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Abstract— An accurate closed-form expression is derived for
calculating the average BER in an asynchronous DS-CDMA
system using random complex-valued spreading sequences for
transmission over Rayleigh channels. This accurate solution is
based on the Characteristic Function (CF) approach and only
requires a single numerical integration. Our numerical simulation
results verify its accuracy, and also demonstrate the relative
inaccuracy of the Gaussian approximation.

I. INTRODUCTION

CDMA systems have substantial benefits compared to
FDMA and TDMA systems, and hence have found their way
into the third generation wireless systems. The performance
study of DS-CDMA systems using QPSK modulation has
attracted substantial research interests [1]–[12].

In traditional QPSK modulated DS-CDMA systems the in-
phase and quadrature-phase components are spreaded sep-
arately [1]–[12]. Complex-valued spreading sequences have
been applied in W-CDMA systems [13], [14]. As a benefit
of their relative simplicity in comparison to other polyphase
sequences [15], a number of complex-valued spreading se-
quences, synonymously also referred to as quadriphase spread-
ing sequences, have been designed in [16]–[21]. Some of
them were claimed to outperform Gold and m-sequences
in asynchronous DS-CDMA systems [20], [21]. Recently
various receiver architectures using complex-valued spreading
sequences and QPSK modulation were proposed in [22].

The average Bit Error Ratio (BER) performance of the
family of DS-CDMA systems using complex-valued spread-
ing and QPSK modulation has been investigated using a
variety of techniques, including accurate analyses [21], [22],
approximations [21], [23], [24], bounding techniques [24]
or simulations [20], [23]. The achievable BER performance
over AWGN [20], [22]–[24] and Rayleigh [21] channels was
also documented. The BER performance attainable using both
deterministic complex-valued spreading sequences [20]–[22],
[24] and random complex-valued spreading sequences [23]
was also studied.

In contrast to the performance analysis of [21], [22],
we provide an accurate BER analysis of asynchronous DS-
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CDMA systems using random complex-valued spreading se-
quences and QPSK modulation for transmission over Rayleigh
channels, rather than employing deterministic complex-valued
spreading sequences [21], [22] for transmission over AWGN
channels [22]. Furthermore, we do not assume the indepen-
dence of the real and imaginary parts, which was implicitly
assumed in [22]. In contrast to the performance analysis
of [24], [25], we use quadriphase data and matching quad-
riphase spreading, rather than binary data.

This paper is organized as follows. In Section II a gen-
eral asynchronous DS-CDMA system using complex-valued
spreading sequences and QPSK modulation for transmission
over Rayleigh channels is described. Then in Section III its
exact BER performance using random complex-valued spread-
ing sequences is investigated using the characteristic function
based approach of [26] as well as the approximate Gaussian
approach. Our numerical results are discussed in Section IV
and finally, our conclusions are provided in Section V.

II. SYSTEM MODEL

We consider a general asynchronous QPSK modulated DS-
CDMA system using quadriphase spreading for transmission
over a Rayleigh fading channel, and assume that there are K
simultaneously transmitting users.

A. Notations

We distinguish symbols with a tilde, as in x̃, for denoting
complex-valued variables, while symbols without a tilde de-
note real-valued variables. Furthermore, x̃∗ and |x̃| denote the
complex conjugate and the modulo of the complex number
x̃, respectively, while �{x̃} and �{x̃} denote the real and
imaginary parts of the complex number x̃, respectively. Hence
we have x̃ = �{x̃} + j�{x̃}, where j =

√−1 denotes the
imaginary unit.

The rectangular pulse pT (t) of duration T is defined as:

pT (t) =
{

1, t ∈ [0, T ),
0, otherwise.

