribution, we then choose
an estimate for θ that minimises some measure of the cost, or loss, to the statistician.
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More specifically, we specify a loss function L(ϑ, θ), and choose an estimate ϑ of θ that
minimise the posterior mean of the loss function. An estimate chosen in this way is
known as a bayes estimate. A typical choice loss function is the mean squared error
(Equation A.2), which we choose to minimise the distance between the estimated and
‘true’ value of θ.

mean squared error = L(θ, ϑ) = (ϑ− θ)2 (A.2)

Although bayes estimation requires us to specify the prior parameter distribution, we
use it to estimate the behaviour of a trustee for two reasons. First, in large multi-agent
systems, the probability that any two agents have interacted a significant number of
times may be quite low. This means that the number of observations, and thus the
sample size may also be low. However, observations of a trustee’s behaviour are not
the only potential source evidence about a trustee; for example, we may look at the
behaviour of other agents, similar to a trustee. We therefore believe that it is possible
to specify prior distributions for the parameter, which will allow reliable predictions of
trustee behaviour even if no previous observations of a trustee’s behaviour are available
(for an example, see Section 5.2.1). Second, the parameter distribution provides a useful
summary of the amount of information we have about a trustee’s behaviour, which we
use in Sections 3.3 and 4.2.
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In this appendix, we provide two theorems, which show how the α and β parameters
of a beta distribution can be calculated, if we know the variance and mean of the
distribution. Specifically, Theorem B.1 shows how α can be derived in terms of the
distribution mean (denoted µ) and the variance (denoted σ2), and then how, given this,
β can be determined from α and µ. Following this, Theorem B.2, gives an alternative
expression for β, in terms of σ2 and µ only.

Theorem B.1. Given Equations B.1 & B.2, the parameters of the beta distribution, α

& β can be derived from the distribution variance (denoted σ2) and the mean (denoted
µ).

µ =
α

α + β
(B.1)

σ2 =
α · β

(α + β)2(α + β + 1)
(B.2)

Proof: First of all, we express β in terms of µ and α:

µ =
α

α + β
(from definition) (B.3)

(α + β) · µ = α (B.4)

α + β = α/µ (B.5)

β = α/µ− α (B.6)

Now substitute for β in equation B.2 and simplify:

σ2 =
α(α/µ− α)

(α + (α/µ− α))2(α + (α/µ− α) + 1)
(B.7)

σ2 =
α2/µ− α2

(α/µ)2(α/µ + 1)
(B.8)

σ2 =
α2/µ− α2

(α/µ)3 + (α/µ)2
(B.9)

σ2 =
α2/µ− α2

α3/µ3 + α2/µ2
(B.10)

σ2 =
1/µ− 1

α/µ3 + 1/µ2
(B.11)

σ2 =
µ2 − µ3

α + µ
(B.12)

Now arrange to find α:
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σ2(α + µ) = µ2 − µ3 (B.13)

σ2 · α + σ2 · µ = µ2 − µ3 (B.14)

σ2 · α = µ2 − µ3 − σ2 · µ (B.15)

α = (µ2 − µ3 − σ2 · µ)/σ2 (B.16)

α =
µ2 − µ3

σ2
− µ (B.17)

From Equations B.6 and B.17, α and β can be expressed as follows, thus proving the
theorem.

α =
µ2 − µ3

σ2
− µ, β =

α

µ
− α

Theorem B.2. The β parameter of the beta distribution can be expressed only in terms
of µ and σ as shown in Equation B.18. We prove this in two ways: first, by considering
the properties of the beta distribution; and second, by substitution.

β =
(1− µ)2 − (1− µ)3

σ
− (1− µ) (B.18)

Proof through the properties of the Beta Distribution: Imagine that we have
two beta distributions: distribution d with parameters α and β, and distribution d̂ with
parameters α̂ and β̂. Similarly, we denote the mean of d̂ as µ̂ and the variance of d̂ as
σ̂.

Now assume that α̂ = β and β̂ = α. From this we know that σ̂ = σ since:

α · β
(α + β)2(α + β + 1)

=
β · α

(β + α)2(β + α + 1)
=

α̂ · β̂
(α̂ + β̂)2(α̂ + β̂ + 1)

(B.19)

and µ̂ = (1− µ) since:

µ̂ + µ =
α

α + β
+

α̂

α̂ + β̂
(B.20)

µ̂ + µ =
α

α + β
+

β

β + α
(B.21)

µ̂ + µ = 1 (B.22)

µ̂ = 1− µ (B.23)
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We can now prove Equation B.18 as follows:

β = α̂ =
µ̂2 − µ̂3

σ̂
− µ̂, (from Equation B.17) (B.24)

β =
(1− µ)2 − (1− µ)3

σ
− (1− µ), (by substitution) (B.25)

Proof by Substitution: We now show that Equation B.18 is true by substituting
Equation B.17 into Equation B.6 as follows:

β =
α

µ
− α (B.26)

β =
[
µ2 − µ3

σ
− µ

]
/µ−

[
µ2 − µ3

σ
− µ

]
(B.27)

β =
[
µ− µ2

σ
− 1

]
−

[
µ2 − µ3

σ
− µ

]
(B.28)

β =
(µ− µ2)− (µ2 − µ3)

σ
− (1− µ) (B.29)

β =
µ− 2µ2 + µ3

σ
− (1− µ) (B.30)

To show that Equations B.18 and B.30 are equivalent, we expand (1− µ)2 − (1− µ)3.

(1− µ)2 = 1− 2µ + µ2 (B.31)

(1− µ)3 = (1− 2µ + µ2)(1− µ) (B.32)

(1− µ)3 = (1− 2µ + µ2)− (µ− 2µ2 + µ3) (B.33)

(1− µ)3 = 1− 2µ + µ2 − µ + 2µ2 − µ3 (B.34)

(1− µ)3 = 1− 3µ + 3µ2 − µ3 (B.35)

(1− µ)2 − (1− µ)3 = (1− 2µ + µ2)− (1− 3µ + 3µ2 − µ3)(B.36)

(1− µ)2 − (1− µ)3 = 1− 2µ + µ2 − 1 + 3µ− 3µ2 + µ3 (B.37)

(1− µ)2 − (1− µ)3 = µ− 2µ2 + µ3 (B.38)

β =
(1− µ)2 − (1− µ)3

σ
− (1− µ) =

µ− 2µ2 + µ3

σ
− (1− µ) (B.39)

Hence Equations B.18 and B.30 are equivalent and therefore Equation B.18 is true.
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