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Abstract

In this paper closed-form formulae are derived for
characterizing the BER performance of Large Area
Synchronous CDMA (LAS-CDMA) as a function of
both the number of resolvable paths L, and the max-
imum delay difference 7,,4:, as well as the number of
users K, when communicating over a Nakagami-m fad-
ing channel. Moreover, we comparatively studies the
performance of LAS-CDMA and the traditional ran-
dom code based DS-CDMA.

1. INTRODUCTION

In Direct Sequence Code Division Multiple Access (DS-CDMA)
systems, the spreading sequences characterize the associated
Inter Symbol Interference (ISI) as well as the Multiple Ac-
cess Interference (MAI) properties [1]. Traditional spread-
ing sequences, such as m-sequences [1], Gold codes [1] and
Kasami codes [1] exhibit non-zero off-peak auto-correlations
and cross-correlations, which results in a high MAI in case of
asynchronous uplink transmissions. Another family of orthog-
onal codes is constituted by Walsh codes [1] and orthogonal
Gold codes, which retain their orthogonality only in case of
perfect synchronization, but they also exhibit non-zero off-
peak auto-correlations and cross-correlations in asynchronous
scenarios. Consequently, these correlation properties limit the
achievable performance in asynchronous scenarios. Hence tra-
ditional DS-CDMA cellular systems are interference limited
and suffer from the so-called 'near-far’ effects, unless complex
interference cancellers [1] or multi-user detectors [1] are em-
ployed for combating these adverse effects. This results in
costly and ‘power-hungry’ implementations. All these limita-
tions are imposed by the imperfect correlation properties of
the spreading sequences employed.

The attractive family of Large Area Synchronized (LAS)
CDMA spreading sequences is constituted by the combina-
tion of the so-called Large Area (LA) codes [2,3] and Loosely
Synchronous (LS) codes [2,3]. The resultant LAS codes ex-
hibit an Interference Free Window (IFW), where the off-peak
aperiodic autocorrelation values as well as the aperiodic cross-
correlation values become zero, resulting in zero ISI and zero
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MALI, provided that the time-offset of the codes is within the
IFW. In this treatise we will investigate the attainable perfor-
mance of LAS-CDMA in a quasi-synchronous uplink scenario,
when communicating over a Nakagami-m channel and charac-
terize its BER performance as a function of both the number
of resolvable paths L, and the maximum propagation delay
Tmaz as well as the number of users K and the Nakagami fad-
ing parameter m. Furthermore, we will comparatively study
LAS-CDMA and traditional DS-CDMA systems.

This paper is organized as follows. Section 2 will introduce
the family of LAS codes, while Section 3 will describe the LAS-
CDMA system model. In Section 4 we will characterize the
BER performance of LAS-CDMA and in Section 5 we will
discuss our findings. Finally, in Section 6 we will offer our
conclusions.

2. GENERATION OF LAS-CODES

2.1. LA Codes

LA codes [2,3] belong to a family of ternary codes having el-
ements of +1 or 0. Their maximum correlation magnitude is
unity and they also exhibit an IFW. Let us denote the fam-
ily of the K number of orthogonal ternary codes employing
K number of binary £1 pulses by LA(La, M, K), which ex-
hibit a minimum spacing of M chip durations between non-
zero pulses, while having a total code length of L chips, as
shown in Figure 1. All the codes corresponding to an LA code
family share the same legitimate pulse positions. However, a
specific drawback of this family of sequences is their relatively
low duty ratio, quantifying the density of the non-zero pulses,
since this limits the legitimate variety as well as the resultant
number of codes available, which inevitably limits the number
of users supported. Li [2] characterized the legitimate pulse
positions of the LA code family, while Choi and Hanzo [3] fur-
ther increased the achievable maximum number of LA codes.
In the LAS-CDMA 2000 system [4], the LA codes used consti-
tute a modified version of the LA(La, M, K)=LA(2552, 136,
17) code, where there are K = 17 non-zero pulse positions, px,
k=0,---,16,

For a specific procedure concerning the design of LA-code
based LAS codes, please refer to [2, 3], where the associated
correlation properties and the IFW width of the codes were
also characterized.

2.2. Loosely Synchronized Codes

Apart from the LA codes of Section 2.1, there exists another
specific family of spreading codes, which also exhibits an IFW.
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Figure 1: Stylized pulse-positions in the LA(La, M, K) code having K number of binary 1 pulses, and exhibiting a minimum
spacing of M chip durations between non-zero pulses, while having a total code length of L4 chips.

