Using a Virtual Machine to Teach Hardware Design

Dr. David Argles

New College, So’ton University
The Avenue
Southampton SO17 1BG
 da@soton.ac.uk
 www.cisc.soton.ac.uk/~davida/

Abstract

Some years ago, some colleagues and I designed an innovative undergraduate course in Computing, targetting female and mature entry and a non-computing background. This presented us with the need to give our students a solid grounding in technical aspects of the subject, such as hardware design, but assuming no previous knowledge. A foundation principle of our course was that learning should occur through practical experience wherever possible. In order to achieve this in hardware design, we developed an approach where the students programmed a simulated and simplified virtual processor in a virtual computer. This approach has been refined over several years and has been found to be effective in giving a solid understanding of simple hardware design as well as a giving a good grounding for developing more advanced programming skills.

This paper outlines the rationale behind the adoption of the approach, the design principles employed in creating the virtual computer, and concludes by considering some of the issues raised.

Keywords

Hardware design, virtual machines, learning strategies

1. The Background

1.1 The Course

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

7th Annual Conference on the Teaching of Computing, Belfast

© 1999 CTI Computing

Some ten years ago, my colleagues and I were working in what we then called Computer Studies in an exclusively Teacher Education context. We set ourselves the target of moving towards running B.Scs in Computer Science. In order to do so, we determined that there was a gap in the market which we were well placed to exploit. Our perception, confirmed by discussions with local Chambers of Commerce, was that we are good as a sector at producing technically-skilled computing experts, but not good at producing the sort of graduate who is also good at communicating to others in non-technical language.

We therefore set about designing a course which would produce graduates who are first of all competent communicators, and secondly technically sound in computing. As we developed the approach, we found that our skills as teacher educators were important, and we also found that such a course fits well with two other targets we were keen to include, that of recruiting significant numbers of female and mature students.

The course was validated and ran successfully for a number of years with strong recruitment that met our target of 50% female intake and significant (30%+) mature entry. More details of this course and general issues to do with the structure and delivery of the course can be found in a paper given at a CTI conference earlier this year [3].

1.2 The Hardware Design Unit

Having designed such a course, we determined to take students primarily for their potential in (human) communication. Whilst their aptitude for computing might be good, frequently they had no background in the subject. At the same time, it was essential to ensure that we brought their computing skills up to a level expected of graduate Computing students by the end of their three-year course.

The first course unit where this became an important issue was the one that introduced Basic Hardware Design. Whilst the hardware strand of the course was limited to just three course units, it nevertheless fulfilled the vital role of giving sufficient understanding of computer hardware to be able to make sense of the rest of the course. The course philosophy was that learning should occur through practical experience in the first place, wherever possible, and that abstract concepts should be developed on the basis of this practical work.

In the case of hardware design, the decision was taken to introduce students to a low-level language as a means of getting some idea of what was going on “Under the Bonnet.” A further step was to use a control context, so that students could see bits lit up as LEDs attached to a port, constituting a byte, for example. Similarly, a control context readily makes sense of bitwise operations that can otherwise seem unimportant or irrelevant.

1.3 6502 Assembler and “CECIL”

In the first year of the course, 6502 assembler was used as the low-level language. Whilst the 6502 processor has many advantages for teaching, it was evident that students had to understand a great deal before they could even undertake simple tasks, such as adding two numbers and printing the answer out. This went against all that we knew about good practice for teaching.

The decision was therefore taken to replace 6502 assembler with a purpose-designed language. It was called “CECIL” being our “Computer Education Centre’s Instructional Language”, and shamelessly taking the basic idea from ICL’s Computer Education in Schools Instructional Language (CESIL) from years ago. This meant that difficult operations, like printing out the value of a register in decimal to the screen, could be replaced with a single instruction at language level.

Since this was a hardware unit, the work focused on looking at how the CECIL compiler took the language instructions and compiled them into machine code, what went into the various registers, and what happened as the program ran. This meant that we had effectively developed a “Virtual Machine,” and we began to talk of an underlying computer and processor, for example. It rapidly became important to decide just how far we were going to take this simulation and to design it consciously with teaching in mind.

2. Looking at Virtual Machines

Our developments were firmly underpinned by a number of fundamental principles.

