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Abstract

We review recent results concerning the representation of conformal field theory char-

acters in terms of fermionic quasi-particle excitations, and describe in detail their construc-

tion in the case of the integrable three-state Potts chain. These fermionic representations

are q-series which are generalizations of the sums occurring in the Rogers-Ramanujan

identities.
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1. Introduction

The fundamental problem of all condensed matter physics is the explanation of macro-

scopic phenomena in many-body systems in terms of a microscopic quantum mechanical

description of the system. For all practical applications there is no dispute that the micro-

scopic description of the world is as a collection of electrons and nuclei which interact by

electromagnetic forces (which may usually be well thought of as non-relativistic Coloumb

interactions and possibly a spin-orbit coupling). The problem is to extract macroscopic

collective properties from this microscopic interaction.

The importance and difficulty of this problem is revealed in the question of the origins

of organic chemistry. All organic molecules of biological significance, such as DNA, are op-

tically active and rotate light in a preferred direction. This rotation clearly violates parity.

Nevertheless, the underlying microscopic interaction is parity invariant. This vividly illus-

trates the fact that the physics of the collective excitations may be qualitatively different

from that of the underlying microscopic system.

It is thus no surprise that the study of collective excitations in macroscopic systems is

far from understood. It is also not surprising that approximate methods have only limited

utility in building insight into these phenomena. Thus it is that ever since the invention

of quantum mechanics there has been constant attention to the problem of finding and

studying simplified microscopic model systems for which exact, nontrivial computations

can be done which give insight into the relation of the collective to the microscopic.

In this paper we will discuss two such approaches which have proven exceedingly

fruitful: integrable models of statistical mechanics and conformal field theory. We will

discuss these in relation to what is one of the most simple of macroscopic properties: the

low-temperature behavior of the specific heat. It is one of the loveliest discoveries of the

past decade that this most simple of collective properties has profound connections to the

theory of representations of affine Lie algebras and the mathematical study of q-series and

generalized Rogers-Ramanujan identities.

2. Specific Heat and Quasi-Particles

Perhaps the most fundamental quantity used in the study of macroscopic systems is

the partition function defined as

Z = Tr e−H/kBT (2.1)
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where H is the hamiltonian, the trace is over all states of the system, kB is Boltzmann’s

constant and T is the temperature. More explicitly this may be written as

Z = e−EGS/kBT
∑

n

e−(En−EGS)/kBT (2.2)

where the sum is over all the eigenvalues En of H and we have explicitly factored out the

contribution of the ground state energy EGS.

For a macroscopic system we are usually more interested in the free energy per site f

in the thermodynamic limit, defined as

f = −kBT lim
M→∞

1

M
lnZ , (2.3)

where M is the size of the system, and for concreteness we will think of H as the hamil-

tonian of a spin system of a linear chain of M sites. The thermodynamic limit is defined

as

fixed T > 0 and M → ∞ , (2.4)

and the specific heat is given as

C = −T
∂2f

∂T 2
. (2.5)

The low-temperature behavior of the specific heat is now obtained by taking T → 0.

To evaluate the sum (2.2) and thus to study the specific heat (2.5) we need to study the

energy levels of H (which are obtained from Schrödinger’s equation) in the M → ∞ limit.

We will further make the assumption that H is translationally invariant with periodic

boundary conditions so that the momentum P is a good quantum number. It is then

almost universally found that if E−EGS is finite and non-zero as M → ∞ then the energy

levels may be expressed in terms of single-particle levels eα(Pα
i ), with α labelling the type

of excitation, which depend on a momentum Pα
i and a set of combination rules as

E − EGS =
∑

α,rules

mα∑

i=1

eα(Pα
i ) , (2.6)

and that the total momentum is given as

P ≡
∑

α,rules

mα∑

i=1

Pα
i (mod 2π). (2.7)
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Energy levels of a many-body system of this form are said to be a quasi-particle spectrum.

When one of the rules of composition is the fermi exclusion rule

Pα
i 6= Pα

j if i 6= j , (2.8)

the spectrum is said to be fermionic.

If eα(P ) is positive for all P the system is said to have a mass gap, and the specific

heat vanishes exponentially as T → 0. However, in many spin chains one or more eα(P )

vanish as P → 0 as

e(P ) ∼ v|P | , (2.9)

where v is positive. These systems are said to be massless and v is called the speed of

sound. If this massless single-particle energy is used in (2.6) and (2.2) and the momenta

Pi are taken to have a uniform distribution it is a familiar result that (with a single species

of excitation) the specific heat vanishes linearly when T → 0 as

C ∼ πkB c̃

3v
T , (2.10)

where c̃ is a constant which is equal to 1
2 in this case.

This argument, however, is not complete as is apparent from the observation that any

energy level with limM→∞ e(P ) > 0 will contribute only a term exponentially small in T

to the specific heat. Thus the order one excitations which are of the form (2.6) do not

contribute to the linear behavior (2.10). Instead, it is the levels with the property that

limM→∞ e(P ) = 0 which contribute to the leading behavior.

3. Conformal Field Theory

In contrast to the condensed matter description of quasi-particles of the previous

section, the study of the 1
M excitation energies is much more recent and, in particular, the

most remarkable progress has been made only in the last decade starting with the seminal

work of Belavin, Polyakov and Zamolodchikov [1] on conformal field theory.

In the statistical mechanics context, the work of [1] applies directly to the continuum

limit of two-dimensional lattice models which are assumed to exhibit conformal invariance

at criticality. A fundamental object [2] in that framework is the finite-size (classical)
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partition function Ẑ2d of the critical system. Namely, consider the partition function at

Tc of the (possibly anisotropic) system on an M by M ′ periodic lattice

Z2d(M, M ′) =
∑

states

e−E/kBTc =
∑

j

(Λj(M))M ′

, (3.1)

which we expressed in terms of the eigenvalues Λj(M) of the transfer matrix TM in one

of the directions. Defining the bulk free energy f2d ≡ −kBTc limM,M ′→∞
1

MM ′ lnZ2d =

−kBTc limM→∞
1
M lnΛmax(M), the finite-size partition function is defined by scaling out

the bulk free energy via

Ẑ2d = lim
M,M ′→∞

eMM ′f2d/kBTcZ2d = lim
M,M ′→∞

∑

j

(
Λj(M)

Λmax(M)

)M ′

. (3.2)

the limit being taken with M ′/M held fixed. Ẑ2d is a finite function of q2d = eαM ′/M ,

where α (possibly complex) depends on the anisotropy.

The analogous object in the context of the gapless spin chain which is of interest to

us here, is the (quantum) partition function (2.2) in the limit

M → ∞, T → 0 with MT fixed, (3.3)

which focuses directly on the order 1
M

energy levels of the hamiltonian. More precisely,

introducing e0 ≡ limM→∞
1
M EGS, define

Ẑ = lim eMe0/kBT Z (3.4)

in the limit (3.3), so that Ẑ is a finite function of

q = exp
(

− 2πv
MkBT

)

. (3.5)

For a hamiltonian obtained from a family of commuting transfer matrices TM (u) of an

integrable critical lattice model via H = d
du ln TM (u)

∣
∣
u=u0

, where u0 is a special value of

the spectral parameter where TM becomes the identity, Ẑ coincides as a function with the

corresponding Ẑ2d.

