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One of the unique advantages of human gait is that it can be perceived from a distance.

A varied range of research has been undertaken within the field of gait recognition. How-

ever, in almost all circumstances subjects have been constrained to walk fronto-parallel

to the camera with a single walking speed. In this thesis we show that gait has suffi-

cient properties that allows us to exploit the structure of articulated leg motion within

single view sequences, in order to remove the unknown subject pose and reconstruct the

underlying gait signature, with no prior knowledge of the camera calibration.

Articulated leg motion is approximately planar, since almost all of the perceived motion

is contained within a single limb swing plane. The variation of motion out of this plane

is subtle and negligible in comparison to this major plane of motion. Subsequently,

we can model human motion by employing a cardboard person assumption. A subject’s

body and leg segments may be represented by repeating spatio-temporal motion patterns

within a set of bilaterally symmetric limb planes.

The static features of gait are defined as quantities that remain invariant over the full

range of walking motions. In total, we have identified nine static features of articulated

leg motion, corresponding to the fronto-parallel view of gait, that remain invariant to

the differences in the mode of subject motion. These features are hypothetically unique

to each individual, thus can be used as suitable parameters for biometric identification.

We develop a stratified approach to linear trajectory gait reconstruction that uses the

rigid bone lengths of planar articulated leg motion in order to reconstruct the fronto-

parallel view of gait. Furthermore, subject motion commonly occurs within a fixed

ground plane and is imaged by a static camera. In general, people tend to walk in

straight lines with constant velocity. Imaged gait can then be split piecewise into natural

segments of linear motion. If two or more sufficiently different imaged trajectories are

available then the calibration of the camera can be determined. Subsequently, the total

pattern of gait motion can be globally parameterised for all subjects within an image

sequence. We present the details of a sparse method that computes the maximum

likelihood estimate of this set of parameters, then conclude with a reconstruction error

analysis corresponding to an example image sequence of subject motion.
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Chapter 1

Introduction

This thesis answers many of the important questions with regard to the reconstruction

and identification of human motion. The bulk of the work concentrates on answering

three simple questions:

• What is gait and how accurately can we represent it?

• What are the unique features of motion and how do they vary over a range of

walking speeds?

• How can we reconstruct the fronto-parallel view of gait from an oblique trajectory

of imaged subject motion?

We use a passive marker system to identify interest feature locations on the human body,

thus removing the necessity for a complex vision system to track and automatically label

the anatomical landmark features. Correspondingly, all interest features within an image

sequence are manually labelled. The emphasis throughout this thesis is on the geometric

properties of human gait and the projective geometry techniques used to reconstruct a

consistent view of the limb motion.

This chapter introduces the subject of biometrics, identifies the important properties

required for a successful biometric, then gives a brief discussion on the current and future

role for biometrics within the UK. We then introduce a number of possible application

domains for the analysis of human movement and gait recognition.

Each chapter is self contained and addresses a clearly defined problem. Subsequently, the

critical research material and prior work is reviewed within each of the relevant chapters.

We give here a brief literature review of prior work that is similar in application or has

influenced the development of this thesis in some way. We then state the hypotheses that

were subsequently investigated. Finally, we provide a breakdown of the thesis structure

and give a brief overview of the content within each of the chapters.

1
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1.1 Biometrics

With the growing importance of applications requiring human identification, the de-

mand for adequate security measures has increased dramatically. In response to this

demand, new technologies are being introduced aimed to ensure that the requisite level

of security can be achieved. One of these technologies is often referred to as biometrics.

Biometrics concern any human physiological or behavioural characteristics [51] which

are: (i) Universal, every person should have that characteristic; (ii) Unique, no two peo-

ple should be the same in terms of that characteristic; (iii) Permanent, invariant with

time; (iv) Collectable, can be measured quantitatively; (v) Reliable, must be safe and

operate at a satisfactory performance level; (vi) Acceptable, non-invasive and socially

tolerable; and (vii) Non-circumventable, how easily the system is fooled into granting

access to impostors.

An important advantage of biometrics lies in the fact that physical or behavioural traits

cannot be transferred to other individuals. Examples of biological characteristics that

have been explored for their potential as biometrics so far are face, fingerprints, DNA,

hand geometry, vein geometry, iris and retinal patterns, signature, voice, gait and ear.

Unfortunately, most biometrics are not perfect. Fingerprints and hand geometry are

reliable but require physical contact. Although signatures based on face and iris are

non-intrusive in nature, the applicability of these methods is restricted to very controlled

environments.

With the current global drive towards biometric enabled identity and travel documents,

many experts feel that extensive research and development is needed to ensure the

successful use of biometrics for large-scale identification projects. The scale of the ID

card project in Britain is certainly daunting in terms of the history of past Whitehall

computer projects. A report released by the European Commission on 30 March 2005

warned that, on the technological side, there is currently a lack of independent empirical

data.

The UK government has announced plans for a compulsory national identity card

scheme. The scheme is to be phased in over a number of years and will include basic

personal information and biometric identifiers. These unique biometric identifiers (such

as iris pattern or fingerprints) will help prevent people’s identities being stolen and will

also securely confirm a person’s identity when a card is checked. The introduction of

the first identity cards will, on current plans, start from 2008.

The Home Secretary also announced on 11 November 2003 that the UK Passport Ser-

vice (UKPS) would run a biometric pilot. The aim of the pilot was to evaluate issues

surrounding biometric recording using facial recognition, iris pattern and fingerprints.

The pilot ran between April and December 2004.

While 10,000 volunteers participated in the trial, the detailed research released by the
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UKPS [81] focused on 2,000 quota people, picked to match the general population, and

750 disabled people. The UKPS stressed that the trial’s aim was to measure people’s

reaction to having biometric data collected, not the technology’s effectiveness at gather-

ing facial, iris and fingerprint information. Nevertheless, the results showed that there

were still problems with individual types of biometrics.

The test covered both the initial enrolment and verification for each biometric. While

there were high rates of success, 90% or more for enrolment on all three types of bio-

metric, the results for the verification varied. For the facial biometric, which measures

the distance between various points on the face, the success rate was 69% for the quota

group and 48% for the disabled people who took part. It should however be noted that

disability was not a failure factor, as the majority of disabled participant verifications

took place in a mobile enrolment centre where lighting conditions adversely affected all

facial verifications. Iris verification was better, with a 96% quota group success rate and

91% amongst the disabled volunteers. Fingerprint verification was successful in 81%

of the quota group and 80% of the disabled group, with problems occurring with the

machine not recording enough detail from the fingers.

Another potential headache for the UKPS is the amount of time it takes to physically

gather the biometric information from individuals. According to the report, it took an

average of 7 minutes, 56 seconds for people in the quota group to be enrolled, and an

average of 8 minutes and 15 seconds for those in the disabled group.

According to the UKPS, the trial results have highlighted several issues that require

further investigation. Among other things, further trials are needed, specifically tar-

geted towards those disabled groups that have experienced enrolment difficulties due to

environment design, biometric device design, or to specific group problems.

1.2 Human movement

Traditionally there has been keen interest in human movement from a wide variety of

disciplines. There is a rich literature, including medical and psychological studies, in-

dicating the potential of gait in personal identification [78]. In psychology, there have

been the classic studies on human perception by Johansson [52]. Experiments with

moving light displays attached to body parts showed that human observers can almost

instantly recognize biological motion patterns, even when presented with only a few of

these moving dots. Further studies confirmed that we can correctly discriminate be-

tween the gender of a walker [57]. Studies of human locomotion found that male walkers

tend to swing their shoulders more, while female walkers their hips [69]. In kinesiology

the goal has been to develop models of the human body that explain how it functions

mechanically and how one might increase its movement efficiency. A typical procedure
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involves obtaining 3D joint data, performing kinematic analysis, and computing the cor-

responding forces and torques for a movement of interest. 3D data is typically obtained

in an intrusive manner, by placing markers on the human body. Typical clinical anal-

ysis of gait data is performed on a case by case basis, with concerted efforts towards

understanding the bio-mechanical significance of particular deviations from normal gait

patterns. The aim of medical research has been to classify the components of gait for the

treatment of pathologically abnormal patients. Early medical studies suggest that if all

gait movements are considered then gait is unique. Murray’s work [76, 75] indicates that

gait contains 24 different components giving it the richness necessary for a successful

biometric.

An important application domain of human motion recognition is in smart surveillance.

Here the system does more than motion detection, a straightforward task that is prone

to false alarms (the system is easily fooled by the presence of moving vehicles, animals

and natural effects such as wind producing motion in trees). The first capability is to

sense that humans are indeed present. This is followed by person tracking and biometric

identification for the purpose of access control. A typical application may be to identify

suspicious behaviour of individuals walking around in a car park, repeatedly looking

through car windows. The benefits of such applications need in some cases to be balanced

with possible drawbacks e.g. regarding privacy.

Biometrics are not perfect and many suffer from social and practical problems. One may

need to make physical contact with systems, for example fingerprinting, or suffer social

embarrassment when interrogating a voice recognition system. Biometrics that need

no physical contact, such as face recognition, are more acceptable to users, but can be

limited by practical issues such as face visibility. Gait is one of the newest biometrics and

has the potential of overcoming many of these problems. One of the unique advantages of

using gait as a biometric is that it can be perceived from a distance, making acquisition

non-invasive and convenient. Biometrics such as iris and retinal patterns, ear and face

recognition require high resolution images. A typical surveillance camera often captures

poor quality, low resolution images. Gait suffers less from this shortcoming because the

body has a proportionally larger area compared with the eyes or face. Furthermore, it

cannot be easily disguised without impeding one’s natural gait.

1.3 Prior work

An informative survey of the current analysis techniques to date, regarding human move-

ment has been outlined by Gavrila [36]. He surveys the work on visual analysis of ges-

tures and whole body movement, and identifies the various areas of research current

approaches have taken. The various application domains can be categorized into three

main sections.
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• 2D approaches without explicit shape models.

• 2D approaches with explicit shape models.

• 3D approaches.

Here we describe some of the techniques adopted by researchers in the field of human

gait analysis and identification.

Statistical based approaches derive a unique signature by computing a spatio-temporal

motion pattern based on a sequence of segmented images of a moving person. Typically,

the shape of the body is reduced to a binary silhouette and some statistical measures

are taken from this sequence of silhouettes. Techniques such as Principal Components

Analysis and Linear Discriminant Analysis have been used to provide a statistical de-

scription of the sequence [49, 48]. These techniques are fairly successful on small subject

populations, achieving high recognition rates. However, it is not clear exactly which

features of gait contribute to the recognition process.

Little and Boyd [64, 65] develop a model-free description of instantaneous motion, the

shape of motion, that varies with the type of moving figure and the type of motion.

Subjects are discriminated by periodic variations in the shape of their motion. The

image flow of a moving figure varies both spatially and temporally. For each image in a

sequence, dense optical flow is derived. Scale independent features based on moments of

the moving point characterize the spatial distribution of the flow. The periodic structure

of these sequences of scalars is analysed, which have the same fundamental period but

differ in phase. Some phase features are consistent for one person and show significant

statistical variation among people, enabling individuals to be identified by the shape of

their motion.

Polana and Nelson [85] develop a shape free technique that uses a periodicity measure

based on grey level signals extracted along spatio-temporal reference curves. They define

the periodicity measure of a signal as the normalized difference between the sum of the

spectral energy at the highest amplitude frequency and its multiples, and the sum of

the energy at the frequencies halfway between. Similar work by Picard [66, 67] develops

this idea further by consideration of harmonic energy ratios and applying better spectral

thresholding. Both algorithms consist of two main parts: i) Object tracking by frame

alignment, which transforms data into a form in which periodicity can be easily detected

and measured; ii) Fourier spectral harmonic peak detection and energy computation, to

identify regions of periodicity and measure its strength. Their methods allow simulta-

neous detection, segmentation and characterization of spatio-temporal periodicity, and

is computationally efficient.

Cutler and Davis [21, 22] detect periodic motion by first segmenting the motion and

tracking objects in the foreground. Objects are aligned along the temporal axis and
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the self-similarity of the object is computed as it evolves in time. Periodic motions

result in the self-similarity metric also being periodic, thus time-frequency analysis is

applied to robustly detect and characterize this inherent periodicity within the 2D lattice

structures.

Hayfron-Acquah and Nixon [43, 44] describe a method for automatic gait recognition

based on analysing the symmetry of human motion by using the generalized symmetry

operator. This operator, rather than relying on the edges of a shape or on general

appearance, locates features by their symmetrical properties. Analysis also suggests

that symmetry offers practical advantages, such as relative immunity to noise, missing

frames and the capability to handle occlusion. Promising recognition rates of over 95%

have been achieved, with the ability to discriminate between human and animal motions.

Foster and Nixon [34] present a statistical area based metric, called gait masks. Gait

masks aim to combine holistic and model based approaches by using statistical data from

human silhouettes that is intimately related to the nature of gait. Each gait mask aims

to isolate a portion of the image and measure the change within that area. The masks

are intuitively chosen to capture meaningful information about the shape of motion of a

subject’s gait. Early results show promising results with a recognition rate of 90% on a

small database of human subjects. Furthermore, gait masks can also be used to provide

information about the periodicity of gait.

Another method is to base recognition on a physical model of human motion. Perhaps

the earliest approach to gait recognition was to derive a gait signature from a spatio-

temporal motion pattern [79, 80]. The initial model for the walker is simple. A walker

is a translating blob which has braided spatio-temporal patterns in the lower half of the

subject’s body. By recognizing these spatio-temporal signatures, a model can be imposed

for subsequent analysis. A fixed length feature vector is composed by interpolating the

set of angles formed by fitting a stick figure model to the motion. This vector is then

used for classification by the simple K-nearest neighbour of Euclidean distance.

Other researchers have chosen to model hip rotation by a simple pendulum [19], whose

motion is approximately described as simple harmonic, thus can be expressed by a

Fourier series. This has also been extended to include the lower leg by using a bilaterally

symmetric and coupled oscillator model [117]. The gait signature is created from the

phase weighted magnitude of the lower order Fourier components of both the thigh and

lower leg rotations. These signatures can be used for recognition either by running or

walking [118, 119], though large differences between both running and walking modes

of motion mean that there is no unified biometric signature [116].

Tanawongsuwan and Bobick [103, 102] explore the spatio-temporal gait parameters of

stride length and cadence over a number of controlled walking speeds. They give a

detailed study of motion obtained from treadmill walking and show that there is a

linear relationship between stride length, cadence and measured gait speed which can
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be used to normalize subject motions to a common framework for further comparison.

Constrained motion in laboratories is often not the same as seen in the real world.

In particular, subject pose and camera positions are all well controlled in laboratory

experiments, usually by forcing the subject to walk fronto-parallel to the camera. Before

these techniques can be of practical use, the many different effects that may perturb

and influence recognition rates must be quantified. Clearly some form of invariance or

correction is required to normalize the signatures of walking subjects to be independent

of the imaged effects of pose.

BenAbdelkader and Cutler [5, 6] describe two different gait recognition methods: a non-

parametric method that uses the self-similarity plot of a walking sequence as the input

feature for classification; and a parametric method that estimates the spatio-temporal

parameters of gait (the cadence and stride length) and exploits their linear relationship

as a cue for identification. Normalizing for the variation in camera viewpoint is not

possible, except for very small changes. This is because a different (planar) projection

of gait dynamics is captured in the image from any one camera viewpoint. Hence, it is

necessary to index the gait recognition method by different ranges of camera viewpoint.

Carter and Nixon [11, 12] use a model based perspective technique to correct measured

gait angles from geometrically marked limb positions, imaged under oblique trajectory

angles. They demonstrate that normalized gait signatures based on phase and high

order amplitude measurements provide some invariance to changes in pose.

Kale and Chowdhury [55] propose a method for synthesizing arbitrary views of planar

objects. They apply this technique to recover the fronto-parallel motion of subjects

walking at arbitrary angles to the camera. Their method uses a perspective projection

model and an optical flow based structure from motion strategy for estimating the az-

imuth angle of the original view from monocular image sequences. However, they require

some information about the camera calibration in order to compute these synthesized

views.

Taylor [104] investigates the problem of recovering information about the configuration

of an articulated object, such as a human figure, from point correspondences within a

single image. The reconstruction method does not assume that the camera is calibrated

and uses a weak perspective projection model. Correspondingly, there are a family of

solutions to this reconstruction problem, parameterised by a single scalar variable. A

simple algorithm is developed for recovering the entire set of solutions by considering

the foreshortening of limb segments within the image.

Liebowitz and Carlsson [61] describe an algorithm for 3D reconstruction of dynamic

articulated structures, such as humans, from uncalibrated, multiple views of subject

motion. The reconstruction exploits constraints associated with a dynamic articulated

structure, specifically the conservation over time of lengths between rotational joints.
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These constraints allow metric reconstruction from at least two different images, in each

of two uncalibrated orthographic projection cameras. The method also extends to pairs

of cameras that are zooming, where calibration of the cameras allows compensation for

the changing scale factor in a scaled orthographic camera.

1.4 Research outline

A varied and large range of research has been undertaken within the field of automatic

gait recognition. However, in almost all circumstances the situations have been con-

strained for particular motions. Most research has been restricted to subjects walking

fronto-parallel to the camera with a single natural gait speed. Recognition rates obtained

by these techniques, when processing sequences of motion acquired with different geo-

metric pose and speed configurations, are typically quite low. Currently proposed gait

features have poor intra-person reliability due to their dynamic nature, being dependent

on various physiological, psychological and external factors such as footwear, clothing,

load carrying, surface of walking, mood, illness and fatigue. Realistically, people will

always walk with varying speeds along different motion trajectories to the camera. It is

this particular problem that requires further attention, in order to better understand and

recover suitable biometric measurements for the purpose of identification at a distance.

Any successful biometric has static features that are invariant to the day to day circum-

stantial variations in subject motion. Researchers [103, 102] have already made some

headway into removing variations between intra-person gait motion, by choosing to map

subject locomotion to a common walking speed in order to facilitate further comparison.

Gait is though not a one to one function. A person can achieve a desired gait speed in

a number of different ways. There exists a mapping between cadence and stride length

that allows us to alter the mode of walking whilst maintaining the required velocity.

Normalization to a common gait speed then provides some invariance over a range of

statistically average gait motions, though does not completely remove the problem.

What we should really be looking for are geometric or algebraic properties of gait that

are perforce unchanged by the circumstances of gait motion. Limb segment lengths

correspond to rigid bone sections, thus remain fixed over the entire image sequence.

Since we are unable to gauge depth from monocular views and are unable to determine

the true length measures of any of the subject’s limbs, the fronto-parallel reconstruction

corresponding to an imaged sequence of subject motion can only be determined up to

scale. Length ratios are invariant to changes in scale and can easily be extracted from

the reconstructed view. Provided we can recover the motion dynamics corresponding

to the fronto-parallel view, then the ratios between limb segment lengths make ideal

biometric parameters.

We must be mindful of the usefulness of any technique that we wish to develop. It may be
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possible to provide good classification results from a system involving dozens of cameras.

In practice this may not be feasible due to either or both, the cost involved in camera

resources and the circumstances in which motion sequences are acquired. A typical

surveillance application makes maximum use of the hardware, i.e. placement of cameras

in a convenience store is usually designed to maximize the coverage of the entire shop. In

these circumstances redundant coverage of the same areas by cameras is wasteful and is

typically avoided, thus multi-view methods are often impractical. This is not to say that

we should discount these methods altogether, but that identification from monocular

sequences is more commonly apparent. We take this as a basis for our investigation into

viewpoint invariance, and to this end devote the remaining chapters of this thesis to the

theory and development of invariance from monocular motion sequences.

We hypothesize that gait has the following features and properties.

• Human locomotion can be modelled as a collection of dynamically mov-

ing, articulated limb segments. Each limb is connected to the trunk and is

composed of a number of inter-connected bone and joint structures. Each bone

segment is rigid and of fixed length. These bone segments are allowed to freely

pivot about the corresponding joint positions, although only within a constrained

arc of motion.

• Articulated leg motion is approximately planar. While in reality the dis-

placement of leg motion is within all three Euclidean directions, almost all the of

the perceived motion is contained within a single plane. The variation of motion

out of this plane is subtle and negligible in comparison to this major motion plane.

• Normal gait is bilaterally symmetric with a half phase shift. Walking

uses a repetitious sequence of leg motion to move the body forward. This series

of events is repeated by each leg with reciprocal timing. The stance period of one

leg equals the swing of the other, thus motion on one leg swing plane is related to

the motion of the other by a period of half the gait cycle.

• Natural gait motion is piecewise linear. In general, people tend to walk in

straight lines with constant velocity. Deviation from this assumption infers in-

consistent, non-repetitious limb motion and consequently suggests unnatural gait.

Imaged gait can then be split piecewise into natural segments of gait motion.

• Each individual has a set of possibly unique static features. The static

geometric features of gait that remain invariant over time are based on the fixed

length measurements of limb segments. Similarly, there are static motion features

that are derived from the representation of the dynamic leg motion function. These

features are invariant to the circumstantial changes in subject motion such as stride

length, cadence and consequently gait speed.
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In this thesis we show that gait has sufficient properties that allows us to reconstruct the

fronto-parallel view of gait motion. We identify the static, geometric and motion features

of gait and show that these features remain invariant over a range of circumstantial gait

motions for a small trial group of four people. Furthermore, if two or more sufficiently

different imaged trajectories of gait motion are available, though not necessarily of the

same person, then the calibration of the camera can be determined. Subsequently,

the total pattern of gait motion can be globally parameterised for all subjects within an

image sequence. We present the details of a sparse method that computes the maximum

likelihood estimate of this set of parameters, then conclude with a reconstruction error

analysis corresponding to an example image sequence of generalized subject motion.

1.5 Thesis structure

The remainder of this thesis is arranged as follows.

• Chapter 2: Stratified Recovery of Planar Gait Motion.

This chapter introduces the main geometric ideas and notation that are required

to understand the remaining material covered in this thesis. In particular, the

chapter covers camera models, image projection and planar geometry. Geometric

properties of the plane can be classified into three main groups of transformation:

perspective, affine and similarity transformations. Identification of specific entities

within the image allows us to employ a stratified technique to map them back to

their canonical positions. Metric structure of the scene plane is typically recovered

in a two step process: i) Identification of the imaged vanishing line of the scene

plane allows us to compute the perspective transformation that recovers the affine

properties of the plane. ii) Identification of the imaged circular points then allows

us to compute the affine transformation that recovers the metric properties of the

plane.

We show that gait has sufficient properties that allows us to exploit the structure

of planar leg motion in order to remove the unknown subject pose and reconstruct

the canonical motion pattern, with no prior knowledge of the camera calibration.

As an example, this stratified reconstruction technique is applied to a synthesized

image of an obliquely viewed human motion figure pattern, in order to recover the

canonical fronto-parallel view.

• Chapter 3: Static Features of Human Gait.

This chapter is concerned with identifying the features of gait which remain invari-

ant to the circumstantial changes in gait motion. We first give a brief overview of

the terminology and biomechanics of subject motion from the medical literature,

in order to better understand the nature of gait. We then provide a quantitative
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verification and analysis of the planar leg motion assumption. We first compute

the true 3D positions of marked leg joints over an image sequence, via trian-

gulation from multiple calibrated camera views. A scene plane is fitted to these

reconstructed points, and a statistical analysis of the orthogonal deviation between

sample points and the motion plane is then given.

We proceed by defining a suitable limb angle function, based on a modified Fourier

series, that is able to represent the dynamics of subject leg motion. Finally, we

analyse the behaviour of these motion parameters over a range of controlled walk-

ing speeds, for a number of subjects who walk on a treadmill. We emphasize

parameter properties that remain invariant over these speeds and outline a bio-

metric feature vector suitable for recognition purposes.

Throughout the chapter, we consider more closely four out of the seven properties

of biometrics: Universal, Unique, Collectable and Reliable. Where possible, we

identify the major sources of error between the motion model and imaged data.

We quantify the level of reconstruction error over a range of walking speeds, with

a small trial set of four subjects. An analysis of the intra and inter class variance

is given for each of the proposed biometric features of gait motion that allows us

to comment on their capability to discriminate between subjects under different

motion conditions.

• Chapter 4: Pose Invariant Gait Reconstruction.

The work in this chapter develops the geometric properties and biometric features

identified within chapters 2 and 3, though with respect to real human motion

sequences. The human body is inherently a dynamically moving, articulated 3D

motion structure. The articulated leg motion of both left and right sides of the

body can be approximated by motion within two separate planes. We can apply

further constraints on the form of the articulated leg motion by simultaneous

consideration of the bilateral symmetry between left and right leg. This allows us

to combine and maximize the utilization of the imaged sample data in order to

compute a more robust estimation of gait motion.

We develop a novel method that uses the geometric properties of articulated leg

motion to compute a stratified reconstruction of the fronto-parallel dynamics of

gait motion. After recovering the fronto-parallel structure of subject gait, we can

then determine the representation of the bilateral leg angle function by fitting a

modified Fourier series to the data.

Parameterisation of subject motion is split into two phases: i) Limb stance, limb

pose positions on the metric plane are determined by evaluating the biometric limb

angle function. ii) Pose projection, the orientation and displacement of a subject’s

worldspace limb swing plane is determined by the homography transformation that

projects metric plane structure into the image plane.

A method is presented to compute the maximum likelihood estimate of these recon-
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struction parameters. An analysis of the resultant reconstructions over a number

of different subject trajectories is given for a small trial set of four people. We

outline the intra and inter class variance of the proposed biometric feature vector

for the set of reconstructed subject motion trajectories. We also cross compare the

intra and inter class variation of these reconstructed overground walking motions

with the set of treadmill walking motions from chapter 3.

The chapter concludes with a brief discussion on a number of possible improve-

ments and considerations that can be made to the stratified reconstruction tech-

nique.

• Chapter 5: Total Parameterisation of Generalized Gait Motion.

Since people tend to walk from point to point in straight lines, any generalized

gait motion can be approximated by a set of straight line motion segments. Each

piecewise linear segment of reconstructed gait has a set of biometric motion pa-

rameters and a corresponding set of pose projection parameters. Common to all

subject pose projections are the intrinsic coefficients of the camera. Similarly, each

subject has a common set of underlying biometric gait parameters within each of

the reconstructed linear motion segments. The work presented in this chapter is

concerned with recovering the intrinsic parameters of the camera and the under-

lying limb function of subject motion. Subsequently, we can determine the set

of worldspace subject poses from the parameterised set of limb swing plane map-

pings. Subjects typically walk within a flat ground plane, hence the configuration

and parameterisation of subject motion is specialized further. Details of a sparse

minimization technique are then given that computes the maximum likelihood es-

timate of the set of partitioned model parameters corresponding to subject motion

over the entire image sequence. The chapter concludes with an analysis of the re-

construction results obtained from a real image sequence of subject motion around

multiple trajectory segments of a test track. A discussion on the measured uncer-

tainties within the parameterisation is then given and a number of explanations

for the major sources of error considered further.