(1)

The complex data signal b̃k(t) of the kth user is expressed as:

b̃k(t) =
∞∑

m=−∞
b̃k,mpTs

(t−mTs), (2)
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where b̃k,m ∈ {±1 ± j} is the quaternary data sequence and
Ts is the symbol duration. The quadriphase spreading signal
ãk(t) of the kth user is expressed as:

ãk(t) =
∞∑

m=−∞
ãk,mpTc

(t−mTc), (3)

where ãk,m ∈ {±1 ± j} is the complex-valued spreading
sequence having L chips and Tc is the chip duration sat-
isfying Ts = LTc. The aperiodic cross-correlation function
between the pair of complex-valued spreading sequences
{ ãkm|m = 0, 1, ..., L− 1} and { ãim|m = 0, 1, ..., L− 1}
both having a length of L chips is defined as:

c̃ki(ξ) =



L−1−ξ∑
m=0

ãk,mã
∗
i,m+ξ, 0 ≤ ξ ≤ L− 1,

L−1+ξ∑
m=0

ãk,m−ξã
∗
i,m, −(L− 1) ≤ ξ < 0,

0, |ξ| ≥ L.

(4)

The chip waveform Ψ(t) is expressed as:

Ψ(t) =
∞∑

m=−∞
ψTc

(t−mTc), (5)

where ψTc
is an arbitrary time-limited function, which satisfies

ψTc
(t) = 0 if t /∈ [0, Tc) and

∫ Tc

0
ψTc

(t) = Tc. The normalized
partial auto-correlation functions, RΨ(ν) and R̂Ψ(ν), of the
chip waveform ΨTc

(t) are defined as:

RΨ(ν) =
1
Tc

∫ ν

0

ΨTc
(t)ΨTc

(t+ Tc − ν)dt, (6)

R̂Ψ(ν) =
1
Tc

∫ Tc

ν

ΨTc
(t)ΨTc

(t− ν)dt. (7)

The complementary function erfc(x) and the Gaussian Q-
function Q(x) are defined as in [27].

B. Receiver Model

The received signal r(t) at the input of the matched filter
receiver is given by:

r(t) = �
{

K−1∑
k=0

1√
2
Ψ(t− τk)ãk(t− τk )̃bk(t− τk)

× hke
j[ωc(t−τk)+θk]

}
+ η(t), (8)

where η(t) is the zero-mean stationary white Gaussian noise
with two-sided power density N0

2 , i.e. σ2
η = N0

2 . The am-
plitudes {hk} are independent Rayleigh distributed random
variables having a Probability Distribution Function (PDF) of
fhk

(x) expressed as:

fhk
(x) =


x

σ2
k

e
− x2

2σ2
k , x ≥ 0,

0, x < 0.
(9)

The phase shifts {θk} and the time delays {τk} are inde-
pendently and uniformly distributed in [0, Ts) and [0, 2π),
respectively, while ωc is the common carrier frequency.

Without loss of generality, we assume that the 0th user’s
signal is the desired one and that we have τ0 = 0 as well
as θ0 = 0. The decision statistic of Z̃ at the output of the
correlation receiver matched to the 0th user’s signal is given
by:

Z̃ =
2
Tc

∫ Ts

0

r(t)
1√
2
ã∗0(t)Ψ(t)e−jωctdt

= D̃ +
K−1∑
k=1

Ĩk + η̃, (10)

where D̃ is the desired signal component, Ĩk is the co-channel
interference component incurred by the kth user and η̃ is the
noise component.

The desired signal D̃ can be expressed as:

D̃ = h0Lb̃0,0. (11)

The noise component η̃ can be shown to be a zero-
mean complex-valued Gaussian distributed variable having
a variance of σ2

η̃ = 2N0L
Tc

. Hence its real and imaginary
components, �{η̃} and �{η̃}, are independent, zero-mean
real-valued Gaussian variables having a variance of σ2

�{η̃} =
σ2
�{η̃} = N0L

Tc
.

