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Abstract—The number of transmit antennas that can be em-
ployed in the context of least-squares (LS) channel estimation
contrived for orthogonal frequency division multiplexing (OFDM)
systems employing multiple transmit antennas is limited by the
ratio of the number of subcarriers and the number of significant
channel impulse response (CIR)-related taps. In order to allow
for more complex scenarios in terms of the number of transmit
antennas and users supported, CIR-related tap prediction-filter-
ing-based parallel interference cancellation (PIC)-assisted deci-
sion-directed channel estimation (DDCE) is investigated. New
explicit expressions are derived for the estimator’s mean-square
error (MSE), and a new iterative procedure is devised for the
offline optimization of the CIR-related tap predictor coefficients.
These new expressions are capable of accounting for the estima-
tor’s novel recursive structure. In the context of our performance
results, it is demonstrated, for example, that the estimator is
capable of supporting L = 16 transmit antennas, when assuming
K = 512 subcarriers and K, = 64 significant CIR taps, while
LS-optimized DDCE would be limited to employing L = 8 trans-
mit antennas.

Index Terms—Decision-directed channel estimation (DDCE),
multiple transmit antennas, orthogonal frequency division multi-
plexing (OFDM), parallel interference cancellation (PIC).

1. MOTIVATION

N RECENT years, the family of single- and multiuser or-

thogonal frequency division multiplexing (OFDM) schemes
[1] using time-domain, frequency-domain, as well as spatial-
domain spreading [2] has enjoyed a renaissance. Hence, OFDM
has found its way into numerous wireless systems that require
accurate channel estimation. Accordingly, the topic of decision-
directed channel estimation (DDCE) has been addressed in
a variety of contributions, notably, for example, in the de-
tailed discussions of [3]-[8], in the context of single-user
single-transmit antenna OFDM environments. The basic idea
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is to equalize the channel transfer function experienced by
an OFDM symbol during the current transmission period by
capitalizing on that encountered during the previous OFDM-
symbol period [1].! This implies assuming quasi-invariance of
the channel’s transfer function between the two consecutive
OFDM symbols’ transmission intervals. An improved channel
transfer-function estimate can then be obtained for detecting
the most recently received OFDM symbol upon dividing the
complex symbol received in each subcarrier by the sliced and
remodulated information symbol hosted by a subcarrier. The
updated channel estimate is then employed again as an initial
channel estimate during the next OFDM symbol’s transmission
period.

By contrast, channel estimation for multiuser OFDM has
been considered in [9]-[15]. In the context of the multiuser
OFDM scenario to be outlined in Section II, the signal re-
ceived by each antenna is constituted by the superposition of
the signal contributions associated with the different users or
transmit antennas. Note that, in terms of the multiple-input
multiple-output (MIMO) structure of the channel, the multiuser
single-transmit-antenna scenario is equivalent, for example, to
a single-user space-time coded (STC) scenario using multi-
ple transmit antennas, provided that the channels associated
with the different transmit antennas are perfectly uncorrelated.
Hence, channel-estimation techniques designed for multiuser
OFDM can be employed for single-user STC and vice versa.
For the latter scenario, a least-squares (LS) error channel esti-
mator was proposed by Li et al. [9], which aims at recovering
the different transmit antennas’ channel transfer functions on
the basis of the output signal of a specific reception antenna
element and by also capitalizing on the remodulated received
symbols associated with the different users. The performance
of this estimator was found to be limited in terms of the
mean-square estimation error in scenarios where the product
of the number of transmit antennas and the number of channel
impulse response (CIR) taps to be estimated per transmit an-
tenna approaches the total number of subcarriers hosted by an
OFDM symbol.

In [10], a DDCE was proposed by Jeon et al. for an STC
OFDM scenario of two transmit antennas and two receive

!For sample chapters, please refer to www-mobile.ecs.soton.ac.uk.

1536-1276/$20.00 © 2005 IEEE



MUNSTER AND HANZO: CHANNEL ESTIMATION FOR OFDM SYSTEMS USING MULTIPLE TRANSMIT ANTENNAS

antennas. Specifically, the channel transfer function? associ-
ated with each transmit-receive antenna pair was estimated
in the frequency domain on the basis of the output signal of
the specific receive antenna upon subtracting the estimated
interfering signal contributions associated with the remaining
transmit antennas.

By contrast, in [11] and [13], a similar technique was pro-
posed by Li with the aim of simplifying the DDCE approach
of [9], which operates in the time domain. A prerequisite for
the operation of this parallel interference cancellation (PIC)-
assisted DDCE is the availability of a reliable estimate of
the various channel transfer functions for the current OFDM
symbol, which are employed in the cancellation process in
order to obtain updated channel transfer-function estimates for
the demodulation of the next OFDM symbol. In order to com-
pensate for the channel’s variation as a function of the OFDM-
symbol index, linear prediction techniques can be employed,
as it was also proposed, for example, in [11]. However, due
to the estimator’s recursive structure, determining the optimum
predictor coefficients is not as straightforward as for a trans-
versal finite-impulse response (FIR) filter-assisted predictor
such as that proposed in [4]. This will be the topic of our fol-
lowing discourse.

In contrast to the above backcloth, the paper proposes rank-
reduced DDCE for multiuser OFDM systems supporting a high
number of users. To set the scene more explicitly, channel
estimation for single-user OFDM was discussed, for example,
by Li et al. [9], as well as by Edfors et al. [3]. To elaborate
further, the rank-reduced filtering approach, the linear predic-
tive procedure along the time direction, and the PIC process
have been used before in various different contexts. However,
in addition to supporting a high number of multiple users,
a further novel aspect of our scheme is the specific iterative
method proposed for calculating the predictor’s coefficients,
which can be invoked offline. This important aspect was not
treated by Li in [13], since single-tap prediction filtering was
considered. The predictor’s stability analysis is also new.

The outline of the papers is as follows. In Section II, we
portray the signal model associated with the spatial division
multiple access (SDMA) uplink transmission scenario. Note
again that in terms of the MIMO structure of the channel,
this SDMA system is equivalent, for example, to a single-user
STC scenario employing multiple transmit antennas. Hence, the
algorithms discussed here are amenable to a wide range of ap-
plications involving multiple transmit antennas. In Section III,
we will then focus on the PIC-assisted DDCE employing pre-
diction filtering along the time axis in the CIR-related domain.
Expressions are derived for the estimator’s mean-square error
(MSE) and an iteration-based novel approach is devised for
evaluating the optimum CIR-related tap predictor coefficients.
This is followed in Section IV by an extensive performance
assessment under both sample-spaced and nonsample-spaced
CIR conditions. Finally, in Section V, the PIC-assisted DDCE’s
complexity will be studied. Our conclusions will be offered in

2In the context of the OFDM system, the set of K different subcarriers’
channel transfer factors is referred to as the channel transfer function, or simply
as the channel.
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Fig. 1. Schematic of an SDMA uplink scenario, as observed on an OFDM
subcarrier basis, where each of the L users is equipped with a single transmit
antenna and the BS’s receiver is assisted by a P-element antenna front end.
For comparison, in an STC scenario, the L transmit antennas are used for
providing Lth-order transmit diversity for a single user. Note that, for the sake
of simplicity, we have omitted the subcarrier index k.

Section VI. In the Appendix, the conditions for the estimator’s
stability are presented.

II. THE SDMA SIGNAL MODEL ON A SUBCARRIER BASIS

In Fig. 1, we have portrayed an SDMA uplink transmission
scenario, where each of the P simultaneous users is equipped
with a single transmission antenna, while the receiver capital-
izes on a P-element antenna front end. The set of complex
signals, z,[n, k], p=1,..., P received by the P-element an-
tenna array in the kth subcarrier of the nth OFDM symbol
is constituted by the superposition of the independently faded
frequency-domain signals associated with the L users sharing
the same space-frequency resource. The received signal was
corrupted by the Gaussian noise at the array elements. Regard-
ing the statistical properties of the different signal components
depicted in Fig. 1, we assume that the complex data signal s()
transmitted by the [th user has zero mean and a variance of 7.
The additive white Gaussian noise (AWGN) noise process 7,
at any antenna-array element p also exhibits zero mean and
a variance of oﬁ, which is identical for all array elements.
The frequency-domain channel transfer factors H,(,l) of the
different array elements p=1,...,P or users [ =1,...,L
are independent stationary complex Gaussian distributed
random variables with zero mean and unit variance, namely,
o% =1.