• Chapter 6: Conclusions.

We summarize and put into context the ideas and results of all previous chapters

with respect to real articulated human motions. We highlight the successes of the

many practical methods developed throughout the project and discuss areas that

warrant further improvement. We finish by outlining the novel contributions made

within this work to the field of gait analysis and recognition.

• Appendices.

Further background material and mathematical proofs that are not intimately re-

lated to the main body of work are presented within the four appendices at the

end of the thesis. Appendix A outlines the transformation properties of the set

of perspective, affine and similarity classes of planar geometry. Appendix B is
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concerned with linear systems of equations and describes a number of numerical

algorithms that are frequently used throughout this work. Appendix C reviews the

mathematics of non-linear optimization methods that are used in order to compute

the maximum likelihood estimates of a set of model parameters. In particular, we

discuss the form of the sparse minimization techniques that are frequently en-

countered throughout this thesis. Finally, appendix D outlines the details of the

software developed during this period of study. We give details of a number of

software tools that were implemented by the author to enable manual marking

of point features within an image sequence, camera calibration, triangulation of

worldspace structure and image rectification. This chapter demonstrates the sig-

nificant practical contribution made by the author in conjunction with this work.



Chapter 2

Stratified Recovery of Planar

Gait Motion

2.1 Introduction

This chapter introduces the main geometric ideas and notation that are required to

understand the remaining material covered within this thesis. In particular, the chapter

covers the geometry of projective transformations of the plane. These transformations

model the geometric distortion which arises when a plane is imaged by a perspective

camera. Under perspective imaging certain geometric properties are preserved, such as

collinearity, while others are not. Parallel worldspace lines are not in general imaged as

parallel lines. Projective geometry models this imaging and also provides a mathematical

basis that is appropriate for representing the transformation of worldspace structure.

A detailed modern description of the mathematics of geometry is given in [9], which

describes a number of different geometries including affine, projective, inversive, non-

Euclidean and spherical geometries. For a good overview and background into per-

spective imaging see the appendix of [74], or for a complete study to date of projective

geometry within computer vision we refer you to the texts of Hartley and Zisserman [40],

Cipolla [13], and Faugeras and Luong [27].

We review here the basic properties, nomenclature, and essential details of projective

geometry. We begin by describing the representation of 2D points, lines and conics in

homogeneous notation, and how these entities map under transformation of the image

plane. This is followed by a discussion on central projection and the development of the

camera model.

The camera is a remarkable measuring device. It not only captures a realistic picture of a

scene, but also provides information from which geometric properties of imaged structure

can be measured. Reconstructing scene geometry from images is one of the most active

14
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areas in computer vision. Reconstruction techniques all require some form of calibration;

through direct methods prior to scene capture or auto-calibration methods that use scene

and motion constraints between views, such as parallelism and orthogonality of scene

lines.

We first describe the simple linear pinhole projection model and relate the intrinsic

camera coefficients with the physical properties of the camera projection. We then turn

our attention to more complex camera models and emphasize how to represent non-

linear distortion effects such as radial distortion. We finalize our discussion on cameras

with the details of various camera calibration methods. We describe the mathematics

and procedures required to reliably compute accurate worldspace measurements through

the process of back projection from multiple camera views.

In a world crafted with flat surfaces, worldspace structure and detail commonly occurs

within single planes, e.g. printed text on a book page. Projection of planar worldspace

structure into the image then has a much simpler form. In general, transformation of

structure from one plane to another is achieved by a 3 × 3 matrix mapping known as a

homography. We review the mathematics and essential properties of planar geometry

then give examples of some commonly occurring specialized planar transformations, such

as image mosaicing [99, 100] and repetition of planar patterns [89, 90].

The homography that maps structure from one plane to another may be directly com-

puted by using linear methods with only the knowledge of known point correspondences

between both planes. On the other hand, we may not have physical point correspon-

dences between the canonical reference plane and the image plane. We may though have

some additional knowledge about the structure on the reference plane (orthogonality of

vectors, known ratios of lengths, etc.) that allows us to reconstruct the canonical plane.

There has recently been much interest in Euclidean reconstruction from uncalibrated

views [41, 16]. Liebowitz and Zisserman [62, 63] describe a stratified approach to scene

plane reconstruction that allows us to combine a number of different constraints within a

unified framework, in order to compute the set of transformations that recover the metric

properties of the scene plane. Geometric properties of the plane can be classified into

three main groups of transformation: perspective, affine and similarity transformations.

Each class of transformation distorts image structure differently, thus there are geometric

entities that are only affected by a specific class of transformation. Identification of these

entities within the image then allows us to compute the transformation that rectifies

them back to their canonical positions.

We conclude the chapter by putting this planar geometry theory into practice, in order to

validate our assumptions about the nature of gait motion. Most current research assumes

that imaged gait motion is fronto-parallel. This may be viable in certain constrained

situations where we are able to force subjects to walk in such a manner. In general,

subject motion is never truly fronto-parallel, thus a correction transformation is required
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to reconstruct the canonical dynamics of gait locomotion.

We hypothesize that human limb motion during natural gait is approximately planar

and that people tend to walk, over a number of gait cycles, along linear trajectories

with constant velocity. The periodicity of planar limb motion is then analogous to the

specialized geometry of repeating planar patterns, and allows us to recover the imaged

direction of subject motion and the vanishing line of the limb swing plane. Within the

worldspace, articulated limb segments remain fixed in length, thus form exactly the type

of planar constraints required to compute a stratified reconstruction of the limb swing

plane.

We set up an experiment in which several different gait poses within a gait cycle are

represented by planar skeletal figures printed onto a sheet of paper. An oblique motion

trajectory is synthesized by placing the pattern on a flat surface and taking a picture

with a camera orientated at an angle to this scene plane. A stratified reconstruction

technique is then applied to the marked limb segment endpoints in order to recover the

fronto-parallel view of the figure motion pattern. We demonstrate that gait has sufficient

properties that allows us to exploit the structure of articulated limb motion within

single view sequences, in order to remove the unknown subject pose and reconstruct the

underlying gait signature, with no prior knowledge of the camera calibration.

2.2 Representation of 2D primitives

Geometric primitives that lie on the image plane, such as points, lines and conics, can be

represented in a number of different ways. They often arise as the projections of three

dimensional primitives within the worldspace, i.e. points, planes and quadrics. We give

here a mathematical description of the homogeneous representation of these entities.

The image plane coordinate system is customarily aligned with the X axis to the right

and the Y axis downward. Following this convention, the worldspace coordinate system

is also aligned with the X axis to the right and the Y axis downward. Subsequently, the Z

axis is aligned into or toward the viewing plane, as shown in figure 2.1. To disambiguate

between lines in the image plane and projective construction lines that pass through the

image, we refer to these projection lines as rays.

2.2.1 Points

A point on a plane may be represented by the pair of coordinates (x, y) in R
2. We can

also represent the same point homogeneously as (x1, x2, x3), a ray through the origin

in R
3, i.e. the line that passes through the Euclidean coordinates (0, 0, 0) and (x1, x2, x3).
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Figure 2.1: The homogeneous representation of a point (x, y) in R
2 is a point

(x1, x2, x3) in R
3. The ray that passes through the origin and (x1, x2, x3) intersects

the z = 1 plane in the inhomogeneous coordinate (x, y).

This homogeneous ray vector is related to the coordinate pair (x, y) in the image plane

of R
2 by the mapping.

(x, y) 7→ (
x1

x3
,
x2

x3
, 1) (2.1)

In general, if the point in R
3 representing the inhomogeneous point (x, y) is written as

(x1, x2, x3) then (λx1, λx2, λx3) also represents the same (x, y) coordinate, with λ 6= 0.

This implies that a homogeneous point represents an R
2 coordinate up to scale.

The homogeneous representation of a point in R
n can be expressed as a vector R

n+1.

We therefore represent the inhomogeneous Euclidean 3D point (x, y, z) homogeneously

by a vector (x1, x2, x3, x4) in R
4.

2.2.2 Lines

A line on the image plane in R
2 is represented homogeneously by a plane in R

3 passing

through both the image plane line L and the origin point O.

Since a line is represented by a plane in R
3, it must consist of the set of Euclidean

points (x, y, z) that satisfy the equation ax + by + cz = 0, where (a, b, c) are real and

not all zero. It has the homogeneous scaling property λax + λby + λcz = 0, with λ 6= 0,

and represents the line L on the image plane in R
2 simply by the coefficients of the plane

normal vector N = (a, b, c).

Any two distinct points in the image plane R
2 lie on a unique line. The condition for a

point to lie on the line can then be written homogeneously as the inner product between
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Figure 2.2: The homogeneous representation of a line L in R
2 is a plane N in R

3

which passes through both the origin O and the line L.

the point X and the line L.

X · L = 0 (2.2)

(λ1x, λ1y, λ1) · (λ2a, λ2b, λ2c) = 0

λ1λ2 · (ax + by + c) = 0

We introduce here the vector notation for representing homogeneous entities. In the

usual manner, the product of a matrix and a vector is another vector, which brings up

the distinction between column and row vectors. Since a matrix may pre-multiply a

column vector to its right, it is conventional to represent geometric entities as column

vectors. A bold face symbol x will always represent a column vector, and its transpose x⊤

a row vector. Using this convention, we can represent column vectors as (x1, x2, x3)
⊤

within the body of a text paragraph. The condition for a point x to lie on a line l in

this notation can be represented by the inner product.

x⊤l = l⊤x = 0 (2.3)

If we use the fact that two distinct points define a line and our homogeneous represen-

tation of a line is a plane in R
3, then any further points on this plane in R

3 must also

lie on the line in R
2.

Consider finding the line between the two homogeneous points x1 = (1,−1, 1)⊤ and

x2 = (2,−1, 4)⊤. Any third point x3 = (x, y, z)⊤ on the line also lies on the plane in R
3
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Figure 2.3: Any point on the plane in R
3 also lies on the line in R

2. All other points
on the plane can be expressed as linear combinations of the two homogeneous position
vectors.

and must be represented as a linear combination of the two homogeneous position vec-

tors x1 and x2. Writing out the matrix determinant:

∣∣∣∣∣∣∣

x y z

2 −1 4

1 −1 1

∣∣∣∣∣∣∣
= 0 (2.4)

and expanding for the first row:

x

∣∣∣∣∣
−1 4

−1 1

∣∣∣∣∣ − y

∣∣∣∣∣
2 4

1 1

∣∣∣∣∣ + z

∣∣∣∣∣
2 −1

1 −1

∣∣∣∣∣ = 0

3x + 2y − z = 0

(2.5)

is the equation of the plane in R
3 or by writing out only the coefficients as a vec-

tor (3, 2,−1)⊤, is our representation of the homogeneous line. Checking this inhomo-

geneously, we see that the line in R
2 is 3x + 2y − 1 = 0 and the inhomogeneous points

are (2
4 ,−1

4) and (1,−1), then by substitution into the equation of the line.

3

(
2

4

)
+ 2

(
−1

4

)
− 1 = 0

3 (1) + 2 (−1) − 1 = 0

We note from the determinant property that homogeneously, the line between two ho-

mogeneous points x1, x2 is determined from the cross product l = x1 ×x2. The dual to

this is that two lines meet at a point, which is defined by interchanging the role of the

points and lines, i.e. x = l1 × l2.
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2.2.3 Homogeneous scale of points and lines

Since points and lines are represented up to scale, we must remove the homogeneous

scale factor in order to determine if two representations are similar. We can remove the

homogeneous scale ambiguity by taking the cross product. Two parallel vectors u,v

have zero cross product u × v = 0, regardless of any differences in homogeneous scale.

This provides an essential means for comparing any two similar representations. The

cross product may also be written in a convenient matrix form.

u × v = [u]×v (2.6)

where the expansion [u]× corresponds to the 3 × 3 skew-symmetric matrix.

[u]× =




0 −u3 u2

u3 0 −u1

−u2 u1 0


 (2.7)

This property will be exploited later in order to provide linear constraints between

worldspace and imaged entities that allows us to compute the corresponding transfor-

mation mapping.

2.2.4 Ideal points and the line at infinity

An important property of representing 2D primitives homogeneously is that we can easily

describe the set of points infinitely far away. This is not true in the inhomogeneous

geometry where the set of infinite points form a special case. This set of points are

known as the ideal points and can be written x = (x1, x2, 0)⊤, i.e. a set of vectors on

the z = 0 plane. Since the z = 0 plane and the image plane are parallel then any such

vector x will only cut the image plane at infinity. The set of ideal points can be encoded

by a single angle θ, in a one parameter family of vectors, as illustrated in figure 2.4(a).

x = λ(cos θ, sin θ, 0)⊤ (2.8)

where λ is an arbitrary homogeneous scaling factor.

An arbitrary plane passing through the origin cuts the image plane in a line l. The set

of points on this line can subsequently be encoded by a one parameter family of vectors

on the cutting plane. This construction is shown in figure 2.4(b) and illustrates that

any set of co-planar homogeneous vectors represent points on a single image line. The
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(a) (b)

Figure 2.4: (a) The set of ideal points lie on the z = 0 plane and are encoded by an
angle θ, in a one parameter family of vectors x = λ(cos θ, sin θ, 0)⊤. (b) Points on an
image line l can be encoded by a one parameter family of vectors on the plane cutting
this line.

set of ideal points must therefore lie on a single line that is located at infinity. This line

is fixed up to scale and is known as the line at infinity l∞.

l∞ = λ(0, 0, 1)⊤ (2.9)

where λ is an arbitrary homogeneous scaling factor.

The ideal points and line at infinity form an important set of constraints on a worldspace

scene plane. Identification of the images of these quantities allows us to recover metric

structure from the imaged plane.

2.2.5 Conics

A conic is a curve described by a second degree equation in the plane. In Euclidean

geometry, conics are of three main types: hyperbola, ellipse, and parabola (apart from

the degenerate conics). These three types arise as conic sections, generated by planes of

differing orientation, as illustrated in figure 2.5. The degenerate conics (single or double

lines) arise from planes which contain the cone vertex.

The equation of a conic in inhomogeneous coordinates can be written:

ax2 + bxy + cy2 + dx + ey + f = 0 (2.10)
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Figure 2.5: Elliptical conic section formed from the intersection of a plane through
the cone.

This can be homogenized by replacing the coefficients x 7→ x1/x3 and y 7→ x2/x3.

ax2
1

x2
3

+
bx1x2

x2
3

+
cx2

2

x2
3

+
dx1

x3
+

ex2

x3
+ f = 0 (2.11)

ax2
1 + bx1x2 + cx2

2 + dx1x3 + ex2x3 + fx2
3 = 0 (2.12)

or in matrix form:

x⊤ Cx = 0 (2.13)

where the conic coefficient matrix C is given by:

C =




a b/2 d/2

b/2 c e/2

d/2 e/2 f


 (2.14)

The coefficient matrix is symmetric and like the point and line homogeneous representa-

tions is defined up to scale, giving it five degrees of freedom. A minimum of five points

are then required to compute the coefficients C of a conic. From the inhomogeneous

representation of the conic equation.

ax2
i + bxiyi + cy2

i + dxi + eyi + f = 0 (2.15)
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Each point places one constraint on the coefficients c = (a, b, c, d, e, f)⊤, hence the con-

straints can be stacked to form the design matrix.




x2
1 x1y1 y2

1 x1 y1 1
...

x2
5 x5y5 y2

5 x5 y5 1


 c = 0 (2.16)

The set of coefficients c are defined up to scale. The solution to this homogeneous system

of equations of the form Ax = 0 is then solved by singular value decomposition with

the constraint that ‖c‖ = 1, see appendix B.2.3 for further details.

2.2.6 Polarity and conjugacy of conics

The polar of a point x with respect to a conic C is the line lx = Cx. Geometrically, the

polar is the line through the points of tangency to C, corresponding to the pair of lines

through x. Dually, x = C−1lx is the pole of lx with respect to C.

Figure 2.6: The polar of x is the line lx. Points x and y are conjugate if x lies on the
polar ly of y, and y lies on the polar lx of x.

A pair of points x and y are conjugate with respect to a conic C if x lies on the polar ly

of y and y lies on the polar lx of x. The conjugate points and lines satisfy the condition.

x⊤ Cy = 0 (2.17)

l⊤x C−1 ly = 0 (2.18)
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2.3 Camera model

A camera consists of an image plane and a lens which provides a transformation be-

tween the world and image spaces. This transformation can not be perfectly described

by perspective projection because of distortions which occur through the lens. These

distortions can be modelled. However, the model may only be an approximation to

the real relationship. How closely the model conforms to reality will depend on the

functional representation and how well the corresponding parameters can be estimated.

The basic pinhole camera model projects worldspace points onto the image plane. The

centre of projection C lies at the origin of a right handed Euclidean coordinate system.

Following the convention corresponding to most image formats, the X pixel axis is aligned

to the right and the Y pixel axis downward. It is also customary to place the image

plane in front of the camera centre. Subsequently, the camera Z axis (principal axis) is

then aligned into or toward the image plane, as shown in figure 2.7.

Figure 2.7: Pinhole camera geometry. C is the camera centre of projection and P the
principal point (the point where the principal axis meets the image plane).

Under central projection, an inhomogeneous worldspace point X = (x, y, z)⊤ is mapped

to the corresponding point on the image plane by a ray that passes through both X and

the centre of projection C. By using the arrangement of similar triangles, the worldspace

point (x, y, z)⊤ is mapped to the image plane point as (fx/z, fy/z, f)⊤, where f is the

camera focal length. Ignoring the final projected z coordinate of the focal plane, the

first two coefficients then correspond to the required (u, v)⊤ image coordinates.

2.3.1 Linear projection

If the world and image points are represented by homogeneous vectors, then central pro-

jection is simply expressed as a linear mapping between their homogeneous coordinates.
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fx

fy

z


 =




f 0

f 0

1 0







x

y

z

1




(2.19)

This matrix expression can be written x = PX, where P is the camera projection

matrix. The camera projection matrix can then be decomposed.

P =




f

f

1







1 0

1 0

1 0




P = Kf [I | 0] (2.20)

where [I | 0] represents the 3 × 3 identity matrix augmented with a column 3-vector

of zeros. Up to this point, the image plane coordinate system is coincident with the

principal point. A further set of scaling and translation transformations are then applied

in order to model the relative XY size differences within the camera CCD elements and

the coordinate shift between the optical and image coordinate systems. The projection

of homogeneous worldspace points into the image is then given by the mapping.

P = K [I | 0] (2.21)

where the camera calibration matrix K has the form.

K =




mx α u0

my v0

1


 (2.22)

The parameter α is referred to as the skew parameter. The skew parameter will be

zero for most normal cameras, however in certain unusual instances it can take non zero

values.

2.3.2 Radial distortion

In reality, light passing through the lens is distorted differently over the surface of

the image. The main lens distortion effect is seen radially from the camera principal

point. Tangential distortion effects may also be modelled, but in general are negligible

in comparison to the radial components. We use here a symmetric distortion model
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w′ = f(r) · w with two distortion coefficients k1, k2 to facilitate the warping of light

through the camera lens.

f(r) = 1 + k1 · r2 + k2 · r4 (2.23)

where the radial component r is the distance of the lens ray point w = (wx, wy)
⊤ from

the camera principal point, r2 = (wx)2 + (wy)
2.

The projection of worldspace structure onto the camera CCD sensor plane is achieved

through a three step process, illustrated in figure 2.8.

Figure 2.8: Three stage process of the non-linear projection of worldspace structure
into image by modelling lens distortion effects.

1. The first step uses the canonical camera to determine the projection of the light

ray entering the lens w = [I | 0]X.

2. The symmetric, non-linear lens distortion function w′ = f(r) · w is then applied

to the inhomogeneous lens plane point.

3. The final focal projection step of the ray leaving the lens onto the camera CCD ele-

ments is then modelled by the pin hole projection x = Ku, where u = (w′
x, w′

y, 1)⊤

is the distorted post lens ray point.

The final step includes the mapping from the optical to image coordinate systems. Other

distortion functions can be used [68, 45, 114]. The distortion function is essentially a

Taylor’s series corresponding to the radial distance of the lens ray from the principal

point. More complex distortion functions choose to model the centre of distortion and the

principal point separately, and may also include components of tangential lens distortion.
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2.3.3 Camera extrinsic parameters

We have assumed thus far that the camera is located at the origin of the Euclidean

coordinate system. In general, points in space will be expressed in terms of a different

coordinate frame, known as the world coordinate frame. Camera and world coordinate

frames are related via a rotation R and a translation t. Figure 2.9 illustrates this

coordinate frame mapping from the world space system to the local camera system.

Figure 2.9: Euclidean transformation between the world and camera coordinate
frames.

If W̃ is an inhomogeneous 3-vector representing the coordinates of a point in the world

coordinate frame, and X̃ represents the same point in the camera coordinate frame

then the transformation from world to local camera coordinates can be expressed as

X̃ = RW̃ + t. The camera projection matrix P that maps homogeneous points X from

the worldspace coordinate frame into the image can then be expressed by the homoge-

neous projection transformation x = PX. The projection matrix P is a 3 × 4 matrix

with a total of 11 degrees of freedom.

P = K[R | t] (2.24)

2.4 Planar transformations

Structure and detail is often confined to lie on a scene plane within the worldspace, e.g.

an image on a billboard or markings on a road surface. In such cases, projection of points

from the scene plane to the image plane has a simplified form, and is characterized by

a 3 × 3 matrix mapping known as a homography.
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2.4.1 Planar homography

Points on the worldspace scene plane can be identified by a set of Euclidean (u, v)⊤

coordinates. We can choose to align the world coordinate frame with the scene plane

such that any 3D point X on this plane has zero z component and can be represented

by the homogeneous vector X = (u, v, 0, w)⊤.

Figure 2.10: Homography mapping between the worldspace scene plane and the image
plane.

The corresponding projection x′ = PX of points into the image then has a reduced

form. Writing the columns of the world to camera coordinate frame rotation matrix R

as ri then the projection of planar structure into the image is given by

x′ = K
[

r1 r2 r3 t
]




u

v

0

w




(2.25)

x′ = K
[

r1 r2 t
]



u

v

w


 (2.26)

x′ = Hx (2.27)

The form of the homography mapping H is determined by the orientation of the worldspace

plane and the intrinsic parameters of the calibration matrix. There are a number of spe-

cific classes of planar transformation that arise as a result of the various orientations and

possible camera parameters within the projection. The main class types can be catego-

rized as perspective, affine and similarity transformations. Each class of planar transfor-

mation plays an important part within the context of stratified planar reconstruction.

Further important properties and geometric invariants of these transformation classes
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are summarized within appendix A.1.

2.4.2 Image mosaicing

Another plane to plane transformation that occurs in practice is when a camera with

fixed intrinsic parameters rotates freely about its origin. This situation is common within

many CCTV surveillance systems, where a degree of rotational mobility is available to

a remote operator within a control room.

Figure 2.11: Planar correspondence that occurs as a result of a freely rotating camera
with fixed intrinsic parameters about its origin point.

Fixed worldspace points are collinear with the camera centre of projection C and the

corresponding projected image plane points within different views, as illustrated in fig-

ure 2.11. The image correspondences enable us to compute the planar homographies

between rotationally different camera planes and build a panorama of images within a

single common reference plane.

2.4.3 Transformation of points, lines and conics

If a point x lies on the line l then l⊤x = 0. We can then apply a homography trans-

formation x′ = Hx that maps points to a second plane. From this we can deduce the

corresponding planar transformation rule that similarly transfers lines onto the second

plane.
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l⊤x = 0

(
l⊤H−1

)
(Hx) = 0

l′⊤x′ = 0

Hence, points and lines are transformed:

x′ = Hx (2.28)

l′ = H−⊤l (2.29)

Similarly, by using the point transformation rule, point conics are transformed:

x⊤Cx = 0

(
x⊤H⊤

) (
H−⊤CH−1

)
(Hx) = 0

x′⊤C
′

x′ = 0

Hence, the point conic C is transformed as:

C
′

= H−⊤CH−1 (2.30)

2.4.4 Vanishing points and lines

Ideal points and the line at infinity are important entities of a worldspace scene plane

and can be used as a source of constraints for image rectification. In general, the

ideal points and line at infinity are mapped to finite entities after image projection.

Writing hi as the column vectors of the homography transformation H then the set of

ideal points (u, v, 0)⊤ are mapped to the corresponding set of imaged points.

[
h1 h2 h3

]



u

v

0


 = u · h1 + v · h2 (2.31)

Providing that the first two coefficients of the third row of the homography matrix H

are non zero then the ideal points are mapped to finite points in the image. Figure 2.12

shows geometrically the distortion of parallel scene lines and the corresponding imaged

vanishing point within the projected plane.
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Figure 2.12: Parallelism of lines is not preserved by projective transformation. The
ideal point defined by the intersection of the parallel lines on the scene plane π is imaged
as a finite point v in the image plane π′.

The corresponding transformation rule for lines l′ = H−⊤l maps scene plane lines into

the image. Writing mi as the column vectors of the matrix H−⊤ then the line at infinity

l∞ = (0, 0, 1)⊤ is mapped into the image as:

[
m1 m2 m3

]



0

0

1


 = m3 (2.32)

Providing that the first two coefficients of the third row of the homography matrix H

are non zero then the line at infinity l∞ is mapped to a finite line l′∞ within the image.

Figure 2.13: The two ideal points defined by intersection of parallel lines on the scene
plane π are imaged as the finite points vx and vy in the image plane π′. These points
lie on the image of the vanishing line of the scene plane l′

∞
.
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Figure 2.13 shows the geometric distortion of the ideal line of the scene plane after

projection into the image. Identification of the corresponding set of imaged vanishing

points and vanishing line of the scene plane enables us to compute the homography

transformation that, in part or fully restores the metric properties of the scene plane

structure.

2.4.5 Repeating planar patterns

Repetition of planar structure is common-place within the real world, e.g. bricks in

a house wall or lamp-posts down the side of a street. In such cases, the form of the

planar homography that maps imaged points across the set of repeated correspondences

is specialized [89, 90]. Consider the planar mapping x′
i = Hxi that transforms points

from one plane π1 to a second plane π2. A Euclidean translation of a point on the first

plane is mapped to a corresponding conjugate translation of the point on the second

plane.

Figure 2.14: Repeated planar structure corresponding to a conjugate Translation of
points.

Figure 2.14 shows the mapping of points from one plane π1 to a second plane π2, and

similarly the respective translation and conjugate translation between the repeated point

correspondences on these planes. The Euclidean translation that maps the first point

x1 to the second x2 on the scene plane π1 can be represented by the homography T.

There is then a corresponding conjugate translation T′ on plane π2 between the imaged

points x′
1 and x′

2.
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x′

1 = Hx1

x2 = Tx1

x′

2 = Hx2 = HT (H−1x′

1)

T′ = HTH−1 (2.33)

The point transfer T on the first plane can be thought of as a translation in the X-axis

direction with distance λ and can therefore be written.