The co-channel interference Ĩk incurred by the kth user can
be expressed as:

Ĩk =
1
2
hke

j∆k

{
b̃k,0

[
c̃k,0(ξk)R̂Ψ(νk) + c̃k,0(ξk + 1)RΨ(νk)

]
+ b̃k,−1

[
c̃k,0(ξk − L)R̂Ψ(νk) + c̃k,0(ξk + 1 − L)RΨ(νk)

]}
,

(12)

where ξk = �τk − τ0
Tc

mod L�, νk = (
τk − τ0
Tc

mod L) −
ξk, and ∆k = −ωc(τk − τ0) + (θk − θ0) is the phase shift
difference between the kth user and the 0th user.

III. BER ANALYSIS

In this section, we analyze the BER performance of an
asynchronous DS-CDMA system using a rectangular chip
waveform and random complex spreading sequences condi-
tioned on the 0th user’s complex spreading sequence, {ã0,m}.
Hence we have ψTc

(t) = pTc
(t), RΨ(ν) = ν and R̂Ψ(ν) =

1 − ν for the rectangular chip waveform, {∆k} and {νk}
are independently and uniformly distributed in [0, 2π) and
[0, Tc), respectively, for the asynchronous system, {ãk,m}
are mutual independent and uniformly distributed, i.e. we

have P{ãk,m = ±1 ± j} =
1
4

for random quadriphase
spreading sequences. Furthermore, the QPSK data symbols
{b̃k,m} are also assumed to be mutually independent and
uniformly distributed as {ãk,m}.

In contrast to the performance analysis of [22], we inves-
tigate the average BER rather than the average Symbol Error
Ratio (SER). From Equation 12 we can observe that the real
and imaginary interference components might be statistically
dependent. This renders the SER calculation using the BERs of
the real and imaginary components [22] somewhat inaccurate,
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since it implicitly assumes that the error probabilities of the
real and imaginary components are independent. The exact
SER calculation may lead to a double integration. However,
the average BER can always be expressed as the average
of the real and imaginary components’ BERs without the
assumption of independence, which enables us to evaluate
the average BER performance with the aid of the marginal
distributions [28] of the real and imaginary statistics.

A. Accurate Analysis

We will follow a procedure similar to that of [29] for
simplifying the expression characterizing the co-channel in-
terference. It has been shown in [29] that the interference
imposed by the (K − 1) interfering users would be mutually
independent, if and only if it was conditioned on the spreading
sequence of the 0th user.

We will analyze the average BER P r
e of the 0th user’s real

component. The average BER P i
e of its imaginary component

may be derived in the same way. For the sake of simplifying
the expression of Ĩk in Equation 12, we define a set of (L+1)
complex-valued random variables Ỹk,m,m = 0, ..., L by:

Ỹk,m =


1
2 b̃k,−1ãk,m−ξk

ã∗0,m, m = 0, ..., ξ − 1,
1
2 b̃k,0ãk,m−ξk

ã∗0,m, m = ξ, ..., L− 2,
1
2 b̃k,−1ãk,L−1−ξk

ã∗0,0, m = L− 1,
1
2 b̃k,0ãk,L−1−ξk

ã∗0,L−1, m = L.
(13)

It can be shown [29] that these random variables {Ỹk,m} are
mutually independent and uniformly distributed as {ãk,m} if
conditioned on {ã0,m}. Hence the interference component Ĩk
in 12 can be rewritten as:

Ĩk = hke
j∆kX̃k, (14)

where the random variable X̃k is defined as:

X̃k =
L−2∑
m=0

Ỹk,m

[
(1 − νk) +

1
2
ã0,mã

∗
0,m+1νk

]
+ Ỹk,L−1νk + Ỹk,L(1 − νk), (15)

and where the (L − 1) possible chip combinations of
1
2 ã0,mã

∗
0,m+1,m = 0, ..., L − 2 can be categorized into four

sets according to the relative change of the chip value. Let
A, B, C and D denote the number of the relative phase
changes of 0 ◦, 180 ◦, 270 ◦ and 90 ◦ between the adjacent
two chips’ values within the 0th user’s spreading sequence,
respectively. Then we have A + B + C + D = L − 1 and

(A−B) + j(C −D) =
1
2

L−2∑
m=0

ã0,mã
∗
0,m+1 =

1
2
c̃0,0(1).

