
Improvements to the Implementation of
Interpolant-Based Model Checking

João Marques-Silva

Technical University of Lisbon,
IST/INESC-ID, Portugal
jpms@sat.inesc-id.pt

Abstract. The evolution of SAT technology over the last decade has
motivated its application in model checking, initially through the uti-
lization of SAT in bounded model checking (BMC) and, more recently,
in unbounded model checking (UMC). This paper addresses the utiliza-
tion of interpolants in UMC and proposes two techniques for improving
the original interpolant-based UMC algorithm. These techniques include
improvements to the computation of interpolants, and redefining the
organization of the unbounded model checking algorithm given the in-
formation extracted from interpolant computation.

1 Introduction

The utilization of Boolean Satisfiability (SAT) in Model Checking has been
the subject of intensive research in recent years. The main result of this effort
has been a number of very competitive incomplete and complete algorithms for
checking safety properties (see [3] for a comprehensive list of references and an
extended version of this paper). Moreover, SAT-based model checking has also
been rapidly adopted by industry, and a number of vendors have included SAT-
based Model Checking in their tools. This paper describes preliminary work on
optimizing the utilization of interpolants in SAT-based model checking [4]. Two
techniques are proposed and evaluated. First, we propose the computation of in-
terpolants directly from the proof trace and skip the generation of the resolution
proof, and study the implementation of techniques for eliminating redundancy
from the computed interpolants. Second, we propose to utilize information from
the fixed-point checks of the UMC algorithm for redefining the organization of
the UMC algorithm.

2 Interpolant-Based Unbounded Model Checking

The generic propositional formula associated with SAT-based bounded model
checking is the following [2]:

ψj,k
BMC = ψI(Y/Y0) ∧

k−1∧

i=0

ψT (Y/Yi, Y
′/Yi+1) ∧ (

k∨

i=j

¬ψi
S) (1)

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 367–370, 2005.
c© IFIP International Federation for Information Processing 2005

368 J. Marques-Silva

This formula represents the unfolding of the state machine for k computation
steps, where ψI(Y/Y0) represents the initial state, ψT (Y/Yi, Y

′/Yi+1) represents
the transition relation between states Xi and Xi+1, and ψi

S represents the target
property in computation step i. Given the BMC propositional formula ψj,k

BMC,
it is straightforward to generate a CNF formula ϕj,k

BMC. The resulting formula
can then be evaluated by a SAT solver. Recent work on SAT-based UMC has
addressed the utilization of interpolants [4], with quite promising experimen-
tal results. McMillan’s [4] interpolant-based UMC algorithm can be organized
into two main phases: a BMC step, where the circuit is unfolded, and the ex-
istence of a counterexample is checked, and a UMC step, where the existence
of a fixed-point is tested. Whereas the first phase corresponds essentially to the
standard BMC algorithm, the second phase requires the iterative computation
of interpolants until a fixed-point is reached or a (possibly) false counterexample
is identified. See [3] for a detailed description of McMillan’s UMC algorithm.

3 Optimizations to the Basic UMC Algorithm

This section addresses two optimizations to the basic interpolant-based UMC
algorithm proposed by McMillan [4]. First, we address the construction and
simplification of interpolants. Afterwards, we show how to exploit the informa-
tion from the interpolant iteration phase for rescheduling either the UMC or the
BMC loops. As noted by McMillan [4], interpolants obtained from unsatisfiabil-
ity proofs are highly redundant Boolean expressions. In [4] the author proposes
the utilization of BDDs, but no details are provided. For complex problem in-
stances, that yield hard instances of SAT, with large unsatisfiability proofs, the
interpolants before simplification can reach extremely large sizes. Our experience
has been that interpolants before simplification can be more than two orders of
magnitude larger than the resulting interpolants after simplification. Moreover,
although modern SAT solvers can easily be instructed to generate proof traces,
the generation of the actual unsatisfiability proof must be performed after the
SAT solver terminates and the proof trace is concluded. A key observation is that
one can avoid generating the unsatisfiability proof, and construct the interpolant
directly from the proof trace.

Next we outline two algorithms for creating interpolants directly from proof
traces. We should note that the organization of the two algorithms allows fairly
different results in terms of the worst-case memory requirements, as illustrated
in Section 4 for real-world model checking problem instances. Moreover, both
algorithms utilize Reduced Boolean Circuits [1] for representing Boolean expres-
sions, thus ensuring that constants and duplicate nodes are eliminated.

The first algorithm consists of a breadth-first traversal of the proof trace,
that at each node creates a Boolean expression as indicated by the definition
of interpolant (see [4]). We refer to this approach as the BFS algorithm. A key
drawback of the BFS algorithm is that a large number of Boolean expressions
need to be created, most of which are eventually deleted by applying the sim-
plification techniques described above. Hence, the BFS algorithm often spends

Improvements to the Implementation of Interpolant-Based Model Checking 369

a large amount of time creating Boolean expressions that are eventually elim-
inated. The second algorithm consists of a depth-first traversal of the proof
trace, applying the simplification techniques described above wherever possible,
and eliminating depth-first visits whenever the (constant) value of a Boolean
expression is known. We refer to this second approach as the DFS algorithm.

