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Abstract

We describe the use of the discrete wavelet transform (DWT) for non-parametric linear time-invariant system identification.
Identification is achieved by using a test excitation to the system under test (SUT) that also acts as the analyzing function for
the DWT of the SUT’s output, so as to recover the impulse response. The method uses as excitation any signal that gives an
orthogonal inner product in the DWT at some step size (that cannot be 1). We favor wavelet scaling coefficients as excitations, with
a step size of 2. However, the system impulse or frequency response can then only be estimated at half the available number of
points of the sampled output sequence, introducing a multirate problem that means we have to ‘oversample’ the SUT output. The
method has several advantages over existing techniques, e.g., it uses a simple, easy to generate excitation, and avoids the singularity
problems and the (unbounded) accumulation of round-off errors that can occur with standard techniques. In extensive simulations,
identification of a variety of finite and infinite impulse response systems is shown to be considerably better than with conventional
system identification methods.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Wavelet analysis [1–4] provides a unifying framework for time–frequency decomposition of signals. It has found
important applications in compression [5], denoising [6], transient signal detection [7], adaptive filtering [8,9], chan-
nel equalization [10], identification of echo path impulse responses [11], and modeling mammalian auditory system
function [12,13]. It has a direct correspondence to filterbank analysis [14]. Here, we consider wavelet approaches to
analyze signals that are a (linearly) filtered version of some source signal with the purpose of identifying the charac-
teristics of the filtering system. Such source-filter signals occur in many physical situations. A well-known example
is the human speech production mechanism where air waves modulated as a sequence of (quasi-)periodic pulses at
the larynx are filtered by the vocal tract. In this particular case of a biological system, the input to the system is not
accessible to the investigator. For many engineering systems, however, we do have reasonable accessibility. In these
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circumstances, the source-filter model lends itself directly to the extremely important practical problem of finding the
characteristics of a system under test (SUT).

System identification methods can be classified as parametric and non-parametric approaches. By ‘parametric,’
we mean that the functional form of the system model is known but its parameters (e.g., specifying the location of
poles and zeros in the complex plane) are not. By ‘non-parametric,’ we mean that this functional form is unknown so
that the SUT is alternatively described explicitly by its output for some given wideband input. In principle, we could
use any wideband input for this purpose but, in practice, the approach is only useful if we standardize on one of a very
few functions, such as unit step or impulse, to avoid a plethora of incommensurate measures and descriptions. In the
discrete-time case, this description will be a set of sample values. Identification is further divided into time-domain
and transformed-domain techniques.

In the (continuous) time domain, the most straightforward technique from a theoretical perspective is to excite
the SUT with a Dirac impulse, whereupon the output is the impulse response function h( )—hence its name. Although
theoretically attractive, this is an impractical idealization for a real, physical system. The Dirac impulse (‘delta func-
tion’) is not truly a function at all, but a ‘unit mass’ abstraction [15, p. 5]: it has infinite amplitude at the point at
which its argument is zero, is infinitely narrow and has unity integral over time. In the discrete-time case, we can
attempt to approximate this abstraction by an input that changes amplitude entirely within one sampling period, i.e.,
by a Kronecker delta appropriately scaled in amplitude. In practice, however, this approximation is unlikely ever to
be entirely satisfactory. Hence, other wideband input excitations (e.g., bandlimited white noise, frequency chirp) are
sometimes used.

To avoid such difficulties, assuming a causal system, the impulse response function of the SUT can be recovered
from the (sampled) output signal {y(n)} for a (sampled) input signal {x(n)} of any general form by the following
recursive equation [16], obtained directly from the convolution-sum:

h(n) = y(n) − ∑n−1
k=1 h(k)x(n − k)

x(0)
for n � 0, n ∈ N. (1)

However, round-off errors accumulate with larger time indices, making this approach impractical for slowly decaying
(i.e., infinite) impulse response functions.

The transformed-domain approach simply takes the z-transform of the output signal as Y(z) = H(z)X(z) and
determines the SUT impulse response function by inverse filtering the output signal by the input signal as H(z) =
Y(z)X−1(z). Unfortunately, the inverse of X(z) does not always exist, so that it is necessary to use the pseudoinverse.
Even then, the inversion operation may lead to an unstable inverse filter with no unique realization.

