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Abstract— In this contribution wideband channel estimation and pre-
diction designed for single-carrier wideband wireless communications sys-
tems are investigated. Specifically, the single-carrier wideband pilot signal
received by the receiver is first converted to the frequency-domain. Then,
the envelope of the channel transfer function (CTF) is estimated in the
frequency-domain, in order to reduce the effects of background noise on
the channel prediction step to be invoked. Finally, channel prediction is
carried out based on the estimated CTF in the frequency-domain, where
a Kalman filter assisted long-range channel prediction algorithm is em-
ployed. Our simulation results show that for a reasonable signal-to-noise
ratio (SNR) value the proposed frequency-domain based wideband chan-
nel estimator is capable of efficiently mitigating the effects of the back-
ground noise, hence enhancing the performance of wideband channel pre-
diction.

I. INTRODUCTION

Adaptive modulation is capable of substantially improving the
achievable system performance, provided that the relevant channel
state information (CSI) can be accuratelly predicted [1], [2]. In fu-
ture wireless systems, the carrier frequency is likely to be high, which
results in a high Doppler frequency. For systems using CSI feedback,
the outdated information estimated based on the past data may not be
sufficiently accurate. In this case we may have to know the CSI in
advance, which can be achieved with the aid of long range CSI predic-
tion [3].

In the context of wideband channel prediction [4], [5], [6], amongst
others subspace based algorithms have been investigated. In [4] the
ESPRIT algorithm has been employed for the prediction of fast fading
wideband channels. Since the time-domain variations of the wide-
band channel transfer functions (CTF) are typically highly correlated,
the CTF values encountered at different frequencies may be recorded
during an observation segment and used in the ESPRIT algorithm for
wideband channel prediction. More specifically, it was shown in [4]
that the complex path gains may be determined by solving a set of
linear equations. Finally, the CTF can be extrapolated in order to pre-
dict the future CTF. In [5], [6] both the one-dimentional 1-D and 2-D
Unitary-Esprit algorithms have been employed for estimating the CTF.
Once the CTF has been determined, its future values can be extrapo-
lated in both the time and frequency domain.

An attractive technique designed for the estimation or prediction of
wideband channels is based on transfering the received signal from the
time-domain to the frequency-domain and estimating or predicting it in
the frequency domain [2]. More specifically, in the frequency-domain
the available frequency band can be divided into a number of sub-
bands, each having a bandwidth lower than the coherence bandwidth
of the channel, so that signals transmitted in each subband experience
flat fading. In this case, each of the subchannels can be estimated or
predicted using a variety of schemes designed for flat fading channels.
Specifically, each subchannel can be predicted using for example the
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long-range prediction techniques of [3] proposed for narrowband fad-
ing channels.

In this contribution we investigate both wideband channel estima-
tion and prediction designed for single-carrier communications sys-
tems. Specifically, in our scheme the received pilot signal is first
transformed to the frequency-domain, where the CTF of the wideband
channel is estimated. Then, the future CTFs of the wideband chan-
nel are predicted with the aid of the current as well as previous CTFs
estimated in the frequency-domain (FD), using a Kalman filter based
long-range channel prediction scheme.

The outline of the paper is as follows. Section II briefly charac-
terises the family of wideband channels, while Section III describes
our transmission scheme. The topic of Section IV is channel estima-
tion and prediction, while our results are discussed in Section V

II. WIDEBAND WIRELESS CHANNELS

In wideband wireless communications the received signal can be
expressed as

r(t) =

+∞∑
k=−∞

bkc(t; t − kTb) + z(t), (1)

where bk represents the discrete-time transmitted signal, Tb is the sym-
bol period and z(t) is the AWGN component having zero mean and a
variance of N0/2. In (1) c(t; τ) represents the combined channel im-
pulse response (CIR), which can be expressed as

c(t; τ) = g(t) ⊗ g(t; τ) ⊗ g∗(−t), (2)

where g(t) and g∗(−t) represent the pulse shaping filter at the trans-
mitter and the corresponding matched filter at the receiver, respec-
tively, while g(t; τ) represents the physical time-varying frequency-
selective fading channel’s impulse response (CIR).