The limit (3.3) is not the same as the limit (2.4) which defines the specific heat. How-

ever, if no additional length scale appears in the system, it is expected that the behavior

of the specific heat computed using the prescription (3.3) will agree when q → 1 with the
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T → 0 behavior computed using the prescription (2.4). We are therefore led to discuss the

q → 1 behavior of Ẑ(q).

An important feature of conformal field theory is [2] that Ẑ can be expressed in the

factorized form

Ẑ(q) =
∑

k,l

Nkl χk(q) χl(q̄) , (3.6)

where the χk(q) are characters of a chiral algebra [3], with the Nkl non-negative integers.

(In so-called coset models of conformal field theory [4], the characters are known to be

branching functions [5][6][7] of some affine Lie algebras.) In the two-dimensional context

q̄ in (3.6) is the complex conjugate of q, while in the one-dimensional one q and q̄ are real

and equal and are associated with contributions from right- and left-movers, respectively.

We will restrict attention to rational conformal field theories, where the sum in (3.6) is

finite. The characters take the form

χk(q) = q∆k−
c
24 χ̂k(q) , χ̂k(q) = 1 +

∞∑

n=1

anqn , (3.7)

with the an non-negative integers. Here c and the ∆k are the central charge and conformal

dimensions, respectively, of the conformal field theory.

The partition function Ẑ2d of the two-dimensional system must clearly have the prop-

erty

Ẑ2d(q) = Ẑ2d(q̃) , (3.8)

where

q̃ = e−2πi/τ when q = e2πiτ , (3.9)

simply by symmetry in M and M ′ combined with an appropriate change in the anisotropy,

when present. If (3.8) holds for Ẑ as well, then one concludes from (3.6) and (3.7) that

Ẑ(q) ∼ q̃−(c−12dmin)/12 as q → 1− , (3.10)

where dmin is the minimal ∆k +∆l such that Nkl > 0. This shows that the q → 0 behavior

of Ẑ(q), determining the finite-size corrections to the ground state energy [8][9][10]

−kB lim
T→0

T lnZ = EGS − Me0 = −π(c − 12dmin)v

6M
+ o(M−1) , (3.11)
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is related to the q → 1 behavior which is relevant for the specific heat. Namely, from (3.10)

and (3.5) we conclude that c̃ in (2.10) is given by

c̃ = c − 12dmin , (3.12)

where the rhs is called the effective central charge.

One of the objectives in this work is to point out an alternative method to compute

the low-temperature specific heat, which is based on an analysis of the order one energy

levels of the hamiltonian and bypasses the use of (3.8) which is a property not a priori

obvious from the viewpoint of a generic one-dimensional chain. We will demonstrate (in

two particular models) how the full partition function Ẑ — or at least the “normalized

characters” χ̂k(q) — can be obtained from the quasi-particle description of the spectrum

discussed in sect. 2 (where the specifics of a model are encoded in the “rules” in (2.6)).

The specific heat is then deduced using (3.6) from the q → 1 behavior of the χ̂k(q), which

can be determined by a steepest descent calculation. The leading behavior, which is the

same for all characters in a given model, is

χ̂k(q) ∼ q̃−c̃/24 as q → 1− , (3.13)

where c̃ agrees with (3.12).

Let us emphasize that in this computation of the low-temperature specific heat no use

of modular covariance [11] of the characters is made. The approach pioneered in [1] relies

on the existence of conformal symmetry in the system, which severely constrains the order
1
M spectrum in terms of representations of some infinite-dimensional chiral algebra [3]. The

characters of these chiral algebra representations are computed either abstractly [12] or by

the Feigin-Fuchs-Felder construction [13][14]. Using these methods, the explicit expressions

obtained for the characters usually involve modular forms, and therefore the characters

χk(q) of a given model (regarded as functions of a complex variable q) can be seen to

form [2][5][15] a representation of the modular group, generated by S: q → q̃ and T : q →
e2πiq. In particular, they satisfy a linear transformation law

χk(q̃) =
∑

l

Skl χl(q) , (3.14)

from which (3.13) can be obtained.
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However, the detailed connection between the above-mentioned expressions for the

characters in terms of modular forms to a hamiltonian spectrum is rather obscure. In the

approach of this paper, alternative expressions — which we call (fermionic) quasi-particle

representations — for the characters are obtained from the spectrum, and thus a direct

understanding of the conformal field theory partition function Ẑ in terms of the underlying

spin chain is gained.

We will now provide some more details in a few examples. In the past 10 years there

has been an immense effort to discover and classify conformal field theories, compute the

corresponding characters and partition functions, and identify the underlying statistical

mechanics models. The earliest example is the series of minimal models M(p, p′) [1],

specified by pairs of coprime positive integers p and p′, where the central charge is

c = 1 − 6(p − p′)2

pp′
(3.15)

and the conformal dimensions are

∆(p,p′)
r,s =

(rp′ − sp)2 − (p − p′)2

4pp′
(r = 1, . . . , p − 1; s = 1, . . . , p′ − 1). (3.16)

The corresponding characters are [13][14][16]

qc/24χ(p,p′)
r,s =

q∆(p,p′)
r,s

(q)∞

∞∑

k=−∞

(qk(kpp′+rp−sp′) − q(kp′+s)(kp+r)) (3.17)

where

(q)n =

n∏

k=1

(1 − qk) . (3.18)

The unitary [17] minimal conformal field theories M(p, p + 1) (with the A-series partition

function [18]) were identified [19] as describing the continuum limit of the RSOS models

of Andrews, Baxter and Forrester [20] at the critical point between regimes III and IV.

A second widely studied class of theories comprises the coset models [4]

(G
(1)
r )k × (G

(1)
r )l

(G
(1)
r )k+l

, (3.19)

where (G
(1)
r )k is the affine Lie algebra at level k [12] based on the simply-laced Lie algebra

Gr of rank r. (The unitary minimal models M(p, p + 1) are obtained [4] from (3.19) by
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specializing to Gr = A1, k = p − 2, and l = 1.) For the case k = l = 1 and Gr = AN−1

the model (3.19) is identical by level-rank duality [21] to the coset model
(A

(1)
1 )N

U(1) , known

as ZN -parafermionic conformal field theory [22]. The central charge is

c =
2(N − 1)

N + 2
, (3.20)

and the characters are branching functions given by Hecke indefinite forms of [5][6] (or an

equivalent form [23])

qc/24bl
m =

qhl
m

(q)2∞

[(
∑

s≥0

∑

n≥0

−
∑

s<0

∑

n<0

)

(−1)sqs(s+1)/2+(l+1)n+(l+m)s/2+(N+2)(n+s)n

+

(
∑

s>0

∑

n≥0

−
∑

s≤0

∑

n<0

)

(−1)sqs(s+1)/2+(l+1)n+(l−m)s/2+(N+2)(n+s)n

]

,

(3.21)

where the dimensions hl
m are

hl
m =

l(l + 1)

4(N + 2)
− m2

4N
. (3.22)

Here l = 0, 1, . . . , N − 1, l − m is even, and the formulas are valid for |m| ≤ l while for

|m| > l one uses the symmetries

bl
m = bl

−m = bl
m+2N = bN−l

N−m . (3.23)

For the more general cosets of (3.19) the branching functions can be found in [24][25][26].