Two popular and inter-related frequency-domain methods for non-parametric system identification are based on
coherence analysis. For a linear system, the coherence function [17] is given as

Cxy(ωk) = Sxy(ωk)√
Sxx(ωk)Syy(ωk)

,

where Sxy(ωk) is the input-output cross-spectrum (i.e., the power spectrum of the cross-correlation between the input
and output functions), and Sxx(ωk) and Syy(ωk) are the power spectra of the autocorrelations of the input and output,
respectively. The function C2

xy(ωk) can be interpreted as the fraction of the mean square value of y(n) that can be
attributed to the component of the input x(n) at frequency ωk . Usually, pseudorandom noise is used an input x(n).
The two identification methods, direct and inverse, then estimate the system response as

H1(ωk) ∼ Sxy(ωk)

Sxx(ωk)
,

H2(ωk) ∼ Syy(ωk)

Sxy(ωk)
, (2)

where H1(ωk) tends to underestimate the true H(ωk) and H2(ωk) tends to overestimate it. Generally, H1(ωk) gives
a good estimate of the system response near anti-resonances but H2(ωk) gives maximal error near anti-resonances.
Conversely, H2(ωk) gives a good estimate of the system response near resonances whereas H1(ωk) gives maximal
error near resonances.

By contrast, the parametric approach assumes the functional form of the system response is known and finds the
parameters of this function, usually expressed as poles and zeros. Identification is achieved by iteratively minimizing
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the output error of the system according to the parametric model. Output error can be measured in the (stochastic)
mean square sense, or maximum likelihood sense. Although parametric descriptions are more parsimonious than their
non-parametric counterparts, the order of the model description has to be predefined but its proper choice is uncertain.
If errors are required to be very small, large numbers of poles and zeros may be required.

Wavelet transforms have been extensively applied to non-linear system identification [18–23], as well as to para-
metric and/or time-varying system identification [19,24–27]. This is usually achieved by using a wavelet-based
adaptive filter [28] and by non-linear regression [18] to perform a parametric identification, with a specified number
of poles and zeros. For non-parametric identification, there has been little work, particularly for time-invariant signals,
because discrete wavelet transforms (DWTs) are not time-invariant [4]. Since time-invariant systems and signals form
a large well-known class, DWTs have been modified to be time-invariant [29,30] but there is no clear relation between
time-invariant signals and discrete wavelet transforms in general. Here, we examine the non-parametric identification
of linear time-invariant (LTI) systems using the DWT. In particular, we show that the DWT of an output signal from an
LTI system excited by the particular (mother) wavelet corresponding to the chosen transform is the impulse response
of that system, and we use this result to develop a new method of system identification.

The rest of this paper is organized as follows. In Section 2, we review the discrete parameter wavelet transform
for the continuous-time case and make an important observation about the orthogonality of the inner product between
two identical wavelets. In Section 3, the discrete parameter wavelet transform is applied to a source-filter (i.e., out-
put) signal of a linear time-invariant system, and the transform coefficients are found to relate directly to the impulse
response of the system. For computer processing, the discrete-time wavelet transform (DWT) is also specified (Sec-
tion 4). In Section 5, we develop a DWT-based technique for system identification that requires orthogonality of inner
products computed by the DWT. In Section 6, various simulations are described to illustrate the use of the method for
LTI system identification for different system types. In Section 7, we compare the identification performance of the
method with conventional techniques. In Section 8, we summarize and conclude.

2. Wavelet representation of signals

A finite energy signal f (t) in the square integral sense, i.e., f (t) ∈ L2( ), can be described (‘synthesized’) by
wavelets as

f (t) =
∑
k,m

ak,mψk,m(t), k,m ∈ Z, (3)

where the set of two-dimensional coefficients ak,m is called the discrete parameter wavelet transform (DPWT) of f (t)

and the (continuous time) ψk,m(t)’s are the analyzing functions, or wavelets, with scale index k compressing/dilating
the basic function, or mother wavelet ψ0,0(t), and translation index m displacing it, to produce a family of wavelets.
Although not strictly necessary from a theoretical perspective, in practical cases these wavelets are limited in time.
They either have compact time support or rapidly decay to become close to zero, approximating compact time support.