Specifically, Loosely Synchronized (LS) codes [3] exploit the
properties of the so-called orthogonal complementary sets [3].

To expound further, let us introduce the notation of LS(N, P, W)

for denoting the family of LS codes, which are generated by
applying a (P x P)-dimensional Walsh-Hadamard (WH) ma-
trix to an orthogonal complementary code set of length NV, and
by inserting Wy number of zeros both in the center and at the
beginning of the complementary pair. Owing to space limi-
tations the interested readers are referred to [3,5] for further
details on the family of LS codes.

2.3. Seeding LS Codes in LA Codes to Generate LAS
codes

We observed in Section 2.1 that the main problems associ-
ated with applying LA codes in practical CDMA systems are
related to their low duty ratio and to the resultant limited
number of available codes. A specific family of LAS codes
mitigates this problem by combining the LA codes of Sec-
tion 2.1 and the LS codes of Section 2.2. More specifically, LS
codes are inserted between the non-zero pulses of the LA code
sequence of Figure 1, in an effort to generate an increased va-
riety and number of spreading codes having an increased duty
ratio, while maintaining attractive correlation properties. For
example, in the LAS-2000 system [4] the LS spreading codes
are inserted into the LA code’s zero space, as shown in Fig-
ure 2.

Let us denote the combined code generated by inserting the
LS(N,P,Wy) code into the LA(La,M,K) code as LAS(La, M, K
N, P,Wp), which is created by employing the so-called abso-
lute encoding method of [2,3]. For the sake of preserving the
original IFW size of the constituent LS(NN,P,Wy) code when
combined with an LA(L4,M,K) code employing the absolute
encoding scheme, the length of the LS code - including Wy
number of trailing zeros - should not exceed the minimum
pulse spacing M of the LA code for the sake of avoiding their
overlap after they were inserted into the LA code, requiring
that we have:

PN +2W, < M. (1)

3. LAS-CDMA SYSTEM MODEL

We support K asynchronous CDMA users in the system and
each user is assigned an unique signature waveform cy(t) =
G-1
Z cripr, (t —iT.), where G is the spreading gain and i, (¢)
i=0
is the rectangular chip waveform, which is defined over the

interval [0,7¢). Consequently, when the K users’ signals are
transmitted over the frequency-selective fading channel con-
sidered, the complex low-pass equivalent signal received at a
given base station can be expressed as:

K Lp—1
R(t) =) V2Pgcy(t — IT. — 1) bi (t — IT. — 73,)
k=1 I=

Xhii exp(jOri) + N(t),  (2)
where N(t) is the complex-valued low-pass-equivalent AWGN
having a double-sided spectral density of Ny and 74 is the
propagation delay of user k, while 7 is assumed to be a ran-
dom variable uniformly distributed in the range of [0, Tmaz],
and L, is the total number of resolvable paths. hy; will obeys
the so-called Nakagami-m fading [6,7].

4. BER ANALYSIS

Let us assume that we have achieved perfect time synchro-
nization and that perfect estimates of the channel tap weights
as well as phases are available, and coherently combine the L
number of path signals with the aid of the RAKE combiner,
the output Zj; of the RAKE receiver’s [th finger sampled at
t="T+ T, + 7, can be expressed as:
Zyi = Dyt + I, (3)
where Dy represents the desired direct component, which may
be expressed as:
Dy = V2PTbi [0]h7y. (4)
In Equation 4 by [0] is the first bit transmitted by the kth user,
where we have b;[0] € {+1, —1}. Hence, the interference plus
noise term [Ij; in Equation 3 can be expressed as:
Iy = Iy [S) + I [M] + N, (5)
where I1;[S] represents the multipath interference imposed by
the user-of-interest, which may be expressed as:

fo 1 hklp COS Hklp

InlS] = V2PTihx — "
lp=0 s
Ip#l

/ el = (b — DT clt — (1 — DToJeldr. (6)
0
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Figure 2: LAS(La, M, K; N, P,W,) spreading, inserting the LS codes into the zero-space of the LA codes seen Figure 1.
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Figure 3: Illustration of the interference suppression capability
of the LAS codes for the first finger of the RAKE receiver,
when the width of the IFW is ¢« = 2.