The statistical mechanical models underlying the theories (3.19) are discussed in [24][27]

[28][29].

The above expressions for the characters, from which their modular properties can

be derived, all have the feature that there are several powers of (q)∞ in the denominator,

corresponding to the fact that the Feigin-Fuchs-Felder construction from which they can

be obtained is based on bosonic Fock spaces (which are then truncated in a particular way,

encoded by the “numerator”). We will call such representations bosonic.

But there are other forms in which the characters may be expressed. Most notable is

the equivalent form of the branching functions (3.21) obtained by Lepowsky and Primc [30]

qc/24bl
2Q−l = q

l(N−l)
2N(N+2)

∞∑

m1,...,mN−1=0
restrictions

qmC−1
N−1

m
t−Al·m

(q)m1
. . . (q)mN−1

, (3.24)
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where m = (m1, . . . , mN−1) is subject to the restriction

N−1∑

α=1

αmα ≡ Q (mod N), (3.25)

CN−1 is the Cartan matrix of the Lie algebra AN−1 in the basis where we explicitly have

mC−1
N−1m

t =
1

N





N−1∑

α=1

α(N − α)m2
α + 2

∑

1≤α<β≤N−1

α(N − β)mαmβ



 , (3.26)

and

Al ·m = −(mC−1
N−1)l = −

(

N − l

N

l∑

α=1

αmα +
l

N

N−1∑

α=l+1

(N − α)mα

)

. (3.27)

This representation is of the form of a q-series which generalizes the sum-side of the Rogers-

Ramanujan identities [31][32][33] to multiple sums, such as appear in the Andrews-Gordon

identities [34][35]. For reasons that will become clear in the next sections we refer to such

a representation as fermionic.

4. Three state Potts chain

The general discussion of specific heat and quasi-particles of sect. 2 and the sketch of

conformal field theory of the previous section do not rely on any microscopic hamiltonian.

There are, however, a large number of integrable spin chains and corresponding two-

dimensional classical statistical mechanics systems which are closely related to conformal

field theories. These spin chains have eigenvalue spectra which can be studied by means of

functional and Bethe’s equations. It is thus natural to attempt to compute the conformal

field theory characters from the spin chain.

This program has recently been carried out [36]-[40] for the 3-state Potts chain. We

will here summarize the results of this study to illustrate the relations which both the

Rocha-Caridi (3.17) and the Lepowsky-Primc (3.24) character formulae have to the spin

chain and to the order one excitations (2.6) of condensed matter physics. This investigation

will lead to a physical interpretation of (3.24) and a new representation for (3.17).
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4.1. The hamiltonian and Bethe’s equations.

The 3-state Potts chain is specified by the hamiltonian

H =
±2√

3

M∑

j=1

(

Xj + X†
j + ZjZ

†
j+1 + Z†

j Zj+1

)

, (4.1)

where

Xj = I ⊗ I ⊗ · · · ⊗ X
︸︷︷︸

jth

⊗ · · · ⊗ I , Zj = I ⊗ I ⊗ · · · ⊗ Z
︸︷︷︸

jth

⊗ · · · ⊗ I . (4.2)

Here I is the 3 × 3 identity matrix,

X =





0 0 1
1 0 0
0 1 0



 , Z =





1 0 0
0 ω 0
0 0 ω2



 , ω = e2πi/3 , (4.3)

and we impose periodic boundary conditions ZM+1 ≡ Z1. If the − (+) sign is chosen in

(4.1), the spin chain is called ferromagnetic (anti-ferromagnetic).

This spin chain is invariant under translations and under Z3 spin rotations. Thus

the eigenvalues may by classified in terms of P , the total momentum of the state, and Q,

where e2πiQ/3 is the eigenvalue of the spin rotation operator. Here P = 2πn/M where n

is an integer 0 ≤ n ≤ M − 1, and Q = 0,±1. Furthermore, because H is invariant under

complex conjugation there is a conserved C parity of ±1 in the sector Q = 0, and the

sectors Q = ±1 are degenerate.

This spin chain is integrable because of its connection with the two-dimensional 3-state

Potts model at the critical point, which is integrable. The eigenvalues of the transfer matrix

satisfy functional equations [36][41]- [43] which are solved in terms of Bethe equations [36]

(−1)M+1

[
sinh(λj − iSγ)

sinh(λj + iSγ)

]2M

=

L∏

k=1

sinh(λj − λk − iγ)

sinh(λj − λk + iγ)
(4.4)

with

γ =
π

3
, S =

1

4
, L = 2(M − |Q|) for Q = 0,±1 . (4.5)

In terms of these λk, the eigenvalues of the transfer matrix of the statistical model are

Λ(λ) =

[

sinh(πi
6 ) sinh(πi

3 )

sinh(πi
4
− λ) sinh(πi

4
+ λ)

]M L∏

k=1

sinh(λ − λk)

sinh(πi
12

+ λk)
, (4.6)

10



the eigenvalues of the hamiltonian (4.1) are

E =
L∑

k=1

cot(iλk +
π

12
) − 2M√

3
, (4.7)

and the corresponding momentum is

eiP = Λ(−iπ/12) =

L∏

k=1

sinh(λk + πi
12 )

sinh(λk − πi
12 )

. (4.8)

4.2. Order one excitations.

These equations have been recently solved to obtain the order one excitation ener-

gies [38]. The computations are discussed in detail in the article in these proceedings [44].

The results are as follows (we describe them in detail only the sector Q = 0):

• Ferromagnetic case:

The order one excitation energies and momenta are

E − EGS =

m+∑

j=1

e(P+
j ) , P ≡

m+∑

j=1

P+
j (mod 2π), (4.9)

where

m+ = 2mns + 3m− + 4m−2s (4.10)

with mns, m−, m−2s arbitrary non-negative integers, and

e(P+
j ) = 6 sin(

P+
j

2
) 0 ≤ P+

j ≤ 2π , P+
j 6= P+

k for j 6= k . (4.11)

Each state has a degeneracy [37], which for Q = 0 is

(
m− + m−2s

m−

)(
2m− + 2m−2s + mns

mns

)

. (4.12)

The speed of sound v is found to be 3, since

e(P+) ∼ 3|P+| for P+ ∼ 0. (4.13)
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• Anti-ferromagnetic case:

We restrict our attention to M even. The order one excitation energies and momenta

in the sector Q = 0 are

E − EGS =
∑

α=2s,−2s,ns

mα∑

j=1

eα(Pα
j ) , P − PGS =

∑

α=2s,−2s,ns

mα∑

j=1

Pα
j , (4.14)

where P is defined modulo 2π, and

PGS ≡ M

2
π (mod 2π) , (4.15)

m2s + m−2s is even. (4.16)

The single-particle momenta are subject to the fermi exclusion rule (2.8), and the single-

particle energies are

e2s(P ) = 3{
√

2 cos(
|P |
2

− 3π

4
) + 1} 0 ≤ P ≤ 3π

e−2s(P ) = 3{
√

2 cos(
|P |
2

− π

4
) − 1} 0 ≤ P ≤ π

ens(P ) = 3 sin(
|P |
2

) 0 ≤ P ≤ 2π .