T =




1 0 λ

0 1 0

0 0 1


 = I + λ




1

0

0




(
0 0 1

)

(2.34)

It follows from the result T′ = HTH−1 that the corresponding conjugate translation

can be written:

T′ = H


I + λ




1

0

0




(
0 0 1

) 
H−1 (2.35)

T′ = HIH−1 + λH







1

0

0




(
0 0 1

) 
H−1 (2.36)

T′ = I + λvl′⊤∞ (2.37)

Where v is the imaged X-axis direction of motion on π2, l′∞ the imaged vanishing

line of the first plane in the second π2 and λ a scalar constant. Further conjugate

repeated points on the second plane are determined at integer multiples of λ within the

transformation T′, i.e. (λ, 2λ, · · · , Nλ).

Here, we have described the form of the conjugate translation with respect to point

transformation between planes. Without too much effort the conjugate translations can

be derived for both the repeated line and conic planar transformations. We will though

not discuss them further here.
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2.4.6 Direct linear transformation

If we know the correspondence points between two planes xi 7→ x′

i then we can directly

compute the homography transformation H that maps one set to the other. We can

remove the homogeneous scaling ambiguity by taking the cross product between the

transferred point Hxi and the corresponding point x′
i on the second plane.

x′

i × Hxi = 0 (2.38)

We can then rearrange the set of equations into the form Ah = 0, where elements of the

column 9-vector h are made up from the rows of the homography mapping matrix H.

Writing hj as the column 3-vector corresponding to the jth row of H, then the transferred

points from the first plane Hxi can be written.

Hxi =




h1⊤xi

h2⊤xi

h3⊤xi


 (2.39)

Writing the measured points on the second plane as x′
i = (u′

i, v
′
i, w

′
i)
⊤, then the equations

formed from the cross product have the form.

[x′

i]×Hxi =




v′ih
3⊤xi − w′

ih
2⊤xi

w′
ih

1⊤xi − u′
ih

3⊤xi

u′

ih
2⊤xi − v′ih

1⊤xi


 (2.40)

The inner product can be commuted such that hj⊤xi = x⊤

i hj , then by substitution the

system of equations of the form Ah = 0 can be computed.




0⊤ −w′

ix
⊤

i v′ix
⊤

i

w′

ix
⊤

i 0⊤ −u′

ix
⊤

i

−v′ix
⊤

i u′

ix
⊤

i 0⊤







h1

h2

h3


 = 0 (2.41)

Only two of the three equations are linearly independent. It is customary to only include

the first two sets of equations from each point correspondence [98], within the design

matrix A. Each point correspondence then forms two individual constraints on the

elements of h. The solution vector is defined up to scale (8 degrees of freedom) thus a

total of four correspondences are required to compute a minimal solution. The solution

of h is given by computing the singular value decomposition of the homogeneous system

of equations of the form Ah = 0, see appendix B.2.3 for further details.
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The result of the Direct Linear Transformation (DLT) algorithm for computing planar

homographies depends on the coordinate system within which points are expressed.

Coordinate systems may vary due to the nature of the problem, with some being better

than others with respect to the computed result. Improved accuracy of the results can

be achieved by performing an initial data normalization step to transform the set of

points into a common coordinate system.

Similarity transforms (isotropic scale and translation) T and T′ are first applied to each

of the respective point sets to normalize them to lie within the unit square. The DLT

algorithm is then performed to compute H̃, the planar mapping between normalized

point sets x̃i and x̃′
i. The homography mapping between the original point sets is then

given by undoing the effects of the data normalization transformations.

x̃′

i = H̃x̃i (2.42)

T′−1x̃′

i = T′−1H̃ (Txi) (2.43)

x′

i = (T′−1H̃T)xi (2.44)

H = T′−1H̃T (2.45)

2.5 Planar geometry

A 3D point X is represented by a homogeneous four vector X = (X1, X2, X3, X4)
⊤ and

a plane π described by π = (π1, π2, π3, π4)
⊤. Points that lie on the plane satisfy the

condition π⊤X = 0. Correspondingly, three points define a unique plane and three

planes define a point.

Analogously to the ideal points and the line at infinity of any worldspace scene plane,

the ideal entities of the 3D space correspond to the set of ideal points X∞ = (x, y, z, 0)⊤

and the plane at infinity π∞ = (0, 0, 0, 1)⊤. Identification of the images of these entities

enables us to recover, in part or fully, the metric worldspace structure. Since π∞ is

indeed a plane, structure on it is mapped into the image via a 3× 3 planar homography

transformation.

2.5.1 Absolute conic

The absolute conic was introduced within the vision literature by Faugeras [30] and plays

an important role within camera calibration and scene reconstruction. The absolute

conic Ω∞ lies on the plane at infinity π∞ and is often expressed by the equation.
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X2
1 + X2

2 + X2
3 + X2

4 = 0, X4 = 0 (2.46)

This may be re-written to resemble the more familiar conic form x⊤Cx = 0.

(X1 X2 X3)



1 0 0

0 1 0

0 0 1







X1

X2

X3


 = 0 (2.47)

(X1 X2 X3) Ω∞ (X1 X2 X3)
⊤ = 0 (2.48)

Correspondingly, Ω∞ is a circular point conic with complex radius i [28] of purely

imaginary points on the plane at infinity π∞. Every scene plane in space intersects π∞

in a line, and each of these lines intersects Ω∞ in the circular points of the ideal plane

I = (1, i, 0)⊤ and J = (1,−i, 0)⊤. The absolute conic and circular points of the plane at

infinity π∞ remain fixed under any similarity transformation, see appendix A.1.2.

2.5.2 Image of the absolute conic

Any ideal 3D point can be written X = (W⊤, 0)⊤ and is projected into the image via

the perspective transformation x = PX, where the projection matrix P has the form

P = K[R | t].

x = K[R | t]X
x = KRW (2.49)

A point lies on the absolute conic Ω∞ = I if W⊤Ω∞W = 0. Using equation 2.49 we

can make the substitution W = R⊤K−1x within the conic constraint condition.

(R⊤K−1x)⊤ Ω∞ R⊤K−1x = 0 (2.50)

x⊤ ω x = 0 (2.51)

where the image of the absolute conic (IAC) is given by

ω = K−⊤K−1 (2.52)
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The IAC is only dependent on the coefficients of the camera intrinsic parameters K.

2.5.3 Camera calibration

The history and development of camera calibration methods has been well documented

[14]. Experiences during the first world war had demonstrated the benefits of aerial sur-

veying and, linked with developments in early stereoscopic plotting instruments, it soon

became obvious that to achieve higher accuracies in stereo photogrammetric measure-

ments, some knowledge or calibration of the lens system was necessary. The first aerial

camera to be calibrated was in Canada in 1920, and the important constants determined

were the focal length and location of the principal point. Today, cheap computing and

the widespread use of self-calibration using bundle adjustment methods has meant that

a high level of performance has become common-place.

Conventional calibration methods [109, 94, 97] determine the intrinsic parameters of the

camera from images of a known calibration object such as a Tsai grid, or from properties

of the scene such as vanishing points of orthogonal directions.

Auto-calibration methods differ in the sense that a camera can be calibrated directly

from an image sequence, despite unknown structure and motion [107, 72, 42]. Such

methods use the fact that a camera moves rigidly, so the absolute conic is fixed under

the motion.

2.5.3.1 Constraints on the intrinsic parameters

Every worldspace scene plane intersects the plane at infinity π∞ in a line, and each

of these lines intersects the absolute conic Ω∞ in the circular points I = (1, i, 0)⊤ and

J = (1,−i, 0)⊤. Every scene plane thus contains these fixed circular points. Since I and J

lie on the absolute conic Ω∞, the projections of these points I′ and J′ into the image

must also lie on the image of the absolute conic ω. Each pose projection of the circular

points, corresponding to a different orientation of the scene plane, ensures separate and

distinct values for their imaged positions I′i and J′
i. Similarly to I and J, the set of imaged

circular points are complex, and thus are not physically realizable. Identification of a

number of these imaged circular point positions enables us to compute the IAC and

consequently the calibration of the camera.

If we can compute the homography transformation H between the metric reference plane

and the corresponding image pose then the imaged circular points are given by I′ = HI

and J′ = HJ. Constraints on the IAC can then be formed from these transformed

points.
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I′⊤ ω I′ = 0 (2.53)

(
1 i 0

)
H⊤ ω H




1

i

0


 = 0 (2.54)

(h⊤

1 + ih⊤

2 ) ω (h1 + ih2) = 0 (2.55)

h⊤

1 ω h1 − h⊤

2 ω h2 + 2ih⊤

1 ω h2 = 0 (2.56)

where the column vectors of the homography matrix H are written as hj . Equating real

and imaginary parts to zero yields the result.

h⊤

1 ω h1 − h⊤

2 ω h2 = 0 (2.57)

h⊤

1 ω h2 = 0 (2.58)

Note that exactly the same constraints are formed from the solution of J, thus each

independent circular point fully encodes the two Euclidean axis directions within a

single complex entity.

I =




1

0

0


 + i




0

1

0


 (2.59)

A planar calibration target is used to compute the homography that transforms struc-

ture from the metric plane into the image. Non-planar calibration targets can also be

used [109, 10, 112, 113], though are often difficult to build with any level of precision. A

single planar calibration target is practical, easy to store and cheap to make with great

accuracy. Any pattern can be placed onto the target, though a checker board pattern

is readily identifiable within an image and provides an easy way to automatically ex-

tract the required corner correspondences. Figure 2.15 shows the calibration target used

within our laboratory.

Planar based approaches to calibration have been developed both by Sturm and May-

bank [97], and Zhang [120] that are based on orthogonality constraints formed from the

columns of the world to image plane homography. Liebowitz [60] generalized further by

developing the set of linear constraints on the IAC with respect to the circular points of

the plane, the details of which are summarized within this section.
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Figure 2.15: Tsai grid calibration pattern.

On computing the set of homographies, a linear system of the form Ax = 0 can be gen-

erated from the constraint equations 2.57 and 2.58, where the elements of x correspond

to the six coefficients of the symmetric matrix ω. This set of homogeneous equations

are solved by singular value decomposition, see appendix B.2.3. The camera calibra-

tion matrix K can then be extracted from the computed IAC. Since ω = K−⊤K−1, we

can make the substitution L = K−⊤ such that ω = LL⊤. Subsequently, the matrix ω

can be factorized by Cholesky decomposition, and the calibration matrix computed

as K = L−⊤.

2.5.3.2 Recovering the extrinsic parameters

The extrinsic pose parameters Ri and ti can then be recovered from the set of computed

homography matrices Hi by applying the inverse of the calibration matrix K.

H = K
[

r1 r2 t
]

(2.60)

r̃1 = λK−1h1 (2.61)

r̃2 = λK−1h2 (2.62)

r̃3 = r̃1 × r̃2 (2.63)

t = λK−1h3 (2.64)

with λ = 1 / ‖K−1h1‖ = 1 / ‖K−1h2‖. Of course, because of measurement noise the
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computed matrix R̃ = [r̃1, r̃2, r̃3] does not in general satisfy the properties of a rotation

matrix. The best rotation matrix R corresponding to the 3× 3 matrix R̃ is achieved by

setting R = UV⊤, where R̃ = UDV⊤ is the singular value decomposition of matrix R̃,

see appendix B.2.4 for further details.

2.5.3.3 Maximum likelihood estimation

As a final step, a maximum likelihood estimation is made that minimizes the residual

image reprojection error. Given n images of the planar calibration target which con-

tains m points then the maximum likelihood estimate can be obtained by minimizing

the functional:

n∑

i=1

m∑

j=1

‖mij − m̂(Kc,Kr,Ri, ti,Mj) ‖2 (2.65)

where m̂(Kc,Kr,Ri, ti,Mj) is the projection of the point Mj in image i. The parame-

ters Kc correspond to the intrinsic coefficients of the camera and Kr the coefficients of

radial distortion. Each of the rotation matrices Ri is encoded by a Rodrigues 3-vector vi,

see the discussion in appendix B.3.1. Correspondingly, the vector P that parameterises

the entire system can be partitioned.

P = (k⊤

c ,k⊤

r | v⊤

1 , t⊤1 , · · · ,v⊤

n , t⊤n )⊤ (2.66)

The minimization is sparse, since each imaged pose is independent, and may be computed

by using a partitioned Levenberg-Marquardt algorithm as described in appendix C.4.

2.5.3.4 Stereo calibration

Two synchronized cameras can be calibrated in much the same way. The only addi-

tional parameters that need to be determined are the worldspace pose rotation Rc and

translation tc between both cameras. The projection matrices corresponding to both

cameras are of the form.

P = K[I | 0] (2.67)

P′ = K′[Rc | tc] (2.68)

where K and K′ correspond to the respective camera calibration matrices. In reality

these transformation steps include the non-linear projection into the image planes caused
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by radial distortion, and are parameterised by both sets of calibration coefficients Kc,Kr

and K′
c,K

′
r.

The planar calibration target has a two-fold rotational ambiguity corresponding to the

position of the origin for unequal numbers of tiles, and a four-fold rotational ambiguity

for equal numbers of tiles. Image point correspondences must be labelled consistently

within both views in order to determine the pose rotation Rc and translation tc. In

order to aid automated extraction, the calibration target pattern needs to be orientable

with no rotational symmetry. Correspondingly, the origin can be identified by placing

a circular marker, of different colour within one of the corner squares of the calibration

grid.

Initially both cameras can be calibrated independently, such that Ri, ti and R′
i, t

′
i are

the set of extrinsic pose parameters of the calibration grid with respect to each camera.

The worldspace origin can then be constrained to lie at the first camera centre. Since

we know the extrinsic parameters corresponding to the calibration target poses for both

cameras, the worldspace camera pose mapping that transfers the first camera to the

second can be found by first mapping back the first camera coordinate frame to the

model coordinate frame, then from the model space to the second camera coordinate

frame.

Mi =

(
R′

i t′i
0⊤ 1

)(
Ri ti

0⊤ 1

)−1

(2.69)

R̃i = R′

iR
⊤

i (2.70)

t̃i = −R′

iR
⊤

i ti + t′i (2.71)

The true extrinsic pose parameters Rc and tc between the first and second cameras are

then computed from the set of reconstructed estimates R̃i and t̃i.

R̃c =
1

n

n∑

i=1

R̃i (2.72)

tc =
1

n

n∑

i=1

t̃i (2.73)

Due to measurement noise, the computed matrix R̃c does not in general satisfy the

properties of a rotation matrix. The best rotation matrix Rc corresponding to the 3× 3

matrix R̃c is achieved by setting Rc = UV⊤, where R̃c = UDV⊤ is the singular value
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decomposition of matrix R̃c, as detailed in appendix B.2.4.

The worldspace pose rotation Rc between cameras is then encoded by a Rodrigues

3-vector vc, see appendix B.3.1 for details. Correspondingly, the vector P that param-

eterises the entire stereo system can be partitioned.

P = (k⊤

c ,k⊤

r ,k′⊤

c ,k′⊤

r ,v⊤

c , t⊤c | v⊤

1 , t⊤1 , · · · ,v⊤

n , t⊤n )⊤ (2.74)

The minimization is sparse and may be computed by using a partitioned Levenberg-

Marquardt algorithm as described in appendix C.4.

2.5.4 Stratified rectification of images of planes

Metric properties of the scene plane are recovered by determining the homography trans-

formation, formed from the known scene plane structure constraints, that maps the im-

aged vanishing line and circular points back to their canonical values. The process of

computing the rectification transformation can be split into three stages. Each stage

of the rectification is designed to remove a number of degrees of freedom from the 8

required to compute the planar homography. Constraints are formed in each stage by

use of properties and invariants associated with the particular class of projective trans-

formation.

Figure 2.16: Stratification process of scene plane rectification.

Figure 2.16 shows the series of transformations, Hp,Ha and Hs, that are applied to the

image plane π2 in order to reconstruct metric structure on the scene plane. Additional
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properties and invariants associated with each of these classes of projective transforma-

tion are described within appendix A.1.

2.5.4.1 Recovery of affine properties

The vanishing line of the imaged scene plane encodes the perspective component of the

projection transformation. The vanishing line is frequently computed from a number of

corresponding vanishing points. These in turn are determined from the intersection of

imaged parallel worldspace lines. The imaged scene plane π2 within figure 2.16 shows

such a construction of the vanishing line from the sides of an imaged rectangular figure.

Once the imaged line at infinity has been identified, it is then possible to recover the

affine properties of the plane. It follows that the vanishing line l′∞ = (l1, l2, l3)
⊤ can be

transformed back to its canonical position l∞ = (0, 0, 1)⊤ by a perspective transforma-

tion Hp of the image plane. A suitable point transformation that restores the affine

properties of the scene plane is given by:

Hp =




1 0 0

0 1 0

l1 l2 l3


 (2.75)

It can be easily verified, by the transformation rule for lines l′ = H−⊤l, that the imaged

vanishing line l′∞ is mapped back to its canonical position. The transformed plane and

subsequently any coplanar worldspace planes are affinely rectified, illustrated by the

mapping between planes π2 7→ π3 within figure 2.16. After rectification parallelism of

lines and ratios of lengths along straight line segments are restored, however angles and

length ratios along non-collinear lines are not restored.

2.5.4.2 Recovery of metric properties

Having recovered the plane geometry up to an affine transformation by applying the

matrix Hp, which positions the imaged vanishing line back to its canonical position

l∞ = (0, 0, 1)⊤, the final stage is the recovery of metric geometry. This requires an

affine transformation of the plane Ha, that will restore angles and length ratios for non-

parallel lines. The set of ideal points on the line at infinity are not fixed pointwise after

the application of Hp. Subsequently, the imaged circular points Ia and Ja on the affine

plane must then be transformed back to their canonical positions.
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Ia = (1, µ + iλ, 0)⊤ (2.76)

Ja = (1, µ − iλ, 0)⊤ (2.77)

We must determine µ and λ, the real and imaginary parts of Ia and Ja which lie on

the ideal line. This fully defines the affine transformation Ha that restores the metric

properties of the rectified plane.




a11 a12

a21 a22

1







1

µ + iλ

0


 =




1

i

0


 (2.78)

a11 + µa12 + iλa12 = 1 (2.79)

a21 + µa22 + iλa22 = i (2.80)

Equating real and imaginary parts, Ha then has the form.

Ha =




1 0 0

−µ/λ 1/λ 0

0 0 1


 (2.81)

Note that there remains some ambiguity on the metric image plane since the circular

points cannot be distinguished. Swapping Ia and Ja results in a reflection of the metric

plane. In fact, there is a possible four-fold reflection ambiguity (flip and mirror) of the

reconstructed metric plane.

Work by Liebowitz and Zisserman [62] describes how three types of constraints can be

used to find the circular points of the affine plane. The constraints are quadratic in µ

and λ and may be represented as circles within the (µ, λ) parameter space. The required

solution values that represent the rectification coefficients are then computed by simple

circle-circle intersection. These constraints can be combined and may be found from a

number of different geometric properties.

• Known angles between lines

• Equality of unknown but equal angles

• Known ratios of lengths



Chapter 2 Stratified Recovery of Planar Gait Motion 45

The circular points are invariant to similarity transformations, see appendix A.1.2. Fur-

ther constraints must be applied by the experimenter to recover structure within a

common coordinate system. We may choose to place a known point at the origin, scale

a common feature to unit length or align a known vector with one of the coordinate

system axes.

2.5.4.3 Known ratios of lengths

One interesting case arises from the known ratios of lengths of line segments on a scene

plane [62]. Solution of the constraints formed from these known length ratios between

different line segment endpoints can be linearized, in order to compute the affine trans-

formation Ha that recovers the metric structure of the fronto-parallel view.

Figure 2.17: Length ratios between two non parallel line segments La and L′
a on the

affinely corrected scene plane π3.

The squared distance between any two line segment endpoints, shown in figure 2.17,

can be written as the inner product d 2 = ∆x⊤∆x, where ∆x = (u2 − u1, v2 − v1)
⊤ is

the endpoint difference vector. If we know the length ratio s between two non parallel

line segments Lm and L′
m on the metric scene plane, i.e. ‖L′

m‖ = s‖Lm‖, then an affine

transformation can be computed that restores the metric properties of the fronto-parallel

plane view. Since lengths between line segment end points are invariant to translations,

we need only consider the upper-left 2 × 2 sub-matrix H of the affine transformation

matrix Ha. Equating the squared distances of both rectified line segments on the metric

plane.

∆x′⊤H⊤H∆x′ = s2∆x⊤H⊤H∆x (2.82)

If we write the endpoint difference vectors as ∆x = (δx, δy)⊤, ∆x′ = (δx′, δy′)⊤ and the

elements of the symmetric 2× 2 matrix M = H⊤H as m = (M11,M12,M22)
⊤ then the
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set of linear constraints on m can be written.

[
(s2δx2 − δx′ 2) 2(s2δx2δy2 − δx′ 2δy′ 2) (s2δy2 − δy′ 2)

]
m = 0 (2.83)

Since m is defined up to scale (2 d.o.f.) then a minimum of two such corresponding pose

constraints are required to fully determine m. We stack all constraints formed from

all known length ratio correspondences and solve the system of homogeneous equations

of the form Ax = 0 through singular value decomposition, see appendix B.2.3. The

rectification matrix Ha is then formed from the extracted parameters of H⊤H.

H⊤H = ξ

(
1 + (µ/λ)2 −µ/λ2

−µ/λ2 1/λ2

)
=

(
m1 m2

m2 m3

)
(2.84)

µ = −m2

m3
(2.85)

λ =

√
m1

m3
− µ2 (2.86)

After rectification metric properties such as angles and length ratios are restored. How-

ever structure is ambiguous up to a similarity transformation of the plane, i.e. rotation,

translation and scale.

2.6 Epipolar geometry

Epipolar geometry describes the relationship between two cameras and their images.

It is independent of scene structure, and only depends on the internal parameters and

the relative pose between both cameras. The fundamental matrix F is a 3 × 3 matrix

of rank 2 that encapsulates the stereo correspondence geometry between views. Here,

we define the epipolar geometry between two views and describe some of the geometric

properties of the fundamental matrix.

2.6.1 Point correspondences between views.

Consider the camera correspondence shown in figure 2.18. An image point x in the

first view back-projects to a ray in the worldspace. This ray passes through the first

camera centre C, the image point x and the corresponding worldspace point X. The

ray is imaged as a line l′ in the second view, hence the mapping x 7→ l′ is encoded by the

transform l′ = Fx, where F is a 3 × 3 matrix known as the fundamental matrix. The
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set of lines that are mapped from points in one view to lines in the other are known as

epipolar lines.

Figure 2.18: Epipolar geometry.

The worldspace point X lies on the back projected ray, hence the image of X, i.e. x′,

in the second view must also lie on the epipolar line l′. Consequently, the condition

l′⊤x′ = 0 between the images of the back projected ray and the worldspace point in the

second image indicates the correspondence of points x ↔ x′ between views.

x′⊤l′ = 0

x′⊤Fx = 0 (2.87)

The epipolar correspondence follows from the construction of the plane containing both

camera centres C,C′ and the worldspace point X. The baseline between the cameras

is fixed, as are the images of the cameras (epipoles e and e′) within each of the other

views. The set of correspondence planes that contain both camera centres and the

worldspace points form a pencil of planes about the baseline. Consequently, the pencil

of epipolar lines formed from the intersection of the correspondence and image planes

are all coincident with the respective epipoles. All worldspace points that lie on the

baseline identically satisfy the epipolar correspondence, thus providing the null space of

the mapping. The fundamental matrix can be factored into the form.

F = [e′]×K′RK−1 (2.88)

where K and K′ are the camera calibration matrices of the first and second cameras

respectively and R is the extrinsic pose rotation between both cameras.

There are a number of important properties of the fundamental matrix which are sum-
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marized below.

• If F is the fundamental matrix of the pair of cameras (P,P′) then F⊤ is the

fundamental matrix of the pair in the opposite order (P′,P).

• For any point x in the first image, the corresponding epipolar line in the sec-

ond is l′ = Fx. Similarly, l = F⊤x′ represents the epipolar line in the first image

corresponding to the point x′ from the second.

• For any point x other than the epipole, the epipolar line l′ = Fx contains the

epipole e′, thus e′ satisfies e′⊤(Fx) = (e′⊤F)x = 0 for all x. It follows that

e′⊤F = 0 is the left null space of F and similarly Fe = 0 is the right null space.

• F has seven degrees of freedom: there are nine coefficients but the homogeneous

scaling is unimportant, which leaves eight degrees of freedom. F also satisfies the

constraint det(F) = 0 which removes one more degree of freedom, leaving a total

of seven.

2.6.2 Pure translation

Consider the camera correspondence shown in figure 2.19, where both cameras have

the same orientation R = I and intrinsic parameters K′ = K. The only difference is

the translation t between both cameras. In effect, this is the same situation that occurs

when we have a single translating camera. Providing the scene remains static during the

time the camera takes to translate to its new position, the two geometries are identical.

Figure 2.19: Auto-epipolar geometry.

Given that the internal camera parameters remain unchanged, with only a pure trans-

lation, then the fundamental matrix of equation 2.88 becomes.
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F = [e′]×K′RK
−1

= [e′]×K I K−1

= [e′]× (2.89)

The principal planes of both cameras are coplanar and the positions of the epipoles are

coincident such that e = e′. This geometric construction is known as an auto-epipolar

geometry as all epipolar lines form a pencil of lines about both coincident epipolar points.

Figure 2.20: Imaged pure translational, auto-epipolar motion.

The fundamental matrix F = [e]× corresponding to pure translation is skew-symmetric

with 2 degrees of freedom. It follows that e is the imaged direction of motion, as

illustrated in figure 2.20. A dual situation to the translating camera geometry is if we

have a stationary camera with scene structure that purely translates. Both geometries

are identical except that the motion directions of the object and camera are opposite

with time.

2.6.3 Stereopsis transformation

Within this section we discuss a suitable projective transformation He that maps the

epipole e = (e1, e2, e3)
⊤ to the ideal point (1, 0, 0)⊤. This particular transformation then

ensures that all corresponding epipolar lines are aligned parallel with the X axis.

We may choose a mapping that approximates a rigid motion transformation within the

neighbourhood of any selected point x0 = (u0, v0)
⊤. We proceed by first mapping this

specified point x0 to the origin with the translation T. Consequently, the epipole is also

transformed as e′ = Te.
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1 −u0

1 −v0

1







e1

e2

e3


 =




e1 − u0e3

e2 − v0e3

e3


 (2.90)

Next we perform a rotation R about the Z axis to align the transformed epipole e′ with

the X axis.




cos θ − sin θ

sin θ cos θ

1







e′1
e′2
e′3


 =




a

0

b


 (2.91)

We then need to apply a perspective transformation G that maps the transformed

epipole to the ideal point (1, 0, 0)⊤.




1

1

d 1







a

0

b


 =




a

0

da + b


 (2.92)

where d = −b/a. Since the set of ideal points are invariant to translations then the origin

point may be mapped back to the specified point x0 by the inverse transformation T−1.