Furthermore, Ij;;[M] represents the multiuser interference in-
flicted by the K — 1 number of interfering signals, which may
be formulated as:

K Lp—

Iu[M] = VoPT.hi, Z Z M
k/=1 lp=0
k' #k
'TS
. / b [t — (1 — DT — (rr — 70)] %
Jo
et — (Ip = D)Te — (i — 7)]c[t]dt. (7)

In Equation 6 and Equation 7 the cos(-) terms are contributed
by the phase differences between the incoming carrier and the
locally generated carrier used in the demodulation. Finally,
the noise term in Equation 5 can be expressed as:

T,
Net = it / n(t)elt] cos(2r ot + Oua)dt, (8)
0

which is a Gaussian random variable having a zero mean and
a variance of NoTshil7 where {h;} represents the path atten-
uations.

The MRC’s decision variable Z,, which is given by the sum
of all the RAKE fingers’ outputs, can be expressed as:

Ly—1

T = Z A
=0

Let us now consider the interference suppression achieved with
the aid of the IFW of LAS codes. In this scenario, only the
paths arriving from the interfering users outside the IFW will
inflict MAT upon the reference user, and this user’s own de-
layed paths arriving outside the IFW will additionally impose
MPI. Observe in Figure 3, for example that both the kth user
and the (k + 1)st user encounter five multipath components.
When we considered the kth user’s first RAKE receiver finger
and an IFW of + = 2, only those two paths of the kth user will
impose MPI, which fall outside the code’s IFW. Similarly, the

(9)

(k + 1)st user imposed only one interfering path on the kth
user’s first RAKE finger’s decision variable, since four of the
five path fall within the IFW. Hence, we will investigate the
interference suppression capability of the IFW, as shown in a
stylized fashion in Figure 3.

Given a fading attenuation set of {hx:;,{ = 0,1,..., L. —1},
it can be shown that the BER of the LAS-CDMA system may
be expressed as:

Ly—1

Z Q’Yl )
=0

where Q(z) represents the GaUSSIan Q-function, Wthh can also
Q(z) = Oﬂ/z exp ( o 9> df, where
we have z > 0. Furthermore, 27, in Equation 10 represents

the output Signal to Interference plus Noise Ratio (SINR) at
the lth finger of the RAKE receiver, while ~; is given by:

P(v)=Q (10)

be formulated as [7]

hi
= c . —, 11
M= g (11)
The expression of 7. may be formulated as:
Ts(l)  2KYm()  (QE\ |
c = — 12
7 G 3¢ T\ W (12)

The MPI and MAT interference reduction factors of Tg(l) and
Y () are given as

Lp—1
Ts()=2G- > e "[phn(€) + oin(©)),  (13)
|ll37|o>b
Z / ma:c/ max o
Tmaz Tma:v
M¢k
L,—1
> M (PR (1) + B (7e)drrd, (14)

1p=0

[(lp =D TeA4(Tpr =T ) | >t Te
where the p7,(-) and g%,(-) are the partial auto-correlations of
the LAS-codes [8], while pr/i(7.) and py/p(7c) are the partial
cross-correlations of the LAS-codes [8].

For the random code based DS-CDMA system [9], the cor-
responding ~y. expression is given by [9]:

n (%\i”)_l]l, (15)

where we have q(L,,n) = Z e

=0

q(Lp,n) — 1 + 2K q(Ly,
G 3G

Ve =



4.1. Bit Error Probability Analysis

The average BER, P,(F) can be obtained by the weighted av-
eraging of the conditional BER expression of Equation 10 over
the joint PDF of the instantaneous SNR values corresponding
to the L, multipath components {7y, : { =1,2,...,L,}. Since
the random variables v; are assumed to be statistically inde-
pendent, the average BER expression of Equation 10 may be
formulated as [7]:

1 /2 Ly—1
aw = [ ] 0G0 (16)
where we have
_ o i
1 5.0) = [~ exn (= 225) pun)an (1)

2
Since we have v, = ¢ - “;24) and h; obeys the Nakagami-

m distribution, it can be shown that the PDF of +; can be
formulated as:

mi my ,_ymlfl ( ml’}/l)
== exp (| ——— >0 18
pul) = (2)" TS (<), ez, (9

where 7, = y.e™™ for [ =0,1,...,L, — 1.
Upon substituting Equation (18) into Equation (17) it can
be shown that we have [7]:

my sin® 0

my
—_— . 19
5, + my sin® 0> (19)

00 =

Finally, upon substituting Equation (19) into Equation (16),
the average BER of both the random and LAS-code based
CDMA system can be written as:

w/2 Lr=1 .2 my
Pb(E):l/ 11 (_7”“5”“.02 > do.
T Jo o \ 7+ musin 0

(20)

5. PERFORMANCE OF LAS DS-CDMA

In our investigations we compared a traditional and a LAS-
code based CDMA system, both of which have the same chip-
rate and bandwidth. In the LAS-CDMA 2000 system, the
LA(2552,136,17) and LS(4,32,4) codes are combined, as seen in