(4.17)

The speed of sound is 3
2 for all three excitations:

eα(P ) ∼ 3

2
|P | for P ∼ 0 . (4.18)

4.3. Conformal field theory predictions.

We turn now to the conformal field theory predictions for the partition functions of

both the ferromagnetic and the anti-ferromagnetic cases.

• Ferromagnetic case:

The conformal field theory in this case was identified by Dotsenko [45] to be the

minimal model M(5, 6) of central charge c = 4
5

(cf. (3.15)), and the partition function was

argued by Cardy [2] to be the modular-invariant non-diagonal combination of characters

ẐF = [χ0(q) + χ3(q)][χ0(q̄) + χ3(q̄)] + [χ2/5(q) + χ7/5(q)][χ2/5(q) + χ7/5(q̄)]

+ 2χ1/15(q)χ1/15(q̄) + 2χ2/3(q)χ2/3(q̄) .
(4.19)
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Here we use the notation χ∆ = χ
(5,6)
∆r,s

for the characters whose first few terms are obtained

from (3.17) as

q
c
24 χ0 = 1 + q2 + q3 + 2q4 + 2q5 + 4q6 + 4q7 + 7q8 + 8q9 + 12q10 . . .

q
c
24 χ2/5 = q

2
5 (1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6 + 8q7 + 11q8 + 15q9 . . .)

q
c
24 χ7/5 = q

7
5 (1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 8q6 + 10q7 + 15q8 + 19q9 . . .)

q
c
24 χ3 = q3(1 + q + 2q2 + 3q3 + 4q4 + 5q5 + 8q6 + 10q7 + 14q8 + 18q9 . . .)

q
c
24 χ1/15 = q

1
15 (1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 10q6 + 14q7 + 20q8 + 26q9 . . .)

q
c
24 χ2/3 = q

2
3 (1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 8q6 + 10q7 + 15q8 + 19q9 . . .).

(4.20)

• Anti-ferromagnetic case:

In this case the conformal field theory was identified by Pearce [47] to be that of Z4

parafermions, of central charge c=1 (cf. (3.20) with N=4), with the non-diagonal partition

function [46]

ẐAF = [b0
0(q) + b0

4(q)][b
0
0(q̄) + b0

4(q̄)] + 4b0
2(q)b

0
2(q̄) + 2b2

0(q)b
2
0(q̄) + 2b2

2(q)b
2
2(q̄) , (4.21)

in terms of the branching functions bl
m, which are obtained from (3.21) or (3.24) with N=4

as

q
1
24 b0

0 = (1 + q2 + 2q3 + 4q4 + 5q5 + 9q6 + 12q7 + 19q8 + 25q9 + 37q10 . . .)

q
1
24 b0

2 = q
3
4 (1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 12q6 + 16q7 + 24q8 + 33q9 . . .)

q
1
24 b0

4 = q(1 + q + 3q2 + 3q3 + 6q4 + 8q5 + 13q6 + 17q7 + 27q8 + 35q9 . . .)

q
1
24 b2

0 = q
1
3 (1 + 2q + 3q2 + 5q3 + 8q4 + 13q5 + 19q6 + 28q7 + 41q8 + 58q9 . . .)

q
1
24 b2

2 = q
1
12 (1 + q + 3q2 + 4q3 + 8q4 + 11q5 + 18q6 + 25q7 + 38q8 + 52q9 . . .).

(4.22)

4.4. Characters from Bethe’s equations.

In order to obtain the characters (4.20) and (4.22) from the formalism of Bethe’s

equation (4.4), the order one computations of [38] and [44] must be extended to order 1
M .

We consider the ferromagnetic and the anti-ferromagnetic cases separately, simpler case

first.

• Anti-ferromagnetic characters:
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To extend the analysis of [38] to order 1
M it is natural to use the order one ener-

gies (4.17) in the region P ∼ 1
M

where the linear form (4.18) holds. However, we must in

addition (i) add a possible P -independent contribution of order 1
M

to the energy and (ii)

specify the allowed values of Pα
j , as we now explain.

Both of these questions are investigated in detail in [39]. A principal result of that

paper is that the 1
M spectrum decouples into a spectrum of right- and left-movers, namely

E − EGS =
∑

α=2s,−2s,ns

∑

h=r,l

mα(h)
∑

jα(h)=1

eα(P
α(h)
jα(h)

) (4.23)

with all eα(P ) = 3|P |, and (in the Q = 0 sector)

P
α(h)
jα(h)

= ±2π

M

[1

2

(
mns(h) +

m2s(h) + m−2s(h)

2
+ 1
)

+ k
α(h)
jα(h)

]

(4.24)

for α = 2s,−2s, and

P
ns(h)
jns(h)

= ±2π

M

[1

2

(
mns(h) + m2s(h) + m−2s(h) + 1

)
+ k

ns(h)
jns(h)

]

, (4.25)

where the +,− applies to h = r, l, respectively, and the k
α(h)
jα(h)

are distinct non-negative

integers for each α(h).

It is significant that the lower limits on the three momentum ranges depend on the

number of quasi-particles present in the state. It is this exclusion of states in the infrared

that causes the specific heat of this system to be less than that of 3 free fermions, namely

less than 3
2
.

From this order 1
M energy spectrum we may construct the branching functions b0

0, b0
4

and b0
2 for N = 4 by using (4.24) and (4.25) in (2.2) with mα(l) = 0 and mα(r) satisfying

the following restrictions (where the subscript r is dropped for convenience):

b0
0 : m2s + m−2s is even, and mns + m−2s +

m2s + m−2s

2
is even;

b0
4 : m2s + m−2s is even, and mns + m−2s +

m2s + m−2s

2
is odd;

b0
2 : m2s + m−2s is odd, and m2s < m−2s.

(4.26)

The branching functions are now evaluated from

qc/24b0
m =

∑

m2s(r),m−2s(r),mns(r)

e−(E−EGS )/kBT , (4.27)
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using the relation
∞∑

N=0

Qm(N)qN =
qm(m−1)/2

(q)m
(4.28)

where Qm(N) is the number of distinct additive partitions of N into m non-negative

integers. We find that

∞∑

m2s,m−2s,mns=0

q
1
4 (3m2

2s+3m2
−2s+4m2

ns+4mnsm2s+4mnsm−2s+2m2sm−2s)

(q)m2s
(q)m−2s

(q)mns

= q1/24b0
m (4.29)

with the mα restricted by (4.26). The lhs is obtained directly from Bethe’s equation (4.4).