2.1 The Black Box Approach

We have known about principles for designing for learning in the computing context for some time. Du Boulay and others produced a seminal paper many years ago called “The Black Box within the Glass Box” [4]. In it, they provide an analogy to support their argument that it is appropriate to provide a system for learning that is distinct from systems that might be used in practice:

“We might expect to find that racing drivers are impatient with slow, family saloon cars, though the latter are much better than racing cars for the learner driver.”
du Boulay et al (1981), p.240

They then develop the idea of taking a real system and packaging it up into black boxes, or “mind-sized bites” to apply a Papert concept [6], so that the novice learner does not lose sight of the overall operation in the detail. In effect, this is the beginning of a virtual machine concept.

We are used to the concept of virtual machines being applied in the context of Java in order to provide an environment that is platform-independent, for example. It is useful to remind ourselves that we have known for a long time that virtual machines can be useful for learning, too.

2.2 Keep it Simple

There are a number of design criteria for virtual systems that have also been known about for some time. These may be summarised as follows:

To be good for learning, a virtual system should be-

· Visible

· Simple

· Interactive

· Appropriate

· Unambiguous

· Predictable

· Extensible

· Consistent

This is a long list which has been culled from a number of sources and is explained at length elsewhere [2]. We may note that a good virtual system will be simple and yet extensible, encapsulating the black box within the glass box idea of du Boulay et al. Students need to be able to start in week one producing useful applications with a few lines of code, and yet there needs to be sufficient intellectual challenge to ensure that they will be extended and challenged through to the end of the course.

We should also note the need for consistency. As the student works with a teaching system, they will build up a mental model of the virtual system that we are presenting them with. It is crucial that the responses of the system should reinforce the intended picture of the virtual system and not confuse matters.

An example of inconsistency is provided by “Windows”. Although we may all be used to this metaphor by now, it is interesting to think again about the language we use. When did anyone ever open a window within a real wooden desktop, for example?

2.3 The Semantic Gap

Abowd and Beale have developed a framework for analysing interactions between people and machines [1]. It is designed particularly to give a basis for analysing interactions, and is given in figure 1.

[image: image1.png]presentation [0) observation
oatpet Key:

S - Computer system

S U U-The user

I -Input language
sk
core I S O - Output language

performance b Irticulation

Figure 1: Abowd & Beale’s Interaction Framework

Their interaction framework focuses on the user, the system with which the user wants to communicate, and the input and output language which the system provides for communication. This is a general approach, and works well in a broad range of contexts.

In general, the user will have a task they want the system to perform. They articulate the task in terms of the input language provided by the system, and after the system has transformed itself in response, it will present an indication of its new state to the user in terms of its output language. The user may well find that the new state of the system is not what they had expected at all – especially if the system is the infamous video recorder! The gap between what the user expected and what the system actually did is what Abowd and Beale term “semantic gap.”

Implicit in this analysis is the idea of a virtual system, in the sense that the user has a mental model of the system which will be at variance with what the system actually is like. The difference between the two is what will most likely lead to a large semantic gap.

2.4 Designing for the Virtual Machine

Abowd and Beale produced this analysis as a means of analysing an existing system. We have a different need for two reasons. Firstly, it would be useful to employ a model such as this to aid us in designing a system rather than evaluating it. Secondly, we are interested in intentionally designing a system that pretends to be something different – simpler – than it is. It needs to be consistent, as we noted above, but it needs also to be different from the real system. At this point, a revised version of the Interaction Framework becomes appropriate, and is shown in figure 2.

[image: image2.png]observation

U

task

‘articulation

Key:

S - Computer system
' Virtual System

U - The user

I -Input language

O- Output language

Figure 2: Revised Interaction Framework

In this revised version, we have introduced the virtual system, S’, and we are particularly interested in the interactions of the user with this virtual system, rather than the real system, which is likely to be much more complex. The task is now to design the real system, S, so that it utilises an input and output language such that the system behaves as if it were the virtual system, S’. Any errors in the design will lead to the virtual system appearing to behave in an unpredictable and inconsistent way.