The full homography transformation He that places the epipole back to its canonical

position (1, 0, 0)⊤ is then given by

He = T−1GRT (2.93)

The stereopsis transformation is useful, in that point correspondences can be made

to lie on the same scan lines within the transformed images. In general, two such

transformations may be chosen in such a way that the two corrected images match up

as closely as possible, i.e. disparities between the images are in the X direction only.

2.7 Multiple view geometry

Within this section we describe a simple linear triangulation method. The triangulation

method is a direct analogue of the planar DLT. The back projected rays formed though

each set of corresponding image points should all meet in a single worldspace point X.

This worldspace point is then projected into each of the camera images as x = PX,

x′ = P′X, etc. Figure 2.21 shows the geometry of the linear triangulation process

within multiple camera views.
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Figure 2.21: Triangulation of worldspace structure in multiple views by back projec-
tion of imaged point correspondences.

Each set of projection equations can be combined into a linear system of the form

AX = 0. We remove the homogenous scale factor by forming the cross product between

the measured image and projected worldspace points x × PX = 0.

Writing pj as the column 4-vector corresponding to the jth row of P then a projected

worldspace point can be written.

PX =




p1⊤X

p2⊤X

p3⊤X


 (2.94)

If we then write the corresponding measured point in one of the images as x = (u, v, w)⊤

then the equations formed from the cross product can be written.

[x]×PX =




vp3⊤X − wp2⊤X

wp1⊤X − up3⊤X

up2⊤X − vp1⊤X


 (2.95)

Only two of the three equations are linearly independent, thus it is normal to only

include the equations from the first two rows within the design matrix A. We then

stack the set of projected point constraints from all corresponding camera views.




vp3⊤ − wp2⊤

wp1⊤ − up3⊤

v′p′3⊤ − w′p′2⊤

w′p′1⊤ − u′p′3⊤

...




X = 0 (2.96)
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In general, the lines formed from back projecting two imaged points do not precisely

intersect in a single worldspace point. In order for the back projections to meet in a

single worldspace point we need to compute the set of optimal point estimates that lie on

the epipolar lines between views. There is an analytical solution to this problem within

two views that requires solving a polynomial of degree 6, which is described within [40].

However, for more than two views no analytical solution has yet been determined to

compute these optimal point correspondences.

2.8 Geometry of gait

We can make the gross assumption that the dynamics of gait are planar, thus a stratified

approach can be employed to recover the metric structure of the limb swing plane. This

planar motion assumption then allows us to use the properties of planar geometry, as

described in the former part of this chapter, in order to identify the set of constraints

required to compute the rectification transformations. Within this section, we show that

gait has sufficient geometric properties that allows us to recover the true metric structure

of the limb swing plane, with no prior knowledge of the subject’s motion trajectory or

the camera calibration.

2.8.1 Identification of the vanishing line

We must first identify the imaged vanishing line of the limb swing plane in order to

compute the perspective transformation Hp that recovers the affine properties of the

motion plane. We further assume that people move along linear trajectories with con-

stant velocity, and that the captured video stream contains at least two periods of subject

motion.

Multiple periods of gait motion is then analogous to a single period of motion viewed from

multiple cameras that are related by linear translation. Consequently, the geometry of

point correspondences at similar positions of gait phase, over the range of motion periods

is auto-epipolar. Figure 2.22 illustrates the duality between multiple view geometry and

periods of gait motion.

The imaged direction of motion e corresponds to the coincident set of camera epipoles,

through which all epipolar lines must pass. All point correspondences of a single land-

mark point at similar positions of gait phase must lie on a single epipolar line over the

set of gait periods. Figure 2.23 shows a planar test pattern consisting of seven instances

of a repeating dot pattern. The pattern repetition is in one motion direction, and rep-

resents a single gait pose of repeated subject motion. The distortion effect of central

projection ensures that the image of each dot pattern, over the repeated periods (0-6), is
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(a) (b)

Figure 2.22: Duality of multiple view geometry and periods of gait motion.
(a) Single camera view of multiple points that represent similar pose positions within
a number of gait cycles. (b) Multiple cameras related by linear translation that image
a pose point within a single gait cycle.

noticeably different over the camera field of view. Similar perspective distortion effects

are evident within the repeated spatio-temporal motion structure of human gait.

Figure 2.23: Repeated planar dot pattern corresponding to a single gait pose of sim-
ulated motion over a number of gait cycles.

In order to recover the canonical motion plane, the epipole e must be mapped back

to the ideal point (1, 0, 0)⊤ by applying the stereopsis transformation described within

section 2.6.3. After application of this transformation, the set of epipolar lines are all

aligned parallel to the X axis. Similarly, the transformed vanishing line of the gait plane

is also parallel to the X axis and has the form l′∞ = (0, l2, l3)
⊤. Figure 2.24 corresponds

to the image of the repeating planar pattern after applying the stereopsis transformation.

The set of imaged vertical lines all meet in a single point on the vanishing line. Although
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partially rectified, the set of repeated dot patterns are still dissimilar over the camera

field of view.

Figure 2.24: Rectified image after applying the stereopsis transformation. All epipolar
lines corresponding to the direction of motion are aligned parallel with the X axis.

Having replaced the epipole back to its canonical position, the conjugate translation M,

that maps repeated planar patterns within the image, now has a much simpler form.

Following the result derived in equation 2.37, the conjugate translation is determined

by the imaged direction of motion v, the vanishing line of the motion plane l′∞ and a

scalar constant λ that describes that apparent change in displacement.

M = I + λvl′⊤∞ (2.97)

M = I + λ




1

0

0




(
0 l2 l3

)

(2.98)

M =




a b c

a

a


 (2.99)

Repeated application of the conjugate translation M then generates the imaged point

correspondences over the set of periods, i.e. Mk = M · M · (· · · ) · M.
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Mk =




a kb kc

a

a


 (2.100)

The correspondence equations between the points xk = (uk, v, 1)⊤, repeating on the

image plane, form constraints on the elements of the transformation matrix M. The

coefficients of the conjugate translation can then be solved by solution of the Direct

Linear Transformation.

[xk]×Mkx0 = 0 (2.101)

Since the conjugate translation has a reduced form, the DLT similarly has a simpler

representation.




0 −1 v

1 0 −uk

−v uk 0







a kb kc

a

a







u0

v

1


 = 0 (2.102)




0

au0 + kbv + kc − uka

−v(au0 + kbv + kc) + vuka


 = 0 (2.103)

Since we have placed the epipole back to its canonical position, all similar point corre-

spondences have the same y coordinate, thus the first row of the constraint equations

shown in 2.103 is identically zero. We also notice that the third row is a scalar multiple

of the second, hence each point correspondence only provides a single constraint on the

transformation parameters.

[
(u0 − uk) kv k

]



a

b

c


 = 0 (2.104)

Length ratios on each epipolar line of a corresponding set of repeated points are pre-

served, thus distances between consecutive points ∆u = (uk−1 − uk) are equal.

u0 − uk = k∆u (2.105)

Equation 2.105 clearly shows that the constraints formed from all combinations of similar
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point correspondences with common y coordinates are equal since k is a common scaling

factor.

k
[

∆u v 1
]



a

b

c


 = 0 (2.106)

A minimal solution to the system of homogeneous equations can be derived from two

point correspondences with different y coordinates. There is a clear geometric interpre-

tation for the construction of the vanishing line of the plane, illustrated in figure 2.25.

Figure 2.25: Construction of the vanishing line from two point correspondences with
different y coordinates. The foreshortening of similar worldspace lengths, due to per-
spective distortion, along epipolar lines parallel with the X axis generates the corre-
sponding vanishing point v.

Given any two pairs of repeating points (x0,x1) and (x′
0,x

′
1) that have a common trans-

lation within the worldspace motion plane, the intersection of the lines formed through

the equivalent points l0 = x0 × x′
0 and l1 = x1 × x′

1 meet in a vanishing point v of the

imaged motion plane. This can be explained since lines l0 and l1 are parallel in the

worldspace, thus the intersection generates an ideal point on the plane. Intersection of

the images of these lines then identifies the corresponding imaged vanishing point v.

The vanishing line of the gait motion plane must be parallel to the X axis, thus the

coefficients of this line are fully determined from the imaged vanishing point v.

Constraints formed from all combinations of similar point correspondences with common

y coordinates are identical. Where we have more than two correspondence periods, a

least squares estimate of ∆u may be computed. An inhomogeneous solution can be

formed to solve the linear displacement k · ∆u + u0 = uk of the set of repeating points

on the line. The system of equations of the form Ax = b are constructed by stacking

the constraints.
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[
k 1

] (
∆u

u0

)
= uk (2.107)

One constraint equation of the form 2.108 can then be computed for each set of repeated

point correspondences with different y coordinates. A minimum of two such constraint

equations are required to solve this set of homogeneous equations.

[
∆u v 1

]



a

b

c


 = 0 (2.108)

The homography that maps the vanishing line back to its canonical position (0, 0, 1)⊤

is finally given by the perspective transformation Hp.

Hp =




1

1

b c


 (2.109)

Consequently, the affine properties of the plane are restored by this transformation.

Figure 2.26 shows the image of the reconstructed scene plane after application of the

perspective transformation Hp.

Figure 2.26: Affine rectification of the test pattern after mapping the vanishing line
of the plane back to its canonical position.

Although metric properties such as angles are not recovered, structure is now similar

across all repeated dot patterns. The self-similarity of the affinely reconstructed image

structure is then a good cue for periodicity detection.
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Other researchers have detected periodic activities using self-similarity measures. Cutler

and Davis [20, 21, 22] have put forward an algorithm that consists of two stages. The first

facilitates segmentation and object tracking in the foreground. The second then aligns

each object along the temporal axis by using the object’s centroid. A suitable scaling

is also applied that ensures that all resampled objects are similarly sized. The self-

similarity of these normalized image regions is periodic, thus time-frequency analysis is

employed to detect and characterize this periodicity. The method put forward by Cutler

and Davis does not make any assumptions about the nature of motion, only that these

resampled image regions are periodically similar in appearance. However, image regions

are matched without any attempt to remove the effects of perspective distortion. They

report favourable detection of subject periodicities using this method.

With known landmark points, we have shown that perspective distortion can be removed

through identification of the imaged vanishing line of the limb swing plane. The real

problem is then how best to determine these landmark points, or indeed if they are

really necessary in order to determine the perspective transformation that recovers the

affine properties of the plane. By assuming that gait motion is piecewise linear with

constant velocity, the resulting auto-epipolar motion geometry provides a number of

strong constraints on the required scaling factors and repeated image structure that are

not exploited within the work of Cutler and Davis. Any departure from this motion

geometry signifies a change in the mode of gait, and potentially provides a suitable

mechanism for segmenting the imaged motion into linear segments of natural locomotion.

Realistically, auto-correlation of self-similar subject poses provides a large source of pixel

correspondences that can be used to simultaneously determine both the periodicity of

gait, and the required transformation that restores the affine properties of the motion

plane. The required landmark features could then be recovered by spatio-temporal tem-

plate matching. We understand that this task of segmenting a moving subject from the

background, tracking it through the image sequence, then determining the periodicity

and corresponding landmark features is a hard problem and a research topic in its own

right. Automated segmentation and extraction of these landmark features will not be

discussed further within this thesis. Since the main area of interest within this project

is concerned with the theoretical and geometric properties of gait, we continue with

the understanding that this problem can be solved and proceed by manually marking

landmark points within the captured image sequences.

2.8.2 Recovering metric structure

The motion of articulated human limbs is dynamic and dependent on the underlying

skeleto-musculature interaction. Human bones are rigid with fixed lengths and provide

one source of geometric constraints that remain invariant to the mode of gait motion.

Identification of important joint landmark features between rigid bone segments enables
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us to compute the affine transformation Ha that recovers the metric properties of the

limb swing plane. Since the size of each individual bone segment remains the same over

the image sequence then the known length ratio between poses remains fixed (unity).

We can therefore use Liebowitz’s known ratio of length constraints described within

section 2.5.4.3 to recover the metric properties of the limb swing plane.

Figure 2.27: Synthesized image of a single gait cycle which has been sampled into
seven distinct phase poses. The image obtained from the camera represents the motion
dynamics of a subject walking at an oblique trajectory angle.

Figure 2.27 represents seven different poses of human gait within a single period of

gait motion. The landmark points (hip, knee and ankle) between rigid length bone

segments are used to determine the required transformation that recovers the metric

motion structure. In the previous section we showed that it is possible to recover the

affine properties of the plane by matching corresponding features within similar gait

poses over a number of gait periods. A similar arrangement can be made by placing

two or more of these printed patterns side by side, to represent multiple periods of gait

motion. The detail of all motion periods is hard to see within a single image so we

consider only a single planar pattern. We proceed to recover the imaged vanishing line

and consequently the homography transformation Hp that recovers the affine properties

of the gait plane from additional markings placed on the test pattern.

Figure 2.28 shows the corresponding affinely rectified image. Length ratios on parallel

lines are recovered, though the non isometric scaling and skew between the XY axes is

most apparent within the measurement square markings behind the test pattern. The

set of length ratio constraints are formed from combinations of each of the matching

bone segments within all poses of the gait cycle.

Figure 2.29 shows the corresponding reconstructed structure of the metric plane. Prop-

erties of the metric plane are recovered up to a similarity transformation. The circular
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Figure 2.28: Affine rectification of the planar test pattern, obtained by mapping the
identified vanishing line of the motion plane back to its canonical position.

Figure 2.29: Metric reconstruction of the test pattern, obtained by applying the affine
rectifying transformation that is determined from the consistent rigid bone length con-
straints within each sample pose of the image sequence.
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points I,J are invariant to any further similarity transformations thus it is up to the ex-

perimenter to choose the alignment and scaling of the required coordinate system. Here,

we have chosen the similarity transformation that aligns the motion direction with the

X axis, with isotropic scaling that best fits the recovered structure into the image. We

can clearly see that the recovered measurement square markings behind the test pattern

are indeed square again after the rectification transformation.

2.9 Conclusions

Within this chapter we reviewed the background literature and geometric properties of

projective geometry that are essential for understanding the remaining material covered

in this thesis. We showed how planar and 3D primitives such as points, lines, planes

and conics are represented and how they are transformed under projective imaging.

We gave an overview of the projection process of worldspace 3D structure into the

image, and described both the simple linear camera model and more complex cameras

with radial lens distortion. We outlined the epipolar geometry and correspondence

conditions between points in two views and also considered the specialized auto-epipolar

case which arises from a linearly translating camera with fixed internal parameters. We

then reviewed the literature on camera calibration and subsequently the back projection

and triangulation of worldspace structure.

Worldspace structure commonly occurs within single planes. Subsequently, projection

of planar worldspace structure into the image has a simpler form. The transformation of

structure from one plane to another is achieved by a 3 × 3 matrix mapping known as a

homography. We reviewed the mathematics and essential properties of planar geometry

then gave details of some commonly occurring specialized planar transformations, such

as image mosaicing and repetition of planar patterns.

The homography transformation mapping one point set to another can be determined

from the known correspondences of points between the two planes by using a direct

linear transformation technique. On the other hand, we may not have physical point

correspondences between the canonical reference plane and the image plane. We may

though have some additional knowledge about the structure on the reference plane that

allows us to employ a stratified approach to recover the metric structure.

Geometric properties of the plane can be classified into three main groups of transfor-

mation. Further details and properties of these classes of transformation can be found

within the discussion in appendix A.1.

• Perspective transformations. Parallelism and orthogonality of lines are not

preserved. Length ratios on lines are not preserved. The ideal points and the line
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at infinity become finite after transformation.

• Affine transformations. Parallelism of lines is preserved, although due to skew,

orthogonality is not. Ratios of lengths on parallel lines are preserved. The set of

ideal points remain ideal, though are not fixed pointwise by the transformation.

The line at infinity remains fixed.

• Similarity transformations. The circular points I,J, angles between lines and

ratios of lengths all remain invariant under transformation.

Metric properties of the scene plane are recovered by determining the homography map-

ping, formed from the known scene plane structure constraints, that maps the imaged

vanishing line and circular points back to their canonical positions. Each stage within

the stratified rectification process is designed to remove a number of degrees of freedom

from the eight required to compute the planar homography.

The set of ideal points all lie on the ideal line, thus identification of the imaged vanishing

line of a plane allows us to compute the perspective transformation Hp that recovers

the affine properties of the plane.

The circular points I,J of the ideal plane encode the Euclidean coordinate axes within a

single complex conjugate entity. Constraints can be formed on the circular points from

prior knowledge of the scene structure, and enables us to compute the affine transfor-

mation Ha that recovers the metric properties of the plane.

Since the circular points I,J remain invariant to similarity transforms, further con-

straints that recover structure within a common coordinate system must be explicitly

chosen by the experimenter. A similarity transformation Hs may be chosen to place a

known point at the origin, scale a common feature to unit length or align a known vector

with one of the coordinate system axes. The combined set of stratified transformations

H = HsHaHp then recovers the required properties of the metric plane.

We hypothesize that articulated limb motion within human gait is approximately planar.

Almost all of the perceived limb motion is contained within a single plane. Consequently,

gait has sufficient properties that allows us to exploit the structure of planar articulated

limb motion in order to recover the fronto-parallel motion dynamics, with no prior knowl-

edge of the camera calibration. As an example, the stratified reconstruction technique

was applied to a synthesized image of an obliquely viewed motion figure pattern in order

to demonstrate that the canonical fronto-parallel view could be successfully recovered.

Our review of the camera calibration literature showed that a planar calibration target

could be used to determine the intrinsic parameters of the camera. Two or more different

orientations of the calibration target are sufficient to compute the camera parameters.

A similar argument can be made for the motion of gait. Since we can recover the homog-

raphy that transforms the fronto-parallel reference plane of subject motion to its image
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then a minimum of two different imaged motion trajectories are sufficient to determine

the intrinsic parameters of the camera. The work presented in this chapter provides the

groundwork for what is essentially an “Auto-calibration from gait” algorithm (a close

second candidate choice for the title of this thesis).

The later chapters of this thesis are then concerned with determining a suitable model

representation of articulated limb motion, identifying the static features of gait that may

serve as a useful biometric, and a practical validation of the theoretical auto-calibration

method identified within this chapter.



Chapter 3

Static Features of Human Gait

3.1 Introduction

Within the context of human identification, subject gaits can be observed within various

situations and from different viewpoints. Viewpoint and environment can be carefully

controlled within a laboratory setting, while little or no control is possible for outdoor

scenes [12, 54]. Many features are proposed in the literature for gait recognition in-

cluding optical flow, joint angles, silhouette, etc. We can categorize them as static and

dynamic features that evolve in time. Static features reflect instantaneous, geometry-

based measurements such as stride length / cadence, limb lengths and height [54, 6, 7].

Dynamic measurements are sensitive to the temporal motion structure of subject activ-

ity, such as joint angles, optical flow, symmetry and self similarity [79, 20, 101, 23, 43].

Normal walking conditions (constant and natural walking speed, carrying no objects,

level ground plane, etc.) are some of the fundamental assumptions made in most current

techniques. Many proposed features and algorithms do not work well if these conditions

are violated. Even though gait patterns are repeatable most of the time, changes in

walking conditions affect these motion patterns. There are many factors, both physical

and psychological, within our daily lives that can influence the variations between our

motion patterns such as walking speed, cadence, ground surface, load carrying and state

of mind. Understanding the characteristics of gait motion patterns under various walk-

ing conditions will help improve the techniques used in further gait research. Here, we

are interested in human gaits across different speeds. In particular, we want to under-

stand the patterns of gait motion parameters such as stride length and cadence, which

are potentially measurable by computer vision techniques.

Bobick and Johnson [8, 54] develop a gait-recognition method that recovers static body

and stride parameters of subjects as they walk. Their technique does not directly anal-

yse the dynamic gait patterns, but uses the action of walking to extract relative body

parameters. The set of static body parameters measured are four lengths: the vertical

64
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distance between the head and foot, the distance between the head and pelvis, the dis-

tance between the foot and pelvis, and the distance between left and right feet. These

distances are measured only at the maximal separation points of the feet during double

support phases of the gait cycle. However, they consider step length by itself to be a

static gait parameter, while in fact it varies considerably for any one individual over the

range of walking speeds. The typical range of variation in step length for adults is about

30 cm [50], which is far from negligible. Their method for estimating the separation dis-

tance between feet does not exploit the periodicity of walking, and hence is not robust

to tracking and calibration errors.

Davis and Taylor [24] develop an approach for recognizing human walking movements

using low level motion regularities and constraints (gait period, stance/swing ratio and

double support time). Biomechanical features for classification are automatically ex-

tracted from video sequences of walkers. A multiplicative classification rule using statis-

tical distances is then used to determine whether an unknown motion is consistent with

normal walking patterns.

BenAbdelkader and Cutler [5, 6] develop a correspondence free method to automati-

cally estimate the spatio-temporal parameters of gait (stride length and cadence) of a

walking person from imaged motion. Cadence is estimated using the periodicity of a

walking person. Using a calibrated camera system and a known ground plane, the stride

length is estimated by first tracking the person and estimating their distance travelled

over a period of time. By counting the number of steps and assuming constant velocity

during walking they are able to estimate the stride to within 1 cm for a typical out-

door surveillance configuration. They show that stride length and cadence are linearly

related over a range of gait speeds. Their approach works with low-resolution images of

people, is view-invariant, and robust to changes in lighting, clothing, and tracking er-

rors. It achieves its accuracy by exploiting the nature of human walking, and computing

parameters of stride and cadence over many steps.

Further work by Tanawongsuwan and Bobick [103, 102] explores the spatio-temporal gait

parameters (stride length and cadence) across a number of controlled walking speeds.

They give an in depth study of 15 people, with repeated measurements on different days,

for motion obtained from treadmill walking. Their results agree closely with the findings

of BenAbdelkader and Cutler.

We understand that the prior work by both BenAbdelkader and Tanawongsuwan has

answered many of the relevant questions with regard to the parameters of stride length

and cadence. Both their techniques require a calibrated camera and that the ground

plane is known, in order to extract the required features for recognition. Our research

differs from theirs, since we are interested in observing the dynamic behaviour of the

articulated limb angle motion over a range of controlled walking speeds. We propose a

suitable motion model that enables us to extract the features of gait without the need
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to know the camera calibration, ground plane or subject trajectory. In this chapter, we

outline a suitable representation to model the articulated limb motion and give a brief

analysis for a small set of trial subjects. In essence, we provide enough information to

justify our choice of suitable gait features and biometric representation of motion, that

facilitates further development of the view invariant reconstruction methods described

within later chapters. Although our set of gait features and motion model function

differ from the work of BenAbdelkader and Tanawongsuwan, we show that the results

are proportionally similar and correspond well with their findings.

We first give an overview of the terminology and biomechanics of subject motion from

the medical literature [50, 84, 15, 77], in order to better understand the nature of gait.

We describe the sequence of events within a gait cycle that allows a person to progress

forward. Eight individual phases of gait have been identified, each with a different

functional objective, that form six distinct motion patterns known as the determinants

of gait.

Literature within the context of planar geometry [62] indicates that constraints can be

formed from known ratios of lengths within an imaged scene plane in order to determine

the transformation that recovers the true metric structure (angles and length ratios).

We then hypothesize that articulated limb motion is approximately planar and proceed

to verify this assumption by measuring the deviation of 3D joint positions from pla-

narity. We give a brief outline of various motion marker systems that other researchers

use in order to capture the dynamics of gait motion, then describe the marker system

and experimental set-up used within our laboratory for the purpose of these experi-

ments. The worldspace joint positions are computed by triangulation of imaged point

correspondences over a number of camera views. We then give an analysis of the level

of pixel reprojection error between the model and corresponding image measurements,

caused by the limb swing plane assumption, to determine the validity of the proposed

model.

The human skeletal structure is articulated but with fixed length limb segments. These

limb segments provide a set of static parameters of gait which remain constant over the

entire image sequence. We model the articulated limb motion with a suitable periodic

function, hence motion parameterisation is determined from all available data within

the image sequence. Techniques that look for specific key frames [8, 54], i.e. positions of

maximal foot separation, may be susceptible to lost or occluded frames. The proposed

limb motion model is robust to both noise and missing data.

Finally, we analyse the behaviour of the motion parameters over a range of controlled

gait speeds for a small trial set of subjects. We emphasize the parameter properties

that remain invariant over these speeds and outline a biometric feature vector suitable

for recognition purposes. We show similar results to the works of BenAbdelkader and

Tanawongsuwan. Finally, a brief discussion on the major sources of error and further
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areas of development are addressed.

3.2 Gait Cycle

Walking uses a repetitious sequence of limb motion to move the body forward while

simultaneously maintaining stability. As the body moves forward, one limb serves as

a source of support while the other progresses to a new support site. The limbs then

reverse their roles. For the transfer of body weight from one limb to the other, both

feet are in contact with the ground. This series of events is repeated by each limb with

reciprocal timing until the intended destination is achieved. A single sequence of events

by one limb is called a gait cycle [76]. Any event within the sequence can be selected

to represent the onset of the gait cycle. The initial moment of contact with the ground

is the most readily defined event. People with a normal gait initiate floor contact with

their heel (heel strike), though not everyone has this capability, hence the generic term

initial contact is used to define the start of the gait cycle [1].

3.2.1 Stance and Swing

Each gait cycle is divided into two periods, stance and swing. Stance is used to describe

the entire period during which the foot is on the ground and swing the period for which

the foot is in the air. Stance is subdivided into three intervals according to the sequence

of floor contact for both limbs. Both the start and end of stance involve a period of

bilateral foot contact with the ground (double stance), while the middle portion has a

period of single limb contact (single limb stance). The duration of single limb support

for one limb equals the swing of the other.

The relative distribution of the periods of gait within a gait cycle is 60% for stance and

40% for swing [76]. The subdivision and distribution of the periods of gait motion for

both limbs is more easily seen within figure 3.1. The precise duration of these intervals

within the gait cycle varies with a person’s walking velocity [2, 82].

Figure 3.1: The subdivisions of stance and their relationship to the bilateral floor
contact pattern.



Chapter 3 Static Features of Human Gait 68

3.2.2 Phases of Gait

In order to provide the basic functions required for walking, each stride involves a series

of complex motion patterns performed by the hip, knee and ankle. The term stride is

synonymous with a gait cycle. It is based on the actions of one limb, and is defined as the

interval between two sequential initial contact positions by the same limb. The stance

and swing periods of gait can be further divided into eight functional patterns known

as the phases of gait. Analysis of a person’s walking pattern by phases more directly

identifies the functional significance of the different motions occurring at the individual

joints. The phases of gait also provide a means for correlating the simultaneous actions

of individual joints into patterns of total limb function.

Figure 3.2: Divisions of a gait cycle.

Each of the eight phases has a functional objective and enables the limb to accom-

plish three basic tasks: weight acceptance, single limb support and limb advancement.