However, if we set m1 = m2s, m2 = mns and m3 = m−2s, we see that it is exactly the rhs

of (3.24) obtained by Lepowsky and Primc [30], and thus the equality in (4.29) follows.

The sector Q = ±1 is more complicated and for details the reader is referred to [39].

The analysis there shows that each of the branching functions b2
0 and b2

2 is represented in

terms of two types of spectra with non-trivial lower bounds. The final result is that these

branching functions are given as the sum of two 3-dimensional sums as follows:

∞∑

m1,m2,m3=0
m1+m3 even

qmC−1
3 m

t+m1+m2+m3−
1
4

(q)m1
(q)m2

(q)m3

+

∞∑

m1,m2,m3=0
m1+m3 odd

qmC−1
3 m

t+ 1
2 (m1+m3)

(q)m1
(q)m2

(q)m3

= q
1
24−

1
3 b2

0

∞∑

m1,m2,m3=0
m1+m3 odd

qmC−1
3 m

t+m1+m2+m3−
1
4

(q)m1
(q)m2

(q)m3

+

∞∑

m1,m2,m3=0
m1+m3 even

qmC−1
3 m

t+ 1
2 (m1+m3)

(q)m1
(q)m2

(q)m3

= q
1
24−

1
12 b2

2 .

(4.30)

Unlike the case of the Q = 0, the lhs’s here are not of the form (3.24) of [30]. Nevertheless,

we have verified to order q200 that the identities (4.30) hold.

• Ferromagnetic characters:

The extension of the ferromagnetic order one spectrum (4.9) to the order 1
M region is

complicated by the degeneracy factor (4.12). At order one this degeneracy may be thought

of as additional excitations which must be included in the sum (4.9) but have zero energy

and zero momentum. However, at order 1
M such excitations can have dispersion relations

linear in P just as long as the number of allowed momentum states is finite as M → ∞.

It is also not instantly obvious that the speed of sound of these finite-momentum-range

excitations should be the same as the speed of sound of the quasi-particle of (4.13). These
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questions have been investigated in [40] where we find that the characters can be computed

from the following expressions for the energies

E − EGS =
∑

a=+,−2s,ns

ma∑

ja=1

ea(P a
ja

) , (4.31)

where (in the Q = 0 sector)

P+
j+

=
2π

M

[

−1

2
(m− + m−2s − 1) + k+

j+

]

(4.32)

P−2s
j−2s

=
2π

M

[

−1

2
(m− + m−2s − 1) + k−2s

j−2s

]

(4.33)

P+
jns

=
2π

M

[

−1

2
(mns + 2m− + 2m−2s − 1) + kns

jns

]

, (4.34)

with the ka
ja

distinct non-negative integers for each a, which for a = −2s, ns also have an

upper bound,

k−2s
j−2s

≤ m− + m−2s − 1 , kns
jns

≤ mns + 2m− + 2m−2s − 1 . (4.35)

Here

m+ = 2mns + 3m− + 4m−2s (4.36)

and

ea(P ) = 3P , a = +,−2s, ns. (4.37)

We emphasize that (4.37) differs from (2.9) in that P occurs instead of |P |, which is

significant since the lower limit in (4.32) is in general negative. Note also that the number

of states allowed by (4.33)-(4.35) is finite as M → ∞ for any given m+.

Expressions for the characters χ0 and χ3 are constructed using these rules with the

further restriction

m− is even (odd) for χ0 (χ3). (4.38)

The characters χ2/5 and χ7/5 may also be constructed from these rules provided we add

an additional term
πv

M
(m− + m−2s − 1) (4.39)

to the energy, set m+ = 2mns + 3m− + 4m−2s − 1 and use the restrictions

m− is even (odd) for χ2/5 (χ7/5). (4.40)
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The evaluation of the sum for the characters is done as in the anti-ferromagnetic

case, except that here, because of the finite momentum ranges dictated by (4.35), it is

not sufficient to use (4.28). In addition, we must introduce Qm(N ; N ′), the number of

partitions of N ≥ 0 into m non-negative integers which are smaller or equal to N ′ > 0.

Then the sums may be simplified using [48]

∞∑

N=0

Qm(N ; N ′) qN = q
1
2 m(m−1)

[
N ′ + 1

m

]

q

, (4.41)

where the q-binomial is defined (for integers m, n) by

[
n

m

]

q

=

{
(q)n

(q)m(q)n−m
if 0 ≤ m ≤ n

0 otherwise.
(4.42)

Thus we may directly find, for example,

qc/24χ0,3 =
∞∑

mns,m−2s,m0=0

restrictions

qF (m)

(q)m+

[
m−2s + m−

m−

]

q

[
2(m− + m−2s) + mns

mns

]

q

(4.43)

where

F (m) = 2m2
ns + 3m2

− + 6m2
−2s + 4mnsm− + 6mnsm−2s + 8m−m−2s , (4.44)

m+ is given by (4.36), and the restrictions on the sum are given by (4.40).

For Q = ±1 considerations similar to those of the anti-ferromagnetic case give a

representation of χ1/15 as the sum of five 3-fold sums with an additional linear term in the

exponent.

However, in all cases Q = 0,±1 the structure of the result is much more transparent

if we set

m1 = 2mns + 3m− + 4m−2s , m2 = 2m− + 2m−2s , m3 = m−. (4.45)

Then we find the following set of results

χ̂∆(q) =
∑

m1,m2,m3≥0

restrictions

q
1
4 (2m2

1+2m2
2+2m2

3−2m1m2−2m2m3)−
1
2 L(m)

× 1

(q)m1

[1
2
(m1 + m3 + u2)

m2

]

q

[1
2
(m2 + u3)

m3

]

q

(4.46)
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where the quadratic form in the exponential is recognized as 1
4mC3m

t where C3 is the

Cartan matrix of the Lie algebra A3. The restrictions differ according to the character,

(below e=even, o=odd, and possibly several possibilities for obtaining a given character

are listed):

∆ m1 m2 m3 u2 u3 L(m)

0 e e e 0 0 0

2/5 o e e 1 0 1

o o o 0 1 1

7/5 e e o 1 0 1

e o e 0 1 1

3 o e o 0 0 6

1/15 o e o 2 0 m2 + 2

e e e 2 0 m2

e o o 1 1 m2

o o e 1 1 m2

{e o e

+o o e} 1 −1 m1 − m3

2/3 e e o 1 0 m2 + 1

o e e 1 0 m2 + 1

{e o e

+o o o} 0 −1 m1 − m3 + 1

There are a few comments to be made about this summary of the results of [39] and

[38]. Firstly, for Q = ±1 the form (3.24) for the anti-ferromagnetic characters and (4.46)

for the ferromagnetic characters have not been derived from Bethe’s equation (4.4) but

have been verified to hold to order q200. Secondly, the crucial factorization property (3.6)

has only been shown for the anti-ferromagnetic case. Thus the momentum restrictions

and the energy formula which give the characters by restricting to right-movers only as in

(4.27) do not seem to be sufficient to give the full partition function in the ferromagnetic

case. This is still under investigation, and the resolution presumably lies in the fact that

the limited range excitations (4.33) and (4.34) can have many different forms at the order

of 1
M which will all be degenerate at order 1.
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5. Generalizations

The Lepowsky-Primc form (3.24) for the anti-ferromagnetic 3-state Potts characters

and the expressions for the ferromagnetic characters (4.46) are written in terms of the

Cartan and inverse Cartan matrix of A3 and are extremely suggestive for generalizations.