III. ANALYTICAL DESCRIPTION OF FREQUENCY-DOMAIN
PIC-AsSISTED DDCE?

The specific structure of Section III is as follows. Our
portrayal of the frequency-domain PIC-assisted DDCE
commences in Section III-A, where we introduce the channel-
estimation algorithm. Furthermore, in Section III-B, an
iterative algorithm is developed for the offline calculation of
the predictor coefficients. Since normally the exact knowledge
of the channel’s statistics in the form of the space-time
space—frequency correlation function is unavailable, in
Section III-C, we discuss potential strategies for providing
estimates of the statistics required.

3Unless otherwise stated, the channel transfer-function estimator is simply
referred to as the channel estimator.
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Fig. 2. DDCE-aided OFDM receiver.

A. Structure of the PIC-Assisted DDCE

In Section III-A1, we discuss the structure of the PIC unit.
Expressions are provided both for the a posteriori channel
transfer-factor estimates arrived at after the PIC, as well as for
the a priori channel transfer-factor estimates upon taking into
account the effects of the CIR-related tap prediction filter. The
specific structure of the predictor arrangement is detailed in
Section III-A2.

1) Design of the PIC Unit: The structure of the OFDM
receiver is outlined in Fig. 2 and our discussions are related
to the DDCE block seen at the bottom of Fig. 2, which
will be discussed in more detail in the context of Fig. 3.
To elaborate a little further, following fast Fourier transform
(FFT) processing, the complex frequency-domain signal z[n, k|
associated with each of the K subcarriers, k =0,..., K — 1,
is equalized based on the a priori channel transfer-factor es-
timates generated during the previous OFDM-symbol period
for employment during the current period. As a result, the
linear estimates $[n, k] of the transmitted signals s[n, k] are
obtained. These estimates are classified, yielding the complex
symbols, 3[n, k| that are most likely to have been transmitted.
The classified symbols $[n, k] are then employed together with
the received subcarrier signals x[n, k] for generating a priori
channel transfer-factor estimates for employment during the
(n + 1)th OFDM-symbol period. The specific structure of the
DDCE scheme, which is indicated by the stylized illustration
at the bottom left corner, will be detailed in the paper.

Explicitly, the complex output signal x,[n,k] of the pth
receiver-antenna element in the kth subcarrier of the nth OFDM
symbol is given by

L
> H [, KsO [ k] + k] (1)
=1

xp[n, k] =

where the different variables have been defined in Section II.
Upon invoking vector notation, (1) can be rewritten as

- S0

where x,[n] € CK*1, H)[n] € , and n,[n] €
are column vectors hosting the subcarrier-related variables
xp(n, k), HZ(,i) [n, k], and n,[n, k], respectively, and S(V)[n] €
CK*K is a diagonal matrix having elements given by s [n, k],

(nJH [n] + n,[n] 2)

(Cle (CK><1
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Fig. 3. [Illustration of the PIC-assisted channel transfer-function estimation or
prediction block, associated with the jth user and any of the P receiver-antenna
elements. The PIC process is described by (3). The structure of the channel
transfer-function predictor follows the concepts of low-rank DDCE investigated
in [3], [4], and [16] for the single-user scenario.

where k=0,...,K —1. An a posteriori (apt) estimate
nggt[ | e CKX1 of the vector HY) [n] of “true” channel trans-
fer factors between the jth user’s single transmit antenna and
the pth receiver antenna can be obtained by subtracting all the
(L — 1) vectors of interfering users’ estimated signal contribu-
tions from the vector x,[n] of composite received signals of the
L users, followed by normalization with the jth user’s diagonal

matrix of detected complex symbols SU)[n], yielding

mHED [N | 3

Ll

1#]

where, for simplicity’s sake, we have omitted the receiver
antenna’s index p.* The PIC process based on (3) has been
further illustrated in Fig. 3. In (3), H{):[n] € CE*! denotes
the ith user’s vector of complex a priori (apr) channel transfer-
factor estimates predicted during the (n — 1)th OFDM-symbol
period for the nth OFDM symbol, as a function of the vectors
of a posteriori channel transfer-factor estimates aY

D apt [n - ’I’L]
associated with the previous N, number of OFDM symbols,
which is formulated as

A ) = 7 (B0 =1, B - NG ) @
We will further elaborate on the specific structure of the predic-
tor in the next section.

2) Design of the Predictor Unit: The channel transfer-
function prediction along the time direction follows the philos-
ophy of the two-dimensional (2-D) minimum MSE (MMSE)
channel transfer-function-estimation approach proposed by
Li et al. [4], which in turn is based on the rank-reduction-
assisted one-dimensional (1-D) MMSE channel-estimation
scheme proposed by Edfors and co-workers [3], [16]. A
prerequisite for the optimality of these techniques was
stated by Li et al. [4], arguing that the channel’s space—time

“This is also justified by the observation that the channel-estimation
processes of different receiver antennas are decoupled.
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space—frequency correlation function ry(At,Af) € C is
separable:

(AL Af) =E{H(t1, f1)H (t2, f2)} &)
=ru(At) - ru(Af) (6)

where H(t, f) € C denotes the channel’s frequency-domain
transfer factor at time—frequency position (¢, f) and rg (At) €
C is the channel’s space-time correlation function, while
r(Af) € C, the space-frequency correlation function. It was
demonstrated by Li et al. [4] that this separation is valid
under the assumption of uncorrelated scattering and upon fur-
ther assuming that identical normalized space—time correlation
functions are associated with the different paths. For further
related notes, please refer to [17, Ch. 2]. Let us now briefly
portray the unitary transform-based channel transfer-function
predictor associated with the ¢th user.

1) In the first step, in order to obtain the ith user’s
vector of a priori channel transfer-factor estimates for
the nth OFDM-symbol period during the (n— 1)th
OFDM-symbol period, which is denoted by Hapr[ I,
the vector of a posteriori channel transfer-factor

estimates H;p)t [n — 1] is subjected to a unitary linear

inverse transform UIOH ¢ CK*K - yielding the

vector hap)t[ 1] € CE*1 of CIR-related a posteriori
tap values:
b [n — 1] = OVIONET 0 - 1) @

From a statistical point of view, the optimum unitary
transform to be employed is the Karhunen—Loeve trans-
form (KLT) [3], [18] with respect to the Hermitian space-

frequency correlation matrix of a posteriori channel
RUIG _

transfer-factor estimates, which is given by R
E{H{

dptH(gtH }, when assuming the wide-sense station-

R[f]( i) c CKxK

arity of Hapt[ n]. The matrix can be

decomposed as RL§§) U[f](l)AEfgél)Um( OH

UQ{}S € CHK*K is the unitary KLT matrix of eigenvec-

tors, and A[ ](Z) € RE*K exhibits the diagonal form of

A([j;]tl) d1ag(/\£f;](zo,... /\z[jgt(;( 1)- The diagonal ele-

, where

ments of Ag’;]t
R[f]( i)

apt
frequency correlation matrix RIU1() = «?HMHM }
can be decomposed as RI/1() = U@ AVIOUIIGHH,
At this stage, we note that the error components con-

are referred to as the eigenvalues of

9o G

[19]. Similarly, the desired channel’s “true” space-

taminating the vector Hégt

[n — 1] estimating the vec-
tor H®[n — 1] of “true” channel transfer factors are
uncorrelated due to the statistical independence of the
AWGN and that of the modulated symbols transmitted in
the different subcarriers. Hence, both R[ ]( ) and RI/1®
share the same eigenvectors [18], which 1mphes that we
have U[f 1) — gle), 1 reality, however, the explicit

knowledge of the channel’s space-frequency correlation

2)

3)

matrix RI/1() and that of its unitary KLT matrix U1
is typically unavailable. Instead, an estimate RI1®) and
its associated unitary KLT matrix U™ has to be
employed, which—in contrast to the optimum KLT ma-
trix U1() __results in an imperfect decorrelation of the
a posteriori channel transfer-factor estimates.