Figure 3.2 shows the relationship between the periods, functional tasks and phases of

gait.

3.2.2.1 Weight acceptance

This is the most demanding task within the gait cycle, as the person abruptly transfers

body weight from the stance limb to the other limb that has just finished swinging

forward. Two gait phases are involved, initial contact and loading response.

Initial contact. This phase includes the moment when the foot just touches the floor.

The joint postures at this time determine the limb’s loading response pattern. This

phase accounts for the interval between 0 − 2% of the gait cycle.

Loading response. This is the initial double stance period, beginning with initial

contact and continuing until the other foot is lifted for swing. The functional objectives
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(a) Initial contact (b) Loading resp. (c) Mid stance (d) Terminal stance

(e) Pre-swing (f) Initial swing (g) Mid swing (h) Terminal swing

Figure 3.3: Limb posture during the eight phases of gait.

of loading response are to provide shock absorption, posture stability and preservation

of progression. This phase accounts for the interval between 0 − 10% of the gait cycle.

3.2.2.2 Single limb support

Lifting the other foot for swing begins the single limb support interval of stance. This

continues until the opposite foot again contacts the floor. Two gait phases are involved

in single limb support, mid stance and terminal stance, and differ primarily by their

mechanisms of progression.

Mid stance. This is the first half of the single limb support interval, beginning as the

other foot is lifted and continues until the body weight is aligned over the forefoot. The

functional objectives of mid stance are to provide progression over the stationary foot

and stability of both the limb and trunk. This phase accounts for the interval between

10 − 30% of the gait cycle.

Terminal stance. This is the final phase of single limb support, beginning with heel

rise and continuing until the other foot strikes the ground. The functional objective of
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terminal stance is to ensure progression of the body beyond the supporting foot. This

phase accounts for the interval between 30 − 50% of the gait cycle.

3.2.2.3 Limb advancement

To meet the demands of limb advancement, preparatory posturing begins at the end of

stance. The limb then swings through three postures as it lifts, advances and prepares for

the next stance interval. Four gait phases are involved in limb advancement: pre-swing

(end of stance), initial swing, mid swing and terminal swing.

Pre-swing. This is the final phase of stance and represents the terminal double stance

interval within the gait cycle. It begins with the contact of the opposite limb and ends

with toe-off of the reference limb. The abrupt transfer of body weight promptly unloads

the limb, though this action makes no active contribution to the event. Instead, the

unloaded limb uses its freedom to prepare for the actions of swing. This phase accounts

for the interval between 50 − 60% of the gait cycle.

Initial swing. This first swing phase accounts for about a third of the total swing

period. It begins with lift of the foot from the floor and ends when the swinging foot

is opposite the stance foot. The functional objective of the initial swing phase is to

advance the trailing limb from its previous stance position. This phase accounts for the

interval between 60 − 73% of the gait cycle.

Mid swing. This second phase of swing begins with the swinging limb opposite the

other stance limb and ends when the swinging limb is ahead of the truck with the tibia

aligned vertically. The functional objective of mid swing is to ensure limb advancement

and provide adequate clearance for the foot from the floor. This phase accounts for the

interval between 73 − 87% of the gait cycle.

Terminal swing. This final phase of swing begins with a vertical tibia and ends when

the foot strikes the floor. The functional objective of terminal swing is to ready the limb

for contact with the floor. This phase accounts for the interval between 87 − 100% of

the gait cycle.

3.2.3 Energy conservation

Minimizing the amount that the body’s centre of gravity is displaced from the line of

progression is the main mechanism for reducing the muscular effort of walking. The

dependence on reciprocal bipedal locomotion presents two costly situations during each

stride. As the left and right limbs alternate their support roles, the body must shift

laterally from one side to the other. The limbs also change their vertical alignment

between double and single support, thus causing the pelvis and ultimately the body
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mass to be elevated up and down. The body is at its lowest during periods of double

stance, and at its highest while in mid stance when the supporting limb is vertical.

Though a mixture of six motion patterns called the determinants of gait, the magnitude

of these costly horizontal and vertical displacements is reduced to approximately 2.3 cm

in each direction [88]. The resulting motion also avoids abrupt changes in direction and

consequently the amount of energy expended on locomotion [50]. Figure 3.4 shows the

arc of motion traced by the centre of gravity of the human body over a complete gait

cycle.

Figure 3.4: Motion arc traced by the centre of gravity of the human body over a
complete gait cycle.

Limb motions make an active contribution to the smoothing of the vertical displacement

path of the body. Vertical lift is lessened by the lateral tilt of the pelvis combined with

ankle and knee flexion of the stance limb. Vertical drop is reduced through terminal

stance heel rise, initial heel contact combined with knee extension and horizontal rotation

of the pelvis. As a result, the body’s centre of gravity follows a smooth three dimensional

sinusoidal path.

Figure 3.5: Lateral displacement.

Figure 3.5 shows the apparent lateral displacement and transverse rotation of the head

and body during a single gait cycle. The head and body deviate laterally from the

progression midline, defined though the set of head poses in each of the double stance

intervals. All connected axial segments of the head, truck and pelvis deviate by the same
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amount. This deviation represents a single sinusoidal motion and averages about 4.6 cm

for the total displacement arc between maximum left and right positions [111]. The

transverse rotation of the pelvis and truck averages about 10 degrees in each direction

for normal gait motion [76, 88]. Changes in gait velocity alter the segment displacement

pattern. Slow walking causes a 30% greater deviation, while the difference is 20% less

for fast gait motions [105].

3.3 Motion marker systems

Cameras offer a remote, non-contact means of recording the motion of the entire body.

Over the years, computers have become more powerful and analysis software more com-

mercially available. There are now a number of automated motion analysis tools avail-

able. Two basic systems are used: video with enhanced passive markers (ViconTM, Peak

PerformanceTM, United TechnologiesTM, Motion AnalysisTM) and optoelectrical active

marker systems with light emitting diodes (SelspotTM, WhatsmartTM, OptitrackTM).

All motion systems depend on computing the arcs of motion and positions of individual

limb joints numerically. The basic technique consists of placing markers on the skin

surface in locations that accurately represent the actions of the underlying joints. Joint

positions within the worldspace are determined through a process of triangulation of the

imaged set of markers from each of the camera views. A minimum of two cameras are

required to compute worldspace structure, though for a practical system, three to five

cameras are required to reliably capture all the markers.

The basic approach has been to place three markers on each body segment to model the

joint locations. There is no guideline for the exact placing of these markers, hence marker

placement is dependent on the anatomical interpretation of the individual investigators.

To permit simultaneous measurement of sagittal, coronal and transverse motion of the

hip, knee and ankle, multiple surface markers are used. Arcs of transverse rotation

are often too small to capture visually with skin markers alone. To overcome this

limitation a mid segment stick marker is used that visually amplifies the rotational arc

of motion. Figure 3.6(a) shows a typical arrangement of markers required for medical

gait analysis. To circumvent the difficulties of inconsistent movement and location of

the skin markers, the use of a mid segment cluster of markers has also been introduced.

These three dimensionally orientated markers are fixed to a common base plate that is

strapped to the centre of the limb segment, illustrated in figure 3.6(b). It is assumed

that the influence of skin motion between markers is then reduced.
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(a) (b)

Figure 3.6: Anatomical marker placement. (a) Typical arrangement of markers
required for medical gait analysis. (b) Mid-segment cluster of markers. Three markers
on a common base define a unique motion plane.

3.4 Experimental set-up

Since the process of multiple view calibration takes some time, we need to design a

practical experimental procedure that minimizes the total number of cameras and the

number of required changes between subject capture sessions. A single capture session

requires that we obtain motion data corresponding to treadmill and overground walking,

with a consistent set of landmark features between both. Since we must acknowledge

that people can not be detained indefinitely and the fact that we only have a total of 16

passive markers, all experiments for a single test subject must be run consecutively.

(a) (b)

Figure 3.7: Laboratory test track. (a) View of the test track from behind the left
camera. (b) Test track with the treadmill placed fronto-parallel to the central camera.
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These experiments must be repeatable, thus a documented experimental procedure must

be followed in order to achieve consistent and reliable results. We describe the aims,

mathematical details and results of these experiments within the next few sections. A

detailed discussion of the instructions required to set up and handle a motion capture

session is then given, recipe style within section 3.7.

A common camera set-up is used to capture both treadmill and overground walking

motion data for a number of volunteer subjects. Figure 3.7 shows the test track and

placement of the treadmill within our laboratory for the purposes of the required ex-

periments. The set of cameras are placed along a line, down one side of the test track.

A series of lines have been marked onto the floor in order to provide a visual cue for

subjects to follow. Subjects are then instructed to walk along a path 3.5 metres from

the line of cameras.

3.4.1 Markers

We are only interested in the gross spatio-temporal motion structure of the main limb

joints, in particular the leg motion. We hypothesize that limb motion is planar, thus it is

necessary to place the set of markers as close as possible to the required anatomical land-

mark joint positions. The arrangement of motion markers used within our laboratory is

shown in figure 3.8. We employ the use of thirteen similarly sized passive markers that

are attached to the head, shoulders, elbows, wrists, hips, knees and ankles of a subject.

Each landmark is labelled with a unique number (0-12) that can be used to index the

tables of feature tracking positions.

Figure 3.8: Marker placement and labelling schema used to identify each individual
landmark.

Flat surface markers that are stuck directly onto clothing do not have similar appearances

within each camera view. These markers, attached to the surface of a limb, are easily
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self occluded by the same limb within oblique views. In contrast, spherical markers are

always imaged as circles within each camera view, and are far less easily occluded. The

markers we use in our laboratory are 40 mm diameter balls, covered with retro-reflective

tape. Light sources (TD beam 800W) placed behind each of the cameras are reflected

from the markers and provide bright circular patches of high contrast within each of the

images. Automation of marker extraction is very much a secondary concern within this

research project, hence the corresponding landmark locations are manually segmented

from the digitised video streams.

3.4.2 Cameras

There are many types of suitable video camera that are commercially available. In

the past researchers have used analogue camera recording systems to capture image

sequences onto tape. These tapes are subsequently digitised into a more useable format

required for image processing. More recently, the availability and declining cost of

digital camera systems and computer processing power has meant that large arrays of

synchronized cameras have become a practical and viable alternative.

The camera system that we currently have within our laboratory consists of 8 Point

Grey - Dragonfly digital cameras. These cameras can be synchronized and allow us to

stream image data directly to hard disk by using a IEEE-1394 Firewire connection. Due

to bandwidth issues required to stream the raw image data to disk (progressive scan

CCD, 640 × 480 resolution : 8-bit colour, Bayer tiled at 30 fps), a maximum of two

cameras is connected to any one storage computer. The four required storage clients

are then connected to a central server via a Local Area Network (Gigabit network).

Synchronization of the cameras between clients is handled by three Point Grey - Sync

Unit devices which are chained across the set of IEEE-1394 Firewire busses.

Figure 3.9: Camera synchronization connection diagram.
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The server handles the image retrieval and requests to start and stop capturing image

data from the cameras by using an in-house software system [73]. This software enables

us to easily set the essential configuration details, such as shutter speed and colour

balance, for each of the cameras in the system. A standard template of configuration

parameters can be stored in a single file and may be broadcast to all cameras within the

array.

The set-up we proposed for these experiments requires the use of four synchronized digi-

tal cameras. We then attached a number of different lenses (Cosmicar/Pentax - 2.8 mm,

4.0 mm and 6.0 mm) to each of the cameras. Figure 3.10 shows the corresponding ex-

perimental camera set-up used within our laboratory. All cameras are then accurately

calibrated, enabling us to recover the true baseline measurements of worldspace joint

positions by triangulation of the imaged landmark features in different views. Since the

positions of these cameras are fixed throughout the entire set of capture sessions, we

only need to perform the calibration process once.

(a) Camera array (b) Dragonfly digital camera

Figure 3.10: Laboratory camera set-up used for motion capture. (a) Place-
ment of cameras within the array. (b) Close up of a digital camera and rear light
source.

Three of the cameras are fixed at the far left, middle and far right of the test track

and are separated by a distance of at least three metres. Accuracy of the reconstructed

worldspace structure is determined largely by the precision of the individual camera

calibrations. Calibration of the cameras is typically achieved within a two stage process.

First, each camera is individually calibrated using Zhang’s method [120], over a large

number of image correspondences. The set of imaged calibration target point features

can be orientated and distributed differently over the entire field of view for each camera,

enabling us to determine an accurate representation for the camera intrinsic parameters

(linear projection and radial distortion coefficients). The set of intrinsic parameters are

then fixed within further calculations to compute the extrinsic pose parameters between

cameras. Since the baselines are quite wide between cameras, correspondences of sim-

ilar structure appear very different and often within localized regions of the individual
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images. Finding correspondences over the entire fields of view, within subsets or all

cameras, is often impossible. Fixing the camera intrinsic parameters obviates some of

the errors associated with matching the correspondences within these local image re-

gions. The extrinsic pose parameters between cameras are then solved pairwise between

cameras in the array. The corresponding back projection of worldspace structure is valid

to within an uncertainty of ±2 mm.

A fourth ‘Sky’ camera is placed on a fully extended mounting tripod and allowed to

rotate on its spindle. The motion of the changing camera orientation is controlled by a

human operator standing nearby on a step ladder. The camera operator is instructed

to keep the walking subject as close as possible within the centre of the view by means

of best guess line of sight. Although the locus of rotation is arbitrary, all of the camera

motion is approximately about a single point.

Figure 3.11: Panorama composed of three images obtained from a camera that is
allowed to freely rotate about its origin.

The geometry is specialized for a camera that has constant intrinsic parameters but is

allowed to rotate freely about its origin point. Static worldspace structure is related

between images by a homography mapping, see section 2.4.2 for further details. We

can recover the composition of all images within a single chosen reference frame by

determining the planar mapping between these point correspondences. Figure 3.11 shows

the panorama obtained through reconstruction of a set of three images within the motion

sequence, with respect to the second of these images.

For a practical system, we need to determine these static image correspondences within

the initial step of segmenting background and foreground objects. Here, the correspon-

dences have been manually marked from small retro-reflective patches located on both

the wall and the floor. We can clearly see that such a situation is similar to the single

view case, only that the panorama generates a single but much larger image from the

composition of the set of smaller views.
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Camera
Position

Camera
Model

Resolution
(pixels)

Frame rate
(fps)

Shutter
speed (secs)

Lens
(mm)

Left Dragonfly 640 × 480 30 1/250 2.8

Middle* Dragonfly 640 × 480 30 1/250 2.8

Right Dragonfly 640 × 480 30 1/250 4.0

Sky Dragonfly 640 × 480 30 1/250 6.0

Table 3.1: Camera information within the experimental set-up. All cameras are static
and fixed with the exception of the ‘Sky’ camera which is allowed to rotate on its tripod.

Table 3.1 shows the camera and lens information corresponding to the experimental

set-up used to capture the image sequences of subject gait motion. The middle camera,

denoted with the asterisk in the table, is used to record the treadmill motion data. All

four cameras are used to capture the imaged motion sequences of subject over-ground

walking.

3.5 Planar limb swing assumption

One of fundamental assumptions that the majority of researchers use is that human

subjects can be modelled as cardboard figures and that all limb motion lies within a

single vertical plane [79, 20, 101, 23, 43]. In reality, the limbs move within small arcs of

motion that is economical with the amount of energy required to preserve the progression

of motion. It is common, within the context of single view gait recognition, to ignore

the six major motion patterns (determinants of gait) and proceed with the cardboard

person assumption. We can better model articulated limb motion by assuming that each

limb swings within a separate plane. Corresponding left and right limbs are bilaterally

symmetric about the mid plane. This partly resolves the spatial configuration of body

parts, though separate limbs are still modelled with planar motion. We describe here

the effects of applying this planar motion assumption and give a quantitative estimate

of the size of error induced through image reprojection.

We first assume that a person is walking fronto-parallel to the camera, i.e. the z co-

ordinate is modelled as being constant throughout the trajectory path. In reality, the

true depth of the limb point deviates from this constant value depending on the phase

of the gait cycle. Over a suitably large human population, there will be some average

error deviation ∆z from the planar limb motion assumption. We can then investigate

the image reprojection error caused by this average deviation from the planar motion

assumption. Figure 3.12 shows the perspective projection of a single assumed planar

motion point (x, z)⊤ and the corresponding putative error deviate point (x, z + ∆z)⊤

imaged with a camera of focal length f .

These worldspace points are projected to image points u, u′ by the pin hole camera

model. The absolute image error ǫ = |u − u′| between the projected points gives us a
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Figure 3.12: Image reprojection error of planar point u and error deviate point u′.

quantitative estimate of the contribution of error, caused by the deviation from the

planar motion assumption. We can then give some indication of the goodness of fitting

associated with the planar motion model.

u

f
=

x

z
and

u′

f
=

x

z + ∆z
(3.1)

ǫ =
∣∣u − u′

∣∣ (3.2)
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z(z + ∆z)

∣∣∣∣ =

∣∣∣∣
∆z

(z + ∆z)
· u

∣∣∣∣ (3.3)

ǫ = |λ(z) · u| where λ(z) =
∆z

(z + ∆z)
(3.4)

Equation 3.4 shows that the absolute projection error ǫ is dependent on the imaged

position of the point u from the optical centre and the projection function λ(z). This

function λ(z) is dependent on two quantities: the distance z of the subject from the

camera origin and the observable deviation factor ∆z of a subject’s limb swing from

planarity. The distance of the subject from the camera is variable but the deviation

factor ∆z will have some measurable statistical value throughout the population. This

measurable deviation may though be influenced by sex, age, weight and pathology.

Assuming that ∆z is constant then the projection error function λ(z) is proportional

to a 1/z curve plot. Figure 3.13 shows this relationship with varying distance from the

camera. We can clearly see that there is a sharp initial drop off of error value that then

tails slowly away. The question we must then ask is: What value of distance z from the

camera gives an acceptably small value of absolute reprojection error ǫ, such that it is

comparable to the experimental noise tolerance? With so many circumstantial factors

that may influence the calculation, i.e. camera calibration and subject position, there
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Figure 3.13: Projection error function λ(z).

may not be a single optimal estimate. We may only quantify the level of error pertaining

to individual experiments, thus can only give an empirical estimate of the contribution

of error caused by the planar motion assumption.

3.5.1 Overground walking

We need to compute the apparent deviation ∆z of the set of articulated leg joint positions

from the putative limb swing plane V. First, the experimental set-up is put in place with

the synchronized four camera system described in section 3.3. The cameras are calibrated

so that we know the intrinsic parameters of all cameras and the extrinsic parameters

describing their positions in space, with respect to the first camera. This then allows

us to back project any corresponding set of imaged points in order to compute the best

worldspace point X that minimizes the reprojection error within all camera views.

A small group of four volunteer subjects, shown in figure 3.14, who are willing to endure

the experience of having reflective markers taped to them, were told to walk along the

path of the test track through the field of view of all cameras.

Figure 3.14: The usual subjects: Image of the experimental volunteer group.
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For each subject, the set of imaged joint markers in all views corresponding to the closest

leg were back projected to form the worldspace point tracks Xi. We first fit the limb

swing plane V to the set of point tracks Xi, by solution of the set of homogeneous

linear equations X⊤

i V = 0. Figure 3.15(a) shows a typical frame pose of back projected

worldspace points from the set of cameras. The worldspace viewer allows us to use

a virtual camera in order to construct a novel view that shows the positions of both

cameras and subject landmark points. Figure 3.15(b) shows a virtual view of the merged

set of worldspace point tracks Xi, corresponding to the selected leg joint positions over

the complete image sequence. The view is oblique, and is deigned to show the planarity

of the set of point tracks. The fitted limb plane V is shown by the projection of the

shaded rectangular region.

(a) (b)

Figure 3.15: Novel virtual camera view of the reconstructed worldspace mo-
tion structure. (a) A typical frame pose of a subject’s joint positions. (b) A view of
the merged joint tracks Xi and the corresponding fitted limb swing plane V.

The corresponding set of reprojected point tracks within the image views are shown in

figure 3.16. We can clearly see the cycloidal nature of human gait within the fronto-

parallel view.

After computing the limb swing plane V = (v1, v2, v3, v4)
⊤, we can determine the Eu-

clidean distance d between inhomogeneous representations of the plane and point tracks

X = (x, y, z, 1)⊤.

d =
v1x + v2y + v3z + v4√

v2
1 + v2

2 + v2
3

(3.5)

We can compute the mean and standard deviation of the set of absolute distance mea-

sures |di|, over all point tracks Xi from the fitted limb plane. The 3σ standard deviation
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(a) (b)

Figure 3.16: Set of reprojected joint motion tracks.

then gives a good indication for the size of the error deviation ∆z from the planar limb

motion assumption. Table 3.2 shows the fitting information for all four test subjects,

along with the average deviation estimates over all subjects.

Subject min max mean 3σ

00 0.0078 54.09 12.17 31.01

01 0.035 68.65 15.26 38.25

02 0.024 88.44 16.21 43.08

03 0.059 40.85 10.04 26.72

All 0.0078 88.44 13.42 34.77

Table 3.2: Absolute error deviation, in millimetres, of the point tracks Xi from the
fitted limb swing plane V.

The estimated error ∆z corresponds to a 34.77 mm deviation of the limb joints from

the planar motion assumption. The mean distance of subject motion from the fronto-

parallel camera view is calculated as 3212.3 mm, hence the putative reprojection error

factor λ(z) from equation 3.4 is estimated as 0.010708. Assuming an image size of

640 pixels then the worst pixel reprojection error, seen at the extents of the image,

corresponds to a projected deviation ∆u of approximately 3.4 pixels. The average pixel

reprojection error will be less, though still provides a sizeable contribution of systematic

error, unaccounted for by the model, to the reconstruction process.

We can make a better estimate of the probable projected deviation error by assuming

that most imaged motion occurs within the 68.3 percentile (1σ) of the total image error.

The reprojection error function is linear, ǫ = |λ(z) · u| with fixed λ(z) coefficient over

the visible range [−w : w], as shown in figure 3.17.

The area under the graph represents the total error over the field of view. The 68.3%

area is shown by both shaded regions in the graph. Note that the field of view and

consequently the error function are symmetric about the optical centre. We seek to find
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Figure 3.17: Standard pixel reprojection error.

the value u = µ that corresponds to the σ = 68.3 percentile boundary as a suitable

measure of the standard pixel reprojection error. Equating the required areas under the

graph.

σ · λ(z) · w2 = λ(z) · µ2 (3.6)

µ =
√

σ · w (3.7)

The standard pixel reprojection error corresponding to the imaged subject motion at a

distance of 3212.3 mm from the camera is then computed at 2.8 pixels.

Most CCTV camera systems are positioned to capture human gait motion at far greater

distances, of at least 10 metres. A similar argument for this distance generates a max-

imum pixel reprojection error of the order 1.1 pixels at the extents of the image. The

corresponding standard pixel error is then approximately 0.9 pixels, and consequently is

within the experimental landmark measurement error ±1 pixel. The further the person

is from the camera the smaller they appear in the image. To ensure that people at a con-

siderable distance appear suitably sized within the image, the focal length of the camera

must be increased. As a result the field of view is narrowed, such that a smaller percent-

age of the total spatial gait motion is visible. One would then assume that there is some

form of optimal configuration that satisfies both the spatial and planarity requirements.

3.6 Treadmill experiments

The action of natural gait serves to progress the person forward with constant velocity.

A simple and effective way to study the dynamics of gait is to remove the progressional

component of locomotion by placing the person on a treadmill. This gives us the ability

to accurately control the speed of gait and capture the subject motion with a fixed

camera. Many medical studies in biomechanics and human movement use a treadmill to

observe the characteristics of human locomotion [25, 70, 59, 47, 83]. In [59] a treadmill
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is used to control both walking and running motions, for inter-subject comparison at

similar speed and stride frequencies. The symmetry of gait is studied using a treadmill

based system in [25]. Researchers have identified subtle differences between treadmill

motion and overground walking on a level surface. [115] reports small differences between

treadmill and overground walking but observes no effect on the symmetry. [95] finds

significant differences in sagittal knee joint motion between treadmill and overground

walking when subjects are given between 1-2 minutes to familiarise themselves on the

treadmill. [70] also reports that subjects should be given at least 6 minutes to familiarise

themselves with treadmill walking in order to obtain limb joint kinematics and spatio-

temporal gait measurements similar to overground walking.

In a study of adults between 20 to 60 years of age, who were unaware that they were

being observed, the mean walking speed for males averaged 4.92 km/h while the average

for females was 4.44 km/h [32]. The measured slow and fast walking speeds in adults

between 20 to 59 years of age averaged 2.22 km/h and 5.94 km/h respectively [110].

The functional range of customary walking speeds in adults ranges from approximately

2.2 km/h up to 6 km/h. At speeds above 6 km/h there is then a choice between

walking or running. A study of adult males found that the transition speed between

walking and running averaged 6.8 km/h [106]. Research into the expenditure of energy

from locomotion has shown that running becomes more efficient than walking at speeds

above 7.98 km/h [26]. Several works have shown that increases in velocity are normally

achieved by increasing both cadence and stride length [58, 56].

We describe here a suitable periodic function that models the planar limb swing motion

of gait. For each test subject, we analyse the behaviour of the corresponding motion

parameters over a number of controlled walking speeds within the customary range

3 - 6 km/h. Any periodic function can be used to encode the limb angle function θ(t),

though the obvious choice is to use a Fourier series representation.

θ(t) = a0 +

n∑

k=1

ak cos(2πkf0t + φk) (3.8)

The question we must first ask is: How many Fourier harmonics are required to suffi-

ciently model the dynamics of gait? Researchers have previously suggested [3] that the

maximum frequency content of human walking is ∼ 5 Hz and that the fundamental fre-

quency of normal gait is ∼ 1 Hz. This suggests that n = 5 Fourier harmonics is sufficient

to model the limb angle function. We validate this assumption by giving a quantitative

analysis of the image reprojection error from the gait motion function over a range of

Fourier harmonic coefficients. We then determine a suitable number of harmonics n that

enables good reconstruction.
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3.6.1 Limb angle function

We have previously shown that the motion of a single articulated limb is approximately

planar. A good initial estimate for this limb swing plane can be computed by aligning

a calibration grid pattern with the subject’s leg on the treadmill, while in the quiet

standing posture. Figure 3.18 shows the configuration of a calibration grid aligned with

a subject’s leg plane.

Figure 3.18: Vertical reference plane of the subject’s leg.

The projection of metric points u from the canonical reference plane to the imaged leg

swing plane can be computed by the planar homography mapping as x̂ = Hu. The

correspondence between known grid points u on the metric plane and the set of imaged

points x allows us to compute the elements of the homography matrix H by solution

of the Direct Linear Transformation [x]×Hu = 0. These equations can be rearranged

into the form A · h = 0, where h is the flattened set of homography matrix coefficients.

Further details of the Direct Linear Transformation can be found in section 2.4.6.