Furthermore, in (2) the operator ⊗ denotes the convolution oper-
ation. When r(t) of (1) is sampled at the symbol rate, we obtain a
discrete-time received signal, which can be expressed as

rn ≡ r(t)|t=nTb =

+∞∑
k=−∞

c(n;k)b(n−k) + zn. (3)

Equation (3) suggests that the combined impulse response c(n;k) may
extend to infinity. However, in communications applications it is gen-
eral practice to truncate it to a finite duration L, yielding the discrete-
time model represented by

rn =

L−1∑
k=0

c(n;k)b(n−k) + zn. (4)

0-7803-8887-9/05/$20.00 (c)2005 Crown Copyright



III. SINGLE CARRIER DATA TRANSMISSION

In single carrier block-based data transmission over multi-
path fading channels, there are N useful data symbols, namely
[b(k;0), b(k;1), · · · , b(k;N−1)], in the kth transmission block. However,
in order to eliminate the dispersion-induced interblock interference
(IBI), often a cyclic prefix consisting of u ≥ L − 1 symbols [7] is ap-
pended to these N useful data symbols. For the sake of aiding channel
prediction, the u-symbol cyclic prefix is often chosen to be the same
as the last u useful data symbols in each length-N transmission block.
Consequently, a transmission block is comprised of (N +u) data sym-
bols, namely of [b(k;N−u), · · · , b(k;N−1), b(k;0), b(k;2), · · · , b(k;N−1)].
Let TB be the duration of a transmission block, and Tb be the duration
of a data symbol, then we have

TB = (N + u)Tb. (5)

We assume that the CIR encountered is time-invariant during the
transmission of a transmission block [7], [8], [9]. Furthermore, we
assume that for the kth transmission block the CIR vector ck may be
expressed as

ck = [c(k;0), c(k;1), · · · , c(k;L−1)]
T , (6)

where the superscript T represents the transpose, and

c(k;l) = c(kTB ; lTb) (7)

denotes the channel’s amplitude sampled at the time instant of the lth
data symbol within the kth transmission block. According to (4) and
(7), the received signal samples of the kth transmission block can be
expressed as

r(k;n) =

L−1∑
l=0

c(k;l)b(k;n−l) + z(k;n), n = 0, · · · , N + u − 1. (8)

Having received (N +u) number of samples corresponding to a trans-
mission block, the first u samples are discarded, in order to elimi-
nate the IBI. Consequently, the N received samples corresponding to
the kth transmission block after removing the cyclic prefix can be ex-
pressed as

rk = Ckbk + zk, (9)

where rk consists of the N number of samples, which is expressed as

rk = [r(k;0), r(k;1), · · · , r(k;N−1)]
T , (10)

zk is an N -dimensional noise vector expressed as

zk = [z(k;0), z(k;1), · · · , z(k;N−1)]
T (11)

and bk is an N -dimensional vector containing the N number of trans-
mitted data symbols within the kth transmission block, which is given
by

bk = [b(k;0), b(k;1), · · · , b(k;N−1)]
T . (12)

Finally, in (9) Ck is an (N × N)-dimensional circulant matrix with
the first column containing the CIR extended by (N − L) zeros [8].

Since Ck is a circulant matrix, it can be shown that Ck may be
expressed as [8]

Ck = QHΛQ, (13)

where the superscript H represents the conjugate transpose operation,
and Q is the (N×N)-dimensional orthonormal discrete Fourier trans-
form (DFT) matrix satisfying QQH = I.