In the second step, linear Nt[l]p-tap filtering is performed
in the time direction separately for those K number of
CIR-related components of hap)t, for which the variance
is significant. This is achieved by capitalizing on the

current vector hggt [n — 1] and the vectors h;gt [n — 7],
n=2. thp of the previous (Nti]p 1) number

of OFDM symbols. As a result, in the case of esti-
mation filtering [4], an improved estimate hapt [n—1]
of h)[n — 1] is obtained, although this technique was
not employed here. By contrast, in the case of the
prediction filtering employed here, an a priori estimate
hgp)r[ ] € CE*1 of h()[n] is obtained. In mathematical
terms, this can be formulated as

Nl
tap

h{) [n 7ﬂ“§:* [~ 1 —n]  ®)

where I( € CK*K denotes a sparse unity matrix
having unlty entries only at those Ky number of diagonal
positions, for which the variance of the associated compo-
nents of ijgt is significant. Furthermore, in (8), the vari-
able &%, — 1] € C denotes the (i — 1)th CIR-related
tap prediction-filter coefficient. Note that, for simplicity,
here we employ the same coefficient 6&)6 [# — 1] for fil-
tering each of the different Ky number of taps of the spe-
cific 7ith CIR-related vector h;p)t [n — 7], which follows
the concepts of robust channel estimation advocated by
Lietal. [4].

In the last step, the vector of CIR-related a priori tap
estimates hgp)r[ ] is transformed back to the OFDM
frequency domain with the aid of the unitary KLT matrix
U@, yielding the vector of a priori channel transfer-
factor estimates I:L(fp)r [n] for the nth OFDM-symbol
period:

B fr] = VOB o] ©)
This vector of a priori channel transfer-factor estimates
is in turn employed in the detection stage during the nth
OFDM-symbol period. Upon substituting (7) into (8), and
by substituting the result into (9), we obtain the following
relation between the vector of a priori channel transfer-
factor estimates derived for the nth OFDM symbol and
the vectors of a posteriori channel transfer-factor esti-
mates of the past Nt[i]p number of OFDM symbols:

NI
HO, ) =TW S &0 [n— A [n 4] (10)
n=1
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TABLE 1
SUMMARY OF PROCESSING STEPS ASSOCIATED WITH PIC-ASSISTED DDCE FOR MULTIPLE TRANSMIT ANTENNAS DURING THE nTH OFDM-SYMBOL
PERIOD. THE LINEAR FILTERING ALONG THE TIME DIRECTION FOLLOWS THE PRINCIPLES OF A ROBUST DDCE FOR SINGLE-USER OFDM AS

PROPOSED, e.g., BY LI ef al. [9]. THE CALCULATION OF THE FILTER COEFFICIENTS cfpre m—-1,n=1,. Nt[a]p 1S CONDUCTED WITH
THE AID OF THE ITERATIVE APPROACH DEVISED IN SECTION III-B.2, WHICH HAS BEEN SUMMARIZED AGAIN, IN TABLE II

Description | Operation

PIC-Step ﬁ%wzsm”w(ﬂM—EiS@Mﬁ%M>J:L“dem3
Filtering ﬂfjgr [n] = T(l) > t"l” égr)e[n —1]H pt[n —n],i=1,...,LofEq. 10

with T4 = UVIOT) OUIOH of Eq. 11
; L. S r(7) Kx1 :
where T(I?o.,p € CKXK is given by factor estimation errors AHap:[n] € C in the follow-

T% _ [”J[f](i)Ig?Ofﬂf](i)H. (11)

Again, the different steps of the PIC-assisted DDCE have been
illustrated in Fig. 3, as well as in Table 1.

After having described the process of generating the vec-
tors of a posteriori and a priori channel transfer-factor es-
timates in Sections III-Al1 and III-A2, we will embark in
Section III-B1 on an analytical evaluation of the associated
a priori estimation MSE.

B. Derivation of an Iterative Approach for Determining the
Set of Optimum Predictor Coefficients

Our discussions commence in Section III-B1 with the
derivation of an expression for the average a priori channel-
estimation MSE as a function of the corresponding estimation
MSEs associated with the previous Nt[gp number of OFDM
symbols. This expression is then employed in Section III-B2
—under the assumption that the system is in its steady-
state condition—for generating the different users’ vectors
of optimum predictor coefficients, again, as a function of
the predictor-coefficient-dependent a priori estimation MSEs.
Since the recursive structure of the channel transfer-function
estimator does not allow for an algebraic solution to be gener-
ated for the desired predictor coefficients, an iterative approach
is applied, which exploits the contractive properties of the sys-
tem equations. This approach was proposed earlier by Rashid-
Farrokhi et al. [20] in the context of simultaneously optimizing
the transmit power allocation and base-station (BS) antenna-
array weights in wireless networks.

1) A Priori Channel-Estimation MSE: Let us commence
our discussions in this section by developing an expression for
the vector of a priori channel transfer-factor estimation errors
associated with the jth user during the nth OFDM-symbol
period as a function of the vectors of a priori channel
transfer-factor estimation errors of the (L — 1) remaining
users during the Nt[;]p number of previous OFDM-symbol

periods. Assuming error-free symbol decisions, we have
SO —ni) =SDn—nl, j=1,...,L, n=1,... NI

Substituting (2) into (3), and then substituting the result into
(10), yields an expression for the vector of channel transfer-

ing form:

Nl

t1p

AHG ) = — T 3™ &0 [ — 18D [n — 7]
n=1
L . .
x> 8WDn —AJAHY), [n — 1]
=
N,
- T Z ) [h — 118D n — Aln[n — 7]
N
+ HO o) = TR S e[~ 1T [ — ]
n=1
(12)
where
AHY,, [n] = H[n] — HI, [n]. (13)

Please observe that, for the sake of avoiding notational confu-
sion, the variable ¢ of (10) has been substituted by the variable j.
The vector of a priori channel transfer-factor estimation errors
given by (12) is constituted by three components. Specifically,
the first term of (12) is due to the effects of the a priori
prediction errors of the Nt[;]p number of past OFDM symbols,
the second term is attributed to the contaminating effect of
the AWGN, and the third term is due to the lack of “perfect
predictability” of the channel transfer factors by the Nt[gp-order
predictor. In other words, the last term is due to the channel
transfer function’s decorrelation with time.

