
A Framework for Reference Management in the Semantic
Web

Timothy Lewy
School of Electronics and Computer

Science
University of Southampton, UK

tml203@ecs.soton.ac.uk

Hugh Glaser
School of Electronics and Computer

Science
University of Southampton, UK

hg@ecs.soton.ac.uk

Nigel Shadbolt
School of Electronics and Computer

Science
University of Southampton, UK

nrs@ecs.soton.ac.uk

ABSTRACT
Much of the semantic web relies upon open and unhindered
interoperability between diverse systems. The successful
convergence of multiple ontologies and referencing schemes is
key. This is hampered by a lack of any means for managing and
communicating co-references. We have therefore developed an
ontology and framework for the exploration and resolution of
potential co-references, in the semantic web at large, that allow
the user to a) discover and record uniquely identifying attributes
b) interface candidates with and create pipelines of other systems
for reference management c) record identified duplicates in a
usable and retrievable manner, and d) provide a consistent
reference service for accessing them. This paper describes this
ontology and a framework of web services designed to support
and utilise it.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Online Information Systems -
Web-based services;; D.2.12 [Software]: Software Engineering -
Interoperability

Keywords
Reference management, Co-reference, Web services

1. INTRODUCTION
The emergence of the semantic web [5] is, in essence, a move
from a web of pages designed and published for human
consumption, with no intention other than to be viewed by the
human eye and parsed by the human brain; to a web of data
connected by machine interpretable semantics, that when applied
or used in a suitable context produce content or services useful to
other semantic systems, agents or end users.

Instead of documents linked by hyperlinks the web becomes
entities and resources (people, places, things or concepts) linked
by attributes and associations. The knowledge represented in the
web is gathered and entities identified by a multitude of persons
and processes for many different purposes, from many different
sources. It is not uncommon for inconsistencies to occur within
and between the data gathered by different processes. Frequently
it transpires that some entities are in fact equivalent to one
another. For example “Nigel Shadbolt”, co-author of this paper
could well be equivalent to a “N. Shadbolt”, author of another
paper. Determining this reliably, however, is not an easy task.
Entities, or instances are rarely completely specified in a given
context and even less frequently specified consistently. Simply
performing a naïve comparison of attribute values is, therefore,
unlikely to be a resounding success, especially if the values are
just string literals.

The problem is inherent in the identification system employed by
the semantic web. All entities are assigned a Unique Resource
Name (URN), which is a name for the resource appended to the
domain from which it was created. It is a URI and appears very
similar to the URLs used to locate web pages. This may seem
simple "In Semantic Web we not only provide URIs for
documents as we have done in the past, but to people, concepts
and relationships. ... [B]y giving unique identifiers to the person,
the role "writer" and the concept of “research paper" we make
very clear who the person is, and the corresponding relation
between this person and a particular document.”[9] However, for
any real world (large scale) activity, it proves impossible to find a
truly unique identifier for any given person, paper or role (i.e. one
that would be recognised by any system in any context). Whilst it
is possible to create a unique identifier for an entity in a given
domain, that identifier would have only local significance to the
creator and the creator’s application. Anything attempting to
gather data on that resource, from a foreign application, or with
reference to another knowledge source would have to resolve it
against existing references.

Identifying these equivalent entities is a serious business. Taking
persons and names as an example; “Hall W.” is author of a paper.
“Wendy Hal” is author of another. “Wendy Hall” is head of this
school. All this information has to be reconciled. Names can be
overloaded i.e. there could be two entirely different people called
Wendy Hall, both of whom might have written research papers.
Names are frequently incomplete or inconsistent: “W. Hall”, “N.
Shadbolt”, “N. R. Shadbolt, “Hugh Glaser” or “Glaser, H.”.
Sometimes they are inaccurate e.g. “Nigel Shadblot” (as opposed
to “Nigel Shadbolt”). During 2001, the UK university funding
organisation conducted a Research Assessment Exercise (RAE),
in which some details on all active researchers were collected and
have now been published. The extent of the problem within the
UK research community can thus be seen by analysing these RAE
2001 returns. Within the list of researcher names in the
institutional submissions (which are recorded as initials and
surnames on the HERO website www.hero.ac.uk) 10% of the
names lead to clashes between two or more individuals. If the
names are restricted to a single initial, the proportion of clashes
rises to 17%. Within our own institutional repository, records
show that depositors typically give up to six different ways of
naming any individual author (due to combinations of full names,
initials and names that are incorrectly spelled).