It is important to notice one more crucial difference here. As far as Abowd and Beale are concerned, the larger the semantic gap in any interaction, the poorer the design, whilst a zero semantic gap means a perfect design. In a system designed for learning, this is no longer the case. If the system always responds as the user expected, they have learnt nothing, merely confirmed what they already believed they knew. If learning is to occur, there should sometimes be a semantic gap, implying that the learner’s preconceived ideas of the system are being challenged. It is as the learner confronts this inconsistency and refines their mental model of the (virtual) system that learning occurs.

2.5 CECIL and Virtual Machines

At this point, it is now possible to return to the original concept of using “CECIL” to teach hardware design to novice computing students, and to consider how this might be best approached using a virtual machine design.

Learning will be most effective if CECIL is based on a virtual computer and if the design is consistent throughout. This means that it is possible to teach the students the theory of von Neumann processor design, and then their practical work in CECIL will exemplify the responses of a simple von Neumann computer. They can move data around within the memory-mapped space for peripheral devices and see the peripherals responding as a result.

CECIL needs to be a language that is simple and yet can do a few useful things from the outset (such as printing out the contents of a register in decimal with a single “machine code” instruction).

Similarly, it needs to provide structures so that students can progress on to more complex concepts in a series of suitably-sized steps (See Gargarian [5]).

The design needs to be consistent with the virtual system throughout, so that high-flyers can push the metaphor to the limit and not be frustrated by inappropriate responses.

3. The KIM10 Design

It is clear that the design of the underlying virtual computer needs to be specified at an appropriate level of detail before the CECIL language can be designed to interact with it. The criteria that have been outlined in the previous section apply as much to the design of the virtual hardware as they do to the CECIL language that gives access to it.

3.1 The KIM10 Itself

The KIM10 (the “KAC Instructional Machine” – I was working at KAC when starting this project) is therefore designed to be simple, yet to exemplify the basic principles of computer design and to give potential for extended learning.

3.2 The KIP100 Processor

It is designed around the KIP100 processor (KAC Instructional Processor) which has a standard von Neumann design and has 38 instructions in its instruction set. Each of these machine code instructions corresponds with the assembler instructions that will be required in CECIL, so printing out a register in decimal to the VDU is one of the instructions, since this is what we know we will want to do at an early stage.

The KIP100 processor has three registers. One of these, known as either the A register or accumulator, is the main working register. In addition, there are two other registers, the X register, intended mostly for implementing loops, and the Y register, intended mainly for indirect addressing. The 6502 heritage shows itself at this point!

Commands are as might be expected, with bitwise operation, including left and right register shifts, together with logical operators and inter-register operations, for example.

3.3 Memory

There needs to be enough memory for students to be able to produce meaningful programs, and yet it would be helpful if we could avoid issues of page boundaries and double-byte addressing in the early stages. In order to meet this requirement - and to provide a learning point – the decision was taken to provide the KIM10 with 1K of memory. However, each word of memory has been defined to be 10 bits wide, since 1K cannot be directly addressed by 8-bit bytes. It is interesting to note that this causes no problems for the computer novice, only for those of us who think we understand about bytes and words and for whom this doesn’t fit into the pattern. That is exactly what is required!

Some structure is required to be defined for the memory as well. There is a start vector which is the last location in memory, 1023. This holds the address of the beginning of the code that must be executed when the KIM10 is put into run mode. This means that program space does not have to begin with executable code; students can decide to put their data at the beginning, if they wish.

3.4 Intelligent Peripherals

All input and output is also memory-mapped. This sits in high memory, running up to 1022, and includes I/O locations for a parallel port, a serial port, a keyboard port and a video port, for example. Each of these has an attendant location reserved for a configuration/IRQ flag byte.

Indeed, the original design of the KIM10 allowed for the whole machine to be interrupt-driven, since this is how all modern machines work, and the KIM10 was designed to operate in a control context. However, this was never implemented, since it was easier to make the first version run without interrupts, and it rapidly became apparent that our learning objectives for the unit were being fulfilled without introducing this level of abstraction at this point in the students’ course.

This led to an interesting development with regard to the design of the virtual peripherals. All peripherals are defined to be intelligent with self-managed buffers where appropriate. This gives something of a feel of working with a remote terminal, for example, since a character written to the VDU port is considered to be sent to an intelligent VDU which interprets and displays the code appropriately. The only control that exists for the VDU display therefore is to write deletes or cursor control codes to reposition the cursor.