In the DPWT, a wavelet is scaled and translated relative to the mother wavelet by discrete values (k,m). This can
be seen as a sampled counterpart to the continuous wavelet transform in which the scale and translation variables are
continuous. Most often, compression/dilation in the DPWT is by a power of two—so-called dyadic sampling. That is,
the wavelets are of the form ψ(2kt + m), with ψ0,0(t) = ψ(t).

Each DPWT coefficient, ak,m in Eq. (3), is simply computed as an inner product of the signal and the corresponding
wavelet via the ‘analysis’ equation:

ak,m =
∫

f (t)ψk,m(t) dt = 〈
f (t),ψk,m(t)

〉
. (4)

If the wavelets are orthogonal, then〈
ψk,m(t),ψr,s(t)

〉 = Cδ(k − r)δ(m − s), k,m, r, s ∈ Z, (5)

where C is a constant and δ( ) is the Kronecker delta, equal to 1 when its argument is zero and equal to 0 otherwise.
Hence, we obtain only a single non-zero inner product (for the case k = r and m = s) when the scale and translation
indices range over all possible values.
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An interesting observation arises if the signal f (t) has the same functional form as the analyzing (mother) wavelet,
i.e., f (t) = ψα,β(t). Then, by Eq. (4), the DPWT of f (t) has coefficients:

ak,m = 〈
ψα,β(t),ψk,m(t)

〉
.

If the family of wavelets is orthogonal, then, by Eq. (5), ak,m will be non-zero only if α = k and β = m. The latter
condition is easily achieved since both are indices relative to the same (sampled) underlying time scale (i.e., there
exists some m = β). The former condition is slightly more problematic since there is no restriction on the scale of the
signal f (t). Therefore, for orthogonal wavelets, the scale index α should be well chosen to coincide with k so that the
coefficients do not vanish.

Analysis of the signal as just described corresponds to a multiresolution decomposition of a particular form that
under certain conditions allows perfect reconstruction of the signal. Specifically, the decomposition involves taking an
inner product of the signal f (t) with a ‘scaling’ or ‘dilation’ function and sampling the result to produce a discrete-
time sequence f (n), followed by successive splitting of the signal into subbands using non-overlapping high-pass and
low-pass filters, h(n) and g(n) respectively, decimating each output sequence sample rate by 2. The output from the
high-pass filter then corresponds to the wavelet coefficients and the output from the low-pass filter is passed on to the
next stage of subband splitting. (See [3, Chap. 3] for details and note that his notation—which we use here—differs
from that of [4] that we also cite extensively.)

For perfect reconstruction, the synthesis filters g(n) and h(n) corresponding to the decomposition filters h(n) and
g(n) must satisfy certain straightforward conditions. That is to say, they are so-called quadrature mirror filters [4,31]
or QMFs. These conditions yield the two equations [3, p. 59]:

φ(t) = 2
∑
n

g(n)φ(2t − n), (6)

ψ(t) = 2
∑
n

h(n)φ(2t − n), (7)

which are the scaling and wavelet equations, respectively. The reader is cautioned not to confuse the h(n) in (7) with
the impulse response of the SUT. (This notation for QMFs is so entrenched that it would potentially be even more
confusing to change it. We attempt to minimize ambiguity in following sections by reserving h( ) to refer to the system
under test except where explicitly stated.)

In Eqs. (6) and (7), the factor of 2 is a scaling or normalizing term. Different normalizations are possible—for
example, see [4, p. 59]—and are frequently seen in the literature.

We now make some important observations on orthogonality, not only of wavelets but the coefficients of their
associated scaling and wavelet equations too. According to [4, Theorem 3, p. 53], if φ(t) is an L2 ∩ L1 solution to the
scaling equation (6) satisfying the QMF conditions, and φ(t) is orthogonal for integer translations k, so that∫

φ(t)φ(t − k) dt ∝ δ(k),

then ∑
n

g(n)g(n − 2k) ∝ δ(k). (8)

But (8) is the form of an inner product for the discrete-time case (i.e., a dot product of two sequences rather than
an integral for the continuous-time case). Hence, the scaling coefficients have an orthogonal inner product, but only
with a step size of 2 or multiples of 2, although the larger the step size, the greater the chance that there is no overlap
with highly-localized signals. For scaling/wavelet coefficients satisfying the QMF filter conditions, the wavelet is
orthogonal to the scaling function at the same scale [4, Theorem 17, p. 58], and a similar condition to (8) is satisfied
by the h(n)’s.