The average variance of the jth user’s vector of a priori
channel transfer-factor estimation errors, or equivalently, the
average mean-square a priori estimation error, can be expressed
in mathematical terms as

MSE{ [n] = (14)

apr %Trace (R AT, [n])
where R 50 [n] € CE*K denotes the autocorrelation matrix
of the vector Ang)r[n] of a priori channel transfer-factor
estimation errors. The computation of MSE(MD)r [n] of the jth
user’s vector of a priori estimation errors associated with the
nth OFDM-symbol period, as given by (12), will be carried out

in two steps.
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In the first step, let us evaluate the autocorrelation matrix

R, () [n]. This is achieved by substituting (12) into
RAﬁé{,)r [n]
g {Aﬂ;@r[n}AﬂgﬂH[n]} (15)
N N L
J ) Z ’5}(&[” 1]‘ ZU?RAHM [ — 1]|Diag
=
8
« T+ 202 S el — 1) TE TR + Ry
.7 n=1
(16)

where we introduced a new definition, namely, that of
the channel transfer-function decorrelation-related matrix
Ryo € CHE>*K which is given by

dec
R, =RV0 - T RVIOH. (ég)eHR[t](j))

dec

— RVIOTEM. (C;QTRWH )
T RIIOTEH . (élg@eHR[ﬂ(j)égge ) (7

In the context of (16), we have exploited the fact that the three
additive components of the vector Ang)r[ ] of a priori chan-
nel transfer-factor estimation errors in (12) are uncorrelated.
The uncorrelated nature of these three terms accrues from the
statistical independence of the complex AWGN process and
that of the complex valued process describing the channel trans-
fer function’s evolution versus frequency and time. We have
also exploited the fact that the complex symbols transmitted
in different subcarriers of a specific user’s signal during a
specific OFDM-symbol period, as well as the symbols trans-
mitted by the same user in different OFDM-symbol periods
and the symbols transmitted by different users, are statistically
independent, which also implies that they are uncorrelated. Still
considering (16), the variable o;; denotes the so-called “mod-
ulation noise-enhancement factor” [3], [21] defined as a; =
E{|sW[n,k]|?YE{|1/s9)[n,k]|>}. For M-ary phase shift
keying (MPSK)-based modulation schemes, such as quater-
nary PSK (QPSK), we have a = 1, while for higher order
quadrature amplitude modulation (QAM) schemes, we have
a > 1 [3], [21]. Note that here we have implicitly assumed
that the same modulation scheme is employed on different
subcarriers of a specific user’s transmitted signal. To elaborate
further, the variables to be defined in (17) are the space—time
correlation-function-related autocorrelation vector r[1() e
(CNt[:i]PXl of the channel transfer function, where the nth el-
ement is given by r{10)|, = E{HW*[n, k|HD [n — 1, k|},
and the space—time correlation-function-related autocorrelation
matrix R1G) e ¢V tav tav of the channel transfer function,
with the element (121, 2) given by R |, o = B{HU) [n—
i1, k| HO*[n — 115, k]}. Furthermore, &5, € CMin! s the
vector of conjugate complex CIR-related tap prediction-filter
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coefficients with its 7nth element given by ééjr)e|n = Egr)e*[ ]

The channel’s space—frequency correlation matrix RI/10) was
defined earlier in Section III-A.2. Let us now return to our
original objective, namely, that of developing an expression
for the average a priori channel transfer-factor estimation MSE
during the nth OFDM-symbol period.

In the second step, (16) is invoked in conjunction with (14)
for obtaining an expression for the jth user’s average a priori
channel transfer-factor estimation MSE as a function of the
remaining users’ a priori estimation MSEs associated with the

NHP number of previous OFDM-symbol periods:
N
() Koo~ | (i)
MSE(, [n] = = U; llh — 1] ‘ ZU2MSEapr n — ]
J n=1 1;&]
K
Ko oy ‘ &) o +MSE£1]e)C (18)

pre

where we have

1
MSE{), = —Trace (RHm) (19)

1 . .
= 0% — ?Trace (T[f](J)I(Ig()))

x (20 {1} — G@HRIWED) ) . (20)

In the context of deriving (18), we have capitalized on
the relations Trace(A + B) = Trace(A) + Trace(B), as well
as on Trace(UAUM) = Trace(A), which are valid for a
unitary matrix U [18], [22]. Furthermore, in the context
of deriving the first additive term in (18), we exploited
the fact that (I/K)Trace(T( )RAHgQr[ ]|D1agT§(iH) =
(Ko/K) MSEép)r[ 7], which is only valid for a unitary
transform matrix U0 having elements of unity magnitude.
This is the case, for example, when employing the discrete FT
(DFT) matrix W as the unitary transform matrix. The second
additive term in (18) is based on exploiting the relationship
of (l/K)Trace(T%zT%H) = Ky/K. We also note in this
context that T%ZH = ng, and that T%T%H = T%g

Furthermore, in (20), the matrix TG e CE*K denotes
the decomposition of the jth user’s channel’s space—frequency
correlation matrix RU/1) with respect to the unitary trans-
form matrix U@, which is expressed as T[ 16) =

AOHRING T ](3) Note that in contrast to A1) associ-
ated with the decomposition of RI/1) with respect to UL/1G),
the matrix YI/1G) is not necessarily of diagonal shape, con-
strained to having real-valued elements only.

2) Iterative Calculation of the CIR-Related Tap Predictor
Coefficients: In the steady-state condition, we can assume that
the specific user’s a priori and a posteriori estimation MSEs are
identical for different OFDM symbols, which is expressed as

MSEL, = MSE\ [n — 1]

apr

21
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where i=1,....,L and 7#=0,...,N  Hence, (18)
simplifies to
e _ Kooyl
MSEup: = 3¢ o8 |60
J
X ZU2MSE;p)r+U +MSEY.. (22)

1#]

Upon invoking (22), the jth user’s vector of CIR-related tap

predictor coefficients cf;,@ can be evaluated conditioned on

the remaining (L — 1) number of users’ a priori estimation
MSEs, namely on MSEigr, i=1,...,L,i# j, which ensues
by calculating the gradient of MSE with respect to the jth

user’s coefficients, yielding

apr

KO OéJ

2 pre

2MSE"”)

§ 2
apr + On

Héj

1 N . N
—Trace (T[ﬂ(ﬂlgg) % (rm(a) — RMO&H), ) 23)

VUMSEY)

where R[MG) and r) were defined in the context of (17).

The gradient vector, with respect to the jth user’s coefficients,

is defined here as VU) = 9/ (8c e ). In the context of (23),

we have exploited the fact that V(J)cprze =1, as well as the

fact that VWL = 0 and v J)(HC(J) I5) = &%k [19].
(7)

In the optimum point of operation, we have VU )MSEapr =
0 and hence, (23) can be solved for the jth user’s vector
of predictor coefficients, resulting in the Wiener-filter-related

solution of 3

Ky

c0) [y = |RIG
Cprelopt +
preep Trace (T[f I(]))

aj
7
J

-1

@) (24)

Il

L
x | 3 o?MSE(), + 02 | 1

Based on (22) and (24), a fixed-point iteration algorithm [19]
can be devised for obtaining the different users’ vectors of

SNote that in the context of identical transmit powers, modulation modes,
and channel statistics, (24) is significantly simplified, namely, we obtain
the same vector of predictor coefficients given by cpre\SIMPLE [R
(Ko/Trace(TU ) a((L—1)MSEap: [STMPLE 4 (62 /02 ))T) 1 - rlt],
as well as the same average estimation MSE for the different users. Fur-
thermore, note that upon removing the (L — 1) number of contributions,
which are related to the PIC process, we then obtain the expressions for
the estimation MSE and the vector of coefficients associated with a trans—
versal predictor, which can be expre@sed as Cpre, FIR\SIMPLE [R

(Ko/Trace(Y [f]IKO)) (02/c2)1)~1 - rlt],
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predictor coefficients under the constraint of minimizing the
sum of the different users’ a priori estimation MSEs. This
approach was proposed earlier by Rashid-Farrokhi et al. [20]
in the context of simultaneously optimizing both the transmit
power allocation and the base-station antenna-array weights
in wireless networks, leading to formulas similar to (22) and
(24). In our forthcoming discourse, we will briefly present the
steps of the algorithm with respect to our specific optimization
problem, but for a formal proof of the algorithm’s convergence
and that of the uniqueness of the solution, we refer to [20].
Note that, in the context of our description of the algorithm, the
iteration index—and not the OFDM-symbol index—is given in
the square brackets.

1) Initialize the different users’ a priori estimation MSEs,
for example, by setting MSEQP)r [0)=0forj=1,...,L.

2) For the nth iteration: Conditioned on the a priori estima-
tion MSE values obtained during the (n — 1)th iteration,

namely, on MSE;p)r[ —1], j=1,..., L, calculate the
different users’ vectors of optlmum predlctor coefficients
for the nth iteration, namely, cl(gre[ Nopt> 5 =1,..., L,
with the aid of (24).