As part of the Advanced Knowledge Technologies project [1] data
on UK computer science research was gathered from a variety of
sources and combined in a single knowledge base. In merging
data from different sources and ontologies, duplicate references
arose. Searching the knowledge base for the string “Nigel
Shadbolt” reveals some 25 separate references that represent the

same person, none of which are linked. It would be very difficult
for any interested person to obtain all the information regarding
Nigel Shadbolt from this knowledge base. The problem is also
exemplified by the EPrint repository software, part of the Open
Archive Initiative [15]. Each repository assigns references to its
authors and papers according to a local naming scheme. This is
sufficient within a single repository, however co-references
(duplicate URNs to a single entity) have to be resolved in order to
perform any interesting tasks, for example, gathering every paper
by a single author from multiple repositories. This is especially
difficult as authors moving from one institution to another can
have very different metadata from one repository to the next. It is
a crippling problem and effectively isolates semantic repository
data to its residing archive.

A few solutions to the URN assignment issue, drawn from other
areas of computer science have been suggested and will be
outlined in section 2.1 however they prove unsuitable for our use.

The issue of co-reference and equality within the semantic web is
crucial. Take, for example, Tim Berners-Lee’s semantic web
agent [5][17]]. It is given the task to look up a patient’s personal
information, find their prescribed treatment and then present, to
the user, an appointment at an appropriate clinic, at a time when
the user is available. There are many different knowledge sources
involved here: The patient record, a register of clinics, the clinic's
appointment system and the person's scheduler. From the outset
the agent will have to do a lot of work to achieve its goal: The
patient records might well use a different ontology for describing
treatments than the clinic registry, or the clinic appointment
system. The three different source ontologies would have to be
merged, or at least mapped before the agent can operate between
them. This might be in the form of a service available to the agent,
or it might be done on the fly [13].

Once mapped, our problem of referential inconsistencies and co-
reference resolution is encountered. The patient record system and
the clinic registry, whilst possibly using the same class for
treatments in their ontologies, may not have used the same URI
for identifying the treatment in question. The agent cannot work
without resolving this problem.

Only very limited solutions to the co-reference problem have been
proposed. A solution is required that works in any situation, with
any semantic application; currently the problem lacks even basic
formalisation. We have therefore developed an ontology to
describe, manage and communicate co-references as they occur,
in any domain. This is outlined in section 3. Having established
this, we will showcase a range of web services designed to
provide the essential functions for resolving and communicating
co-references, using our ontology (section 4.).

2. RELATED WORK AND ISSUES
2.1 Proposed Solutions
The problem of co-reference is not new; it has been encountered
in fields such as natural language processing and AI. The
approach largely taken by the AI community is to enforce that
there must only ever be a 1 to 1 relationship between resources
and identifiers. This is known as the unique name assumption
[14]. If one can make this assumption, the problem does not
appear. However, we cannot import this to our own uses in the
semantic web as it would prove infeasible. A system such as the
Digital Object Identifiers (DOI) (www.doi.org), in effect takes the
unique name assumption, but it suffers from the problem of a

naming authority. It only works to the extent it does, because the
assumption is that the owner of a document assigns the DOI. In
the semantic web world, anyone and everyone refers to
documents, irrespective of whether it has or they know the DOI.
Similarly ontologies and datasets are frequently developed by
many different people around the world, even within one
particular project. The coordination involved in ensuring that all
these developers do not create multiple references for a single
resource is not practical. From a more global standpoint, it would
be virtually impossible to ensure that no resource possessed
multiple identifiers within the entire semantic web. If one cannot
make the assumption, an alternative would be to enforce it; by
introducing naming authorities, similar to those managing Internet
domain names. They would distribute and record identifiers,
enforcing referential integrity. However a naming authority might
have a record of references only to discover that two are actually
equivalent or that one encompasses non equivalent entities. New
references would have to be checked against virtually every
reference in the entire web for equivalence, before authorisation.
New resources are created constantly within the semantic web; an
authority would stunt this contravening the spirit in which the
semantic web was born: that of free, open and unrestricted
growth. Furthermore it would not be possible to distribute the
authority into sub-authorities as there would be no effective way
of delegating references, entities transcend traditional
administrative boundaries. Even if it were possible, inevitably
equivalent references would be found within or between
authorities, creating the need for a resolution system: back to
square one.