3. Source-filter model

In this section, we first derive the DPWT of the output of the source-filter model when its input is an orthogonal
wavelet, before interpreting the result in terms of system identification.
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3.1. Wavelets as source signals

For a source-filter model, the observed signal is the convolution of the source signal x(t) and the filter impulse
response h(t):

y(t) =
∫

x(τ)h(t − τ) dτ

if the filter is time-invariant.
The discrete parameter wavelet transform of y(t) is then

ak,m =
∫ ∫

ψk,m(t)x(τ )h(t − τ) dτ dt.

Since convolution is commutative,

ak,m =
∫ ∫

ψk,m(t)h(τ )x(t − τ) dτ dt

=
∫

h(τ)

∫
ψk,m(t)x(t − τ) dt dτ.

Following Section 2, let us now choose the source (or ‘test’) signal to have the same functional form as ψk,m, i.e.,
x(t) = ψα,β(t). Then the coefficients become

ak,m =
∫

h(τ)

∫
ψk,m(t)ψα,β(t − τ) dt dτ

=
∫

h(τ)

∫
ψk,m(t)ψα,d(α,β,τ)(t) dt dτ,

where d(α,β, τ ) is the function that relates the scale and translation indices of the wavelet to the time shift τ and h(τ)

is now the desired impulse response of the SUT. Introduction of such a function is necessary to yield an integer index
when there is a dependence on the continuous variable τ . Note that we must retain the scale index α as an argument
in this function in case compression/dilation is related to the scale index (e.g., as in dyadic sampling).

If the family of wavelets is orthogonal, then

ak,m = C

∫
h(τ)δ(k − α)δ

(
m − d(α,β, τ )

)
dτ.

Here the reader is warned against interpreting both deltas as Kroneckers, as when Eq. (5) was obtained from Eq. (4).
In fact, the first delta is a Kronecker by virtue of its arguments k and α, which are both discrete. However, the second
delta involves the continuous time-shift variable τ . Since the integration is with respect to τ , this must be interpreted
as a Dirac delta.

Because α is well chosen to be equal to k (see above), we can make the Kronecker delta equal to one:

ak,m = C

∫
h(τ)δ

(
m − d(k,β, τ )

)
dτ.

For dyadic sampling, ψk,m(t) is derived from the mother wavelet as

ψk,m(t) = Bψ(2kt + m) with ψ0,0(t) = ψ(t),

where B is a constant. The wavelet coefficients ak,m become

ak,m = A

∫
h(τ)δ

(
m − (2kτ + β)

)
dτ,

where A = BC. Since τ = (m − β)/2k yields a zero argument for the Dirac delta, then by the sifting property:

ak,m = Ah

(
m − β

2k

)
. (9)
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3.2. Interpretation

We can interpret the DPWT coefficients ak,m in Eq. (9) for fixed k as samples of the SUT impulse response, but
scaled and resampled at 2−k times some original sampling frequency. Without loss of generality, we can consider this
original sampling frequency to be such that the corresponding Nyquist frequency is normalized to 1. In particular, the
impulse response can be expressed in terms of wavelet coefficients as

h

(
m

2k

)
= ak,m+β

A
.

If k < 0, then the impulse response is decimated by 2|k|. For example, if k = −1 and S coefficients are computed, the
impulse response values are (setting β = 0 for simplicity):{

h(0) = a−1,0

A
, h(2) = a−1,1

A
, h(4) = a−1,2

A
, h(6) = a−1,3

A
, · · · , h(2S) = a−1,S

A

}
.

Thus, aliasing can occur if k is not well chosen. Alternatively, if k > 0, then it is the sequence of wavelet coefficient
values (rather than the impulse response) that is decimated. For example, if k = 1, the impulse response values are
(again with β = 0):{

h(0) = a1,0

A
, h(1) = a1,2

A
, h(2) = a1,4

A
, h(3) = a1,6

A
, · · · , h

(
ζ

2

)
= a1,ζ

A

}
,

where ζ = 2�S/2�. A minor concern here is that many wavelet coefficients are not used to determine the impulse
response, wasting computation time and memory somewhat. In addition, since only the finite number S of wavelet
coefficients were obtained in practice, to achieve a good estimate of the impulse response, the latter should decay
to zero over 2−kS samples. This sequence is much shorter than the number of available samples S, again wasting
resources. It seems that the best choice of k = α is zero. In some sense, this is intuitively evident since it corresponds
to choice of the mother wavelet as the source signal.