The putative set of limb joint positions w on the metric plane are first recovered by

applying the inverse mapping w = H−1x to the set of imaged marker points x. The

set of articulated leg segments are rigid and have fixed lengths over all frames in the

sequence. We can accumulate the vector d, of mean upper and lower leg segment

lengths over the image sequence, by computing the distances between recovered joint

marker endpoints. Since we are only interested in limb length ratios, we compute the

normalization transformation Kn, that maps the centroid of all joint marker positions

w over the sequence to the origin, with isotropic scaling such that the first limb segment

has unit length. The set of metric plane points are then transformed as w′ = Knw.

Consequently, the updated homography that maps these normalized points into the

image is given by H′ = H · Kn
−1. Angles between joint marker endpoints are invariant

to the similarity transformation Kn, hence the transformation serves as a convenient

way to normalize the data into a consistent format over the set of test subjects.
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We first need to find an initial estimate of the fundamental frequency of gait f0. A

cost function, that is dependent on the self-similarity of limb direction vectors between

putative values of gait period, is then a good indicator of the subject’s periodicity. The

dot product C between limb angle unit vectors is maximal (unity) when the two vectors

are similar. The cost 1 − C is then minimal between similar positions of pose. A vector

of root mean squared self-similarity costs is then accumulated over a suitable range of

putative periodicities. We know the camera frame rate accurately and can use the 1 Hz

estimate of natural gait to determine this sensible range of putative periodicities. To

eliminate any false local minima caused by measurement noise within the cost vector,

we first apply a (1, 4, 6, 4, 1) smoothing filter to the vector of self-similarity cost errors.

We then assume that there is a single minima within the chosen range of putative peri-

odicities that represents the true period of subject gait. The true (discrete) periodicity

estimate is found by performing gradient descent on the vector of self-similarity cost

errors from a 1 Hz initial periodicity estimate. A sub-temporal estimate of the period

T is then found by fitting a quadratic curve to the data about this computed discrete

periodicity estimate. A more detailed discussion on periodicity detection is given later

within chapter 4, as part of the gait reconstruction algorithm.

The set of valid limb angles and their corresponding time sample vectors are computed

for each of the normalized leg segments. The Fourier series representation of each limb

angle function is then determined, with fixed fundamental frequency f0 = 1/T . The set

of minimized coefficients for each limb segment are then stored in a biometric recon-

struction vector Vi, where the coefficients of V have the form:

V = (a0, a1, φ1, · · · , an, φn)⊤ (3.9)

With the knowledge of the normalized leg lengths D, we can find by back substitution

the best set of hip points X0 consistent with the limb angle functions.

Figure 3.19: Articulated limb segment model. The hip point X0 is defined by a set of
Cartesian (x, y)⊤ coordinates. The remaining articulated limb endpoints are defined by
a connected set of polar coordinates (d, θ)⊤. The first limb segment length is canonically
normalized to unit length.
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Figure 3.19 shows the model of articulated limb connections. The hip point X0 is given

by the Cartesian coordinates (x, y)⊤ while the remaining limb endpoints are defined by

the connected set of polar coordinates (d, θ)⊤, where the first limb segment has been

normalized to unit length. The Cartesian coordinates (xi, yi)
⊤ of any limb point with

index i in the model is then given by the equation:

(xi, yi)
⊤ =





(u, v)⊤ i = 0

(u, v)⊤ +
∑i

j=1 Dj · (sin θj , cos θj)
⊤ i ≥ 1

(3.10)

where the pose angles θj are given by evaluating the Fourier series function θ(t) at

the current pose frame with the biometric coefficients Vj and fundamental frequency

f0 = 1/T .

Given any endpoint in the articulated limb set, we can compute the putative position

of the hip point (u, v)⊤ by back substitution. Since a limb segment endpoint is com-

puted relative to its predecessor, measurement fitting errors will be compounded within

the back substitution process. A weighted putative hip point (u′
i, v

′
i, w

′
i)
⊤, where w′

i is

the associated weighting factor, is computed from each of the valid metric plane data

points (x̃i, ỹi)
⊤ of the articulated leg pose. The putative hip point, from any indexed

metric plane data point i = 0 · · ·m within the current leg pose, is given by the set of

equations.

(u′

i, v
′

i, w
′

i)
⊤ =





(m + 1) · (x̃i, ỹi, 1)⊤ i = 0

(m + 1 − i) ·
[
(x̃i, ỹi, 1)⊤ − ∑i

j=1 Dj · (sin θj , cos θj , 0)⊤
]

i ≥ 1

(3.11)

Where m is the total number of segments within the articulated leg model, i.e. two

for a model of upper and lower legs. The fitted hip point (u, v)⊤ is then given by the

summation of all valid weighted points.

(u, v)⊤ =

( ∑m
i=0 u′

i∑m
i=0 w′

i

,

∑m
i=0 v′i∑m
i=0 w′

i

)⊤

(3.12)

We only require a minimum of one metric plane data point within a leg pose to compute

the associated hip point. This resolves the problem that arises when the swinging arm

occludes the hip point marker. The set of computed hip points Xi on the metric plane

encode the instantaneous positions of hip motion.



Chapter 3 Static Features of Human Gait 88

3.6.2 Maximum likelihood estimation

We have computed an initial estimate of the set of parameters that model the articulated

leg motion over the image sequence. As a final step, we optimize the motion parameters

P in order that we minimize image reprojection error. The parameter vector P can be

partitioned into two sections. The first contains the set of coefficients common over the

entire sequence (h,D, f0,V). The second contains the subsidiary set of instantaneous

hip positions Xi = (ui, vi)
⊤ corresponding to each of the individual frames.

P =
(
h⊤,D⊤, f0,V

⊤ | X⊤

1 , · · · ,X⊤

N

)⊤

(3.13)

Where h is the vector of homography coefficients that map points on the metric plane

into the image, D is the vector of normalized limb lengths, f0 is the fundamental fre-

quency of gait and V contains the sets of articulated limb segment Fourier coefficients.

The set of parameters P are optimized by performing the Levenberg-Marquardt mini-

mization method. The form of the Jacobian is sparse and consequently the minimization

procedure is similar to that described within appendix C.4.

3.6.3 Reconstruction error analysis

Each of the four test subjects are recorded walking at different speeds on the treadmill

(Tunturi - J6). The set of captured sequences are then manually marked and the recon-

struction process performed for values of Fourier harmonics n = 1 · · · 10. The root mean

squared reprojection error computed for each reconstruction gives us an indication of

the goodness of fitting between the motion model and the imaged subject motion.

Figure 3.20: Root mean squared reprojection error generated from the gait recon-
struction function with a varying number of Fourier harmonics n.
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Figure 3.20 shows the means of these reprojection errors for the four test subjects,

over the entire range of walking speed motion sequences. Three of the reprojection

error curves are quite similar. The reprojection error starts quite high ≃ 2.8 pixels,

by modelling the motion as simple harmonic, i.e. n = 1. This quickly falls below the

±1 pixel measurement error deviation, then slowly trails off to a level of ≃ 0.7 pixels. The

reprojection errors corresponding to subject 01 level out at a value above the ±1 pixel

measurement error, suggesting that here the model inadequately represents the dynamics

of gait motion. There are a number of reasons why this level of error should differ from

the others.

Care has been taken to ensure that all manually marked joint positions lie as close to

the true positions as possible, to within a ±1 pixel tolerance. An analysis of the rigid

articulated leg segment lengths over the range of walking speeds shows that the variation

in limb lengths for subject 01 is much higher than in the others, illustrated in figure 3.21.

This suggests that the markers may have been improperly placed for subject 01.

Figure 3.21: Analysis of the rigid articulated leg segment lengths over the range of
controlled walking speeds.

Figure 3.22 shows the set of subjects in similar double stance postures. In this pose, the

joint marker positions on the reference limb should be almost aligned in a single straight

line. Natural gait alignment appears slightly flexed in this pose. Figures 3.22(a), 3.22(c)

and 3.22(d) correspond well with this alignment while figure 3.22(b), corresponding to

the pose of subject 01, shows a high degree of misalignment.

Accurate placement of markers is often quite difficult, especially over clothing. Markers

are usually attached to a subject while they adopt a quiet standing posture. Since

subjects remain still during the attachment procedure, markers taped over clothing

retain their position. Clothing can tend to slip around during periods of locomotion in

order to better fit with the body’s shape and motion, thus changing the positions of

markers that were originally well placed. Experimenters often have difficulty attaching

markers to certain positions of the body. Large markers within the hip area may be

knocked by the swinging action of the arms. Baggy clothing can also allow the markers
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(a) Subject 00 (b) Subject 01

(c) Subject 02 (d) Subject 03

Figure 3.22: Alignment of markers in similar double stance postures. Natural gait
joint alignment should appear slightly flexed from the line of fit. This fitting line is
computed via orthogonal regression through the set of joint markers. The alignment of
subject 01 is significantly different from the norm, indicating that marker placement is
poor.

to drift during motion. Experimenters must ensure that markers are taped firmly to

each of the limb segments. On the other hand, skin and internal muscle structures

need to be able to move in order to facilitate locomotion. Taping markers too firmly to

joints causes stiffness within the limbs, and consequently subjects complain of unnatural

walking motions.

Improper placement of markers also affects reconstruction. Placing markers over actual

joint regions of the body is difficult since these areas undergo the largest changes in

deformation. Figure 3.23 shows the geometric effect of placing a marker, in error, a

small distance from the true joint position.
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Figure 3.23: Effect of placing a marker a small distance away from the true joint
position on the locus of motion.

The locus of motion of the marked knee point X1 contains components of motion from

both the upper and lower leg segments. Consequently, the lower limb length D2 remains

fixed while the upper limb length D1 varies with the phase of gait.

Table 3.3 shows the resulting root mean squared reprojection errors corresponding to the

number of Fourier harmonics n used to model the limb motion. The total summation

cost
∑

r, of the r.m.s. reprojection errors over all subjects and walking speeds, gives

an indication of the ability to represent the dynamics of motion by using the required

number of Fourier harmonics. The corresponding mean experimental r.m.s. pixel re-

projection error ǫ =
∑

r/N , where N is the total number of experiments, then gives an

estimate of the level of pixel fitting error within any experiment.

n
∑

r ǫ ∆r ∆ǫ %error

1 33.4084 2.784 - - -

2 12.1011 1.0084 21.3073 1.778 63.7783

3 8.9985 0.7499 3.1026 0.2586 9.2868

4 8.6889 0.7241 0.3096 0.0258 0.9267

5 8.4443 0.7037 0.2446 0.020383 0.7321

6 8.362 0.6968 0.0823 6.8583 × 10−3 0.2465

7 8.334 0.6945 0.028 2.3333 × 10−3 0.0838

8 8.2992 0.6916 0.0348 2.9 × 10−3 0.1042

9 8.2861 0.6905 0.0131 1.0917 × 10−3 0.0391

10 8.2732 0.6894 0.0129 1.075 × 10−3 0.0386

Table 3.3: Resulting root mean squared reprojection errors corresponding to the num-
ber of Fourier harmonics n used to model the limb motion. Reprojection errors are com-
puted over all walking speeds and from all valid subjects in the experiments (Subjects
00, 02 and 03).

The reduction in r.m.s. fitting errors ∆r =
∑

r(n) − ∑
r(n − 1), caused by increasing

the number of harmonics used to represent the dynamics of gait, is also shown within

table 3.3. The mean experimental error reduction ∆ǫ = ∆r/N then gives an indication

of the reduction in pixel error within an experiment, caused by increasing the number
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of Fourier harmonics. The percentage error reduction estimates 100 × ∆r(n)/
∑

r(1)

then correspond to the level of error reduction as a percentage of the simple harmonic

experimental reconstruction error
∑

r(1).

We can clearly see that the quoted values of n = 5 represent a suitable choice for the

number of Fourier harmonics required to model the limb motion. Here, the percentage

error reduction estimate is less than 1% and any further increase in the number of

harmonics n ≥ 6 used to represent the dynamics of motion have root mean squared

pixel error reduction levels ∆ǫ of the order 1 × 10−3.

3.6.4 Analysis of the limb function

It is easy enough to represent the dynamics of gait over a small time period by fitting

a Fourier series to the limb angles. We assume an arbitrary, constant subject velocity

over each experimental sample period. There are then a number of important questions

that arise, which may preclude the use of gait as a suitable biometric for identification

at a distance.

• How can we compare two reconstructed limb angle functions from a single subject,

taken at two different times?

• Though we may be able to compare two similar gaits, is it possible to match gait

motion across a range of different speeds?

• Is there an underlying biometric motion function that is unique to the individual,

which we can subtly alter through a number of parameter modifiers in order to

generate the range of possible gait motions?

• Clearly gait is not a simple one to one function, since the range of gait speeds can

be achieved by varying both cadence and stride length. How many factors, both

bio-mechanical and psychological, influence the total pattern of gait motion?

Let the Fourier series representation of the limb angle function θ(t) be defined by the

equation:

θ(t) = a0 +
n∑

k=1

ak cos(2πkf0t + φk) (3.14)

A time shifted signal θ(t − ts) only updates the coefficients of phase within the Fourier

series representation.



Chapter 3 Static Features of Human Gait 93

θ(t − ts) = a0 +
n∑

k=1

ak cos(2πkf0 · (t − ts) + φk) (3.15)

θ(t − ts) = a0 +
n∑

k=1

ak cos(2πkf0t + ψk) (3.16)

ψk = φk − 2πkf0ts (3.17)

It is unclear which features of gait represent the origin pose position within a gait cycle.

It is then natural to align the Fourier signals by computing the time shift that zeros

the first coefficient of phase ψ1 = 0, i.e. ts = φ1/2πf0. The normalized set of phase

coefficients ψk can then be written:

ψk = φk − kφ1 (3.18)

The normalized set of coefficients ψk are then restricted to lie within the range (−π : π)

by finding the suitable corresponding set of angles. Transformation of the captured

motion dynamics into a consistent coordinate framework then allows us to compare two

representations of limb motion taken at different times. Other researchers use prominent

features of gait itself, such as the heel strike with the floor, to determine the onset of

the gait cycle. This entails looking for key frames within the gait sequence to determine

the required position. The disadvantage of these methods is that they are often prone

to the effects of noise and occlusion. The zero phase alignment method uses a simple

property of the Fourier series to determine the start of the gait cycle.

A change in walking speed affects the set of computed Fourier coefficients, corresponding

to the limb angle function θ(t) of a test subject. Most notably, the cadence of gait is

proportionally similar to the fundamental frequency term f0 of the Fourier function.

As subjects increase their speed, the rate of reciprocal foot contact with the floor also

increases. Subjects also lengthen their stride to increase their speed. An increase in

stride length denotes an increase in limb swing amplitude, which is proportional to the

first harmonic Fourier amplitude term a1. These two factors, rate of foot contact with

the floor (∼ f0) and subject stride length (∼ a1), can be simultaneously altered to

achieve the desired progressional velocity.

We examine the relationship between controlled walking speed vx, the fundamental

frequency f0 and amplitude coefficients a1 for walking motions that the test subjects

report as natural. Figure 3.24 shows the result of subject motion at different walking

speeds on the fundamental frequency term f0 of the Fourier reconstruction function.
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Figure 3.24: Change in fundamental frequency f0 for each of the four test subjects
over a range of walking speeds.

We can see that the relationship between fundamental frequency f0 and walking speed

is approximately linear. The gradients and offsets corresponding to each of the linear

plots differ between subjects, and similarly correspond to the results of cadence / speed

within [103, 102, 5, 6]. The mapping between walking speed, cadence and stride length

is influenced by the size of a subject’s legs. Subjects with smaller legs need higher

cadences to achieve the required walking speeds, thus accounting for the different line

offsets between subject plots.

Figures 3.25 and 3.26 show the resulting behaviour of subject upper and lower leg motion

at different walking speeds on the a1 terms of the Fourier reconstruction functions θ(t).

The results for all four subjects are plotted, and show a linear trend with increasing

walking speed. The results for subject 01 are significantly different to the others. As

previously indicated, poor reconstruction for the trend curve corresponding to subject 01

can be accounted for by the misalignment of marker positions. However, it is interesting

to see how much of a difference marker position can make to the reconstruction trend.

It may then be worth investigating the potential sensitivity that marker placement has

on the accuracy of reconstruction.

The amplitude plots for the lower leg segments shown in figure 3.26 are similar, most

notably in initial offset. This may indicate that the lower leg arc of motion is more

constrained and similar between people. On the other hand, the amplitude plots for the

upper leg segments shown in figure 3.25 are significantly different in initial offset. We

can attribute these differences in magnitude offset between subjects to the variation in

the size of their limbs.

The apparent natural coupling between walking speed and cadence/stride is evident in

the differing line gradients within both the fundamental frequency f0 and amplitude a1

plots. The trends for both cadence and stride length are both linear, thus we can

make the first order approximation that all limb angle reconstructions θ(t) are similar,

though have different temporal and angular scalings that are dependent on the speed
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Figure 3.25: Change in upper leg fundamental amplitude a1 for each of the four test
subjects over a range of walking speeds.

Figure 3.26: Change in lower leg fundamental amplitude a1 for each of the four test
subjects over a range of walking speeds.

and mode of walking motion. This allows us to make the reconstructed limb angle

functions invariant to walking speed by applying scalings that map the fundamental

frequency f0 and amplitude coefficients a1, in both articulated leg segments, to unity.

The corresponding set of normalized amplitudes bk are given by bk = ak/a1. The

modified Fourier series representation of the original limb angle function θ(t) can then

be written.

θ(t) = a0 + a1 cos(2πf0 · (t + ts)) +

a1 ·
n∑

k=2

bk cos(2πkf0 · (t + ts) + ψk) (3.19)

The set of normalized coefficients ṽ = (b2, ψ2, · · · , bn, ψn)⊤ then form the basis for a bio-

metric parameter vector. The remaining parameters w̃ = (f0, a0, a1, ts)
⊤ of the modified

Fourier series function form the set of circumstantial parameters of gait motion.
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The normalized limb angle function θ̃(t) formed from the set of biometric parameters ṽ

alone describes the unique underlying limb dynamics of gait motion, and is invariant to

initial subject position, stride length and cadence.

θ̃(t) = cos(2πt) +
n∑

k=2

bk cos(2πkt + ψk) (3.20)

Figures 3.27 and 3.28 show the reconstructed normalized leg angle functions θ̃(t) corre-

sponding to subject 00 over a range of walking speeds. The set of reconstructed plots

are almost identical, even though the captured image sequences correspond to subject

motion at different speeds, with different initial poses.

Figure 3.27: Reconstructed normalized upper leg angle function θ̃(t) corresponding
to subject 00.

Figure 3.28: Reconstructed normalized lower leg angle function θ̃(t) corresponding to
subject 00.

Figures 3.29 to 3.32, corresponding to all four test subjects, show the original amplitudes,

normalized amplitudes and aligned phases for the captured gait dynamics of upper and

lower legs over a range of walking speeds.

We can clearly see the linear trend corresponding to amplitude / speed changes within

the original amplitude plots. The set of amplitude harmonics have an exponential trend,
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(a) Upper leg amplitudes : ak (b) Lower leg amplitudes : ak

(c) Upper leg normalized amplitudes : bk (d) Lower leg normalized amplitudes : bk

(e) Upper leg aligned phases : ψk (f) Lower leg aligned phases : ψk

Figure 3.29: Subject 00: Reconstructed leg angle functions for amplitude, normalized
amplitude and aligned phase plots of both upper (a,c,e) and lower legs (b,d,f) at a
number of different walking speeds.
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(a) Upper leg amplitudes : ak (b) Lower leg amplitudes : ak

(c) Upper leg normalized amplitudes : bk (d) Lower leg normalized amplitudes : bk

(e) Upper leg aligned phases : ψk (f) Lower leg aligned phases : ψk

Figure 3.30: Subject 01: Reconstructed leg angle functions for amplitude, normalized
amplitude and aligned phase plots of both upper (a,c,e) and lower legs (b,d,f) at a
number of different walking speeds.
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(a) Upper leg amplitudes : ak (b) Lower leg amplitudes : ak

(c) Upper leg normalized amplitudes : bk (d) Lower leg normalized amplitudes : bk

(e) Upper leg aligned phases : ψk (f) Lower leg aligned phases : ψk

Figure 3.31: Subject 02: Reconstructed leg angle functions for amplitude, normalized
amplitude and aligned phase plots of both upper (a,c,e) and lower legs (b,d,f) at a
number of different walking speeds.
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(a) Upper leg amplitudes : ak (b) Lower leg amplitudes : ak

(c) Upper leg normalized amplitudes : bk (d) Lower leg normalized amplitudes : bk

(e) Upper leg aligned phases : ψk (f) Lower leg aligned phases : ψk

Figure 3.32: Subject 03: Reconstructed leg angle functions for amplitude, normalized
amplitude and aligned phase plots of both upper (a,c,e) and lower legs (b,d,f) at a
number of different walking speeds.
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such that the higher order coefficient magnitudes are comparatively smaller than the

fundamental. The detail within the higher order harmonics is not visible within the

linear scale shown. Figure 3.33 shows the set of normalized Fourier components plotted

for each of the test subjects, with a logarithmic scale. We can clearly see the poor

reconstruction for subject 01, since the second normalized harmonic terms b2 for the

upper leg are substantially different across all walking speeds. Reconstruction of the

lower leg angle function is though reasonable, leading us to believe that the knee joint

marker may be placed similarly to that shown in figure 3.23.

The plots for the other subjects approximate a log-linear relationship, illustrated by

the straight line trends within the logarithmic plots in figure 3.33. The uncertainty

within the higher order harmonics becomes more apparent as k increases. This first

order approximation for the dynamics of gait motion over the range of walking speeds

gives us a fairly accurate feature vector for the second harmonic normalized amplitude

and phase terms (b2, ψ2)
⊤. The remaining coefficients are less accurate, leading us to

believe that the relationship between leg functions over different walking speeds is more

complicated than just a simple scaling of a baseline waveform.

3.6.5 Motion model discussion

In summary, the modified form of the Fourier series function θ̃(t) offers us a way to repre-

sent the underlying biometric limb function through a set of normalized harmonic coeffi-

cients (b2, ψ2, · · · , b5, ψ5)
⊤. The circumstantial parameters of gait motion (f0, a0, a1, ts)

⊤

allow us to distort this underlying biometric limb function by applying a series of linear

deformations:

• f0 - scale waveform within the temporal axis.

• a1 - scale waveform within the θ axis.

• ts - offset waveform along the temporal axis.

• a0 - offset waveform along the θ axis.

The modified Fourier series function encodes the perceived angular motion path of the

dynamics of gait. However, there is no clear relationship between the underlying mus-

cle motion and the resulting representation of the limb angle function. Most of the

muscle energy is expended within the loading response (10% GC) and pre-swing phases

(10% GC) of the gait cycle. These phases account for only 20% of the total gait cycle

and are located in regions of high curvature within the limb angle function. Figures 3.34

and 3.35 show the reconstructed normalized leg angle functions θ̃(t) with corresponding

marked positions of gait phase, for subject 00 over the range of walking speeds.
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(a) Subject 00 upper limb (b) Subject 00 lower limb

(c) Subject 01 upper limb (d) Subject 01 lower limb

(e) Subject 02 upper limb (f) Subject 02 lower limb

(g) Subject 03 upper limb (h) Subject 03 lower limb

Figure 3.33: Reconstructed normalized amplitude coefficients for upper and lower legs
corresponding to each of the four test subjects over a range of different walking speeds.
The plots are shown with a logarithmic scale.
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Figure 3.34: Reconstructed normalized upper leg angle function θ̃(t) corresponding
to subject 00 with marked phases of gait.

Figure 3.35: Reconstructed normalized lower leg angle function θ̃(t) corresponding to
subject 00 with marked phases of gait.

We have used a linear similarity transformation to deform the baseline limb angle wave-

form to approximate the appropriate shape. The deformation characteristics for second

order and above approximations are unknown and impossible to deduce from the small

available data set.

3.6.5.1 Gait reconstruction function

The Fourier representation does a respectable job of representing the underlying mo-

tion structure of the limbs, whilst maintaining its invariance to walking speed. It does

though tend to capture the dynamics of swing phases more since stance/swing periods

account for 40% of the complete gait cycle each, with high rates of motion predominantly

apparent within limb swing. It may then be advantageous to treat each phase of gait

independently by modelling each section of the reconstructed limb angle function with a

different basis function. The duration and position of each of these sections is putatively

fixed within the gait cycle, see the review of the medical literature in section 3.2.2. Of

the eight phases of gait described in the literature, that represent the complex pattern
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of muscle motions, only seven actively contribute to the visible motion. The initial

contact phase accounts for only 2% of the gait cycle and is more representable as an

instantaneous state rather than a contributory functional phase of gait. Each of these

seven phases of gait has a functional objective that requires a series of suitable muscle

motions in order to facilitate locomotion. By separating the complex motion pattern

into the seven constituent parts, each phase of gait can be accurately modelled by a sim-

ple function. We can also apply deformation transformations Pk independently to each

of the phases, in order to better model gait motion across different speeds. A subject’s

periodicity and initial pose can be adjusted by modifying the temporal parameters T of

motion (period and time shift). The summation of all independent gait phase functions

generates the required limb angle function. Figure 3.36 shows a block diagram of the

functional model that generates the complex limb angle motion from the seven active

phases of gait.

Figure 3.36: Block diagram of the functional model that generates the leg angle func-
tion from the seven active phases of gait. The temporal T parameters adjust the
periodicity and initial pose of a subject, while the set of individual deformation trans-
formations Pk adjust each of the functional contributions of gait phase.

The basis functions can be different for each of the active phase blocks. A suitable

function that can be used to represent the dynamics of motion, e.g. an nth degree

polynomial, is a topic for further investigation. There are many more questions that

need to be addressed, though we have no time to look into them further.

• What degree of polynomial is sufficient to represent the motion function?

• We are building up a representation of the limb angle function within each of the

functional phases of gait. If we assume no interaction between neighbouring gait

phases then in general, the reconstructed waveform is discontinuous. Do we really

need to enforce the continuity constraints across the phases of gait?

• Could we model the set of component phase functions by using Splines?
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• How do we extract an invariant measure from the resulting polynomial function?

3.6.5.2 Stride and cadence

A person can achieve a desired walking speed in a number of different ways. There

exists a mapping between cadence and stride length that allows us to alter the mode of

walking whilst maintaining a required velocity. A similar walking speed can be achieved

by taking either small strides with a high stepping rate, or large strides with a low

stepping rate. The ranges of cadence and stride length are physically limited by the

size of a subject’s limbs and the effort required to maintain locomotion. These natural

ranges of cadence and stride length, coupled with experimental error, generate elliptical

clusters of measured coefficients for each controlled walking speed. Figure 3.37(a) shows

the theoretical clustering of gait motion parameters f0 and a1 over a number of walking

speeds.