One interesting technology for resolving duplicate references
from a set of candidate duplicates, is the use of communities of
practice (CoP)([16]). A community of practice is a group of
people connected by a shared interest in a task, problem, job or
practice [12]. In the context of the semantic web, this can be
viewed, for a given person, as the set of entities that indirectly
share a sufficient amount of information i.e. the entities that have
a number of relations to resources that the given entity is also
related to. By obtaining the community of practice for members of
sets of potential duplicates, or individual entities, we can derive a
measure of similarity from the degree of overlap between CoPs.
When this measure is above a threshold level, the sets of
duplicates or individuals in question most likely represent the
same entity. A tool, ONTOCOPI [3] has been developed for the
calculation of CoPs. It has been tested as a component part of a
system for co-reference resolution [2]. [2] Proposes a system for
eliminating duplicate references that also encompasses ontology
population and mapping from multiple, possibly legacy, sources.
The framework proposed here is more abstract and can be used
for mapping, intra-institution ontology maintenance and inter-
institution communication of co-references. A suitable CoP
system could well use and be integrated with the framework to
provide a higher degree of automation, however alone one would
not represent a particularly robust or complete solution.

2.2 Schemas for Co-reference Resolution
RDF [9] does not natively encompass equivalence relations.
However most ontology languages that are extensions to RDF,
now incorporate, in their schemas, predicates for establishing
equivalence between resources. The Ontology Interchange
Language (OIL) [6] originally incorporated concepts of
equivalence into its schema; this was later incorporated by The
Defence Advanced Research Projects Agency (DARPA)'s
ontology language DAML+OIL [8]. DAML+OIL has equivalence

predicates, which can assert that two references either do or do not
represent the same resource: daml:sameIndividualAs and
daml:differentIndividualFrom. The work represented by these
languages has evolved into and is now incorporated by the Web
Ontology Language (OWL) [11]. The predicate owl:sameAs
asserts that two references are logically equivalent to each other
and represent the same entity. Similarly owl:differentFrom asserts
that two references are different. By using these predicates graphs
of co-references can be established and annotated within a
knowledge base.

3. BUNDLE CO-REFERENCE ONTOLOGY
The first step towards developing an effective solution to the co-
reference issue is to define an ontology that can be effectively
used for gathering and handling co-references, or potential co-
references. We require a schema that enables co-references to be
easily identified, annotated and once recorded to be looked up and
returned.

3.1 OWL
The existing OWL schema allows you to assert that two
references are equivalent in a 1-1 relationship. This is somewhat
insufficient for an effective co-reference system. Firstly the
equivalences imply too strong an association. Whilst we are still
unsure whether two references are the same we will desire a
relation that is less strong. Secondly, for example, although we
might wish to represent the knowledge that two different URIs are
concerned with the same person, we still may wish to be able to
identify related facts against a particular URI, such as associating
different addresses with URIs that have come from different
institutions. Thirdly, the natural way to establish duplicate
references is in sets. OWL only allows 1-1 relationships, forcing
any system to work in graphs. Graphs force the user to choose a
canonical reference at the start. If multiple references are used as
canonical i.e. different references are used as the subject of the
equivalence relation, then traversing the graph and finding all
references to a given resource becomes inefficient. Thus, a higher
cardinality is desirable.