3) Conditioned on the nth iteration’s predictor-coefficient
vectors cére[ llopts 5 =1,..., L, obtained in step 2) and
also conditioned on the (n — 1)th iteration’s a priori

estimation MSE values, namely on MSEElpr [n—1], 4=

1,..., L, calculate the nth iteration’s a priori estimation
MSE values of MSEC\[n], j = 1,..., L, with the aid

of (22).°
4) Start a new iteration by returning to step 2).

The essential equations of this optimization procedure have
been summarized again in Table II. Note that, instead of
invoking (22) separately for each user, the different users’
a priori estimation MSEs can also be calculated in parallel
with the aid of (33), as a result of which, an even faster
convergence is achieved. The price to be paid is a higher
computational complexity, since an explicit matrix inversion is
required in (33).

In the next section, we will address the problem of a
potential lack of knowledge about the channel’s exact statistics,
namely, that of the space-time space—frequency correlation
function.

C. Channel Statistics

As it was observed in (22) and (24), a prerequisite for deter-
mining the different users’ vectors of optimum CIR-related tap
predictor coefficients is the knowledge of the users’ space—time

6Recall that the representation of the jth user’s estimation MSE was valid
only when assuming that the unitary transform matrix Ulf] has elements of
unity magnitude, which is the case, for example, for the DFT matrix W.
However, in the more general scenario of employing an arbitrary unitary
transform matrix, which could be, for example, one of the robust transforms
proposed in [23], this condition is not fulfilled. In this case, the matrix
R [n] has to be explicitly iterated with the aid of (16), upon assuming

Raa0), [n] = R0, [
to obtain the estimation MSE required by step 2).

AR
apr
n — 7], followed by the application of (14), in order
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TABLE 1II
SUMMARY OF PROCESSING STEPS ASSOCIATED WITH THE OPTIMIZATION OF THE PIC-ASSISTED DDCE’S PREDICTOR COEFFICIENTS
Description | Operation
O-thiter. | Init. MSES)[0] = 0forj = 1,..., L
=T
: =) 1 — j K oy L _oyrer(® 2 j

n-th iter. 1.) &ge[n] = |REGD 4 WO(J)I(]));% (Z;é; o? MSE@pT [n—1]+ Un) I:| -0

2) MSEL) [n] = K el vl (zg IVISEy, 1]+ 0% ) + MSELL

J
with MSEL, = 0, — 4 Trace(TVIOTE)) - (2me(effl s} — L RIS )
forj =1,...,L of Eq. 24, 22 and 20, respectively.

channel transfer-factor correlation functions rg(j ) [An], j
1,..., L, defined by

D (An] = B {Hm[n, K- HO [ — An’k]}. (25)

These are required for evaluating the autocorrelation matrices
R!U) and cross-correlation vectors rl!()), for j =1,..., L.
Assuming Jakes’ fading model [24] for example, the channel
correlation along the time direction is given by [4]

[t](5)

Ty [An] =Jo (An~wg))

— i (An-wg))2,

(26)

An - w <<1 27

where Jy() denotes the zero-order Bessel function of the
first kind and wg ) — 2Ty f(] , and Ty being the OFDM-
symbol duration including the guard period time, while fD)
denotes the channel’s Doppler frequency. Since usually the
exact Doppler frequency f7; () i3 not known, it was demonstrated
in [4], in the context of a transversal-type estimator, that the
MSE performance degradation incurred due to a mismatch of
the channel statistics is only marginal, if a uniform ideally
support-limited Doppler power spectrum associated with
B F) > f]gj ) is assumed for the calculation of the correlation
coefficients of (25). The associated space—time correlation
function is given as the inverse FT of the uniform Doppler
power spectrum, which leads to

sin (An - oY
(an-58)

An'&g)

FHG)

H unif [An] (28)

Furthermore, the calculation of the vectors of CIR-related tap
predictor coefficients according to (24) also requires the evalu-
ation of the expression Trace(Y[/1U )Igi). More explicitly, we
recall from Section II-A2 that T/1) is the decomposition
of the jth user’s channel’s space—frequency correlation matrix
RU1G) with respect to the unitary transform matrix UL/1G),
which is formulated as TG = fJ[f](j)HR[f](j)fﬂf](j), and
Igg is a sparse identity matrix having unity entries only at

those Ky number of positions, which are associated with a
significant value of T/1(9). Hence, we note that the evaluation
of Trace (Y10 D% )) requires the knowledge of RI/1), which
is not directly avallable in practice.

A viable approach is that of obtaining an ‘“average”
value of Trace(Y[/10 )I(IQ}) by employing the space—frequency
correlation matrix R/JU) based on the space—frequency cor-
relation function associated with a uniform ideally support-
limited multipath intensity profile.” The sparse identity matrix

I%i could be designed for retaining the first K CIR-related

coefficients of Y1) __rather than the K largest one—or
alternatively, for retaining the first K{ and the last K{? CIR-
related coefficients of YI/1), where Ky = K{ + K}'. This
was suggested by van de Beek et al. [25] in the context of DFT-
based channel transfer-function estimation employed designed
for single-user OFDM systems.

IV. PERFORMANCE

With the exception of the results to be presented in
Section IV-B, our investigations were conducted for an SDMA
uplink scenario supporting four simultaneous equal-power
OFDM users, each equipped with one transmit antenna. At
the BS, four reception antennas were assumed. Furthermore,
for the sake of simplicity, the different users were assumed to
employ the same modulation scheme, and the channels between
the different transmit antennas and each receiver antenna were
assumed to have the same Doppler power spectrum.® Unless
otherwise stated, the specific channel statistics invoked were
that of the channel’s space—time correlation function provided
by the Jakes model, as given by (26), having an OFDM-
symbol-normalized Doppler frequency® of Fy = 0.007, which
corresponds to a vehicular speed of 50 km/h, or equivalently,

"The continuous unit-energy uniform power delay profile is given by
Th,unif (T) = (1/Tm)rect(T — Tshige /Tm), while its FT, namely the space-
frequency correlation function, is given by 7 unif (Af) = sin(rTmAf) -
e~ I2TTshist AF

8Recall that in this scenario, (24) and (33), associated with the iterative
optimization of the predictor coefficients, as proposed in Section III-B2, are
significantly simplified.

9The OFDM-symbol-normalized Doppler frequency is defined as Fp =
fpT}, where fp is the Doppler frequency and T’y denotes the OFDM symbol
duration.
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Fig. 4. Evolution of the a priori channel-estimation MSE according to (33),
as a function of the real-valued coefficients of the two-tap CIR-related tap
predictor employed in this particular example. The number of subcarriers was
K = 512, while the number of significant CIR-related taps was Ko = 16, in
the context of a sample-spaced CIR. Furthermore, the number of users was
L = 4 and the OFDM-symbol-normalized Doppler frequency was Fp = 0.1.
The space-time channel correlation function of (28), associated with a uniform
ideally support-limited Doppler power spectrum, was invoked. The SNR at the
reception antenna was equal to 20 dB.

31.25 mi/h in the context of the indoor wireless asynchronous
transfer mode (WATM) system’s parameters [1], [26] invoked
here.!® Furthermore, we considered “frame-invariant” fading,
where the fading envelope of each CIR-related tap has been
kept constant during each OFDM symbol’s transmission period.
This avoided the obfuscating effects of intersubcarrier inter-
ference and hence, enabled us to study the various channel
transfer-function-estimation effects in isolation. Furthermore,
apart from our investigations in Section IV-G, error-free symbol
decisions were assumed in the generation of the remodulated
reference used for DDCE.