The only place where this has really fallen down is in the area of keyboard access. Normally, it is fine if the keyboard maintains a hardware buffer, presenting the next key-press in the queue to the keyboard port on read. However, in a game-playing context, it is important to know the current state of the keyboard, not the next key-press in the queue. This has been got around in practice by making the machine code instruction which reads the keyboard to take the next key-press in the queue, whilst reading the keyboard memory port gives the current status of the keyboard. Whilst this gives a pragmatic solution (and was actually a “quick fix!”), it means the virtual model is now inconsistent. This has not caused any students a problem so far, but the potential for confusion is there.

3.5 Potential for Expansion

The design of the KIM10 is regarded as a tight specification in the same sense as the Java Virtual Machine, for example. This means that it has been possible to produce simulations of the KIM10 on a variety of platforms. It has also been possible to build in extensions.

One student had a requirement for sound output in the project he was proposing. Having rejected the VDU7 approach as not viable (VDU7 produces a beep), it became clear that a sound card was required to achieve what was otherwise a suitable and challenging project. The KIM10 has expansion space built in to the I/O area, and it was a relatively straight-forward task to add a simulated sound card. Data written to a pair of bytes in the reserved I/O space now produces sounds with pitch, duration and timbre controlled by the value of data written. This had a good feel to it, and was possible because the virtual machine had been carefully planned and the model adhered to.

3.6 The Stack

One last aspect of the KIM10 design was the stack. This exists in high memory, just below the I/O area. It has just 16 bytes (which seems to be enough), and is accessible by all the standard processor instructions. This means that the stack is accessible by the students, and they can explore its workings. If they’re sufficiently confident, they can even explore “dirty programming techniques” or investigate the chaos that results if a push or a pull is done at the wrong point around a subroutine jump!

4. Implementation

Having designed the virtual machine in some detail, it was then necessary to implement it.

4.1 Big Oaks from Little Acorns…

Since we began in a Teacher Education context, it may therefore be less of a surprise to learn that the initial implementation of the KIM10 simulation was produced for the Acorn Archimedes. This was actually a good choice, since in the late 80s, the Acorn had a much better windows environment than the IBM PC.

It was possible to design the simulator with two windows. The first of these was the compiler window, containing the CECIL program and giving full windows editing functionality. When the student was ready to test out their program, they could choose either to compile it or to go straight through to compiling and running it.

The second window was then invoked which was effectively the KIM10’s VDU. Any output from the KIM10 goes to this second window. However, the Acorn version of the KIM10 has a very intelligent VDU plugged in to its VDU port, since it maintains a record of all VDU output, even when it’s scrolled, and this can be saved to disc or printed out, as well as having a “clear” function to allow working with a clean slate.

4.2 Moving On

It soon became clear that we were indeed managing to move out of Teacher Education as a teaching group, and as we did so, we needed to produce a PC version. With time and expertise lacking, a DOS version was the first step in this direction, which was slow and command-line driven, but it worked and was compatible – an advantage of having a full specification for the virtual machine. Indeed, slowness in a teaching machine is an advantage, since it makes it more “visible,” as we considered in section 2.2, and easier to learn with.

However, by this stage, we had already made a commitment to Internet support of our course units, so a Java version was required (see [3]). Again, it was interesting to see how compatible the resulting Java version was as a result of the tight definition of the underlying virtual machine. In fact, the Java version is not dissimilar to the original Acorn version in look and feel, either. See figure 3.

[image: image3.png]The KIM10 Virtual Computer

[FegamEdto [imiooeney

[rogiam Test Prog e e

author David Argles
date 101097
[KIM10 Computer
ICECIL version J01 (16:10.97)

-Main prog stats here-
dat kad data
pint
stop

-Data starts here:
data wod 23
data2 wod 3

mess sting “Message"
[End of program

-]

Figure 3: The Java KIM10 Simulation

4.3 Courseware

The KIM10 virtual machine was in fact only a part of the course unit – the part that aimed to link theory with concrete experience. By this stage, a considerable amount of courseware had been developed which presented the general theory of hardware design, but also linked it to the design of the KIM10.