3.2 Bundle Structure
The ontology we have developed uses collections of potential
duplicates. Each collection contains a set of duplicates. By using
sets, the problem above does not occur. Within a collection, which
we are calling a bundle, there may be any number of duplicates
and non duplicates. A bundle represents a resource; the duplicates
of the bundle are all references that refer to that resource, i.e.
saying that an element of a bundle is a duplicate is saying that it
refers to the same, or probably refers to the same resource as
every other duplicate in that bundle. If it is a non duplicate, then
that reference does not refer to the same resource as the duplicates
in the bundle. This does not imply anything about what the non
duplicates do refer to; just that it is not the same resource that the
bundle represents. We found having non duplicates necessary, as
it is often takes as much work to ascertain that two references are
not the same as it does to ascertain that they are the same.
Recording that two references are different entities is frequently
as, if not more, important than recording that they are the same.
One entity in each bundle may be marked as canonical; this
indicates to outsiders the primary reference that they should use.
Finally each bundle may have associated with it any number of
predicates; this is useful as a reference of how the bundle was
constructed. Resources can be conveniently identified as possible

candidates using string searches, bundles are capable of recording
what predicates were used to identify those candidates.

Bundles are resources of type #Bundle1, duplicate references are
associated using the predicate #duplicate and non duplicates with
#notDuplicate. Predicates are associated to the bundle using
#hasPredicate, as in Figure 1.

Bundle
hasduplicate A

hasduplicate B

hasduplicate C

hasduplicate D

notDuplicate E

hasPredicate #fullName

Bundle
hasduplicate A

hasduplicate B

hasduplicate C

hasduplicate D

notDuplicate E

hasPredicate #fullName
Figure 1. Visualization of a bundle. Duplicates are kept in sets

rather than in graphs.

See Figures 3 – 7 for examples of bundles in RDF.

3.3 Utilising Bundles
Conceptually, one explores a knowledge base by some means and
constructs bundles for each resource that appears to have co-
references. Bundles are an effective means of collecting co-
references; duplicates and non duplicates can be added and
removed at will as it is essentially a set. This has the added bonus
some set calculus can be performed upon it (see section 4.). If
two bundles are found to represent the same entity they can
simply be merged. They also form a convenient method of
communicating references between systems (one can simply pass
whole bundles between bundle-literate systems). Once the
construction process is complete the whole bundle may simply be
asserted into the knowledge base. It then forms part of a consistent
reference service (see section 4.4) that can be used to obtain all
the references to a resource that exist in the store, as a bundle,
given any one of the references to it. This, of course, would
therefore include the data on non duplicates and the canonical
reference as well: invaluable information to someone wishing to
interface with the knowledge base.

Bundles are robust, there are alternatives to asserting them
directly: once constructed they can be converted into stronger
OWL statements (see section 4.6). Or they can be used to create a
type of gazetteer2 (see section 4.5). Gazetteers are a concept more
generally associated with geography. The list of place names
against grid references at the back of an atlas is a type of
gazetteer. A co-reference gazetteer is actually very similar: it is a
list of names (strings) against canonical references to resources in
the knowledge base. A string listed in a gazetteer is one that
uniquely identifies a certain resource, such as a social security
number or a very unique name. It can be used as a form of
automatic co-reference resolution; when a new reference is added

1 All partial URIs are part of the AKT ontology and use the name
space http://www.aktors.org/ontology/coref#

2 Gazetteer, can be “A geographical index or dictionary” (Oxford
English Dictionary, n. 3.).

to a knowledge base strings related to it are checked against
entries in the gazetteer. If an entry is found, the new reference
refers to a resource that is already present; a bundle can be
constructed, or appended to include the new reference.

Figure 2. Visualisation of Gazetteer Structure.

Each gazetteer is represented by a model of type #Gazetteer.
Within this model are triples of each canonical reference–string
pair in the format “Canon, hasString, String”. Gazetteer's are
predicate dependant, each string only identifies a co-reference if
the string is related using the specified predicate. This is necessary
because it ensures that, for example, a social security number
associated with a person would not falsely identify someone who
has the same number, but as their telephone number. There is,
therefore, a separate gazetteer for each predicate that can be used
to uniquely identify any resources.

4. SERVICE FRAMEWORK
We put our co-reference ontology to use by developing a package
of elementary web services designed for manipulating,
constructing and operating with bundles, and available at
triplestore.aktors.org/~tml203. They provide the essential building
blocks for any resolution system. Some are standalone services,
whilst some are designed to operate on top of a knowledge base.
We used the AKT [1] triplestore, which uses a 3store [7] server
and contains a large amount of suitable test data about the AKT
IRC. Services which take RDF as input can either be sent RDF
directly by HTTP POST or GET or can be pointed to a URL of
some RDF. This feature allows the output of one service to be
piped to the input of another, by stringing GET requests together.
The webservices and ontology together represent the complete
framework for resolution and communication.