With k = 0, the impulse response is

h(m) = a0,m+β

A
. (10)

Then, the frequency characteristic of the SUT is simply the discrete Fourier transform (DFT) of the DPWT coefficients
for k = 0:

H(n) = 1

A

S−1∑
m=0

a0,m+βe−2πjmn/S. (11)

In summary, an attractive approach to system identification is to excite the SUT with some time-compact function
satisfying the orthogonality condition (5), whereupon the system impulse (or frequency) response should be recover-
able from the coefficients of the wavelet transform of the output, using the form of the input excitation as the wavelet
transform analyzing function.

4. Discrete-time signals

For computer processing, all signals are discrete in time and the discrete parameter wavelet transform is replaced
by the discrete wavelet transform (DWT). Assume that we have a sampled signal {y(n)} of the output of a SUT with
discrete impulse response {h(n)} excited by a discrete-time input signal {ψk,m(n)} satisfying the conditions of the
previous paragraph. (Henceforth, we will drop the braces { } intended to distinguish a sequence from a sample point
of that sequence, since no ambiguity should arise.) The continuous analysis above carries over to the discrete case as
follows:

DWT synthesis: y(n) =
∑
k,m

ak,mψk,m(n),

DWT analysis: ak,m =
∑
n

y(n)ψk,m(n),

Scaling (dyadic): ψk,m(n) = Bψ(2kn + m).
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The coefficients of the DWT are given by the discrete wavelet version of Eq. (9), which has precisely the same form
as before:

ak,m = Ah

(
m − β

2k

)

and by the previous argument, k = 0 is the best choice to prevent aliasing without wasting resources. Thus, the SUT
impulse response in terms of the wavelet coefficients at k = 0 is as in Eq. (10) and the discrete-time Fourier transform
of the impulse function h( ) can be specified as in Eq. (11). These results are independent of the particular form of
the excitation only provided it satisfies the necessary conditions detailed above. This means that we can use not only
discrete-time wavelets as inputs, but also their scaling and/or wavelet coefficient values. The scaling condition for
multiresolution can also be dropped since only one level (i.e., k = 0) is used.

Unfortunately, as we anticipate from Section 2, the orthogonality condition does not translate so simply and directly
from the continuous- to the discrete-time case. Rather than the inner product being zero for all integer translates (as
for orthogonal wavelets in the continuous-time case), it is zero for an even step size (e.g., 2).

It is instructive to show at the outset that no discrete-time wavelet can be orthogonal with a step size of 1. In fact,
only a Kronecker delta can fulfill this condition. Let ϕk,0 = {wk,0,wk,1, . . . ,wk,L−1} be the sample sequence of a
discrete-time orthogonal wavelet with length L, which is not a Kronecker delta. Both wk,0 and wk,L−1 are non-zero,
otherwise the wavelet is described by a shorter sequence. Since ϕk,0 is not a Kronecker delta, L > 1. For orthogonality
with step size 1, the inner product 〈ϕk,m,ϕk,m+β〉 should be 0 for all k, m, and β except β = 0. However,

〈ϕk,0, ϕk,L−1〉 = wk,0wk,L−1 �= 0.

Hence, by contradiction, there does not exist any discrete-time wavelet with compact time support that is orthogonal
with a step size of 1.

5. System identification using the orthogonality condition

Given the background above, system identification using the orthogonality of inner products computed by the DWT
is relatively straightforward in principle. As depicted in Fig. 1, the SUT is excited by some appropriate input (which
we can think of as having k = 0) to produce output sequence y(n). We then take the DWT of the output signal using
the input itself as the analyzing function. Then according to the discrete-time version of Eq. (9), the system impulse
response (and hence the frequency response) can be estimated directly from the DWT coefficients, a0,m.

