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Introduction

Shannonian Video and Channel Coding

❏ Video and channel coding may be performed indepen-
dently without penalty.

❏ However, this requires a number of conditions to be met,
including:

❏ infinite complexity and

❏ infinite latency.

❏ Hence, Shannonian video and channel coding is not prac-
tical.

❏ This motivates joint video and channel coding.



VTC Spring 2006
Dallas

U n i v e r s i t y
of Southampton

Introduction

Joint Video and Channel Coding

❏ As in the Shannonian approach, the video codec achieves
compression.

❏ However, like the channel codec, the video also has a For-
ward Error Correction (FEC) capability.

❏ In the receiver, video and channel decoding are performed
jointly.

❏ We employ:

❏ a frame differencing and trellis-based Vector Quantiza-
tion (VQ) video codec and

❏ a Trellis Coded Modulation (TCM) channel codec.
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System Overview
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System Overview

Receiver

❏ The TCM decoder and the VQ decoders iteratively exchange mutually extrinsic
Log Likelihood Ratio (LLR) soft information.

❏ This extrinsic information is exploited as a priori information during decoding.

❏ The a priori information is subtracted from the resultant a posteriori informa-
tion to obtain more reliable extrinsic information for use in the next iteration.

(1)y

L
1

a
(u) = L

2

e
(u)

L
1

e
(u)

+
−

decoder
TCM

L
1

p
(u) = L

2

e
(u) + L

1

e
(u)

L
2

e
(u)

L
2

a
(uM)

Reconstruction
buffer

f̃n−1

+
−

+

f̃n
+

L
2

a
(u) = L

1

e
(u)

(2)
M VQ

decoders

LLR
interleaver

LLR
deinterleaver

L
2

a
(u1)

L
2

p
(u) = L

1

e
(u) + L

2

e
(u)

recomposer
Frame difference

(M sub-frames)
LLR partitioner

LLR
concatenator

ẽ1
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Trellis-Based Vector Quantization

Frame Difference Decomposition

❏ The Frame Difference (FD) e is decomposed into M number of sub-frames [e1 . . . eM]

for the sake of reducing trellis-based VQ complexity.

❏ Each FD sub-frame em, m ∈ [1 . . . M ], comprises J number of video blocks [em
1 . . . em

J ]

chosen as one Macro Block (MB) from each MB group.

❏ This ensures that the sub-frames have similar characteristics.

❏ For example:

Macro-block grouping
boundaries. Each macro-
block group comprises
M = 33 macro-blocks.

Video block, comprising
(8 × 8) pixels.

Macro-block, comprising
J

MB = 4 video blocks.

FD sub-frame e
m, comprising

J = 12 video blocks.

FD e, comprising
M · J = 396 video blocks.
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Trellis-Based Vector Quantization
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Trellis-Based Vector Quantization

Vector Quantization Codebook

❏ The LBG-algorithm designed VQ codebook comprises K number of VQ tiles
[VQ1 . . .VQK] of various dimensions.

❏ This allows the efficient encoding of large areas of low FD activity.

❏ Each VQ tile VQk, k ∈ [1 . . . K], is represented by a minimum free-distance 2 Re-
versible Variable Length Code (RVLC) RVLCk with an entropy-considered length.

❏ For example:
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Vector Quantization Code Constraints

❏ Each J video block FD sub-frame em must be represented by an exact tessellation of
VQ tiles from the VQ codebook.

❏ The corresponding transmission sub-frame um is formed by concatenating the corre-
sponding RVLC codes and must comprise I number of bits [um

1 . . . um
I ].

❏ These code constraints must be adhered to during VQ encoding and may be exploited
to achieve FEC during VQ decoding.

❏ For example:
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Trellis-Based Vector Quantization

Vector Quantization Trellis Structure

❏ Each transition T in the trellis represents a possible application of the JkT
-block VQ tile

VQkT
and the corresponding IkT

-bit RVLC RVLCkT
.

❏ The trellis represents every possible J-block FD sub-frame êm and I-bit transmission
sub-frame um combination.
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Trellis-Based Vector Quantization

Vector Quantization Encoding and Decoding

❏ VQ encoding performs the Viterbi algorithm on the trellis using a mean
squared error distortion metric.

❏ This ensures that the VQ code constraints are adhered to and obtains the
optimal Minimum Mean Squared Error (MMSE) encoding.

❏ The trellis is also employed during VQ decoding to guarantee the recovery of
valid information and to provide a FEC capability by exploiting the VQ code
constraints and the minimum free distance of the RVLCs.

❏ The BCJR algorithm is performed on the basis of the transmission sub-frame
a priori soft information L2

a(um).

❏ A posteriori soft information L2
p(um) is obtained by considering the a posteriori

probabilities of transitions on vertical cross sections through the trellis.

❏ Similarly, a MMSE soft FD sub-frame reconstruction ẽm is obtained by consid-
ering horizontal cross sections through the trellis.
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Results

Simulation parameters

❏ 100 frames of ‘Lab’ QCIF (176× 144)-pixel 10 fps video sequence

❏ M = 33, J = 12, I = 45, K = 512, 14.85 kbps

❏ 3/4-rate TCM using 16QAM modulation

❏ Bandwidth efficiency of η = 2.00 bit/s/Hz

❏ Eb/N0 = 3.96 dB at Rayleigh fading channel capacity limit

❏ Two schemes: 0.1s latency (1485 bit interleaver length) and 5.0s latency (74250 bit
interleaver length)
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Results

EXIT chart

❏ Using minimum free-distance 2 RVLCs ensures that VQ decoding can achieve unity
extrinsic mutual information and an infinitesimally low decoding error.

❏ Tunnel for Eb/N0 > 5.25 dB, just 1.29 dB from the channel capacity limit.
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Results

PSNR performance

❏ VQ- and MPEG4-based bench-markers employ iterative channel decoding, have a 0.1s
latency and have the same computational complexity as our approach.
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Conclusions and Future Work

Conclusions and Future Work

❏ A trellis structure describes the complete set of VQ code constraints.

❏ Optimal MMSE VQ encoding is achieved by employing the Viterbi al-
gorithm.

❏ BCJR VQ decoding exploits VQ code constraints to achieve FEC, to
guarantee the recovery of valid video information and to allow MMSE
soft reconstruction.

❏ Iterative decoding convergence to an infinitesimally low decoding error
is possible within 1.29 dB of the channel capacity limit.

❏ Future work will consider the application of the proposed method to
standard video codecs, such as H.264/AVC.