4.1 Search
The first service, search, is quite straightforward: It takes a string
and looks for all resources within the knowledge base that have
some relation to that string. It then constructs a separate bundle, in
RDF, for each result, containing the resource as a duplicate and
the predicate that related the resource to the string. Blank nodes
are ignored as they cannot be referenced, and so assertions cannot
be made regarding them. The theory behind this service is that one
enters a string that might lead to possible co-references and the
service constructs a bundle for each of the results. The user or an
automated system can then start merging those bundles that they
believe to represent the same resource.

In our system, searching for “Shadbolt” creates several bundles
based on references to various people with the name Shadbolt:

Bundle 1
hasduplicate rae#Id-227401

hasPredicate #fullName

Bundle 2
hasduplicate ecs#person-02686

hasPredicate #fullName
Figure 3. Excerpt from bundles returned by running the

search service on the string “Shadbolt”

4.2 Group
As was previously mentioned in section 3.3, using bundles allows
some set calculus to be performed. The group service performs a
union on all the bundles supplied to it, effectively merging all the
duplicates, non duplicates and predicates into one bundle. This is
useful if all the bundles represent the same resource, it also
represents an important building block for larger systems,
allowing bundles to be merged automatically. The manual
interface, detailed in section 4.8 uses this service to perform
bundle merging.

Bundle 1
hasduplicate rae#Id-227401

hasduplicate ecs#person-02686

hasPredicate #fullName
Figure 4. Output of the group service, when given the bundles

in Figure as input.

A variant of this service that has been developed is a predicate
dependant version. This service, grouppred, only merges those
bundles which have a predicate in common. It does this
recursively, so if we consider bundles as sets of predicates, with
some undefined number of duplicates:

A = {p1, d1}, B = {p2, d2}, C = {p1, p3, d3}, D = {p2, p3, d4}, E
= {p4, d5}

where p1, p2, p3, p4 ∈ Predicates and d1, d2, d3, d4, d5 ⊆
P(duplicates)

The service will perform A1 = A � C, B1 = B � D, A2 = A1 � B1
which will leave:

A2 = {p1, p2, p3, d1, d2, d3, d4}

E = {p4, d5}

E remains unmerged as it shared no predicates with any of the
other bundles.

It is thus possible to avoid the problem referred to in 3.3 above,
where a social security number might be confused with a
telephone number, or the university John Hopkins might be
confused with an individual of that name.

4.3 Canonical Reference Chooser
In some cases it may be necessary to select canonical references
by hand or by use of some form of complex heuristics. However,
in many situations the desired canonical reference will either be of

Gazetteer

hasPredicate

 String Canon
 String Canon
 String Canon
 String Canon

no importance, so long as it is consistent or will always be from a
particular ontology. To this end we have produced two services
for choosing a canon: canonlex selects a canon for each bundle
using a reverse lexicographical ordering of the URIs (the reverse
ordering provided more useful results in our tests than forward
ordering). The other, canonhier, uses a hierarchy of preferred
ontologies that is built into the code. It looks for duplicates from
its list of preferred ontologies, if one or more is found, the one
from the highest point in the hierarchy is chosen. If none are
found it uses the lexicographical chooser. The output from each
service is shown below, given the first portion RDF as input.

Bundle 1
hasduplicate http://www.aktors.org/signage#person-D60

hasduplicate http://nlp.shef.ac.uk/#AUTHOR_N_Shadbolt

hasduplicate http://www.ecs.soton.ac.uk/industry#staff03

hasPredicate #fullName
Figure 5. Input to Canonical Choosing Services Examples

Bundle 1
hasduplicate http://www.aktors.org/signage#person-D60

hasduplicate http://nlp.shef.ac.uk/#AUTHOR_N_Shadbolt

hasduplicate http://www.ecs.soton.ac.uk/industry#staff03

hasPredicate #fullName

http://www.aktors.org/signage#person-D60

isCanon Bundle1
Figure 6. Bundle out put from hierarchical canonical entry

chooser, with the AKTor's ontology at the top of the
hierarchy.