A. Evolution of the A Priori Channel Estimation MSE in a
2-Tap CIR-Related Tap Prediction Scenario

In Fig. 4, we have exemplified the evolution of the aver-
age a priori channel transfer-factor estimation MSE according
to (33), as a function of the CIR-related tap predictor coeffi-
cients’ associated values, where we employed a two-tap predic-
tor, since for a higher number of predictor taps, a visualization

10Note that associated with the indoor WATM channel is a sample-spaced
CIR having a multipath spread of Ty, = 1275. In the context of our simula-

tions, which employed the indoor WATM channel’s CIR, the matrix I%g was
designed such as to retain the first Ko number of CIR-related taps. Hence, in
case that K > 12, we have Trace('r[f](j)l%;) =Ko?
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Fig. 5. A priori channel-estimation MSE versus SNR performance exhib-
ited by the PIC-assisted DDCE of Fig. 3, using the optimum recursive
predictor coefficients evaluated with the aid of the iterative approach of
Section III-B2. As a benchmarker, we have plotted the a priori channel-
estimation MSE performance achieved with the aid of the suboptimum
transversal predictor coefficients. Each of the SDMA scenario’s independently
faded channels is characterized by the indoor WATM channel parameters
of [1] and [26].

is less convenient. Also, note that the predictor coefficients
are real valued due to the employment of the real-valued
space—time channel correlation function of (26). In our partic-
ular example, the a priori channel-estimation MSE evaluated
from (33) is minimized for a coefficient vector of €prelops ~
(1.771,—0.898)T. By contrast, for coefficient pairs outside the
circle having a radius of /K /Koa(L — 1) ~ 3.27, centered
around the origin of the R? space, the channel estimator is
unstable, which is evidenced by an excessive MSE.

B. Influence of the Number of Simultaneous Users on the
A Priori Channel-Estimation MSE

In this section, we will demonstrate that the PIC-assisted
approach advocated here is capable of supporting scenarios of
a higher complexity in terms of the L number of simultaneous
users, than a maximum of L., = K/Kj, as supported by
the LS-assisted DDCE of [9]. Hence, in Fig. 5, we have plotted
the average a priori channel transfer-factor estimation MSE
of the PIC-assisted DDCE as a function of the L number of
simultaneous users, assuming an eight-tap CIR-related tap
prediction filter and a fixed number of Ky = 64 significant
CIR-related taps. This corresponds to 12.5% of the duration of
a 512-subcarrier OFDM symbol’s time-domain representation,
which may be viewed as the relative upper bound of the
CIR length in a well-designed OFDM system. Here, we
capitalized again on the idealistic assumption of encountering
error-free symbol decisions. We observe in Fig. 5 that the
a priori channel-estimation MSE performance is degraded
upon increasing the number of users supported. This is
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Fig. 6. A priori channel-estimation MSE versus OFDM-symbol-normalized
Doppler-frequency performance exhibited by the PIC-assisted DDCE of Fig. 3,
using optimum recursive predictor coefficients. The predictor coefficients were
optimized for Fp = 0.05, using the iterative approach of Section III-B2. As
in previous graphs, a Jakes’s spectrum-related space-time correlation function
obeying (26) was associated with the channel. Each of the SDMA scenario’s
independently faded channels is characterized by the indoor WATM channel
parameters of [1] and [26].

because more multiuser interference-related noise is inflicted
by the a posteriori channel estimates during the PIC process,
which is then injected into the a priori channel estimates’
prediction process. However, these effects can be mitigated by
increasing the predictor’s range. Again, we observe that, in the
context of the suboptimum transversal predictor coefficients of
footnote 5, the PIC-assisted DDCE tends to become unstable
at higher signal-to-noise ratios (SNRs).

C. Influence of a Mismatch of the OF DM-Symbol-Normalized
Doppler Frequency

In Fig. 6, we have portrayed the average a priori chan-
nel transfer-factor estimation MSE versus OFDM-symbol-
normalized Doppler-frequency performance of the recursive es-
timator of Fig. 3, in the context of employing a uniform ideally
support-limited Doppler power spectrum having a space—time
correlation function obeying (28) in the calculation of the CIR-
related tap predictor coefficients. Furthermore, a Doppler power
spectrum obeying Jakes’s model [24] and having a space—time
correlation function given by (26) was associated with the
channel. In our particular example, the predictor coefficients
were calculated upon invoking once again the iterative approach
of Section III-B2 for an OFDM-symbol-normalized Doppler
frequency of FD = 0.05. Furthermore, as a reference, we have
also plotted the a priori channel-estimation MSE performance
in the context of predictor coefficients, which were optimized
for the channel’s specific Doppler frequency. As reported in
[4] and also observed in Fig. 6, upon increasing the number
of predictor taps, the a priori channel-estimation MSE is ren-
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dered quasi-invariant for OFDM-symbol-normalized Doppler
frequencies, which are lower than that assumed in the cal-
culation of the CIR-related tap predictor coefficients, namely
Fp = 0.05. By contrast, for higher Doppler frequencies, a
rapid degradation of the MSE is observed in Fig. 6. This
“robustness” is achieved at the cost of a potentially significant
loss in performance compared to the case of optimally adapted
predictor coefficients. To give an example, it is seen in Fig. 6
that for an SNR of 20 dB and for 64 predictor coefficients, the
a priori channel-estimation MSE performance loss is as high
as 10 dB at an OFDM-symbol-normalized Doppler frequency
of Fp = 0.007, when the predictor coefficients were designed
for Fp = 0.05.

D. Effects of Correlated Domain Leakage Upon Assuming a
Uniform Nonsample-Spaced CIR"!

Our analytical evaluations in the previous sections were
conducted so far under the assumption of a sample-spaced CIR.
Using a sample-spaced CIR facilitates the recovery of almost
all the energy of the channel’s output, upon invoking a finite
number of Ky < K significant taps. By contrast, in the context
of the more realistic scenario of a nonsample-spaced CIR, the
energy conveyed by the channel is distributed over a higher
number of CIR-related taps, i.e., it potentially “leaks” to all
CIR-related taps.

In order to demonstrate the effects of leakage, in Fig. 7, we
have plotted the normalized variance of the diagonal elements

of the decomposition of Rl[ﬂif based on the space—frequency
correlation function g unir (A f) associated with the uniform
multipath intensity profile,'”> when employing the DFT matrix
W as the unitary transform matrix U1, which is expressed
mathematically as TVl = OUHRYL G, The “u”-shaped
evolution of the tap variances seen in Fig. 7 for tap indices
in excess of Ty,/Ts = 16 is, again, a result of the leakage

incurred. By contrast, in the context of decomposing the matrix
RLf ] ;¢ With the aid of the optimum KLT matrix, namely A‘[ﬁif =
Ul[u}lf R[ﬂlfULrLf, the channel’s energy is concentrated on a
number of CIR-related taps, which is only slightly higher [3]
than the multipath spread 7},, normalized to the sampling period

duration 75, as observed in Fig. 7.

E. A Priori Channel-Estimation MSE for a
Nonsample-Spaced Uniform CIR'

The corresponding a priori channel-estimation MSE curves,
which were evaluated with the aid of the iterative approach
of Section III-B2, are plotted in Fig. 8, as a function of
the Ky number of significant CIR-related taps. The factor
(Ko/Trace(YL ](J)I(J ) o)) of (24) was evaluated upon selecting

"The normalized multipath spread was set equal to one eighth of the
K = 512 subcarriers assumed here, namely, to T, /Ts = 64.