(a) (b)

Figure 3.37: Clustering of gait motion coefficients over a range of speeds.
(a) Theoretical clustering of the dynamic motion coefficients (f0, a1). (b) A similar plot
of stride length and cadence taken from the results of Tanawongsuwan and Bobick [102].

The major axis of each elliptical parameter cluster identifies the linearity between stride

length and cadence (s, c), required to achieve the target walking speed. The choice of

coefficients (s, c) along the axis line corresponds to the mode of walking. Selected values

of cadence and stride length, that are required to maintain a constant velocity, appear

normally distributed about the subject’s natural choice of motion coefficients (sn, cn).

The ratio sn/cn remains approximately constant over the range of customary walking

speeds.

Changes in the motion trends over the range of walking speeds is indicated by the

different gradients between cluster axes and the sizes of the corresponding bounding

ellipses. The gradients between cluster axes differ as the higher order Fourier harmonics
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become more significant, due to the increased energy transfer requirements at greater

walking speeds. The sizes of the elliptical clusters decrease with increasing walking

speed, since the nature of motion becomes more constrained.

Figure 3.37(b) shows the results of a similar study by Tanawongsuwan and Bobick [102]

for the relationship between cadence and stride length parameters over a range of walking

speeds. They give an in depth study of 15 people, with repeated measurements on

different days, for motions obtained from treadmill walking. We have already shown

the linear relationship between cadence and fundamental frequency f0, stride length

and fundamental amplitude a1. Consequently, we expect the same clustering patterns

for motion parameters f0 and a1. We cite their results as evidence that validates the

theoretical analysis of our representation of the dynamic parameters of gait motion. Due

to time constraints and the author’s reticence in providing further proofs requiring vast

amounts of manual marking, we omit further experimental verification of the dynamic

parameters of gait motion over different walking speeds.

An interesting question then arises as to where the stride length / cadence relationship

breaks down. There is a fundamental limit on the maximum stride length of a subject

during walking, that is dependent on their limb sizes. Cadence can be increased ad-

infinitum until the limit of energy transfer in the muscles is reached. The natural way to

increase stride length is to break into a run, so that there are periods where both limbs

are not in contact with the ground. There is then a choice between walking or running

at speeds above 6 km/h. A study of adult males found that the transition speed between

walking and running averaged 6.8 km/h [106]. Researchers have also shown that running

becomes more efficient than walking at speeds above 7.98 km/h [26].

3.6.5.3 Hip joint motion

Assuming that subject motion is natural on the treadmill then the path of the hip point

is repetitious, closed and possibly unique to the individual. Figure 3.38(a) shows the

path traced by the reconstructed hip joint marker over the sequence during natural

walking for subject 00. Figure 3.38(b) shows the marked positions of gait phase within

the corresponding gait cycle.

Subjects attain natural gait motion on a treadmill after a few minutes. It can be quite

difficult to maintain a precise speed on a treadmill without visual cues. The disparity

between controlled and measured walking speeds can cause a degree of progressional

displacement of the subject on the treadmill over time. A subject’s gait is often natural,

though the velocity is either lower or higher than the controlled speed. Figure 3.39(a)

shows the effects of progressional displacement on the reconstructed motion of subject 00,

over a period of three gait cycles at 6 km/h.

Figure 3.39(b) shows similar subject double stance poses at the beginning and after
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(a) (b)

Figure 3.38: Normalized origin limb point displacement of subject 00 at a
walking speed of 5 km/h. (a) Reconstructed motion path of the hip point over three
gait cycles. (b) Trend of hip joint motion shown with marked positions of gait phase.

(a) (b)

Figure 3.39: Progressional displacement of treadmill gait motion. (a) Recon-
structed hip joint motion path. (b) Similar poses during double stance periods at the
beginning (visible frame) and after three gait cycles of motion (augmented line with
circular markers).

three gait cycles of motion. We can clearly see that the subject’s speed is less than

the controlled treadmill speed, resulting in the backward progressional motion drift.

The resulting reconstructed hip joint motion shown in figure 3.39(a) is similar over gait

cycles, though has a linear velocity component corresponding to the residual between

measured and controlled speeds. This displacement effect may explain some of the visible

curvature corresponding to subject 00 within the fundamental amplitude plots shown in

figures 3.25 and 3.26.

The path of the hip joint is also periodic and is instrumental in the resulting pattern

of limb motion. We can model the hip joint displacement motion with modified Fourier

series functions in the X and Y axis directions. The two displacement functions differ

only in the additional velocity term within the progressional X motion direction.
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x(t) = vx · t + a0 + a1 cos(2πf0 · (t + ts)) +

a1 ·
n∑

k=2

bk cos(2πkf0 · (t + ts) + ψk) (3.21)

y(t) = a′0 + a′1 cos(2πf0 · (t + t′s)) +

a′1 ·
n∑

k=2

b′k cos(2πkf0 · (t + t′s) + ψ′

k) (3.22)

The underlying dynamics of hip displacement motion, that remain invariant to changes in

walking speed, are represented by the normalized coefficients x̃ = (b2, ψ2, · · · , bn, ψn)⊤

and ỹ = (b′2, ψ
′
2, · · · , b′n, ψ′

n)⊤. These coefficients can be used in conjunction with the

parameters of the normalized leg angle functions θ̃(t) to form a suitable biometric feature

vector. The remaining coefficients within the displacement functions form the set of

circumstantial parameters of hip motion w̃ = (f0, vx, a0, a1, ts, a
′
0, a

′
1, t

′
s)

⊤, and encode

the subject cadence, gait speed, cyclic displacements and initial pose positions.

3.6.5.4 Marker configuration

Reliance on accurate placement of markers is often critical for motion reconstruction.

Placing markers over actual joint regions of the body is difficult, since these areas undergo

the largest changes in deformation. Measurement errors of shared joint markers affect

the results of both connecting limb segments. If we are only interested in limb angles,

then increasing the number of markers used to model the mid-line of each limb segment

reduces the sensitivity to sources of experimental noise.

We can model each limb segment better by using three markers. Each limb segment mid-

line is computed as the line though all three joint markers, by the process of orthogonal

regression. The knee joint location is then determined as the intersection of both upper

and lower mid-line approximations. The added attraction of using three markers is that

there is a distinctive cross ratio configuration between the three imaged limb markers

and the vanishing point on the limb swing plane. The corresponding set of imaged

vanishing points over all frames then defines the vanishing line of the limb swing plane.

We can use this information along with the static length constraints [62], between the

three markers to compute a stratified reconstruction of the limb angle motion. This

removes the need to use a planar calibration target placed against the leg during quiet

standing, in order to find a similar planar reconstruction homography.



Chapter 3 Static Features of Human Gait 109

3.6.6 Biometric identification

Researchers have previously used magnitude weighted phase as a suitable feature vec-

tor [18, 17, 19, 117, 119] for biometric identification. Their results suggest that magni-

tude weighted phase achieves better discrimination between subjects, when compared

to components of magnitude or phase alone. Lower order harmonics seem to be more

significant, encode the gross features of cyclic motion and are less susceptible to ex-

perimental noise than those of higher orders. Random measurement noise and natural

fluctuations in day to day subject motion patterns account for the majority of these

differences within the higher order harmonics.

Values of phase are normalized modulo 2π to the range (−π : π), hence phases distributed

around both extremes of the range must be treated with caution. Naively matching

coefficients of magnitude weighted phase in order to facilitate recognition is asking for

trouble. Each phase direction vector corresponding to each of the harmonic contributions

is of unit length, hence all vectors carry an equal weighting. Two putatively similar

phase vectors p and q can be matched by computing a cost error C based on the dot

product between both direction vectors: C = 1
2(1 − p⊤q). This cost error lies within the

range (0 : 1). Since all phase vectors have equal weighting, then the sum of all residual

costs, between the set of phases in two gait feature vectors, is susceptible to a level of

noise contamination from the higher order harmonics. We can assign a probabilistic

weighting factor of significance ωk to each of the harmonics. The obvious choice is to

assign the significance weights from the tail of some suitable Gaussian (an exponential

function). However, should we use the same Gaussian for each person? What happens

if the amplitude of a phasor happens to be zero?

The first thing we notice about the distribution of the set of normalized amplitude coef-

ficients bk is that they are log-linear, illustrated by the straight line plots in figure 3.33,

hence are of the required exponential form. Since we have also normalized the set of coef-

ficients so that the first component b1 is unity, then the normalized amplitude coefficients

bk can be used directly as the required set of significance weights ωk. These weighting

factors are perforce invariant to changes in gait speed, stride length and cadence, thus

are ideal for comparative purposes over the range of required walking conditions.

We have identified a suitable number of invariant features that can be used for subject

identification. The static parameters of articulated leg motion include the normalized

limb segment lengths (d2, · · · ), and corresponding normalized amplitude and phase coef-

ficients of the modified Fourier series leg functions (b2, ψ2, · · · ). We can then compute a

Euclidean distance metric ρ = ‖P̂ − P‖, between the measured biometric feature vector

P of subject motion and a feature vector P̂ stored in the database.
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ρ 2 = λ1

m∑

j=2

(
d̂j − dj

)2
+ λ2

n∑

k=2

(
b̂k − bk

)2
+ λ3

n∑

k=2

(
bk

2
(1 − v̂⊤

k vk)

)2

+ · · · (3.23)

where the phase direction vectors v̂ and v are commuted from polar to Euclidean form,

m is the number of segments in the articulated limb model, and n is the number of

Fourier harmonics used to represent the limb motion. We can also pick the respective

weighting factors λi to bias the fitting error in favour of any particular set of feature

coefficients.

v̂k = (cos ψ̂k, sin ψ̂k)
⊤ (3.24)

vk = (cos ψk, sinψk)
⊤ (3.25)

N∑

i=1

λi = 1 (3.26)

Note that the order of magnitude of each set of coefficients is similar, since all biometric

parameters have been normalized so that the set of first coefficients are unity: d1 = 1,

b1 = 1 and v̂1 · v1 = 1 (first phase angles are zero).

Our results are similar to the works of BenAbdelkader and Tanawongsuwan in the fact

that the set of fundamental amplitude terms a1 is proportionally similar to stride length,

and fundamental frequency f0 is proportional to cadence. We choose to unit normalize

these parameters in order to retain a consistent scaling over different walking speeds.

The first order approximation for the dynamics of gait motion over the range of walking

speeds gives us a fairly accurate set of invariant features, corresponding to the second

harmonic normalized amplitude and phase terms (b2, ψ2) within figure 3.33. The simi-

larity between the remaining harmonic coefficients is less accurate, since they are more

dynamically related to the mode of motion and range of customary walking speeds. For

this reason, it is better to use only the second harmonic terms within the feature vector

of static gait parameters.

If we model the normalized limb angle functions θ̃(t) of both upper and lower leg seg-

ments, then we have one parameter for the limb length ratio d2 and two parameters

(b2, ψ2) for each modified Fourier series limb function. Overall, we have five distinct

static parameters of gait motion that we can use for biometric identification. In addi-

tion, if we model the hip joint displacement motion x(t) and y(t) with modified Fourier

functions then the number of static parameters of gait motion can be increased to nine

measurements. Although theoretically sound, further research needs to be done in order

to validate the usefulness of these features to discriminate between subjects over the
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customary range of different gait motions.

3.6.7 Intra and inter-class variation

We have discussed in previous sections the variation of parameters within the articu-

lated leg motion function, for individual subjects over a range of walking speeds. We

have outlined a suitable Euclidean distance metric ρ = ‖P̂ − P‖ between a known P̂ and

unknown P gait feature vector. Here, we wish to study the variation of ρ, in order to

provide a suitable measure of whether P̂ and P belong to the same subject. Specifically,

we wish to examine the variation in two ways: The variation that arises from differ-

ences in measurements from the same subject (intra-class variation), and the variation

resulting from the differences between measurements of different subjects (inter-class

variation).

To describe this variation we take the set of measured parameter vectors Pi, for the

three valid test subjects walking over a range of speeds. These vectors form the sample

parameter set that we wish to study. We then compute the matrix D of difference mea-

surements, by evaluation of the biometric distances Di,j = ‖Pi−Pj‖ between parameter

vectors, as described in equation 3.23. The difference matrix is symmetric and has the

block form:

D =




Daa Dab Dac

D⊤

ab Dbb Dbc

D⊤
ac D⊤

bc Dcc


 (3.27)

where each sub-block is a 4 × 4 matrix, corresponding to the set of biometric difference

measures for the four walking speeds 3− 6 km/h. The diagonal blocks represent the set

of parameter differences for individual subjects over the four walking speeds, while the

off-diagonal blocks represent the set of parameter differences between different subjects.

The intra and inter-class difference measurement sets are then extracted from the ele-

ments of D. Since D is symmetric, we form the class data sets from values within the

upper triangular portion of D. The intra-class data set Mv corresponds to values from

the upper triangular portions of blocks Daa, Dbb and Dcc (excluding values on each of

the major diagonals, since they are zero). The inter-class data set Mc corresponds to

values within the blocks Dab, Dac and Dbc.

Having created both class data sets, we can find the mean µ and variance σ2 of each

set, i.e. the intra and inter-class means and variances µv, σ
2
v and µc, σ

2
c .
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µ =
1

N

N∑

i=1

ρi ∀ ρ ∈ M (3.28)

σ2 =
1

N

N∑

i=1

(ρi − µ)2 ∀ ρ ∈ M (3.29)

We then compare and contrast both the intra and inter-class variances for our valid set

of test subjects. We give a quantitative assessment of the discriminatory capability of

each of the biometric features within the proposed parameter vector P, and demonstrate

that gait is sufficiently rich to be useful as a potential biometric.

3.6.7.1 Discrimination between individual parameter features

We first investigate the variation within individual parameters in the proposed biometric

feature vector P. We therefore assume that the feature vector only contains a single

parameter, thus the distance metric ρ = ‖P̂ − P‖ describes the intra and inter-class

variances, σ2
v and σ2

c , for that parameter. Furthermore, we can quantitatively assess the

ability of this parameter to discriminate between people, by evaluating two properties

that are dependent on these class variances.

The class distinction quantity γ describes the percentage of the intra-class variance

compared with that of the inter-class variance, i.e. γ = 100 × σ2
v/σ2

c . Low percentages

indicate good discrimination between different subjects, while high percentages highlight

the inability of the biometric parameter to distinguish between people at all.

The class distinction says nothing about the magnitude of the parameter variation, only

the ratio of variation between classes. The parameter distinction quantity β describes

the intra-class parameter deviation as a percentage of the mean subject parameter es-

timate µp , i.e. β = 100 × σv/µp . This percentage gives us an indication of the relative

magnitude of the intra-class parameter deviation.

Normalized limb segment lengths. The variance of the normalized limb segment

lengths dj is examined over the set of biometric parameter vectors Pi. The gait distance

metric ρ = ‖P̂ − P‖, corresponding to the normalized limb segment lengths dj , can be

written.

ρ 2 =
m∑

j=2

(
d̂j − dj

)2
(3.30)
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Figure 3.40 shows the difference matrix D corresponding to the normalized limb seg-

ment length parameter d2. The normalized limb lengths can be described as the static

geometric parameters of gait motion, which remain invariant to any changes in walking

motion. Consequently, we expect the variance within these parameters to be quite low.

Figure 3.40: Difference matrix D corresponding to the normalized limb segment length
parameter d2. Intra and inter-class variances: max = 0.224398, intra = 6.3693e-05,
inter = 0.003951, γ = 1.61%, β = 0.91%.

The figure confirms this prediction, and shows good distinction between different sub-

jects. The intra-class deviation of parameter d2 is estimated at 0.91% of the mean

subject limb segment length, and the magnitude of the intra-class variance at 1.61%

of the inter-class variance level. This demonstrates that d2 is a well defined biometric

parameter that has good discrimination between subjects.

Normalized amplitude components. The variance within each of the normalized

amplitude components bk is examined over the set of biometric parameter vectors Pi.

The corresponding gait distance metric ρ = ‖P̂ − P‖ has the form:

ρ 2 =
n∑

k=2

(
b̂k − bk

)2
(3.31)

Figure 3.41 shows the difference matrices D corresponding to the individual normalized

amplitude components bk of the leg angle function (components of both upper and lower

limb segments). We have previously shown within section 3.6.4, that the intra-class

variance of the second order amplitudes b2 is reasonably static.

The intra-class deviation of parameter b2 is estimated at 3.78% of the mean normalized

amplitude, and demonstrates that the coefficient b2 remains relatively constant over the

range of customary walking speeds.

The magnitude of the intra-class variance is estimated at 57.64% of the inter-class vari-

ance level. The intra-class variance then has almost twice the level of discrimination
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(a) b2: max = 0.082147, intra = 0.000211,

inter = 0.000365, γ = 57.64%, β = 3.78%

(b) b3: max = 0.099194, intra = 0.000373,

inter = 0.000534, γ = 69.7%, β = 20.96%

(c) b4: max = 0.034871, intra = 6.03734e-05,

inter = 8.96055e-05, γ = 67.38%, β = 29.55%

(d) b5: max = 0.024746, intra = 2.01419e-05,

inter = 3.36887e-05, γ = 59.79%, β = 19.95%

Figure 3.41: Difference matrices D corresponding to the individual amplitude com-
ponents bk of the normalized leg angle function.

over the inter-class matches. As a biometric feature, the normalized amplitude com-

ponent b2 appears relatively weak in comparison to the geometric static parameter of

gait d2, which has over sixty times the level of discrimination.

The higher order amplitudes are less reliable and show significant levels of parameter

deviation β > 20% from their mean estimates. Discrimination between the intr and

inter-class variances is also poor, with γ > 60%. Table 3.4 shows the result of combining

ranges of normalized amplitudes bk within the distance metric ρ. The distinction between

class variances appears to worsen as more components are combined. The table suggests

that we are not able to distinguish between people at all if we include these higher order

components.
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∑
k Intra-class variance Inter-class variance γ

k = 2 0.000210425 0.000365082 57.64%

k = 2 · · · 3 0.000500881 0.000503108 99.56%

k = 2 · · · 4 0.00052302 0.000467122 111.97%

k = 2 · · · 5 0.000518958 0.000444299 116.8%

Table 3.4: Discrimination over all normalized amplitude components bk. Combining
the higher order amplitude components results in equal intra and inter-class variances.

Normalized phase components. The variance within each of the aligned phase

components ψk is examined over the set of biometric parameter vectors Pi. We first

study the variance of the dot product between unit vector representations of these phase

angles. The gait distance metric ρ = ‖P̂ − P‖ can then be written in terms of the

corresponding phase angle unit vectors v̂k and vk.

ρ 2 =
n∑

k=2

(
1

2
(1 − v̂⊤

k vk)

)2

(3.32)

Figure 3.42 shows the difference matrices D corresponding to the individual phase com-

ponents ψk of the normalized leg angle function (components of both upper and lower

limb segments). Figures 3.29 to 3.32 on page 97 showed that the lower order intra-

subject phase angles remained fairly consistent over the range of walking speeds. This is

also reflected by the quantitative assessment of the intra-class variance shown within

figure 3.42. The dot product measure between phase vectors lies within the range

(0 : 1), therefore we express the parameter distinction quantity β as the percentage

of intra-class deviation over this unit range, i.e. β = 100 × σv . This percentage devia-

tion remains quite low ≃ 2% for the first two phase components then quickly becomes

unstable. This is also reflected by the corresponding poor class distinction percentages

γ between the intra and inter-class variances. The higher order components have equal

intra and inter-class variances, thus are unsuitable as potential biometric features.

As biometric parameters, the phase components are similar to the normalized ampli-

tudes, in that they appear relatively weak in comparison to the geometric static param-

eter of gait d2. This is not unexpected, since leg motion is highly dynamic and we have

only approximated a set of consistent gait features over the range of walking speeds.

The level of variance within each phase component increases with higher order. We

can then choose to weight the contribution of each phase component with the corre-

sponding normalized amplitude, in order to increase the significance of the lower order

phases. Subsequently, the magnitude weighted phase version of the gait distance metric

ρ = ‖P̂ − P‖ can be defined as:

ρ 2 =
n∑

k=2

(
bk

2
(1 − v̂⊤

k vk)

)2

(3.33)
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(a) ψ2: max = 0.130181, intra = 0.000412,

inter = 0.000901, γ = 45.69%, β = 2.03%

(b) ψ3: max = 0.156812, intra = 0.000572,

inter = 0.001564, γ = 36.58%, β = 2.39%

(c) ψ4: max = 0.883111, intra = 0.093758,

inter = 0.069765, γ = 134.39%, β = 30.62%

(d) ψ5: max = 0.32412, intra = 0.009619,

inter = 0.008877, γ = 108.37%, β = 9.81%

Figure 3.42: Difference matrices D corresponding to the individual phase components
ψk of the normalized leg angle function. No magnitude weighting is performed within
the distance metric ρ.

Table 3.5 compares the class distinction percentages γ between magnitude weighted

phase and normal phase variances. The class distinction between higher order phase

components is improved by the magnitude weighting, while the lower order components

remain similar.

k Intra-class variance Inter-class variance γ (MWP) β γ

2 2.50272e-05 6.23271e-05 40.15% 2.03% 45.69%

3 1.09812e-05 2.48628e-05 44.17% 2.39% 36.58%

4 2.44339e-05 4.06368e-05 60.13% 30.62% 134.39%

5 2.02181e-06 6.00553e-06 33.67% 9.81% 108.37%

Table 3.5: The magnitude weighted phase (MWP) components ψk of the normalized
limb angle function. The class distinction between higher order components is improved
by the magnitude weighting.
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Table 3.6 shows the result of combining ranges of magnitude weighted phase components

within the distance metric ρ. The first two phase components ψ2 and ψ3 individually

remain relatively constant over the range of walking speeds. The overall distinction

between intra and inter-class variance is then improved by combining both of these

phase components, for both non-weighted and magnitude weighted distance measures.

∑
k Intra-class variance Inter-class variance γ (MWP) γ

k = 2 2.50272e-05 6.23271e-05 40.15% 45.69%

k = 2 · · · 3 3.17207e-05 8.04965e-05 39.41% 39.82%

k = 2 · · · 4 4.19072e-05 8.8079e-05 47.58% 139.57%

k = 2 · · · 5 4.18024e-05 8.7462e-05 47.79% 172.11%

Table 3.6: Discrimination over all magnitude weighted phase (MWP) components.

Individually, the higher order phase components ψ4 and ψ5 vary significantly within

their unit range, and have similar intra and inter-class variances. Consequently, the

level of class distinction is worsened by combining these higher order phase components

within the distance metric. Table 3.6 shows that the use of magnitude weighted phase

clearly alleviates the impact of including these noisy higher order phase terms.

3.6.7.2 Uniqueness of the proposed biometric

We first examine the intra and inter-class variances for the combined components of

amplitude and phase, corresponding to the upper and lower leg angle functions. Subse-

quently, the gait distance metric ρ = ‖P̂ − P‖ has the form:

ρ 2 =
n∑

k=2

(
b̂k − bk

)2
+

n∑

k=2

(
bk

2
(1 − v̂⊤

k vk)

)2

(3.34)

Figure 3.43 shows the difference matrices D corresponding to increasing numbers of

normalized amplitude and phase components bk and ψk within the biometric feature

vector. The magnitude of the intra-class variance for the second order parameters b2 and

ψ2 is estimated at 56.23% of the inter-class variance level. However, the intra and inter-

class variances are similar when further normalized amplitude and phase components

are combined within the distance metric. This leads us to believe that only the second

order components b2 and ψ2 are sufficiently similar across walking speeds to be useful

as potential biometric features.

The static geometric parameters of gait are invariant to the dynamic changes between

walking motions, thus significantly contribute to the ability of the biometric to discrim-

inate between people. The final proposed biometric feature vector contains five com-

ponents P = (d2, b2, ψ2, b
′
2, ψ

′
2)

⊤, where d2 is the normalized lower leg segment length,

(b2, ψ2) are the normalized amplitude and phase terms of the upper leg angle function,
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(a) k = 2,
max = 0.060593, intra = 0.000109,
inter = 0.000194, γ = 56.23%.

(b) k = 2 · · · 3,
max = 0.085689, intra = 0.000259,
inter = 0.000272, γ = 95.43%.

(c) k = 2 · · · 4,
max = 0.089526, intra = 0.000276,
inter = 0.000256, γ = 107.87%.

(d) k = 2 · · · 5,
max = 0.089939, intra = 0.000274,
inter = 0.000244, γ = 111.97%.

Figure 3.43: Difference matrices D corresponding to the combined amplitude and
phase components (bk, ψk) of the normalized limb angle function. Magnitude weighted
phase terms are used within the distance metric ρ.

and (b′2, ψ
′
2) the corresponding coefficients of the lower leg angle function. The pro-

posed gait distance metric ρ = ‖P̂ − P‖, suitable for subject identification, can then be

written:

ρ 2 =
(
d̂2 − d2

)2
+

(
b̂2 − b2

)2
+

(
b2
2 (1 − v̂⊤

2 v2)
)2

+

(
b̂ ′

2 − b ′2

)2
+

(
b2
2 (1 − v̂ ′

2
⊤ v ′

2)
)2

(3.35)

where the phase direction vectors v̂ and v are commuted from polar to Euclidean form.
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v̂2 = (cos ψ̂2, sin ψ̂2)
⊤ v̂ ′

2 = (cos ψ̂ ′

2, sin ψ̂ ′

2)
⊤ (3.36)

v2 = (cos ψ2, sinψ2)
⊤ v′

2 = (cos ψ′

2, sin ψ′

2)
⊤ (3.37)

Figure 3.44(a) shows the difference matrix D corresponding to the proposed biometric

feature vector. The magnitude of the intra-class variance is estimated at 21.03% of

the inter-class variance level, i.e. the variation of the intra-subject biometric feature

vectors measured over the range of walking speeds is almost fives times smaller than the

variation between different people.

(a) max = 0.11027, intra = 9.13742e-05,

inter = 0.000435, γ = 21.03%.

(b) thresh = 2σv , false accept = 0%,

false reject = 41.67%

(c) thresh = 3σv , false accept = 0%,

false reject = 16.67%

(d) thresh = 4σv , false accept = 2.08%,

false reject = 4.17%

Figure 3.44: Difference matrices D corresponding to the proposed biometric feature
vector P = (d2, b2, ψ2, b

′
2
, ψ′

2
)⊤. (a) The computed difference matrix D. (b-d) The

thresholded difference matrices at a number of integer levels of the intra-class devia-
tion σv.
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We then classify each subject by thresholding the difference matrix D at a suitable level.

We choose this level depending on the intra-class deviation σv. Figures 3.44(b) to 3.44(d)

show the difference matrix D thresholded at a number of different levels. We quantify

the uniqueness of the biometric parameterisation by determining the false acceptance

and false rejection rates of subject classification. Specifically, we are interested in the

equal error rate of subject classification as a suitable uniqueness measure. Figure 3.44(d)

shows an equal error rate of ≃ 3% at a threshold of 4σv. This level of classification error

demonstrates the uniqueness of gait and its potential to be a reliable biometric.