Since hk is a Rayleigh distributed random variable defined
in Equation 9 and ∆k is uniformly distributed in [0, 2π),
the complex-valued random variable, hke

j∆k , is complex
Gaussian distributed with zero-mean and variance of 2σ2

k [26],

[28]. Hence �
{
Ĩk

}
is Gaussian distributed conditioned on X̃k

as follows:

f�{Ĩk}|X̃k
(x) =

1
√

2πσk

∣∣∣X̃k

∣∣∣ exp

− x2

2σ2
k

∣∣∣X̃k

∣∣∣2
 . (16)

Following a similar derivation to that in [26], the characteristic
function of �

{
Ĩk

}
conditioned on A, B and C can be

expressed as:

Φ�{Ĩk}|A,B,C(y) = 2−2(L+1)
∑

d̃1∈A

∑
d̃2∈B

∑
d̃3∈C

∑
d̃4∈D(

A
�{d̃1}+A

2

)(
A

�{d̃1}+A
2

)(
B

�{d̃2}+B
2

)(
B

�{d̃2}+B
2

)
(

C
�{d̃3}+C

2

)(
C

�{d̃3}+C
2

)(
D

�{d̃4}+D
2

)(
D

�{d̃4}+D
2

)
∑

Ỹk,L−1,Ỹk,L

W (σky), (17)

where the sets A, B, C and D are defined as:

A =
{
d̃1

∣∣∣�{
d̃1

}
,�

{
d̃1

}
∈ {−A,−(A− 2), ..., A}

}
,

B =
{
d̃2

∣∣∣�{
d̃2

}
,�

{
d̃2

}
∈ {−B,−(B − 2), ..., B}

}
,

C =
{
d̃3

∣∣∣�{
d̃3

}
,�

{
d̃3

}
∈ {−C,−(C − 2), ..., C}

}
,

D =
{
d̃4

∣∣∣�{
d̃4

}
,�

{
d̃4

}
∈ {−D,−(D − 2), ...,D}

}
.

(18)
The function W (y) is defined as:

Wl(y) =



exp
(
−1

2
y2λ0

)
, if λ1 = λ2 = 0,

1
y2λ1

[
1 − exp

(−y2λ1

)]
exp

(
−1

2
y2λ0

)
,

if λ1 	= 0, λ2 = 0,√
π

y
√

2λ2

exp
[
1
2
y2

(
λ2

1

λ2
− λ0

)]
×
{

erfc
(
yλ1√
2λ2

)
− erfc

[
y

√
λ2

2

(
1 +

λ1

λ2

)]}
,

if λ2 	= 0,
(19)

where the coefficients λ0, λ1 and λ2 are given by:

λ0 =
∣∣∣d̃1 + d̃2 + d̃3 + d̃4 + Ỹk,L

∣∣∣2 ,
λ1 = �

{(
d̃1 + d̃2 + d̃3 + d̃4 + Ỹk,L

)
×
[
−2d̃2 − (1 − j)d̃3 − (1 + j)d̃4 + Ỹk,L−1 − Ỹk,L

]∗}
,

λ2 =
∣∣∣−2d̃2 − (1 − j)d̃3 − (1 + j)d̃4 + Ỹk,L−1 − Ỹk,L

∣∣∣2 .
(20)

Since the co-channel interference contribution
{
Ĩk

}
of the

users k = 1, ...,K − 1 conditioned on A, B and C are
independent [26], [29], the characteristic function of the real

component of the total interference �
{
Ĩ
}

=
K−1∑
k=1

�
{
Ĩk

}
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conditioned on A, B and C is given by [26]:

Φ�{Ĩ}|A,B,C(y) =
K−1∏
k=1

Φ�{Ĩk}|A,B,C(y). (21)

Hence the BER of the 0th user’s real component conditioned
on A, B and C can be shown to be [26]:

P r
e|A,B,C =

1
2
− σ0L√

2π

×
∫ ∞

0

Φ�{Ĩ}|A,B,C(y)Φ�{η̃}(y) exp
(
−1

2
y2σ2

0L
2

)
dy,

(22)

where Φ�{η̃}(y) is the characteristic function of the noise’s
real component �{η̃}:

Φ�{η̃}(y) = exp
(
−1

2
σ2
�{η̃}y

2

)
. (23)

Then the average BER of the 0th user’s real component
is obtained by averaging P r

e|A,B,C over all spreading se-
quences [26]:

P r
e = 4−(L−1)

L−1∑
A=0

L−1−A∑
B=0

L−1−A−B∑
C=0

(
L− 1
A

)
×
(
L− 1 −A

B

)(
L− 1 −A−B

C

)
P r

e|A,B,C . (24)

Following the same approach, we may conclude that the
average BER of the 0th user’s imaginary component, P i

e , has
the same value as the average BER of the real component, P r

e .
Finally, we arrive at the overall BER, Pe, averaged over both
the real and imaginary components of the 0th user, yielding:

Pe =
1
2
(P r

e + P i
e) = P r

e . (25)

B. Standard Gaussian Approximation

Similar to the derivations found in [26], the average BER
approximated by the SGA can be shown to be:

P r
e ≈ 1

2

1 − 1√√√√1 +
σ2
�{η̃}
σ2

0L
2

+
4

3L

K−1∑
k=1

σ2
k

σ2
0

 . (26)

IV. NUMERICAL RESULTS

We will compare the BER results obtained by our accurate
analysis provided in Section III-A to that by the SGA of
Section III-B, to that of the BPSK system of [26] and to those
of our simulations described in this section.

Figure 1 shows that the results obtained by our accurate
analysis exactly match those obtained by simulations for
two different-length random spreading sequences, when using
L = 7 and 31. However, the SGA over-estimates the BER,
especially in the scenario, where there is a low number of
interfering users and when short spreading sequences are used.

0 5 10 15 20 25 30
Number of users, K

10
-2

2

5

10
-1

2

5

10
0

B
E

R

L=7

L=31

BPSK accurate
Complex Spreading SGA
Complex Spreading simulation
Complex Spreading accurate

Fig. 1. The BER versus the number of users K in an asynchronous
DS-CDMA system using random complex spreading sequences and QPSK
modulation. The length of the random complex spreading sequences is L = 7
and 31, respectively, the average power of all users at the receiver is equal
and the background noise is ignored, i.e. when γSNR = ∞.

0 2 4 6 8 10 12 14 16 18 20
SNR (dB)
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2
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R L=7
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BPSK accurate
Complex Spreading SGA
Complex Spreading simulation
Complex Spreading accurate

Fig. 2. The BER versus per-bit SNR in an asynchronous DS-CDMA
system using random complex spreading sequences and QPSK modulation.
The length of the random complex spreading sequences is L = 7 and 31,
respectively, the average power of all users at the receiver is equal. The number
of users is K = 4.

The BER of the QPSK system is higher than that of BPSK
systems due to the cross-talk between the real and imaginary
components.

Similar to Figure 1, Figure 2 also confirms that the BER
results obtained by our accurate analysis match those obtained
by simulation for both different-length random spreading se-
quences, i.e. for L = 7 and 31. By contrast, the SGA slightly
over-estimates the BER, particularly, when the SNR is high
and where short spreading sequences are used. The BER of
QPSK systems is higher than that of BPSK systems due to
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the cross-talk between the real and imaginary components.

V. CONCLUSION

In this paper we derived an exact closed-form expression
for calculating the average BER of an asynchronous DS-
CDMA system using QPSK modulation and random quad-
riphase spreading sequences for transmission over Rayleigh
channels. Our analysis was based on the CF technique. Our
accurate solution required only a single numerical integration.
Furthermore, our simulation results verified the accuracy of
our derivation and also demonstrated the limited accuracy of
the Gaussian approximation.
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