We have recently conjectured such generalizations [49][50] for many conformal field theo-

ries, including all those mentioned in sect. 3, and found that the conjectures agree with

the previously known results to order q200 in many cases. Furthermore, by reversing the

process of the previous section, each of the characters can be given an interpretation in

terms of fermionic quasi-particles with momentum restrictions. We will here summarize

both these conjectures and other recent results for fermionic sum representations.

5.1.
(G(1)

r )1×(G(1)
r )1

(G
(1)
r )2

where Gr is a simply-laced Lie algebra of rank r.

Let us first define the general sum

SQ
B (q) ≡

∞∑

m1,...,mn=0
restrictions

q
1
2mBm

t

(q)m1
. . . (q)mn

, (5.1)

where B is a real positive-definite n× n symmetric matrix, and the restrictions are gener-

ically of the form
n∑

α=1

mαQα ≡ Q (mod ℓ) . (5.2)

The sum (5.1) is the partition function of a set of n types of (right-moving, say) fermionic

quasi-particles with momenta specified by

Pα
jα

= Pα
min(m) +

2π

M
kα

jα
, (5.3)

where the kα
jα

are distinct non-negative integers for each α and

Pα
min(m) =

2π

M

[

1

2
+

1

2

n∑

β=1

(Bαβ − δαβ)mβ

]

. (5.4)

The interpretation of a restriction (5.2) is that each quasi-particle of type α carries a Zℓ

charges Qα, and so SQ
B is the partition function of the sector of total charge Q.

To obtain characters for the coset conformal field theory
(G(1)

r )1×(G(1)
r )1

(G
(1)
r )2

we take n = r

and B = 2C−1
Gr

, namely twice the inverse Cartan matrix of Gr. The results in the various

cases are as follows:
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Gr = An: This is the original case of Lepowsky and Primc [30]: the sum (5.1) with B =

2C−1
AN−1

is (3.24) with l = 0. All the characters of the corresponding Zn+1-parafermionic

conformal field theory are given by (3.24). We merely note here that the linear shift term

Al · m of (3.27) can be obtained from the form (3.24) with A = 0 by replacing in the

quadratic form ml by ml + 1
2 .

Gr = Dn (n ≥ 3): The corresponding conformal field theories are special points on the

c=1 gaussian line (specified by the radius
√

n
2

in the conventions of [51]), where the

characters are given by

fn,j(q) =
q−1/24

(q)∞

∞∑

k=−∞

qn(k+ j

2n
)2 , j = 0, . . . , n. (5.5)

The inverse Cartan matrix is

mC−1
Dn

mt =
n−2∑

α=1

αm2
α +

n

4
(m2

n−1 + m2
n) + 2

∑

1≤α<β≤n−2

αmαmβ

+

n−2∑

α=1

αmα(mn−1 + mn) +
n − 2

2
mn−1mn ,

(5.6)

and we obtain

SQ
Dn

(q) = q1/24 fn,nQ(q) (5.7)

with Q = 0, 1, when summation in (5.1) is restricted to

mn−1 + mn ≡ Q (mod 2). (5.8)

Note that due to the coincidence D3 = A3 the expressions (3.24) and (5.7) are related

when n = 3 by (cf. [7][39]) S0
D3

= S0
A3

+ S2
A3

and S1
D3

= 2S1
A3

.

Gr = E6: Here the conformal field theory is the minimal model M(6, 7) of central charge

c = 6
7 with the D-series partition function. With a suitable labeling of roots we have

C−1
E6

=










4/3 2/3 1 4/3 5/3 2
2/3 4/3 1 5/3 4/3 2
1 1 2 2 2 3

4/3 5/3 2 10/3 8/3 4
5/3 4/3 2 8/3 10/3 4
2 2 3 4 4 6










, (5.9)
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and we find (cf. (3.17))

S0
E6

(q) = qc/24 [χ
(6,7)
1,1 (q) + χ

(6,7)
5,1 (q)] , S±1

E6
(q) = qc/24 χ

(6,7)
3,1 (q) , (5.10)

with the restrictions

m1 − m2 + m4 − m5 ≡ Q (mod 3). (5.11)

Gr = E7: The conformal field theory is M(4, 5) of central charge c = 7
10 . Now

C−1
E7

=












3/2 1 3/2 2 2 5/2 3
1 2 2 2 3 3 4

3/2 2 7/2 3 4 9/2 6
2 2 3 4 4 5 6
2 3 4 4 6 6 8

5/2 3 9/2 5 6 15/2 9
3 4 6 6 8 9 12












(5.12)

and we find

S0
E7

(q) = qc/24 χ
(4,5)
1,1 (q) , S1

E7
(q) = qc/24 χ

(4,5)
3,1 (q) , (5.13)

when the restrictions are

m1 + m3 + m6 ≡ Q (mod 2). (5.14)

Gr = E8: The coset in this case is equivalent to the Ising conformal field theory M(3, 4)

of central charge c = 1
2
. Here

C−1
E8

=














2 2 3 3 4 4 5 6
2 4 4 5 6 7 8 10
3 4 6 6 8 8 10 12
3 5 6 8 9 10 12 15
4 6 8 9 12 12 15 18
4 7 8 10 12 14 16 20
5 8 10 12 15 16 20 24
6 10 12 15 18 20 24 30














(5.15)

and, without any restrictions in the sum (5.1),

SE8
(q) = qc/24 χ

(3,4)
1,1 (q) . (5.16)

We further note that if m1 in the quadratic form in (5.1) is replaced by m1 − 1
2 then one

obtains (up to a power of q) χ̂
(3,4)
1,1 + χ̂

(3,4)
1,2 , and similarly replacing m2 by m2 − 1

2 the

combination χ̂
(3,3)
1,1 + χ̂

(3,4)
1,2 + χ̂

(3,4)
1,3 is obtained.
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5.2. The cosets of
(G(1)

r )n+1

U(1)r .

This case has been considered in [52] and [53] where the identity characters in the

corresponding generalized parafermion conformal field theory [54] are given by (5.1) (with

suitable restrictions on the summation variables) by taking B = CGr
⊗ C−1

An
, which is

explicitly written in a double index notation as

Bαβ
ab = (CGr

)αβ(C−1
An

)ab α, β = 1, . . . , r, a, b, = 1, . . . , n. (5.17)

When Gr = A1, this reduces to the result (3.24) of [30].