This meant that we were creating an Internet site for the students which contained the weekly lectures, usually in PowerPoint form, the supporting notes, usually in Word format, some example CECIL programs, and a set of exercises for the week. Alongside of this were the Acorn and DOS versions of the KIM10 simulator, together with the Java version which could be used directly providing they had Java capability.

We were not trying to be clever in what we were doing with the Internet. We simply noted that an increasing number of our students had Internet access at home, and that mature students in particular find it easier if they are able to spend time working at home rather than on campus. We didn’t try and use specialised Internet software; we simply did what we could cope with by throwing our work at the web as we produced it and letting the students sort it out.

5. Issues Raised

5.1 The Course

The aim of this paper has been to outline an approach taken to the teaching of hardware design to an unusual clientelle and as such, there are is no significant data to present in terms of its effectiveness.

There are, however, a number of observations that can be made. Firstly, the course itself was successful. It is true that recruitment was buoyant throughout its life. It is also true that an overall average of around 50% female entry was maintained, and that some 30%+ of the intake was mature, all of which was intended. However, particularly pleasing was the fact that drop-out was low and that graduate employment at the end of the course was high. Some 50%+ of our graduates became IT managers within two years of leaving.

5.2 The Unit

Within the context of a successful course, we may also note that student satisfaction increased significantly when the CECIL/KIM10 approach was taken to delivering this module rather than using the 6502 (and the 6502 approach had significantly improved student satisfaction over the earlier theoretical approach taken on other courses).

This may be put alongside the fact that the success rate soared. Whereas previously, it was considered successful if only 30% of the students struggled with Hardware Design, the figure dropped instantly to 5% once CECIL was introduced.

5.3 Getting Better?

A number of issues relate to the current development of the Java version of the KIM10; these are noted in [3]. Things are not all wonderful – you may not be able to do anything with the Java KIM10 applet if you’re using a newer browser, for example, since it is written in Java 1.0!

The fact that the KIM10 is not interrupt-driven has led to an inconsistency in the design being exposed, as noted above regarding the keyboard. This has not caused a major problem, but it has led to a “semantic gap” opening up in Abowd and Beale’s terms in the virtual system design. It also means that the model can’t be pushed too far, even though it keeps the operation simple.

There is also a huge gap in the model. There is no provision in the KIM10 design for loading,saving or modifying code. In practice, it is all just handled by the host computer, but in effect, the compiled code just “appears” in the KIM10 memory. It is of interest that no student has queried this yet!

A possibility that has opened up recently has been that of tying in this approach with delivery of Electronics. In the past, Electronics has been available as an interest module for some of our students and has proved comparatively popular. The world of electronics is moving on, so that IC logic designs are tending to be replaced by single-chip microprocessor designs. That gives the opportunity for introducing a second-level module which focuses on the PIC microprocessor, for example. A pilot project is already under way, and has the advantage of introducing a real microprocessor (good for the CV!) which has a significantly different design (it employs Harvard architecture). Thus a package would be available with a stylised, made-for-learning processor being studied practically at level one, leading on to study of a real and widely-used processor at level two.

In summary, then, it may be noted that the approach outlined here has made a significant improvement to the delivery of Hardware Design to our atypical student population. It will be interesting to explore further developments in this area.

6. References

[1] Abowd G. & Beale R., Users, Systems and Interfaces: A Unifying Framework for Interaction. People and Computers, eds Diaper D. & Hammond N., Cambridge University Press, (1991).

[2] Argles D., Concurrent Control for Children: The Design and Implementation of Software for a Schools’ Environment. Unpublished thesis, Southampton University, UK (1996).

[3] Argles D., Delivering Hardware Design over the Internet. [not yet published!] (1999).

[4] Du Boulay J. B. H., O’Shea T. & Monk J., The Black Box within the Glass Box: Presenting Computing Concepts to Novices. International Journal of Man-Machine Study, 14, pp237-249, (1981).

[5] Gargarian G., An Aesthetic of Learning Environment Design. In Control Technology in Education, NATO ASI series F, vol 116, (1992).

[6] Papert S., Mindstorms. Harvester Press, UK, (1980)

_986827214.doc
[image: image1.png]presentation observation

Key:

S - Computer system

S U U- The user

I -Input language
task
o O- Output language

performance ‘articulation