Although straightforward in principle, some complication arises because the orthogonality condition required to
find the DWT coefficients in discrete-time holds only for an even step size in the case of scaling and wavelet coef-
ficients. So, the output sequence from the DWT has only half as many points as its input. In effect, then, we have a
multirate problem meaning that considerable care must be taken with possible frequency aliasing [32,33]. The prob-
lem is more severe for simulations, as here, than for practical system identification because simulation requires that we
generate an appropriate h(n) for the SUT, and generating this h(n) correctly depends on understanding the multiple
sampling rates involved.

Hence, we must describe the SUT in a way that is appropriate for system identification after sample-rate decimation
by the DWT has occurred. First, an h(n) for the SUT must be generated and, in principle, its system response H(n)

could then be found using the DFT. We could then compute the output sequence y(n) by taking the inverse DFT and
convolving with the input sequence x(n). But instead of using the baseband representation of H(n) over the range 0 to
fs for this purpose, we would need to use its image over the range 0 to 2fs . This corresponds to interpolating the h(n)

Fig. 1. Schematic diagram of proposed system identification method with a step size of 2 in the discrete wavelet transform.
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sequence by placing zeros between every pair of original sample points [32,33], which is what we actually do. Now,
after the decimation at the DWT stage, the SUT’s impulse response and corresponding system function are properly
represented at a folding frequency of half of 2fs , i.e., at fs , as required. Note that no anti-alias filtering is required (as
used in standard sample-rate conversion) since the sample-rate interpolation is immediately followed by sample-rate
decimation by the DFT. In effect, the system identification is obtained at half the number of sample points. This simple
scheme is effective for low-pass, band-pass, and high-pass SUTs.

Regarding the time complexity of the new method, it requires just a single inner product computation of two vectors
to compute ĥ(2n) (Fig. 1). One vector stores the wavelet coefficients and the other stores the output signal of the SUT.
If one vector has n elements and the other has m elements, then the time complexity of the inner product computation
is O(mn) since there are m × n multiplications, m(n − 1) additions and m assignments. But since the number of
scaling coefficients is very low for the excitations used here ( just 4 for Daubechies D4), m can be considered to be
a small constant, and the time complexity of the identification is effectively O(n). In practice, computation for our
simulations using the new method is almost instantaneous.

6. Simulations

We have carried out various simulations to verify the utility of the new method.

6.1. Choice of excitation

Using the new method, we attempted to identify the system response of a Chebyshev, IIR, 10th-order high-pass
filter with 20 dB ripple using three different excitations:

(1) Haar wavelet H0,0(n) =

⎧⎪⎨
⎪⎩

1√
2
, n = 0,

− 1√
2
, n = 1,

0, otherwise,

(2) Daubechies D4
{ 1−√

3
4
√

2
, − 3−√

3
4
√

2
, 3−√

3
4
√

2
, − 1−√

3
4
√

2

}
,

(3) Shannon (truncated sinc).

Fig. 2. Frequency response of Chebyshev high-pass filter by the new method using a variety of wavelet scaling coefficients as excitation.
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(a)

(b)

Fig. 3. (a) Frequency response of Chebyshev high-pass filter by the new method using Daubechies scaling coefficients as excitation with 4, 8, and
20 coefficients. (b) Frequency spectra of these three excitations.

Results are shown in Fig. 2 using a 256-point fast Fourier transform (FFT), so that the system response is identified
at 128 points. As can be seen, the Haar and Daubechies excitations give very good identification, but the truncated
sinc is unsatisfactory, as it is not orthogonal with a step size of 2.

Figure 3a shows the effect of varying the number of scaling coefficients in the Daubechies excitation. It seems
that 4 coefficients is no poorer than either 8 or 20. The spectra of these (low-pass) excitations are shown in Fig. 3b:
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the frequency roll-off increases with the number of coefficients. As rather little seems to be gained by using a higher
number of coefficients, the excitation for all subsequent identifications depicted in this paper is the Daubechies D4
scaling coefficients. Before proceeding, the reader should note that identifications were not always done on the same
machine so that some very minor discrepancies can be seen between what is nominally the same identification using
the same (D4) excitation. These discrepancies are only seen at very low troughs of the system response, effectively
below the noise level.

6.2. Results for different systems

Although we have examined identification of a variety of frequency-response types, we concentrate here mainly
on band-stop system responses, since these are harder to characterize than either low-pass or high-pass, with both
finite and infinite impulse responses. In all cases, the stop band was between 0.4 and 0.8 in normalized frequency.
Comparisons are made with conventional linear time-invariant system identification tools. In those instances where a
band-stop filter does not highlight differences between techniques especially well, we will choose a harder problem
to illustrate the advantages of our method.