5.3. The non-unitary minimal models M(2, 2n + 3).

This case has been discussed in [55] and [56]. Here one takes B = 2(C′
n)−1, where C′

n

is the Cartan matrix of the tadpole graph with n nodes, namely it differs from CAn
only in

one entry which is (C′
n)nn = 1. The sum SB(q), with no restrictions, gives the (normalized)

character χ̂
(2,2n+3)
1,n (q) corresponding to the lowest dimension in the theory. All the other

characters are obtained [55] by adding suitable linear terms to the quadratic form in (5.1),

leading to the full set of sums appearing in the Gordon-Andrews identities [34][35].

5.4. Unitary minimal models M(p, p + 1) =
(A

(1)
1 )p−2×(A

(1)
1 )1

(A
(1)
1 )p−1

.

For this and subsequent cases we must extend the form (5.1) to

SB

[
Q

A

]

(u|q) ≡
∑

m

restrictions

q
1
2mBm

t− 1
2A·m

n∏

a=1

[
(m(1 − B) + u

2 )a

ma

]

q

, (5.18)

where A and u are n-dimensional vectors of integers and the argument Q indicates cer-

tain restrictions on m (such that, in particular, the upper entries of the q-binomials are

integers). We note that if ua = ∞ then
[
(m(1−B)+u

2 )a

ma

]

q
= 1

(q)ma
. Thus if all ua = ∞ the

form (5.1) is obtained, while if only u1 = ∞ a form similar to (4.46) is obtained.

Generalizing the discussion leading to (4.43), the sum (5.18) can be shown [50] to

be the partition function of a set of n quasi-particles having the same dispersion relation

ea(P a
ja

) = vP a
ja

for all a = 1, . . . , n, and the P a
ja

(ja = 1, 2, . . . , ma with the ma restricted

according to Q) obey the exclusion principle (2.8) but are otherwise freely chosen from the

sets

P a
ja

∈
{

P a
min(m), P a

min(m) +
2π

M
, . . . , P a

max(m)
}

. (5.19)
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The vectors Pmin,max = {P a
min,max} here are

Pmin(m) = −2π

M

1

2

(

m(1 − B) + A − ρρ
)

(5.20)

where ρρ denotes the n-dimensional vector (1, 1, . . . , 1),

P a
max(m) = −P a

min(m) +
2π

M
(
u

2
− A)a , (5.21)

and we note that if some ua = ∞ the corresponding P a
max = ∞.

For the present case of M(p, p+1) the Q-restriction is taken to be ma ≡ Qa (mod 2),

and

B =
1

2
CAp−2

, u1 = ∞ . (5.22)

Defining

Qr,s = (s − 1)ρρ + (er−1 + er−3 + . . .) + (ep+1−s + ep+3−s + . . .) (5.23)

where (ea)b = δab for a = 1, . . . , p− 2 and 0 otherwise, the conjecture for the (normalized)

Virasoro characters (3.17) is [50]

χ̂(p,p+1)
r,s (q) = q−

1
4 (s−r)(s−r−1)SB

[
Qr,s

ep−s

]

(er + ep−s|q) . (5.24)

Due to the symmetry (r, s)↔(p−r, p+1−s) of the conformal grid, another representation

must also exist, namely

χ̂(p,p+1)
r,s (q) = q−

1
4 (s−r)(s−r−1) SB

[
Qp−r,p+1−s

es−1

]

(ep−r + es−1|q) . (5.25)

5.5. Cosets
(G(1)

r )k×(G(1)
r )l

(G
(1)
r )k+l

with Gr simply-laced.

In this case B = C−1
Gr

⊗ CAk+l−1
, and the infinite entries of the vector u are uα

l for

all α = 1, . . . , r, in the double index notation used in subsect. 5.2.

As an example with both k and l greater than 1, consider the case G = A1 with

l=2, the resulting series of theories labeled by k being the unitary N=1 superconformal

series whose characters are given in [4]. We find that the character corresponding to the

identity superfield in these models is obtained by summing over m1 ∈ Z, ma ∈ 2Z for

a = 2, . . . , k + 1.

Another example is the coset
(E

(1)
8 )2×(E

(1)
8 )1

(E
(1)
8 )3

of central charge c = 21
22 , which is

identified as the minimal model M(11, 12) (with the partition function of the E6-type).

The corresponding sum (5.18), with A=0, uα
2 =0 for all α = 1, . . . , 8, and all 16 summa-

tions running over all non-negative integers, gives χ̂
(11,12)
1,1 (q) + q8χ̂

(11,12)
1,7 (q), which is the

(extended) identity character of this model.
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5.6. Non-unitary minimal models M(p, p + 2) (p odd ).

The normalized character χ̂
(p,p+2)
(p−1)/2,(p+1)/2(q) (see (3.17)) corresponding to the lowest

conformal dimension ∆
(p,p+2)
(p−1)/2,(p+1)/2 = − 3

4p(p+2) in this model is given by (5.18) with

B = 1
2C′

(p−1)/2 (where C′
n is defined in subsect. 5.3), A=0, u1=∞ and ua=0 for a =

2, . . . , p−1
2 , and the ma are summed over all even non-negative integers.

5.7. Minimal models M(p, kp + 1).

For k=1 these models are the ones considered in sect. 5.4, while for p=2 they were

discussed in sect. 5.3. Here we consider the general case. The character χ̂
(p,kp+1)
1,k (q)

corresponding to the lowest conformal dimension in the model is obtained from (5.18) with

B a (k +p−3)× (k +p−3) matrix whose nonzero elements are given by Bab = 2(C′−1
k−1)ab

and Bka=Bak=a for a, b = 1, 2, . . . , k − 1, and Bab = 1
2 [(CAp−2

)ab + (k − 1)δakδbk] for

a, b = k, k + 1, . . . , k + p − 3. Summation is restricted to even non-negative integers

for mk, . . . , mk+p−3, the other m1, . . . , mk−1 running over all non-negative integers, and

ua=∞ for a = 1, . . . , k and 0 otherwise.

The case p=3 is special in that the fermionic sums are of the form (5.1) for any k. A

slight modification of the matrix B appropriate for M(3, 3k+1), namely just setting Bkk =
k
2

while leaving all other elements unchanged, gives the normalized character χ̂
(3,3k+2)
1,k of

M(3, 3k + 2).

5.8. Unitary N=2 superconformal series.

Expressions for the characters of these models, of central charge c = 3k
k+2

where k is a

positive integer, can be found in [57]. The identity character, given by χ
0(0)
0 (q)+χ

0(2)
0 (q) in

the notation of [57], can be obtained from (5.18) if one takes B = 1
2CDk+2

, uk=∞ (in

the basis used in (5.6)) and all other ua set to zero, and mk+1, mk+2 running over all

non-negative integers while all other ma summed only over the even non-negative integers.

5.9. ZN parafermions.

The characters of these models are the branching functions bl
m given by (3.21), or

by the fermionic representation (3.24) of [30]. In sect. 4.4 we found another fermionic

representation for the case N=3 which coincides with the minimal model M(5, 6) with

the D-series partition function. (The bl
m in this case are linear combinations of the χ∆ of

(4.46).) Here we generalize the latter form to arbitrary N . For instance, b0
0 is obtained
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from (5.18) by setting B = 1
2CDN

, uN=∞ (in the basis used in (5.6)) and all other ua

set to zero, and mN−1, mN running over all non-negative integers such that mN−1 + mN

is even, while all other ma are restricted to be even.