Bundle 1
hasduplicate http://www.aktors.org/signage#person-D60

hasduplicate http://nlp.shef.ac.uk/#AUTHOR_N_Shadbolt

hasduplicate http://www.ecs.soton.ac.uk/industry#staff03

hasPredicate #fullName

http://www.ecs.soton.ac.uk/industry#staff03

isCanon Bundle1
Figure 7. Bundle output from lexicographical canonical entry

chooser.

4.4 Consistent Reference Service
Once the bundles have been constructed and asserted into the
knowledge base there is the necessity for a service to get them out
again. A service we provide is the consistent reference service
(CRS). A CRS is a service that can be used by anyone to ensure
that they are using the correct reference when interfacing with the
knowledge base. With the bundle system, this is quite trivial: The
service takes a reference to a resource, looks to see if that
reference is associated with any bundles and if so, returns all
statements regarding that bundle i.e. the bundle, all its contents
and the canonical reference. It is a powerful means of
communicating co-references; having obtained the bundle, the
user or system has all the information they need to know about
referencing that resource. They can then manipulate the bundle,

add to it, pass it around, assert it into their own knowledge base,
etc. However, more normally a system would simply use the CRS
to find out what was the approved canonical reference.
Furthermore, a CRS can provide a complete solution to co-
references within a given domain. If a single CRS were shared by
all the knowledge bases within a single domain, for example all
EPrint servers or just UK institutional repositories; then it
provides a medium for sharing, tracking and communicating co-
references for the whole domain. A user would simply have to
query the CRS with their reference to the entity they are interested
in, then query any other store using the CRS, with the canonical
reference and they could find any data regarding that entity in the
domain.

If the bundle in Figure 8 were asserted into the knowledge base, it
might be retrieved by accessing the CRS with the input
“http://nlp.shef.ac.uk/#ARM_AUTHOR_Nigel__Shadbolt”.

We envisage systems where cooperating sites use appropriate
CRSs to register their own IDs, and then can choose to use the
known canonical references to communiate with other sites. Of
course, the CRS will change the bundles (at a rate which will
depend on the application domain), and so the user of the CRS
will need to periodically confirm that it is using the up to date
canonical reference to get the best usage.

4.5 Gazetteer
Bundles can be used as a basis on which to build gazetteer entries,
as was discussed in section 3.3. It can be the case that a
maintainer is confident that any future occurrences of the set of
strings under consideration will always be references to the same
thing. Consequently, it is useful to record this so that other
acquisition tools can assert using an existing URI, rather than
compounding the problem by making up one of its own.

There are two parts to the gazetteering system, a service, gazette,
for generating entries from bundles and a service for generating
bundles from entries: essentially one for creating new entries and
one for using the existing ones.

The gazetteer entry creator does its best to create a gazetteer entry
from bundles that are supplied to it. In each bundle it looks for a
label in the knowledge base for each reference and then creates a
gazetteer entry, using the canonical entry from the bundle as the
canon to each string. It is to be used only when it is certain that all
the reference's labels are unique to that resource.

For our triplestore, passing the bundle in Figure 7 will generate
the gazetteer shown below.

Gazetteer

hasPredicate#full-name

hasString Nigel Shadbolt

hasPredicate#has-pretty-name
Figure 8. Gazetteer entry generated from RDF in Figure 7.

The second service, bundle, looks up gazetteer entries in the
triplestore and returns bundles for each canonical reference of all
the references that have a relevant string identified with a relevant
predicate. Each bundle returned has, associated with it, the
canonical reference and the predicates used by the gazetteer entry.

4.6 Bundle – OWL Translator
The Bundle – OWL Translator is for when a maintainer wants to
make stronger assertions about bundle contents. When passed a
bundle, to_same_as converts it into OWL ontology equivalence
statements (owl:sameAs for each duplicate and owl:differentFrom
for each non duplicate), which produce stronger inferences in a
knowledge base. A canonical entry must be present for each
bundle passed, as otherwise the translator would not know which
reference to use as the subject of the output statements. Given the
bundle in Figure 7 as input, this service will produce the output
shown in Figure 9.

http://www.ecs.soton.ac.uk/industry#staff03

sameAs

http://www.aktors.org/ontology/signage#person-D60

http://www.ecs.soton.ac.uk/industry#staff03

sameAs

http://nlp.shef.ac.uk/#ARM_AUTHOR_Nigel__Shadbolt
Figure 9. Output of the Bundle – OWL Translator given the

RDF in Figure as input.