System identification by wavelet transform has been carried out for the following filter types:

(1) FIR, 50 coefficients;
(2) Butterworth IIR, 10th-order;
(3) Chebyshev IIR, 10th-order with 20 dB ripple;
(4) Elliptic IIR, 10th-order

using a range of different wavelets and scaling coefficients.
We have deliberately chosen to present simulation results for a wide range of different filters to provide a stringent

test of the new method. It is important to include IIR systems because their identification is generally more difficult
than for the case of FIR systems. Chebyshev filters are more difficult to identify because they have a sharper cut-off
than Butterworth filters. The elliptic filter has significant ripple in the pass and stop bands, which we expect to cause
difficulties not encountered with the other filters.

Fig. 4. (a) Frequency response of FIR band-stop filter with the frequency response identified by the new method using D4 scaling coefficients as
excitation. (b) The variation of identification error with frequency.
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Fig. 5. (a) Frequency response of 10th-order Butterworth band-stop filter with the frequency response identified by the new method using D4 scaling
coefficients as excitation. (b) The variation of identification error with frequency.

Fig. 6. (a) Frequency response of 10th-order Chebyshev band-stop filter with the frequency response identified by the new method using D4 scaling
coefficients as excitation. (b) The variation of identification error with frequency.

Figure 4a shows the system frequency response and the identified frequency response of the FIR band-stop filter
identified using the new method. The SUT was simulated using the MATLAB function fir1, which uses the impulse
response windowing method [15, p. 195] with a Hamming window. The identified system response was obtained from
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Fig. 7. (a) Frequency response of 10th-order elliptic band-stop filter with the frequency response identified by the new method using D4 scaling
coefficients as excitation. (b) The variation of identification error with frequency.

ĥ( ) using a 128-point FFT, giving 64 points shown in the figure. The identification is excellent with errors bounded
by 10−12, being greatest at low frequencies (Fig. 4b).

Figure 5a shows the system frequency response and the identified frequency response of the Butterworth band-stop
filter. The SUT was simulated using MATLAB function butter. The identified system response was obtained from
ĥ( ) using a 256-point FFT (giving 128 points in the figure). A longer FFT was used for all the IIR filter identifications
than for the FIR filter identifications for the obvious reason that the impulse response does not fall to zero and has
to be truncated, contributing to the apparent identification error. The error characteristic is similar to the FIR filter,
bounded by 10−12, being greatest at low frequencies (Fig. 5b).

Figure 6a shows the system frequency response and the identified frequency response of the Chebyshev band-stop
filter. The SUT was simulated using MATLAB function cheby2. Here the length of the impulse response dictated use
of a 512-point FFT, so that the figure shows 256 data points. The identification is similar to the previous filters with a
broadly similar pattern of errors, bounded by 10−12, being greatest away from the stop band (Fig. 6b).

Figure 7a shows corresponding results for the elliptic band-stop filter. The SUT was simulated using MATLAB

function ellip. Again, a 512-point FFT was used, so that the figure shows 256 data points. Again, the identification
is very similar to the previous filters with a broadly similar pattern of errors (Fig. 7b).

7. Comparison with conventional system identification

In this section, we compare several conventional system identification techniques for the Chebyshev high-pass filter
with the new wavelet-based method.

7.1. Chirp method

As mentioned in the Introduction, non-parametric identification can be achieved using a wideband excitation such
as a frequency chirp (swept sinusoid). Here, the estimated frequency response is obtained as the discrete Fourier trans-
form of the output of the system for such a time-domain input. We used the chirp function in MATLAB as input (see
http://www-ccs.ucsd.edu/matlab/toolbox/signal/chirp.html). For low-pass filter responses,
this method works well but a chirp signal has poor high frequency content and this affects the identification.

http://www-ccs.ucsd.edu/matlab/toolbox/signal/chirp.html
http://www-ccs.ucsd.edu/matlab/toolbox/signal/chirp.html
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Fig. 8. Frequency response of the Chebyshev high-pass filter identified by wavelet-based method and by DFT in conjunction with a chirp signal
excitation.