2The continuous unit-energy uniform power delay profile is given by
Th,unif (T) = (1/Tm)rect(T — Tghigs /Tm), while its Fourier transform,
namely the space-frequency correlation function, is given by 7 g unit (Af) =
sin(mTmAf) - e 927 Tshige Af

13The normalized multipath spread was set equal to one eighth of the
K = 512 subcarriers assumed here, namely, to T, /Ts = 64.
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Fig. 7. Illustration of the normalized variance associated with the diagonal
elements of the decomposition T = OERUTOUT of RUYT with respect
to U] = W and of the decomposition Al = UUVHERIIUUT with respect
to the optimum KLT matrix ULf1, in the context of a uniform multipath
intensity profile, having a normalized multipath spread of Ti, /Ts = 16. The
normalization of the diagonal elements of YT was carried out with respect to
the K' = 128 number of subcarriers.

the K largest tap variances from the decomposition TL{L&J ) =
UVIOHRVIDGIAG) of the specific space—frequency corre-
lation matrices of the channel with respect to UL/10) = W 14
The curves are also parameterized with the Nt[;]p number of
predictor taps. A rapid improvement of the estimator’s MSE is
observed upon increasing the Ky number of significant CIR-
related taps up to a certain optimum K value, which is a
consequence of retaining more of the channel’s energy. At
the same time, more of the undesired noise is retained, since
a gradually decreasing fraction of the CIR-related taps are
discarded. Upon increasing the Ky number of significant taps
beyond the optimum point seen in Fig. 8, the opposite behavior
is observed, namely, that the MSE is degraded again. This is
because for these taps, the benefit of extracting more of the
channel’s energy is lower than the penalty incurred due to
retaining more of the undesired noise. Note that this behavior
is a result of employing the same set of predictor coefficients
for the filtering of each of the different CIR-related taps. By
contrast, in the context of a predictor arrangement employing
individually optimized sets of coefficients for the prediction of
each of the different CIR-related taps, a “leveling out” of the a
priori estimation MSE performance would be observed, instead
of the explicit degradation seen in Fig. 8. This is because for
the low-energy CIR-related taps suffering from a low channel-

14Note that while for the sample-spaced CIR we have Trace(Tm (j)I(IQJ )=
KO'%_I for Ko < K upon appropriately selecting I(Ji, in thg context of the
nonsample-spaced CIR, we potentially have Trace(Y /1 )I%é )< K O'?_I for
Ko < K, which results from the leakage.
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Fig. 8. A priori channel-estimation MSE performance of the PIC-assisted
DDCE of Fig. 3, using optimum recursive predictor coefficients, versus the
Ko number of significant CIR-related taps retained in the context of a uni-
form multipath intensity profile, having a normalized multipath spread of
T /Ts = 64. The DFT matrix UV = W was employed as a transform basis.

related signal-component-to-noise ratio, the noise would be
more mitigated.

F. A Priori Channel Transfer-Factor Estimation MSE for a
Nonsample-Spaced CIR on a Subcarrier Basis

The specific distribution of the a priori channel transfer-
factor estimation MSE across the different subcarriers can also
be obtained using the approach outlined in Section III-B2 for
jointly optimizing the average a priori channel-estimation MSE
and the predictor coefficients.

However, this involves invoking (16) instead of (22) in the
algorithm outlined above. Again, in the context of a stable
operation, as defined in the Appendix, we assume that the
estimator’s statistics recorded in the form of the a priori
channel transfer-factor estimation errors’ correlation matrix

P , t
RAﬁé{,)r [n] = RAFI;{L [n — 7] is invariant for i = 1,. . ., Nt[a]p,
yielding
Aﬁgir'))r [n] = ? Cpre 5 Ko
J

L
X Z afDiag {RAI:Igip)r [n]} + 0'I21 T(IQ,H + RH((jj) . (29
i=1 °e

i#]

Recall that the desired subcarrier-based a priori channel
transfer-factor estimation MSE variances are found on the
main diagonal of the matrix R AR [n] of (29). The iter-
ation commences with an initial assignment for the matri-
ces R ARY) [n], 7 =1,..., L, potentially constrained by the
condition that the matrices are supposed to be Hermitian.
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Fig. 9. A priori channel-estimation MSE performance versus the subcarrier
index exhibited by the PIC-assisted DDCE of Fig. 3, using optimum recursive
predictor coefficients. The DFT matrix Ul = W was employed as a trans-
form basis.

The jth user’s a priori channel transfer-factor estimation-error
correlation matrix is then updated with the aid of (29), on
the basis of the remaining users’ error correlation matrices’
diagonals, denoted by Diag{R ARG, [rn]}, employing the re-
maining users’ associated current vectors of predictor coef-
ficients. After updating all users’ error correlation matrices,
the vectors of predictor coefficients are updated with the aid
of (24). This involves evaluating first the average a priori
channel transfer-factor estimation MSEs with the aid of (14),
on the basis of the updated error correlation matrices. The
iteration continues by updating the error correlation matri-
ces, again, upon invoking the updated vectors of predictor
coefficients.

Our analytical performance evaluations have been carried
out for the uniform multipath intensity profile, again, in con-
junction with a normalized multipath spread of T},,/Ts = 64
and for K = 512 subcarriers. The number of predictor taps
was Nt[;]p = 4. Our simulation results are portrayed in Fig. 9
for an SNR of 20 dB recorded at the reception antennas. The
curves are further parameterized with the Ky number of sig-
nificant CIR-related taps. As also evidenced by the simulation
results of Fig. 8, the value of K should be in excess of
Twm/Ts = 64 in order to be able to extract all the significant
taps and hence, to prevent an excessive degradation of the
MSE. The most important observation drawn from Fig. 9 is
that, as a result of the effects of leakage imposed by the
uniform multipath intensity profile, the estimation MSE is sub-
stantially degraded for the outer subcarriers of the frequency-
domain OFDM symbol. Estimation MSEs as high as —5 dB
are observed. Based on the relatively high MSE associated
with the outer subcarriers, we also expect, for these subcar-
riers, a significantly deteriorated bit error rate (BER) perfor-
mance, compared to the subcarriers at the center of the OFDM
symbol.
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Fig. 10. BER versus SNR performance of an uncoded system employing the
PIC-assisted DDCE of Fig. 3, using optimum recursive predictor coefficients
in conjunction with both MMSE and M-SIC (M = 2)-based detection at the
receiver. The fraction of training overhead imposed was either 6.25% or 100%,
which corresponds to transmitting one dedicated training OFDM symbol per
every block of 16 OFDM symbols, while the latter denotes the idealistic
case of an error-free reference. Each of the SDMA scenario’s independently
faded channels is characterized by the indoor WATM channel parameters
of [1] and [26].

G. System BER in the Context of Imperfect
Error-Contaminated Symbol Decisions
Assuming a Sample-Spaced CIR

So far, in this section, we have capitalized on the idealistic
assumption of error-free symbol decisions. By contrast, in a
realistic scenario, the channel-estimation process is impaired
by erroneous symbol decisions. These effects will be further
highlighted during our forthcoming discussions.

In Fig. 10, we have plotted the system’s QPSK-related BER
as a function of the SNR measured at the receiver antennas upon
invoking both MMSE detection and the more effective, but
also more complex, successive interference cancellation (SIC)
detection technique, where M = 2 tentative symbol decisions
were tracked from each detection node, which follows a similar
philosophy as that of [27]. The curves are further parameterized
with the number of CIR-related predictor taps, and the fraction
of training overhead incorporated. While a training overhead
of 6.25% corresponds to transmitting one dedicated training
OFDM symbol in every block of 16 OFDM symbols, a training
overhead of 100% indicates here the scenario where an error-
free remodulated reference was made available to the DDCE
for benchmarking. An interesting phenomenon is observed in
the context of MMSE detection, when using two predictor taps.
Due to an “excessive” number of erroneous subcarrier symbol
decisions encountered in a specific OFDM symbol—which
may be potentially induced by a deep fade on one of the
channels of the multiple users—the a priori channel-estimation
MSE encountered during the next OFDM symbol is severely
degraded, which in turn may trigger an avalanche of errors.
This may lead to the system’s instability. In the context of
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one-tap CIR-related tap prediction filtering, error-propagation
events exceeding the length of a training period duration
are prevented by periodically transmitting dedicated training
OFDM symbols. By contrast, in the case of a higher number
of predictor taps, the OFDM training block length should
ideally be identical to the number of predictor taps in order to
eliminate the possibility of error propagation across the training
OFDM symbols. Note furthermore that these effects are not
observed for the four-tap predictor—at least not in the range
of SNRs considered—since the effects of errors imposed by a
single OFDM symbol are more efficiently mitigated. Fig. 10 is,
again, an evidence of the SIC combiner’s more powerful detec-
tion capability.

