VTC 2006 Fall Dallas

Iterative Joint Video and Channel Decoding in a Trellis-Based Vector Quantized Video Codec and Trellis Coded Modulation Aided Wireless Videophone

R. G. Maunder, J. Kliewer, S. X. Ng, J. Wang, L-L. Yang, L. Hanzo

School of ECS University of Southampton

Outline

□ Introduction

- □ System Overview
- □ Trellis-Based Vector Quantization
- □ Results
- □ Conclusions and Future Work

Shannonian Video and Channel Coding

- Video and channel coding may be performed independently without penalty.
- However, this requires a number of conditions to be met, including:
 - □ infinite complexity and
 - □ infinite latency.
- Hence, Shannonian video and channel coding is not practical.
- □ This motivates joint video and channel coding.

Joint Video and Channel Coding

- As in the Shannonian approach, the video codec achieves compression.
- However, like the channel codec, the video also has a Forward Error Correction (FEC) capability.
- In the receiver, video and channel decoding are performed jointly.
- □ We employ:
 - a frame differencing and trellis-based Vector Quantization (VQ) video codec and
 - □ a Trellis Coded Modulation (TCM) channel codec.

Transmitter

System Overview

Receiver

- The TCM decoder and the VQ decoders iteratively exchange mutually extrinsic Log Likelihood Ratio (LLR) soft information.
- □ This extrinsic information is exploited as *a priori* information during decoding.
- □ The *a priori* information is subtracted from the resultant *a posteriori* information to obtain more reliable extrinsic information for use in the next iteration.

Frame Difference Decomposition

- □ The Frame Difference (FD) e is decomposed into M number of sub-frames $[e^1 \dots e^M]$ for the sake of reducing trellis-based VQ complexity.
- □ Each FD sub-frame $e^{\mathbf{m}}$, $m \in [1 \dots M]$, comprises J number of video blocks $[e_1^m \dots e_J^m]$ chosen as one Macro Block (MB) from each MB group.
- □ This ensures that the sub-frames have similar characteristics.
- □ For example:

Vector Quantization Codebook

- □ The LBG-algorithm designed VQ codebook comprises K number of VQ tiles $[VQ^1 ... VQ^K]$ of various dimensions.
- □ This allows the efficient encoding of large areas of low FD activity.
- □ Each VQ tile VQ^k , $k \in [1...K]$, is represented by a minimum free-distance 2 Reversible Variable Length Code (RVLC) $RVLC^k$ with an entropy-considered length.

□ For example:

$\frac{(J_x^k \times J_y^k) = J^k}{(2 \times 2) = 4}$ $(1 \times 2) = 2$	$\frac{I^k}{2}$	RVLC ^k
$(2 \times 2) = 4$ $(1 \times 2) = 2$	$\frac{1}{2}$	0
$(1 \times 2) = 2$	2	
	-	11
$(1 \times 1) = 1$	3	101
$(1 \times 1) = 1$	4	1001
$(1 \times 1) = 1$	5	10001
VQ tiles: Video block, comprising (8×8) pixels.		
5	$(1 \times 1) = 1$ 3 $VQ^{1} VQ^{2} VQ^{2}$	$(1 \times 1) = 1 \qquad 3$ $(1 \times 1) = 1 \qquad 4$ $(1 \times 1) = 1 \qquad 5$ s: Video (8 × 8) (8 × 8) (8 × 8) (9 × 9

Trellis-Based Vector Quantization

Vector Quantization Code Constraints

- □ Each J video block FD sub-frame e^m must be represented by an exact tessellation of VQ tiles from the VQ codebook.
- □ The corresponding transmission sub-frame $\mathbf{u}^{\mathbf{m}}$ is formed by concatenating the corresponding RVLC codes and *must* comprise *I* number of bits $[u_1^m \dots u_I^m]$.
- These code constraints must be adhered to during VQ encoding and may be exploited to achieve FEC during VQ decoding.
- □ For example:

Transmission sub-frame, comprising I = 17 bits.

Trellis-Based Vector Quantization

Vector Quantization Trellis Structure

- □ Each transition *T* in the trellis represents a possible application of the J^{k^T} -block VQ tile VQ^{k^T} and the corresponding I^{k^T} -bit RVLC $RVLC^{k^T}$.
- □ The trellis represents every possible *J*-block FD sub-frame ê^m and *I*-bit transmission sub-frame u^m combination.
- □ For example:

Trellis-Based Vector Quantization

Vector Quantization Encoding and Decoding

- □ VQ encoding performs the Viterbi algorithm on the trellis using a mean squared error distortion metric.
- □ This ensures that the VQ code constraints are adhered to and obtains the optimal Minimum Mean Squared Error (MMSE) encoding.
- □ The trellis is also employed during VQ decoding to guarantee the recovery of valid information and to provide a FEC capability by exploiting the VQ code constraints and the minimum free distance of the RVLCs.
- □ The BCJR algorithm is performed on the basis of the transmission sub-frame *a priori* soft information $L_a^2(\mathbf{u^m})$.
- □ *A posteriori* soft information $L_p^2(\mathbf{u}^m)$ is obtained by considering the *a posteriori* probabilities of transitions on vertical cross sections through the trellis.
- Similarly, a MMSE soft FD sub-frame reconstruction e^m is obtained by considering horizontal cross sections through the trellis.

Simulation parameters

 $\hfill\square$ 100 frames of 'Lab' QCIF (176×144) -pixel 10 fps video sequence

- \Box M = 33, J = 12, I = 45, K = 512, 14.85 kbps
- \Box 3/4-rate TCM using 16QAM modulation
- $\hfill\square$ Bandwidth efficiency of $\eta=2.00$ bit/s/Hz
- \Box $E_b/N_0 = 3.96$ dB at Rayleigh fading channel capacity limit
- □ Two schemes: 0.1s latency (1485 bit interleaver length) and 5.0s latency (74250 bit interleaver length)

EXIT chart

- □ Using minimum free-distance 2 RVLCs ensures that VQ decoding can achieve unity extrinsic mutual information and an infinitesimally low decoding error.
- \Box Tunnel for $E_b/N_0 > 5.25$ dB, just 1.29 dB from the channel capacity limit.

PSNR performance

□ VQ- and MPEG4-based bench-markers employ iterative channel decoding, have a 0.1s latency and have the same computational complexity as our approach.

Conclusions and Future Work

- □ A trellis structure describes the complete set of VQ code constraints.
- Optimal MMSE VQ encoding is achieved by employing the Viterbi algorithm.
- BCJR VQ decoding exploits VQ code constraints to achieve FEC, to guarantee the recovery of valid video information and to allow MMSE soft reconstruction.
- □ Iterative decoding convergence to an infinitesimally low decoding error is possible within 1.29 dB of the channel capacity limit.
- □ Future work will consider the application of the proposed method to standard video codecs, such as H.264/AVC.