G=128, K=32,1=0.2,1=3, 7 =2T_ L =3,L =4,
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Figure 4: BER versus channel SNR performance comparison
of random code based classic CDMA and LAS CDMA, when
communicating over different Nakagami fading channels.

to an AWGN channel. We can observe from Figure 4 that the
LAS-CDMA scheme exhibited a significantly better BER per-
formance than the traditional DS-CDMA system, regardless of
the value of m. More specifically, provided that all these uplink
users are in a quasi-synchronous state, i.e we have 7y00 = 27¢
and L, = 4, the LAS-CDMA scheme outperformed the tradi-
tional DS-CDMA system, when communicating over different
Nakagami multipath fading channels.

Figure 5 shows the performance of these two systems for
transmission over different dispersive channels having L, =
4...12 resolvable multipath components and assuming that
L, = 3 of these components were actually combined by the
RAKE receiver owing to its complexity limitation. We can
observe from Figure 5 that when the channel became more
dispersive, the LAS-CDMA system’s performance was signif-
icantly degraded and its gain over the traditional DS-CDMA
system was eroded. Nonetheless, the LAS-CDMA scheme
still outperformed the traditional DS-CDMA system, provided
that the users were in a quasi-synchronous state, i.e when we
had Tmae = 27.

In Figure 6 we can observe that as the maximum propa-

Figure2.MoreeXplicitly,thetotallengthoftheLS(N,P,Wo):LS(4,32,4)gation delay Tmae increases, the performance of LAS-CDMA

code is Ly = NP + 2Wy = 136 chips, which is incorporated
into the LA(La, M, K)=LA(2552,136,17) code. Although the
length of this LS code is Lg = NP + 2W,y = 136, the effec-
tive spreading gain of the LAS code is identical to that of its
constituent LS codes, namely Gras = Grs = 128. By con-
trast, a traditional random code based CDMA system hav-
ing the same L4 = 2552 chips would have a higher spread-
ing gain, since it does not have any zero-valued gaps, nor
has an IFW. Hence the corresponding spreading gain becomes
GRandom = 2552/17 = 151. For simplicity’s sake, we assume
that all paths have the same Nakagami fading parameter, i.e.
we have m; =m, [ =0,...,L, — 1.

Figure 4 exhibits the performance of these two systems
communicating over different fading channels associated with
various Nakagami fading parameters. More explicitly, when
we have m = 1, we model a Rayleigh fading channel, m = 2
represents a Rician fading channel, while m — oo corresponds

significantly degrades. In the strongly dispersive scenario,
when we have Tmae: > 107, the LAS-CDMA system’s per-
formance becomes inferior in comparison to that of traditional
DS-CDMA. This is because the insertion of zeros in the LAS
codes reduces the effective spreading gain of the LAS-CDMA
system and when the delay difference 7,4, increases, the MAI
suppression capability will be inevitably reduced. Further-
more, outside the IFW their correlation properties are worse
than those of classic spreading codes.

In Figure 7, we can observe that for K > 60 users the
LAS-CDMA system will have no advantage in comparison
to the traditional DS-CDMA scheme, or may even perform
worse than the traditional DS-CDMA arrangement, although
all users operate in a quasi-synchronous manner. Hence, we
may conclude that the employment of LAS-CDMA is benefi-
cial in low user load scenarios, where the delay spread is also
limited.
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Figure 5: BER versus channel SNR performance comparison
of random code based classic CDMA and LAS CDMA over
different dispersion channels.
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Figure 6: BER performance comparison of random code based
classic CDMA and LAS CDMA as a function of the maximum
delay difference Tpqz.-
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Figure 7: BER performance comparison of random code based
classic CDMA and LAS CDMA as a function of the number
of users K supported.

6. CONCLUSION

In conclusion, LAS-CDMA was investigated, which exhibited
a significantly better performance than the traditional random
code based DS-CDMA system in a relatively low chip-rate sce-
nario, provided that all users operate in a quasi-synchronous
manner. As the chip-rate increases, the number of resolvable
paths also increases, which will impose a performance degra-
dation. Hence, as suggested in Figure 5, LAS-CDMA may be
expected to have a moderate performance gain over the tra-
ditional DS-CDMA system, when L, is in excess of 12. Fur-
thermore, the limited number of available LAS codes having
a certain IFW width suggests that the employment of LAS-
CDMA is beneficial in a low-user-load scenario.
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