4.7 Unique name assigner
Whilst bundles are being created they are assigned names unique

within the output of the service that is handling them. If a bundle
is to be asserted into the triplestore it must have a name unique
within the entire knowledge base. Furthermore, it must have a
name such that other bundles created at a later date, regarding the
same resource, should have the same name. The unique name
assigner, unique, achieves this by changing the names of all the
bundles to names composed from the checksum of the URI of the
bundle's canonical reference.

Bundle-034469a5cd8ef4a6742f2fc920f6ea09

hasduplicate http://www.aktors.org/signage#person-D60

hasduplicate http://nlp.shef.ac.uk/#AUTHOR_N_Shadbolt

hasduplicate http://www.ecs.soton.ac.uk/industry#staff03

hasPredicate #fullName

http://www.aktors.org/signage#person-D60

isCanon Bundle1

Figure 10. Output of the unique name assigner, given the
bundle in Figure 6 as input.

5. Manual Interface
The forgoing sections have presented a series of services that can
be used by other services and scripts without user intervention.
For detailed, accurate work, and for dealing with for example,
more common names, we have found the need for a manual
system that allows the user to drive the services. To allow this, it
must make it easy for the user to explore the information about the
entities under consideration, and then easily invoke the
appropriate services.

Figure 11. Screen shot of the manual interface, showing several bundles, one of which is displaying all available
data.

Thus this manual interface (Figure 11, Figure 12) is a key
component in the framework. It is a web-based interface that
allows the user to visualise bundles, sorted by labels, and perform
a number of operations, based on the other services. These include
deleting, merging, unmerging, setting non duplicates, setting the
canonical reference and creating gazetteer entries. It also has the
facility to display all the data associated with any of the
references, it performs lookups to find labels for all resources and
associations, and provides hyperlinks to all URIs. It provides the
user with all the available information in order to be able to make
decisions as to whether any bundles represent the same resource.
Using this interface the user can perform the entire co-reference
resolution process by hand if they so wish.

Typically the user will perform a search for a string (in the
figures, we a see a part of the window that has come up in
response to a query for “Wilkinson”), which is then presented as a
list of bundles, each with one entry. The user now focuses on a
particular subset of candidates (those with initials “AJ”). Likely
candidates should be close together, as when the user is dealing
with names (a common case) the interface orders bundles by
initials, while ignoring titles.

By default the interface shows the string, URI, and the predicate,
and this can often be sufficient to discard or accept that individual
in comparison with the others. Sometimes it is desirable to be able
to look at additional information. In this case, it is normal to use
the “+” button, which expands the entry to give a visualisation of
the related RDF. This has been done for the second “Wilkinson”
above.

Having now decided which of the candidates are indeed the same
or not, the user checks the bundle box for those entries, and clicks
on the “U(same)” or “U(not same)” button to cause them to be
merged appropriately.

If the user wishes to go further, then it will be necessary to choose
a canonical reference, and this is achieved by simply clicking the
“canon” button. With this done, it is possible to construct the RDF
for a gazetteer, and this can be achieved by the “Gaz” button.

There are other buttons available to make it as easy to use as
possible, such as “U” to explode a bundle back into separate
bundles, and “+All” to expand a number of entries at once.

The interface displays bundles from RDF passed to it either
directly or via a URI. The user can bring up the RDF of the
manipulated bundles at any point in a new window.

6. CONCLUSIONS
We have described here a set of services that provide a suite for
dealing with co-reference problems in an RDF triplestore.

Users can write an end to end script which

• Chooses candidates that may be coreferent;

• Groups them according to predicate or not;

• Chooses a canonical reference against some algorithm;

• Can serve these to other services;

• Constructs a gazetteer for future use;

• Constructs the appropriate owl:SameAs RDF.

Should the user require slightly different components, for example
a canonical chooser that used a different algorithm, they can slot it
into the structure and still use the other services.