In (13) Λ is a diagonal matrix, whose (n, n)th element is equal to
the nth DFT factor c̆(k;n) of [c(k;0), c(k;1), · · · , c(k;L−1)], which can
be expressed as

c̆(k;n) =

L−1∑
l=0

c(k;l)e
−j2π ln

N , 0 ≤ n ≤ N − 1. (14)

Notice that c̆(k;n) in (14) is in fact the discrete CTF.
Upon applying the DFT to the received samples rk, we obtain the

frequency domain received signal vector, which can be expressed as

r̆k = Λb̆k + z̆k, (15)

where b̆k =
√

NQbk represents the DFT of the input symbol vec-
tor bk shown in (12), while z̆k =

√
NQzk is the DFT of the noise

vector zk of (11). When the noise sample zk is assumed to be gen-
erated by an AWGN process having a variance of N0/2, the covari-
ance matrix of zk is N0/2IN . Consequently, the covariance matrix
of the discrete time noise process z̆k can be computed according to
E[z̆kz̆

H
k ] = NN0/2IN . Hence, the discrete time noise vector z̆k is

still a white Gaussian vector.

IV. CHANNEL ESTIMATION AND CHANNEL PREDICTION

In practice only noisy channel samples are available and the noise
has a detrimental impact on the performance of the prediction. Hence,
in order to mitigate the effect of noise contamination on prediction,
channel estimation is typically carried out prior to channel prediction.

A. Channel Estimation in the Frequency Domain

In the context of single carrier systems, when the pilot symbol block
is received, the time-domain pilot information can be converted to the
frequency-domain by using the DFT, as argued in Section III. Accord-
ing to (15), the frequency domain pilot signal r̆(k;n) can be expressed
as

r̆(k;n) = c̆(k;n)b̆(k;n) + z̆(k;n). (16)

Upon dividing both sides of (16) by b̆(k;n), c̃(k;n), namely of the esti-
mate of c̆(k;n), can be expressed as

c̃(k;n) =
r̆(k;n)

b̆(k;n)

= c̆(k;n) +
z̆(k;n)

b̆(k;n)

, n = 0, 1, · · · , N − 1. (17)

The autocorrelation function of c̆(k;n) can be expressed as [10]

r[∆k; ∆n] = E[c̆(k;n)c̆
∗
(k

′
;n

′
)
] = rt[∆k]rf [∆n], (18)

where ∆k = k − k
′
, ∆n = n − n

′
, and rt[∆k] is the time-domain

symbol-spaced autocorrelation function, which can be expressed as
[10]

rt[∆k] = J0(2πfdm∆kTB), (19)

where J0(·) is the zero-order Bessel function of the first kind and fdm

is the maximum Doppler frequency. Furthermore, in (18) rf [∆n] is
the frequency-domain symbol-spaced autocorrelation function, which
can be expressed as [11]

rf [∆n] =

L−1∑
l=0

σ2
l e−j2π∆nf0τl , (20)



where we have f0 = 1/(NTb) [12], τl represents the delay of the lth
multipath component and σ2

l is its average power. Accordingly, the
autocorrelation function of c̃(k;n) in (17) is given by

E[c̃(k;n)c̃
∗
(k

′
;n

′
)
] = rt[∆k]rf [∆n]

+
NN0

2

1

|b̆(k;n)|2
δ(∆k)δ(∆n). (21)

Furthermore, the cross-correlation between c̃(k;n) and c̆(k;n) is given
by

E[c̃(k;n)c̆
∗
(k

′
;n

′
)
] = rt[∆k]rf [∆n]. (22)

Based on (17) the channel estimation in the frequency-domain can
be formulated as

ĉ(k;n) = dH
(k)c̃(k) 0 ≤ n ≤ N − 1, (23)

where ĉ(k;n) represents the estimate of c̆(k;n) in the frequency-domain
and d(k;i) represents the ith filter coefficient. Furthermore, in (23)
d(k) = [d(k,0), d(k;1), · · · , d(k;N−1)]