Next, we address techniques for exploiting the information provided by the
UMC step of the UMC algorithm. Suppose the current unfolding size consists of
K time frames. Moreover, assume the interpolant iteration procedure is executed
I times, until a (possibly) false counterexample is identified. According to the
definition of computed interpolants, this means that the target property cannot
be satisfied within K + I − 1 time frames. As a result, the property cannot be
satisfied for any unfolding with size no greater than K + I − 1 time frames.
Hence, instead of a fixed policy of incrementing the size of the unfolding by
INC time frames, we can safely consider the size of the next unfolding to be
K + I time frames. Observe that the information from interpolant computation
can be used for other purposes. For example, instead of rescheduling the BMC
loop to K + I time steps, we can simply utilize a SAT solver more effective at
proving unsatisfiability, and check the fixed-point earlier than K + I time steps.
Moreover, and since the information from the interpolant iteration procedure
allows rescheduling the BMC loop, we can also reschedule the next unfolding for
which to iterate interpolants and check the existence of a fixed-point, i.e. the
UMC step. In general, this can be done for every unfolding at which the BMC
step is evaluated.

The potential gains introduced with rescheduling can be significant. Assume
a state machine and safety property such that a counterexample can be identi-
fied with an unfolding of T time frames. Moreover, assume that the BMC loop
increases the unfolding by 1 time frame each time, that the initial unfolding size
is 1, and that the interpolant iteration procedure runs for T −K iterations for an
unfolding size of K time frames (observe that if a counterexample exists, then
we cannot iterate the computation of interpolants more than T − K times). In
this case, rescheduling guarantees that the UMC step is invoked only once, and
so the number of times the SAT solver is invoked is 2 + 2 × (T − 1) = O(T). In
contrast, without rescheduling, the number of times the SAT solver is invoked
is T + 2 ×

∑T−1
i=1 (T − i) = O(T 2).

4 Results

In order to evaluate the effectiveness of the proposed techniques we implemented
the algorithm described in [4], and integrated the optimizations described in
the previous section. Moreover, a state of the art SAT solver was used. The
experiments have been run under Linux RH 9, on a Pentium 2.8 GHz machine,
with 1 GByte of RAM. Two classes of instances are considered. First, we consider
a set of standard counters, for which a counterexample exists. For these instances
the property requires not all state bits to be simultaneously assigned value 1.
Second, we consider a set of instances (I11, I12, I21, I31, I32 and I33) obtained

370 J. Marques-Silva

Table 1. Experimental results

Instance BFS & No-reschedule DFS & Reschedule BMC
4bit-counter 0.31 0.09
5bit-counter 3.86 0.84
6bit-counter 21.36 10.41
7bit-counter 1780.68 175.69
I12 255.77 272.47
I11 75.28 81.89
I31 83.51 90.08
I32 19.66 14.89
I33 17.44 13.09
I21 24.93 26.48
Total Time 2282.8 685.9

from real-world examples. For these instances, I11, I12, I21 and I31 do not have
a counterexample, whereas I32 and I33 have counterexamples.

Some preliminary results are shown in Table 1. Two configurations are con-
sidered: the BFS algorithm with no rescheduling, and the DFS algorithm with
rescheduling. In both cases interpolants are computed directly from the proof
trace. The results indicate that the proposed techniques are promising, allowing
an average speedup of 3.3 over our base implementation of the UMC algorithm.

5 Conclusions

This paper proposes techniques for improving the utilization of interpolants in
SAT-based unbounded model checking. As the results illustrate, improvements
can be obtained from a careful implementation of the interpolant computation
algorithm, and from exploiting the information provided by the procedure for
iterating the computation of interpolants. For specific classes of instances, both
artificially generated and obtained from industrial designs, the improvements
can exceed several orders of magnitude. The utilization of interpolants in SAT-
based model checking shows promise for future improvements, mostly related
with exploiting the information represented by computed interpolants. More-
over, additional effective techniques for reducing the final or intermediate size
of interpolants may play a crucial role in the utilization of interpolants in SAT-
based model checking.

References

1. P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on SAT
solvers. In Proc. TACAS, 2000.

2. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. TACAS, March 1999.

3. J. Marques-Silva. Optimizing the utilization of interpolants in SAT-based model
checking. Technical Report RT-01-05, INESC-ID, January 2005.

4. K. L. McMillan. Interpolation and SAT-based model checking. In Proc. CAV, 2003.

	Introduction
	Interpolant-Based Unbounded Model Checking
	Optimizations to the Basic UMC Algorithm
	Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