6. The q → 1 behavior

We can now return to the discussion of specific heat and conformal field theory of

sections 2 and 3 by computing the effective central charge (3.10) directly from the q-series

(5.18). The computation will use the steepest descent method of [58] and [56]. We follow

closely the presentation of [50].

It is easily seen that the q → 1 behavior of (5.18) is independent of the restrictions

Q and the linear terms A. This is consistent with the k-independence of (3.13). Thus

without loss of generality we set A = 0 and let all the sums run from 0 to ∞. The resulting

unrestricted sum will be denoted by SB(u|q).
Let q = e2πiτ and q̃ = e−2πi/τ , with Imτ > 0. Then if the coefficients in the series for

SB(u|q) =
∑

sMqM behave for large M like sM ∼ e2π
√

γM/6, γ > 0, the series SB(u|q)
diverges like

SB(u|q) ∼ q̃−γ/24 as q → 1− . (6.1)

Here γ must equal the effective central charge (3.12) of the corresponding conformal field

theory.

The large M behavior of sM is found by considering

sM−1 =

∮
dq

2πi
q−M SB(u|q) =

∑

m≥0

∮
dq

2πi
q−M Sm

B (u|q) , (6.2)

where the contour of integration is a small circle around 0. The behavior of the integral is

now analyzed using a saddle point approximation. We first approximate

ln
(

q−MSm

B (u|q)
)

≃
(1

2
mBmt − M

)
ln q

+
n∑

a=1

(
∫ (m(1−B)+ u

2 )a

0

−
∫ (−mB+ u

2 )a

0

−
∫ ma

0

)

dt ln(1 − qt)
(6.3)

for large m, and set the derivatives of this expression with respect to the ma to zero in

order to find the saddle point. Introducing xa = (1−wa)va

1−vawa
and ya = 1−wa

1−vawa
where

va = qma and wa = q(−mB+ u

2 )a , these extremum conditions reduce to

1 − xa =
n∏

b=1

xBab

b , 1 − ya = σa

n∏

b=1

yBab

b , (6.4)
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where we define σa=0 if ua=∞ and 1 otherwise, ensuring ya=1 for ua=∞.

At the extremum point with respect to the ma we have

ln
(
q−MSm

B (u|q)
)
∣
∣
∣
ext

≃ −M ln q

+
1

ln q

{

1

2
lnv B lnvt −

n∑

a=1

[
L(1 − va) + L(1 − wa) − L(1 − za)

]

− 1

2

[
lnv · ln(1 − v) + lnw · ln(1 − w) − ln z · ln(1 − z)

]

}

(6.5)

with (lnv)a = ln va and za = vawa, where

L(z) = −1

2

∫ z

0

dt

[
ln t

1 − t
+

ln(1 − t)

t

]

= −
∫ z

0

dt
ln(1 − t)

t
+

1

2
ln z ln(1 − z) (6.6)

is the Rogers dilogarithm function [59]. Now using (6.4) we see that the first term inside

the braces in (6.5) cancels against the last. Then using the five-term relation for the

dilogarithm [59]

L(1 − v) + L(1 − w) − L(1 − vw) = L(1 − x) − L(1 − y) , (6.7)

where x = (1−w)v
1−vw and y = 1−w

1−vw , we obtain

ln
(
q−MSm

B (u|q)
) ∣∣
∣
ext

≃ −M ln q − π2c̃

6 ln q
(6.8)

with

c̃ =
6

π2

n∑

a=1

[L(1 − xa) − L(1 − ya)] . (6.9)

Finally the value of q at the saddle point is determined by extremizing (6.8) with respect

to q, which leads to sM ∼ e2π
√

c̃M/6 and consequently to (6.1) with γ = c̃ of (6.9).

This computation of the q → 1 behavior of (5.18) is completely general in that it is

valid for all matrices B, and presumably for an arbitrary B no simplification of (6.4) and

(6.9) is possible. Nevertheless, for the conformal field theories considered in sect. 5 there

is one final simplification which occurs. Namely, there is a remarkable set of sum rules for

the dilogarithms [28][29][60]-[66] which reduces (6.9) to rational numbers. These sum rules

must be regarded as a vital piece of the theory, but are outside the scope of this article

and we refer the reader to the original papers for details.

26



Finally, it must be pointed out that for the models corresponding to the conformal

field theories of sect. 5 the specific heats have been derived in a completely independent

fashion using the thermodynamic Bethe ansatz [28][29][60][67] which uses the definition of

specific heat discussed in sect. 2. The agreement of these two procedures establishes the

one length-scale scaling discussed in sect. 3.

7. Discussion

It is clear from sect. 5 that the existence of fermionic quasi-particle representations for

conformal field theory characters is a very general feature which goes beyond the specific

models discussed in sect. 4, where these representations were obtained from the spectrum

of the hamiltonian. In these representations the focus is on the momentum selection rules

(5.19)-(5.21). On the other hand, in most of the previously known expressions for the

characters, obtained using conformal field theory or representation theory methods, the

focus is on the modular transformation properties of the characters. It would be interesting

to directly relate these two aspects.

This question can be made explicit by focusing on the quadratic-form matrix B

of (5.18). If this matrix is considered as coming from the momentum restrictions for

the fermionic quasi-particles there appears to be nothing to distinguish one matrix B from

another. However, from the point of view of conformal field theory the general form (5.18)

can only represent a character if it is possible to find some (possibly fractional) power of q

which, when multiplied by the q-series (5.18), gives a function which transforms properly

under the modular group. The mathematical structure of these q-series cannot be said

to be fully understood until these modular properties are found directly from the series,

which generalize the sum-side of the Rogers-Ramanujan identities.

A further property of great importance is the fact that there are often several com-

pletely different fermionic q-series representations for the same conformal field theory char-

acters. As a particular example, we note that the characters obtained as (4.46) from the

study of the ferromagnetic 3-state Potts hamiltonian can also be written in the Lepowsky-

Primc form (3.24) with N=3. More generally, the representations of the ZN -parafermion

characters of section 5.9 and (3.24) are of different forms with different quasi-particle

interpretations, but nevertheless they are equal. This is representative of a general phe-

nomenon. A full discussion is beyond the scope of this article, but we remark that these
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inequivalent fermionic representations for the characters are related to different integrable

perturbations of the model.

Finally, there is the question of obtaining proofs of the several conjectures of sect. 5.

One method is to find certain finitizations of the q-series in question into polynomials,

whose properties can then be studied using recursion relations. Such a finitization exists

for the characters of the unitary minimal models (5.24), which matches the finitization

of the Rocha-Caridi formula (3.17) employed by Andrews, Baxter and Forrester [20] in

their corner transfer matrix analysis of the underlying RSOS models. The details will be

presented elsewhere.
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