V. COMPLEXITY

In this section, let us briefly analyze the algorithm’s com-
plexity. Since the optimization of the predictor coefficients
following the concepts of Section III-B2 could be conducted
offline, here, we will only consider the complexity of the PIC
and the predictor units, as portrayed in Section III-A. It can
be shown that the normalized complexity, expressed in terms
of the number of complex multiplications Cg *C and complex

additions Cg +C is given by
K
CxC _ 0 A7lHl
CO L = 2 + 1Og2 K + ?Ntap (30)
K
CEHC = (L — 1) + 2logy K + —2 N|! 31)

K tap

where the normalization was conducted with respect to the K,
L, and P number of subcarriers, users, and receiver antennas,
respectively. Note in (30) and (31) that the first additive term is
related to the PIC operation of Section III-A1, while the second
and third terms, to the transform and time-direction filtering
operations of Section III-A2.

VI. CONCLUSION

In this paper, PIC-assisted DDCE, designed for OFDM sce-
narios supporting multiple users employing multiple transmit
antennas at the BS, was investigated. Our mathematical
analysis provided in Section III characterized the PIC-
assisted DDCE’s structure in Section III-A, separately for
the PIC unit in Section III-A1, and for the predictor unit in
Section III-A2, respectively. Furthermore, in Section III-B, an
iterative approach was devised for the offline optimization of
the estimator’s CIR-related tap predictor coefficients. These
discussions included the derivation of the predictor’s a priori
channel-estimation MSE in Section III-B1, based on which,
the iterative optimization approach was derived later on in
Section III-B2. In the context of the MSE and BER per-
formance analysis conducted in Section IV, we found in
Section IV-B that the estimator is capable of supporting a
higher number of users employing more transmit antennas than
L = K/Kjy, which was found to be a limitation in the context
of LS-assisted DDCE of [9]. Furthermore, we demonstrated in
Section IV-C that the principles of robustness, with respect to
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the specific shape of the channel’s Doppler power spectrum,
can be applied similarly to the case of DDCE designed for
single-user OFDM, as investigated by Li ef al. in [4]. The
investigations of Sections IV-D-F were conducted with respect
to the employment of the PIC-assisted DDCE in the context
of nonsample-spaced CIRs, which resulted in the effect of
CIR-related domain leakage, when employing the DFT matrix
W as the unitary transform matrix Ul associated with the
estimator. Furthermore, we observed that the associated esti-
mation MSE was nonuniformly distributed across the differ-
ent subcarrier, where a significant degradation was observed
at the outer subcarriers. These DFT-related effects could be
mitigated upon employing the improved transforms proposed
by Li in [13], instead of the DFT matrix W. Our analysis of
the system’s BER recorded in the context of the sample-spaced
indoor WATM CIR, and upon assuming imperfect potentially
error-contaminated symbol decisions, showed that in order
to guarantee the estimator’s stability, the symbol decisions
should be as reliable as possible, which was achieved with
the advent of the powerful SIC detection scheme. A promising
further research area is constituted by the OFDM-symbol-
by-symbol-based adaptation of the CIR-related tap predictor’s
coefficients.

APPENDIX
A. Stability Analysis of the Recursive Channel Estimator

Recall that (22), which establishes a relation between the jth
user’s a priori estimation MSE and the remaining L — 1 users’
a priori estimation MSEs, can be viewed as a system of
equations for different values of j = 1,..., L, namely for the
different users. It can be shown that (22) can be represented in
a compact vectorial notation as

MSE,,; = Cpre - P! - F-P,- MSE,,,

+Cpre : P;1 “Pn+ MSEdec (32)

where MSE,,, € RE*1 hosts the different users’ a priori esti-
mation MSEs denoted by MSE;jp)r, j=1,..., L, and the diago-
nal matrix Cp,. € REXL hosts the dlfferent users’ CIR- related
tap prediction-coefficient-related terms of (Ko/K)a; HcpreHz,
j=1,...,L. A characteristic component is the feedback
matrix F € REXL, where the elements on all side diagonals
are of unit value, except for the main diagonal, whose elements
are zero. The relation to the PIC process is that for the estima-
tion of the jth user’s channel transfer function, the cochannel
interference imposed by the L — 1 remaining users has to be
removed. Note in this context that the jth row of matrix F
is associated with the estimation process of the jth user’s
channel. Furthermore, the diagonal matrix P, € RE*L hosts
the different users’ signal variances a i=1,...,L, while
the vector p, € RE*! exhibits 1dentlcal elements equal to the
AWGN noise variance o2, Finally, the matrix MSEq.. € R1*!
hosts the different users’ residual channel decorrelation-related
MSEs values, given by (1/K)Trace(RH<]j) ), j=1,...,L,

which are also a function of the individual users’ CIR-related
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tap predictor coefficients, as evidenced by (20). In order to
proceed further, (32) can be solved for the vector of a priori
estimation MSEs, conditioned on the knowledge of the vectors
ééﬂ)e, j =1,..., L of predictor coefficients, yielding'>

MSE,p = (1= Cpye - P;1-F-P,) "

: (Cpre . P;1 “Pn + MSEdec) . (33)

Per definition, the elements of MSE,, or, equivalently, the
different users’ a priori estimation MSEs must have a finite
positive value. This is coupled to the following conditions:

1) existence of (I — F)~!, where F = Cpo - P;! - F - Py
2) all elements of (I — ¥)~! must be positive.

It can be demonstrated that these two conditions are fulfilled,
if the spectral radius'® p(F) of the matrix F = Cpre - P71
F - Py is less than unity [28]. An upper bound estimate of
the spectral radius is given by the largest Euclidean distance
measured from the origin in C, exhibited by a point contained
in the union G(F) of Gershgorin disks of F. We note here
that with the aid of the Gershgorin circle theorem [19], explicit
bounds can be placed on the regions in C, which host the
eigenvalues of a matrix A € C™*". The ith Gershgorin disk is
defined as: R;(A) ={z € C: |z —ay| < 2%1 la;j|}, where
a;; is the element of the matrix A associatedjvs;ith its ith row
and jth column. The eigenvalues of the matrix A reside within
the union of Gershgorin disks of A, which is formulated in a
compact form as A(A) C |J", R;(A) = G(A) [19]. Hence,
provided that we have

max <1

(max (34)

K A
Fo [

i=1
i#]

L
2 2
Zo—i
2
2 O'j

it can be shown that (I —F) is invertible. By contrast, if
this condition is not fulfilled, no immediate conclusion can be
drawn with respect to the invertibility of (I — F).

A further criterion for the existence of the matrix inverse
(I—F)~! is coupled to the condition that the determinant
of (I— F) is nonzero, namely, that we have det(I — F) # 0.
It can be shown that for all elements of this specific matrix
inverse to be positive, as stipulated in (2), we have to satisfy
the condition of det(I — F) > 0. Furthermore, it can be shown
that det(I — F) = det(I — Cpre - F), which implies that the
channel estimator’s stability is only a function of the estimator
coefficients to be determined. Even if the channel conditions
are subjected to variations, the estimator remains stable for

I5Note that in the context of identical transmit powers, modulation
schemes, and channel statistics, (33) is significantly simplified, namely, we
obtain the same average estimation MSE given by MSEapr\SIMPLE =
(x(02/0?)llepre] + (1/K)Trace(Rar,.))/(1 — X(L — D)[&prell3).
where x = (Ko/K)a, as well as the same predictor coefficients for the
different users [1].

16Recall that the spectral radius of a matrix is the smallest radius of
a circle centered around the origin of Cpre that contains all the matrix’s
eigenvalues [19].
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a “stable” set of coefficients—provided that correct symbol
decisions are performed.
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