T denotes the coefficient vec-
tor of the frequency-domain filter designed for estimating c̆(k;n) and
c̃(k) = [c̃(k;0), c̃(k;1), · · · , c̃(k;N−1)]

T is the CTF vector having the el-
ements given in (17). The coefficient vector d(k)o optimized in the
MMSE sense can be obtained by using Wiener filtering according to
[13], which may be expressed as

d(k)o = R−1
f rf , (24)

where Rf is the (N ×N)-dimentional autocorrelation matrix of c̃(k),
which is given by

Rf = E[c̃(k)c̃
H
(k)], (25)

while rf is the (N × 1)-dimentional cross-correlation vector given by

rf = E[c̃(k)c̆
∗
(k;n)]. (26)

Furthermore, it can be shown that the minimum MSE Jfo(k;n) after
frequency domain filtering can be expressed as

Jfo(k;n) = rf [0] − rH
f R−1

f rf . (27)

After frequency-domain filtering in the MMSE sense, ĉ(k;n) can be
expressed as

ĉ(k;n) = c̆(k;n) + ζ(k;n), (28)

where ζ(k;n) is a zero-mean process having a variance of Jfo(k;n),
which represents the estimation error between ĉ(k;n) and c̆(k;n). Fur-
thermore, the autocorrelation function of ĉ(k;n) at a given frequency
can be expressed as

E[ĉ(k;n)ĉ
∗
(k

′
;n)

] = rt[∆k]rf [0] + Jfo(k;n)δ(∆k). (29)

Note that when deriving (29) we exploited the property that ζ(k;n) is
independent of ĉ(k;n) and it is also indepent of ζ(k′;n), when we have
k �= k′ [10].

B. Long Range Prediction of Wideband Channels

Let us assume that a pilot symbol block having the same number
of symbols as the data symbol block is inserted in every M th tran-
mission block, i.e. the seperation between the pilot symbol blocks is
(M − 1) transmission blocks. By long-range prediction, we mean that
the CTF corresponding to the next pilot symbol block is predicted with
the aid of all pilot blocks available from past, as illustrated in Fig. 1.
Then, the specific CTF corresponding to the data symbol block to be
demodulated is obtained by interpolating the CTF over K number of
consecutive pilot symbol blocks. Since the CTF c̆(k;n) experiences
narrowband fading at a given frequency, after the FD channel estima-
tion, a Kalman filter can be used to predict the future CTF at each
frequency.

Specifically, for a fixed frequency component n, the CTF can be
described by an AR model [14], which can be formulated as

c̆(k;n) =

p∑
m=1

amc̆(k−m;n) + w(k;n), (30)

where {am} represents the AR coefficients and w(k;n) is the complex
white Gaussian noise. Let us introduce the following notation:

F(k−1;n) =




a1 · · · ap−1 ap

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0


 ; (31)

c̆(k;n) = [c̆(k;n), c̆(k−1;n), · · · , c̆(k−p+1;n)]
T ; (32)

w(k;n) = [w(k;n), 0, · · · , 0]T . (33)

Then, the Kalman process equation can be described as [13]

c̆(k;n) = F(k−1;n)c̆(k−1;n) + w(k;n), (34)

where F(k−1;n) is the (p×p)-dimentional transition matrix and w(k;n)

is the (p × 1)-dimentional process noise vector, respectively. Accord-
ing to (28) the Kalman measurement equation can be written as

ĉ(k;n) = H(k;n)c̆(k;n) + ζ(k;n) (35)

where H(k;n) is a (1 × p)-dimentional measurement matrix, which is
given by

H(k;n) = [1, 0, · · · , 0]. (36)

Consequently, the Kalman filter based channel prediction can be for-
mulated as [13]

c̀[(k+1;n)|(k;n)] = F(k;n)c̀[(k;n)|(k−1;n)] + G(k;n)α(k;n), (37)

where c̀[(k+1;n)|(k;n)] represents the MMSE prediction of c̆(k+1;n)

based on all the k observations of past pilot symbol blocks for a spe-
cific frequency component, while G(k;n) and α(k;n) are the Kalman
gain and the innovation process, respectively [13].