Figure 8 shows the identification of the Chebyshev high-pass filter response by the wavelet-based method using a
256-point FFT and by using the DFT and a chirp signal. The superiority of the wavelet identification is easily apparent.

7.2. Time-domain recursion

Figure 9 shows the comparison of identified frequency responses of the Chebyshev high-pass filter identified by
the wavelet-based method and by time-domain recursion using Eq. (1). It is clear that the unbounded nature of the
time-domain recursion has led to very substantial errors that are not apparent in the wavelet results.

It might appear from Fig. 9 that the time-domain recursion is effectively useless as a method of finding the
(frequency-domain) system function. Note, however, that the identification of the impulse response in the time domain
is quite reasonable at first; the errors accumulate over time.

7.3. Inverse filtering

As outlined in the Introduction, system identification by inverse filtering requires that we compute the (pseudo)in-
verse of X(z). Here we work in the time domain. If the system is assumed casual, then the form of the (p+1)× (s +1)

matrix is [24]:

X =

⎡
⎢⎢⎢⎢⎣

x(0) x(1) x(2) . . . x(s − 1) x(s)

0 x(0) x(1) . . . x(s − 2) x(s − 1)
...

...
...

...
...

...

0 0 0 . . . x(0) x(s − p + 1)

0 0 0 . . . 0 x(s − p)

⎤
⎥⎥⎥⎥⎦ ,

where the output sequence has s +1 samples and the impulse response is estimated at p+1 points with p = s (because
we can do no better than to estimate ĥ( ) at every available sample point).

The pseudoinverse is found by singular value decomposition [34] using MATLAB function svd. The input ex-
citation for the SVD identification was a pseudorandom sequence of length 1000 samples (truncated to 512 points
for subsequent FFT processing to find the system function). SVD minimizes the squared error between the output
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Fig. 9. Frequency response of the Chebyshev high-pass filter identified by the new wavelet-based method and by time-domain recursion.

Fig. 10. Frequency response of the Chebyshev high-pass filter identified by the new wavelet-based method and SVD.

sequence and the convolution of the input with the identified system response. Figure 10 shows the comparison of
the new method with time-domain SVD for our example Chebyshev high-pass filter. Here, the wavelet-based method
outperforms SVD for identification in the pass band and remains reasonable provided we do not extend too far into
the stop band. The SVD used here reduces its rank based on discarding 1% of the data variance (comparable to the
added noise). SVD identification could be made as good as the wavelet-based method by using the full rank of the
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Fig. 11. Frequency response of the Chebyshev high-pass filter identified by the new wavelet-based method and by coherence.

matrices. However, this takes quite a long time to perform (several minutes with a Sun Ultrasparc as opposed to less
than a second for the new method).

7.4. Coherence

Finally, we have used Eq. (2) to identify the Chebyshev high-pass filter using MATLAB function tfe (transfer
function estimate) from the signal processing toolbox. The input excitation for the coherence identification was a
pseudorandom sequence of 10,000 samples (truncated to 512 points for subsequent FFT processing to find the system
function). Figure 11 shows the comparative results, with the wavelet-based method again proving superior.

8. Conclusions

We have developed and described a new method for non-parametric linear time-invariant system identification
based on the discrete wavelet transform (DWT). Identification is achieved using a test excitation to the system under
test (SUT) that also acts as the analyzing function for the DWT of the SUT’s output. The new method can use as
excitation any signal that gives an orthogonal inner product in the DWT at some step size. This step size must be even
and so cannot be 1. We favor a step size of 2 used in conjunction with Daubechies D4 scaling coefficients as excitation,
since the latter are compact in time. Since step size cannot be 1, we confront a multirate problem that means we have
to oversample the SUT output.

The new method has been compared with several standard techniques for non-parametric identification, namely
chirp excitation, time-domain recursion, inverse filtering (using singular value decomposition to invert the input ma-
trix), and coherence analysis. Identification has been carried out for a variety of finite and infinite impulse response
systems. The new wavelet-based method proved to be considerably better than the conventional methods in all cases.

In a practical situation, we would obviously not know in advance what the correct identification should be. Hence,
identification should ideally be carried out using a variety of differently-motivated methods making different assump-
tions about the SUT and the test conditions to validate results. Apart from its intrinsic advantages, the new method
described here is valuable in that it adds to the number of identification techniques available for this purpose.
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