Finally, we have provided a user interface that allows users to
interact with the services in a more hands on fashion.

We believe that co-referencing within the semantic web is a
growing problem that is only beginning to be appreciated. As the
web grows and more, larger, knowledge bases and initiatives
appear, the need for an efficient system for managing references
will increase. In anticipation of this growing requirement, we have
designed and proposed the schema and services outlined in this
paper. The use of this system provides a flexible, expandable and
readily compatible methodology for coping with inevitable
referential inconsistencies.

7. ACKNOWLEDGEMENTS
This work is supported under the Advanced Knowledge
Technologies (AKT) Interdisciplinary Research Collaboration
(IRC), which is sponsored by the UK Engineering and Physical
Sciences Research Council under grant number GR/N15764/01.
The AKT IRC comprises the Universities of Aberdeen,
Edinburgh, Sheffield, Southampton and the Open University. We
also thank Les Carr for his comments and suggestions, and for his
involvement in the design of the CRS.

8. REFERENCES
[1] AKT. The akt manifesto. Technical report, 2001.

http://www.aktors.org/publications/Manifesto.doc

[2] H. Alani, S. Dasmahapatra, N. Gibbins, H. Glaser, S. Harris,
Y. Kalfoglou, K. O'Hara, and N. Shadbolt. Managing
Reference: Ensuring Referential Integrity of Ontologies for
the Semantic Web. In 13th International Conference on
Knowledge Engineering and Knowledge Management
(EKAW02), pages 317-334, Siguenza, Spain, 2002.

[3] H. Alani, K. O'Hara, and N. Shadbolt. ONTOCOPI: Methods
and tools for identifying communities of practice. In

Figure 12. Screen shot of a single bundle, showing all the operation buttons.

Proceedings of the 2002 IFIP World Computer Congress,
Montreal, Canada, August 2002.

[4] A. Bagga. Evaluation of coreferences and coreference
resolution systems. In Proceedings of the First Language
Resource and Evaluation Conference, may 1998.

[5] T. Berners-Lee, Hendler J., and O. Lassila. The semantic
web. Scientific American, may 2001.

[6] D. Fensel, F. van Harmelen, I.Horrocks, G. McGuinness, and
P. F. Patel-Schneider. OIL: An ontology infrastructure for
the semantic web. IEEE Intelligent Systems, 16(2):38-45,
2001.

[7] S. Harris and N. Gibbins. 3store: Efficient bulk RDF storage.
In Proceedings of the 1st International Workshop on Practical
and Scalable Semantic Systems (PSSS'03), Sanibel Island,
Florida, pages 1-15, 2003.

[8] I. Horrocks. DAML+OIL: A description logic for the
semantic web. IEEE Bull. of the Technical Committee on
Data Engineering, 25(1):4-9, MAR 2002.

[9] M. Koivunen, and E. Miller. W3C Semantic Web
Activity. in proceedings of the Semantic Web Kick-off
Seminar, November 2001.

[10] O. Lassila and R. Swick. Resource Description Framework
(RDF) Model and Syntax Specification. W3C
recommendation, W3C, feb 1999.

[11] D. McGuinnes, F. van Hermelen. OWL Web Ontology
Language Overview. W3C recommendation, W3C, feb 2004.

[12] K. O'Hara, H. Alani, and N. Shadbolt. Identifying
Communities of Practice: Analysing Ontologies as Networks
to Support Community Recognition. Proceedings of the
World Computer Congress, 2002.

[13] A. Rahm and A. Bernstein. A survey of approaches to
automatic schema matching. The Very Large Databases
Journal, 10(4):334-350, 2001.

[14] R. Reiter. Equality and domain closure in first order
databases. Journal of the Association of Computing
Machinery, 10(4):334-350, 2001.

[15] Van de Sompel, H. and Lagoze, C. The Santa Fe Convention
of the Open Archives Initiative. D-Lib Magazine, 6(2),
February 2000.

[16] E. Wenger. Communities of Practice: The Key to Knowledge
Strategy. Cambridge University Press, 1998.

[17] M. Wooldridge, and N. R. Jennings. Intelligent agents:
Theory and practice. The Knowledge Engineering
Review, vol 10, no. 2, pp. 115-152, 1995.