V. SIMULATION RESULT

In our simulations the average received SNR, γb, evaluated before
the DFT is defined as

γb =
ε

N0

L−1∑
l=0

σ2
l , (38)
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Fig. 1. Illustration of long range prediction for single-carrier systems.

where ε is the average energy per symbol, N0/2 is the variance of the
Gaussian noise and σ2

l = E[|c(k;l)|2] is the average power of the lth
path. Furthermore, the pilot symbol block bk is given by

bk = [1, · · · , 1︸ ︷︷ ︸
16

,−1, 1, · · · , 1︸ ︷︷ ︸
16

, · · · ,−1, 1, · · · , 1︸ ︷︷ ︸
16

,−1, 1, · · · , 1︸ ︷︷ ︸
16

]. (39)

Since the autocorrelation matrix may become singular when calculat-
ing the AR coefficients [14], a small positive value of 1e − 9 is added
to its main diagonal when calculating the AR model coefficients {am}
in our simulations.

In Fig.2, the CTF MMSE performance achieved after the frequency-
domain CTF estimation according to (27) is demonstrated, when as-
suming that the maximum Doppler frequency was fdm = 120Hz, the
transmission block duration was TB = 0.00025s, the number of mul-
tipath components was L = 10, the length of the transmission block
was N = 128, the cyclic prefix was constituted by u = 9 symbols, the
power intensity was σ2

l = 0.1 for each multipath component, and the
average SNR was γb = 20dB. we can see from Fig.2 that the MMSE
increases near-linearly with the frequency index n, when n is lower
than about 10. Furthermore, the MMSE remains near-constant, when
the frequency index n is in the range spanning from about 10 to 110.
Beyond this point, the MMSE linearly decreases with the frequency
index n.

In Fig.3 and Fig.4 the time-domain envelope of the true CTF c̆(k;n)

and the Kalman filter based CTF prediction of c̀[(k;n)|(k−1;n)] are
shown when assuming γb = 20dB and γb = 30dB, respectively
and assuming that the spacing of pilot symbol blocks was M = 5, and
the order of the Kalman filter was p = 20. All other parameters are
the same as in Fig.2. We can observe from Fig.3 and Fig.4 that when
the SNR is sufficiently high, the Kalman filter based CTF predictor is
capable of closely tracking the wideband channel frequency-domain’s
envelope, and the predicted CTF closely agrees with the true CTF.

Finally, in Fig.5 we evaluated the achievable CTF MMSE perfor-
mance versus the time expressed in terms of the number of the pilot
symbol blocks used by for the Kalman filter based CTF predictor. We
assumed that the SNR was γb = 20dB and γb = 30dB, respectively.
All other parameters are the same as in Fig. 3 and Fig. 4. In Fig. 5
the CTF MMSE corresponding to the 0th and 50th frequency compo-
nents were recorded. We can observe from the results of Fig. 5 that
the MMSE reaches a certain residual value, when the number of pilot
symbol blocks increases. Moreover, for a fixed SNR value of γb, the
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Fig. 2. The CTF MMSE achieved after frequency-domain CTF estimation,
when assuming that the maximum Doppler frequency was fdm = 120Hz, the
transmission block duration was TB = 0.00025s, the number of multipath
components was L = 10, the length of the transmission block was N = 128,
the length of the cyclic prefix was u = 9, the power intensity was σ2

l = 0.1
for each multipath component and the average SNR was γb = 20dB.

MMSE corresponding to the 0th frequency component is lower than
that corresponding to the 50th frequency component. The reason for
the above observation is that a different MMSE was obtained for dif-
ferent frequency components after the frequency domain estimation,
as shown in Fig.2.
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