We have shown that the most discriminating biometric feature is the normalized limb

segment length, with a distinction level of γ = 1.61%. Magnitude weighted phase has the

best discrimination of the limb angle function features, with γ = 40.15%. Normalized

amplitude components of the limb angle function are then the least discriminating, with

γ = 57.64%. There is an order of magnitude difference in the discrimination between the

static geometric and limb angle motion features, that can be attributed to the dynamic

and multi-modal nature of articulated limb motion.

There are other similar static features that can be used within gait motion. We have

considered here only the leg motion, but we could just as easily use the arm motion and

the fixed length between the head and pelvis as sources of additional biometric features.

We have also made a linear approximation to the biometric mapping, over the range of

customary walking speeds. The intra-class variance can be reduced if we model the ar-

ticulated limb motion more precisely and determine a better biometric mapping over the

range of walking motions. This may subsequently improve the discrimination between

subjects, and could also allow us to include more of the limb angle function coefficients

within the biometric feature vector. Further work needs to be done to establish whether

this is possible.

3.7 Experimental procedure

A pilot capture session run as a precursor to the experimental phase of this project

highlighted some important practical concerns. We must stress the importance of fol-

lowing proper scientific procedure, especially when the data capture and subsequent

manual marking processes can take days or even weeks to perform. We describe here

the planned tasks that need to be followed in order to achieve a successful set of exper-

iments.

In the previous sections we described a number of experiments that required us to

capture subject motion data corresponding to both treadmill and overground walking.

The treadmill data was used to analyse the leg motion function over a range of controlled

walking speeds, and validate our assumptions about the static features of gait. The

captured motion data corresponding to overground walking from each camera view was
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used to triangulate the positions of a subject’s joint features, thus enabling us to validate

the planarity assumption of limb motion. The captured sequences from each camera view

can also be used independently as different imaged trajectories of similar gait motion.

We discuss the reconstruction and comparison of these different imaged motion sequences

within chapter 4, though give here the details of how we conduct each set of required

subject treadmill and overground walking experiments.

While the cameras in the array only need to be calibrated once, each subject capture

session needs to be consistent and coordinated in a controlled manner. The events of a

subject capture session can be summarised as follows:

• Marker placement. The set of feature markers are attached to the principal joint

features of the skeletal system with adhesive tape. Subjects are then instructed to

pace up and down the test track. This firstly gives them a chance to familiarise

themselves with the test track and the starting cues by making a few dummy runs.

Secondly, the walking motion ensures that the markers are aligned naturally with

the clothing and joint positions. Any deviation, caused by the effects of clothing,

on the original placement of markers can be corrected here before any data is

collected. Similarly, any feedback from the subject regarding any restriction in

movement, due to markers being attached too tightly, can also be addressed.

• Overground walking. Subjects are instructed to make passes along the test track

from both directions and at three different walking speeds (slow, natural and fast).

These speeds are entirely dependent on the interpretation of the individual. The

actual walking speed of a subject is recovered by triangulation of the head feature

marker, and the velocity computed based on the distance travelled along the line

of progression within the captured sequence of frames.

The operator must allow the subject to make a couple of passes, to ensure that they

are walking naturally, before starting to capture the image sequence. The operator

should never inform the subject of when they intend to start the data capture, since

it may unduely affect the subject’s concentration and natural rhythm.

• Treadmill walking. The treadmill is then placed in the centre of the test track

so that it is fronto-parallel to the camera array. The positions of the treadmill feet

are previously marked onto the floor so that we can repeat its exact placement

to within a millimetre. The subject is then told to stand on the treadmill in the

quiet standing posture, while the calibration grid is held fronto-parallel against

their closest leg. A single frame is then captured and stored for later analysis.

This enables us to determine the articulated limb swing plane of the required

reference leg. Subjects are then given six minutes [70] to familiarise themselves

with treadmill walking while the operators set-up for the data capture.

The subject is then recorded walking over a range of gait speeds (3.0 km/h,
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4.0 km/h, 5.0 km/h and 6.0 km/h) on the treadmill. Each captured image sequence

is four seconds in length, thus contains approximately four periods of motion.

Communication with the subject while walking on the treadmill often breaks their

rhythm and concentration. Talking should be kept to a minimum, and silence

strictly observed during the data acquisition, both for subjects and operators.

The operator first asks the subject if they are ready, i.e. if they feel that their

walking is natural. The operator must then leave a time gap of at least 15 seconds

before starting the data capture in order that the subject regains their natural

rhythm. The operator must in no way inform the subject when they intend to

start capturing the data.

The operator must increase the belt speed themselves after each captured image

sequence to ensure that the correct settings are selected. The subject is then left

to familiarise themselves with the new gait speed for a period of not less than

two minutes, while the set of image sequences are downloaded from the capture

computers to the main storage database. This procedure is repeated until all of

the required walking speeds have been completed.

3.8 Conclusions

We have presented the material in this chapter not as a definitive piece of work, but

as an interesting conceit into the suitability of subject motion as a source of features

for biometric identification. This study goes some way towards answering many of the

fundamental questions that are necessary for a practical system: What is gait? Which

features of motion, suitable for biometric identification, remain invariant to changes in

walking speed.

In order to better understand the nature of gait we first gave an overview of gait motion

from the medical literature. Researchers have identified eight distinct phases of motion

within the gait cycle. Each phase has a functional objective that requires the action of

specific muscle motions in order to align and progress the limbs forward. There are a

total of six major motion patterns, known as the determinants of gait, that result from

the underlying limb and muscle actions.

The human body is made up of a series of articulated limb segments. We hypothesized

that each articulated limb can be modelled by motion within a single swing plane. We

then proceeded to validate this assumption by reconstructing the worldspace motion

structure of specific anatomical landmark points during periods of overground walking.

A synchronized, calibrated three camera system was used to capture the motion of a

set of four test subjects. Retro-reflective markers were attached to the principal joint

features of the skeletal system of each subject. The corresponding landmark features
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were manually marked within each camera view and back projected to form the set of

worldspace points.

For each subject, the entire set of reconstructed worldspace limb markers corresponding

to their nearest leg were then fitted to a single motion plane. The residual variance

between worldspace markers and limb swing plane was observed as a measure of the de-

parture from motion planarity. We determined that the 3σ confidence interval accounted

for a gross motion deviation of approximately 3.5 cm over the set of test subjects. A

brief analysis of the level of image reprojection error, caused by assuming this empirical

planarity deviation, was given by simulating fronto-parallel gait motions at a number

of different distances from the camera. Image reprojection error is dependent on both

object depth and displacement within the view. In general, subject motion is never

localized to any one single region of the image alone. For this reason we proposed a

measure, the standard pixel reprojection error, that gives a practical estimate of the

probable mean error over a sequence of imaged motion.

The standard pixel reprojection error for fronto-parallel subject motion at a distance of

3.2 metres from the camera is approximately 2.8 pixels. This level of error is reasonably

high and provides a sizeable contribution of systematic error, unaccounted for by the

motion model, to the reconstruction process. However, the corresponding standard pixel

reprojection error computed for a practical set-up similar to most CCTV systems with

subject motion at a distance of 10 metres is approximately 0.9 pixels. This level of

error is well within the landmark measurement deviation tolerance and consequently

the planar limb swing motion assumption is valid.

Most of the deviation from planarity can be explained by the lateral sinusoidal deviation

of subject motion over the gait cycle. Our results agree with the findings of medical

studies that suggest that all parts of the body are similarly displaced from the mid-line

of progression by approximately 4 cm.

Static features of gait are defined as quantities that remain constant over the full spec-

trum of subject walking motions. The bone segments within an articulated limb are

rigid and of fixed length throughout the entire image sequence. Though we may not

know the actual physical sizes of any of the segment lengths, i.e. we are unable to deter-

mine the scaling transformation that maps the canonical imaged limb lengths (pixels) to

worldspace measurements (mm), the length ratio between upper and lower leg lengths

is geometrically invariant to changes in scale. We then normalize the set of leg segments

such that the first segment has unit length. The resulting normalized lengths represent

the required set of limb length ratio invariants, and form the static parameters of gait.

Each articulated limb pose is represented by a Euclidean hip displacement (x, y)⊤ po-

sition followed by a series of connected rigid length bone segments, defined by polar

coordinates (d, θ)⊤. The angular motion of each limb segment θ(t) can be represented

by a Fourier series function. Each test subject was told to walk on a treadmill at a
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number of controlled walking speeds. The set of leg angle functions were then recon-

structed with increasing numbers of Fourier harmonics, in order to determine a suitable

value that enables us to accurately model the limb motion. The results suggest that

increasing the number of harmonics beyond five has little significant benefit on the level

of pixel reprojection error. Our results agree with the findings of previous studies by

Angeloni [3] who also suggests that five harmonics is sufficient to model subject limb

motion.

The set of reconstructed limb angle Fourier coefficients vary significantly over the range

of walking speeds. Within each reconstruction, the amplitude harmonic coefficients are

exponentially related such that the first amplitude is the most significant, and encodes

the gross angular variation. The higher order amplitude harmonics are the least signifi-

cant and are more responsive to measurement noise and changes in walking speed. The

trends between both first harmonic amplitude and fundamental frequency, versus walk-

ing speed are approximately linear. Similar findings have been shown by BenAbdelkader

[5, 6] and Tanawongsuwan [103, 102] who both show linear relationships between both

stride length and cadence, versus gait speed. Similarities can be inferred between our

works in the fact that the first harmonic amplitude coefficients encode the gross periodic

angular swing and are thus proportional to subject stride length. Subject cadence (rate

of stepping) is similarly proportional to the fundamental frequency of the Fourier series.

If we normalize the amplitude coefficients such that the first coefficient is unity, then

the remaining parameters represent the ratio between selected and first harmonic ampli-

tudes. Analysis of the reconstructed leg angle functions for each subject shows that the

normalized second order amplitude harmonics remain constant over the customary range

of walking speeds. The remaining coefficients are less consistent over different walking

speeds, which leads us to believe that the characteristics of articulated leg motion are

changed more subtly than by a simple first order linear scaling. These normalized sec-

ond order amplitude harmonics then form a further set of static parameters of gait. We

can also remove the differences in initial pose by computing the time shifts that zero

the first coefficients of phase corresponding to the upper and lower leg angle functions.

Analysis similarly shows that the normalized second order harmonic coefficients of phase

remain constant over the range of gait speeds, thus provide the final set of static pa-

rameters of gait motion. A modified form of the Fourier series function offers us a way

to represent the underlying biometric leg function θ̃(t), through the set of normalized

harmonic coefficients (b2, ψ2, · · · , b5, ψ5)
⊤. The circumstantial parameters of gait motion

(f0, a0, a1, ts)
⊤ then allow us to distort this underlying leg function to approximate an

arbitrary gait motion, by applying a series of linear deformations (scale and offset) in

both the temporal and angular coordinate axes.

The hip displacement motion can also be modelled by using similar modified Fourier

series functions. In addition, a velocity term is included with the X displacement function

in order to model the linear progression of subject motion. The full articulated motion
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model is parameterised by using five Fourier harmonics. Consequently, a total of 45

coefficients are required to represent the complete dynamics of articulated leg motion.

Since normal gait is bilaterally symmetric with a half phase shift, these 45 parameters

simultaneously encode the motion of both left and right legs.

Other static parameters of gait have been suggested. Tanawongsuwan and Bobick

[103, 102] exploit the linear relationship between stride length and cadence over dif-

ferent velocities in order to map subject motion to a common walking speed. The two

parameters of normalized stride length and cadence are then used as the static motion

parameters of gait, allowing us to compare similar subject motions. However, where

the constant of proportionality is not known between any individual subject’s range of

walking speeds (the norm), a generic global estimate is used to map the parameters to

the reference speed (one size fits all).

Throughout the chapter we have identified nine static features of articulated leg motion

that remain invariant to differences in the mode of subject motion. These features

are hypothetically unique to each individual, thus can be used as suitable parameters

for biometric identification. Where other techniques look for specific key frames, our

method maximizes the utilization of the measurement data to make a robust estimate

of the gait motion parameters, even in the presence of occlusion and image noise.

Many of the questions put forward have been addressed either theoretically or still

remain unanswered. This study is a positive step towards understanding the dynamic

nature of gait in order to extract features that are invariant over the range of customary

walking motions.



Chapter 4

Pose Invariant Gait

Reconstruction

4.1 Introduction

Since the gait of a person is readily identified when extracted from a canonical side

view, most gait recognition algorithms work with the premise that the motion is fronto-

parallel in nature [117, 43], or at least require some knowledge of the camera calibration

in order to reconstruct the motion [93, 55]. Others have used projective factorization

techniques [39], in the case of unknown and varying camera focal lengths, to reconstruct

the static scene for rigidly structured objects that move with linear velocity. Realistically,

people will always walk along different trajectories to the camera. We hypothesize that

articulated limb motion within human gait is approximately planar, since almost all

of the perceived limb motion is contained within a single plane. The nature of plane

perspective distortion is well understood. The mapping between a worldspace scene

plane and the image plane is a 2D homography [33, 92, 98].

Geometric properties of the plane can be classified into three main groups of transforma-

tion: perspective, affine and similarity transformations. Identification of specific entities

within the image allows us to employ a stratified technique [41, 16] to map them back to

their canonical positions. Metric structure of the scene plane is typically recovered in a

two step process: i) Identification of the imaged vanishing line of the scene plane allows

us to compute the perspective transformation that recovers the affine properties of the

plane. ii) Identification of the imaged circular points I,J then allows us to compute the

affine transformation that recovers the metric properties of the plane.

Liebowitz and Zisserman [62] have shown that metric structure on a plane can be re-

covered via a stratified technique that uses the constraints formed from known angles,

equal but unknown angles and known ratios of lengths. These constraints are quadratic

126
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and may be easily combined to recover the appropriate rectification transformation that

restores the metric properties of the plane. Liebowitz and Carlsson [61] have also shown

that affine reconstruction of 3D human motion is possible from multiple synchronized

views. They use the fact that articulated limb segments are rigid and of fixed length in

all views.

The work presented in this chapter details a stratified approach to pose rectification in

single view sequences that makes use of the rigid limb segments of articulated human

motion. We have already laid out much of the groundwork and mathematical theory

within section 2.8. We have demonstrated that the metric properties corresponding to a

planar test pattern of synthesized human motion can be recovered by using a stratified

reconstruction technique. This chapter develops the geometric properties and biometric

features identified within chapters 2 and 3, though with respect to real human motion

sequences. We develop a novel method that exploits the geometric properties of artic-

ulated leg motion in order to compute a stratified reconstruction of the fronto-parallel

dynamics of gait motion. We assume no prior knowledge of the camera calibration, only

that people walk in straight lines with constant velocity and legs that swing in planes.

We assume that the computer vision task of finding limb landmark points and tracking

them over all frames in the sequence is solved and that the camera sampling rate is high

enough to capture the dynamics of gait.

The articulated leg motion of both left and right sides of the body can be approximated

by motion within two separate planes. We can apply further constraints on the form

of the articulated leg motion by simultaneous consideration of the bilateral symmetry

between left and right limbs. Consequently, human motion can be modelled by using a

cardboard person assumption. A subject’s body and leg parts are then modelled as a

set of repeating spatio-temporal motion patterns within separate planes. Repetition of

structure on a plane is defined by a specialized homography transformation known as a

conjugate translation [89, 90]. Identification of subject periodicity and point correspon-

dences over different gait cycles is solved simultaneously by computing the self-similarity

of structure [21, 22] within the image sequence. Determination of this conjugate trans-

lation provides enough constraints that enables us to recover the vanishing line of the

limb swing plane. We describe a method to robustly recover the subject periodicity

from the self-similarity of landmark feature points, then further develop the stratifica-

tion process outlined within chapter 2 that allows us to reconstruct and parameterise

the fronto-parallel dynamics of articulated leg motion.

Projection of the planarized human motion representation into the image is achieved

by a parameterised set of planar homography transformations. We detail two different

reconstruction parameterisations that model human gait. Consequently, two methods

are presented to compute the maximum likelihood estimates of the set of reconstruction

parameters. Both of these reconstruction parameterisations are then compared to see

which performs best. An analysis of the resultant reconstructions over a number of
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different subject trajectories is given for a small trial set of four people. Finally, we

conclude the chapter with a brief discussion on a number of possible improvements and

considerations that the author did not have the time to look into further.

4.2 A stratified approach to linear trajectory gait recon-

struction

The effect of varying a subject’s trajectory is quite pronounced on the set of measured

limb angles. Figure 4.1 shows a single position of gait pose that is imaged from three

different camera viewpoints. The cameras are synchronized so that the underlying limb

motion is sampled consistently within each view.

(a) (b) (c)

Figure 4.1: Three synchronized views of a subject walking along a linear trajectory
with constant velocity.

Figures 4.2 and 4.3 show the corresponding set of extracted leg angles after removing the

camera calibration. Since the camera distortion is removed and the gait dynamics are

consistent in all three image sequences, the only set of parameters that differ between

views are the camera extrinsic parameters, or analogously the subject motion trajectory.

The extracted set of leg angles appear vary different. Clearly some form of correction is

required to remove the differences between subject poses.

Figure 4.2: Extracted upper leg angles. Comparison of the extracted limb angle
plots from all three views after removing the camera calibration.
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Figure 4.3: Extracted lower leg angles. Comparison of the extracted limb angle
plots from all three views after removing the camera calibration.

Gait can be modelled by using a cardboard person assumption, with articulated limb

motion contained within three similarly spaced parallel planes. The central mid-plane

contains the head and torso sections, while the bilateral planes contain the left and right

legs. The arms may also be modelled by adding a further two planes. However, the in-

dependence and large freedom of motion available to the arms precludes their use as any

meaningful repeating motion pattern. The shape of the mid-plane body parts remain

relatively static throughout an image sequence and can be modelled by translational

motion, with displacement components containing linear velocity in X and sinusoidal

oscillation in Y. Both bilateral left and right leg swing planes contain dynamic articu-

lated limb motion. The set of rigid leg segment poses are related by both translation

and rotation transformations throughout the image sequence. Figure 4.4 shows this

arrangement of cardboard motion planes used to model subject gait.

Figure 4.4: Cardboard human motion model containing three similarly spaced, par-
allel limb planes.

Since all body part planes are parallel within the worldspace, they share a common

vanishing line l′∞ in the image. Similarly, the progressional component of gait motion is

common to all body parts over the image sequence. The imaged direction of motion e is

then common to all limb motion planes within the image, thus also lies on the vanishing

line l′∞.

In order to reconstruct the canonical dynamics of gait, we need to identify the 2D ho-
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mography mappings that transform structure from the imaged limb swing planes back

to the fronto-parallel motion plane. The stratification process of computing this recti-

fication transformation can be split into three stages: Hp,Ha and Hs. Each stage of

the rectification removes a number of degrees of freedom (d.o.f.) from a total of eight

that completely parameterises a planar homography. Identification of properties and

invariants within each particular class of projective transformation enables us to remove

the associated distortion effects. A more detailed discussion on the properties and trans-

formation characteristics of these transformation classes can be found in appendix A.1.

The proposed algorithm uses planar projective geometry on the imaged entities of gait

motion alone, in order to compute a stratified reconstruction that recovers the canonical

view of the underlying limb motion. Subsequently, we do not need to know any prior

information about the camera calibration or the pose of a subject. We use only our

knowledge, that human limb segments have an unknown but fixed length throughout

the captured motion sequence, as a source of constraints for the reconstruction process.

We first compute the projective transformation Hp that maps the imaged vanishing

line l′∞ of the limb swing plane back to its canonical position (0, 0, 1)⊤. Structure on

the rectified plane is then defined up to an affine ambiguity (6 d.o.f.). Computation

of the affine transformation Ha is formed from Liebowitz’s known ratio of length con-

straints [61], on the set of rigid articulated limb body segments. Application of Ha

restores angles and length ratios of the metric plane. The combined set of transfor-

mations H′ = HaHp effectively map the imaged circular points I′,J′ back to their

canonical positions (1,±i, 0)⊤, thus structure on the metric plane is defined up to a

similarity transformation (4 d.o.f.). Since the circular points are invariant to similarity

transformations, we are free to choose any particular scale and orientation of the subject

on the metric plane. We choose to rectify the subject motion to a consistent coordinate

system via the similarity transformation Hs, such that subject gait is left to right, tra-

jectory aligned with the X axis, sky upward and the initial subject pose positioned at

the origin. We remove the scale ambiguity of the subject by constraining the upper leg

limb segment to have unit length. The set of stratified transformations then define the

complete 2D homography mapping H = HsHaHp that restores imaged structure back

to the canonical coordinate frame.

4.2.1 Periodicity and the imaged direction of motion

Knowing that an object’s motion is periodic is a strong cue for action recognition [52,

53, 37]. Furthermore, the periodic motion of people can be used to recognize individ-

uals [65]. Methods for detecting periodicity can be categorized into those requiring

point correspondences [108, 91], those analysing periodicities of pixels [66, 67, 86], those

analysing features of periodic motion [79, 80, 35, 46] and those analysing the periodic-

ities of object similarities [20, 21, 22, 91]. Here, we assume that limb landmark points
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have already been found, thus the task of finding the subject’s periodicity is somewhat

simpler. Realistically, periodicity is a good cue for both subject classification and salient

feature detection. Computation of landmark points and subject periodicity may be best

solved simultaneously. We acknowledge that the segmentation, tracking and classifica-

tion aspect of human motion is a difficult problem and a further research topic in its

own right. A full treatment of periodicity and human motion segmentation is beyond

the scope of this project. We describe here a minimal solution required to solve the

periodicity and correspondence problems.

One point that lies on the vanishing line l′∞ of the limb swing plane is the imaged

direction of motion e. Multiple periods of linear gait motion is analogous to a single

period viewed from many cameras that are related by linear translation. The pure

translational nature of the camera geometry leads to an auto-epipolar configuration, as

shown in figure 4.5.

(a) (b)

Figure 4.5: Duality of multiple view geometry and periods of gait motion.
(a) Single camera view of multiple points that represent similar pose positions within
a number of gait cycles. (b) Multiple cameras related by linear translation that image
a single pose point within an assumed single cycle of gait.

Matching landmark correspondence points, at integer multiples of the gait period T , lie

in an auto-epipolar configuration with the imaged motion direction e. Figure 4.6 shows

four poses within an image sequence, with each pose taken at half period intervals. We

can clearly see the correspondence matches between every other pose and the half phase

bilateral symmetry of adjacent poses between each side of the body.

In order to compute the landmark correspondence matches we need to know the gait

cycle period T . Since this period is unknown, we must simultaneously determine both the

landmark correspondences and subject periodicity by accumulation of the self-similarity

error metric over a range of suitable putative periodicities.
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Figure 4.6: Similar phase poses of imaged subject motion. Landmark points a − d
shown with matching pose positions. Each landmark point has T phase positions
a,a′, · · · ,a∗, with each set of matching phase clusters (a0, · · · ,an), (a′

0
, · · · ,a′

n), · · · in
auto-epipolar configuration with the motion epipole e.

4.2.1.1 Self-similarity error metric

The work presented in section 2.8.1 showed that the periodicity of planar limb motion

is analogous to the specialized geometry of repeating planar patterns. Subsequently,

the knowledge of landmark point correspondences across similar positions of gait phase

allows us to recover the imaged direction of motion and the vanishing line of the limb

swing plane. This then enables us to compute the transformation Hp that replaces the

imaged vanishing line back to its canonical position, thus recovering the affine properties

of the plane. Since these affine properties are invariant to changes in displacement, the

apparent translation between matching limb poses within different gait cycles has no

effect on the self-similarity between corresponding limb angles. The squared residual

fitting error, between all recovered matching limb angle poses over the image sequence,

is then a good cost functional that describes the similarity between subject poses.

Since the nature of the motion is auto-epipolar F = [e]×, each set of similar pose

landmark points formed from matches at integer multiples of the periodicity defines a

cluster of point correspondences. For example, the points (a0, · · · ,an) within figure 4.6

define a single cluster of correspondence matches. A cluster of point correspondences

must all lie on a common epipolar line, thus a robust estimate is computed by fitting all

points within this cluster to a single line, via a process of orthogonal regression. Further

details of line fitting and orthogonal regression can be found in appendix B.1.

Each landmark point then has T (frames) different phase positions (a,a′, · · · ,a∗) of

articulated limb pose within a gait cycle. Consequently, each phase position has a corre-
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sponding cluster of point matches over all the imaged motion periods of gait, with each

cluster collinear with the motion epipole e. This argument applies to all the landmark

points a − d within the image sequence of subject motion, and provides an initial means

for identifying the unknown motion epipole e. Figure 4.7 shows the relationship between

subject pose positions and matching landmark clusters within the image sequence.

Figure 4.7: Relationship of cluster point correspondences within the image sequence.

For each putative value of periodicity T , we compute the set of epipolar lines li through

the supposed landmark point clusters. The combined set of fitted epipolar lines must

pass through the imaged direction of motion e, hence an estimate for the epipole e is

obtained by solving the homogeneous set of linear equations l⊤i e = 0.

We then apply the stereopsis transformation He that maps the imaged epipole e to the

ideal point (1, 0, 0)⊤. An inappropriate choice of homography mapping may cause severe

projective distortion of the image. We can insist that the transformation should act as

far as possible like a rigid motion transformation (rotation and translation only), in the

neighbourhood of any selected point xc = (u, v)⊤ within the image. The chosen point

xc is selected as the centroid of all landmark points over the image sequence. Further

details of the stereopsis transformation were given in section 2.6.3. Having replaced the

epipole back to its canonical position, the conjugate translation M that maps repeated

planar patterns within the image now has the simplified form shown in equation 4.2.
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M = I + λvl′⊤∞ (4.1)

M =




a b c

a

a


 (4.2)

After applying the stereopsis transformation, all epipolar lines are aligned parallel with

the X axis. The transformed vanishing line of the limb planes is also aligned parallel to

the X axis and has the form l′∞ = (0, b, c)⊤. All similar landmark point correspondences

within a cluster then have the same y coordinate xk = (uk, v)⊤, which is determined by

computing the mean y of the cluster of points. Length ratios on each epipolar line cor-

responding to a set of repeated points are preserved, thus distances between consecutive

points ∆u = (uk−1 − uk) are equal. Constraints formed from all combinations of similar

point correspondences with common y coordinates have been shown within section 2.8.1

to be the same. Given more than two correspondence periods, a least squares estimate

of ∆u may be computed. An inhomogeneous solution can be formed to solve the linear

displacement function k · ∆u + u0 = uk of the set of repeating points on the epipolar

line. A system of equations of the form Ax = b is then generated by stacking the

constraints.

[
k 1

] (
∆u

u0

)
= uk (4.3)

One constraint equation on the coefficients of the conjugate translation M can then be

computed for each cluster of repeated point correspondences.

[
∆u v 1

]



a

b

c


 = 0 (4.4)

The 3D motion structure of a subject’s legs is approximated by repeated planar motion

patterns within two separate planes. The coefficients of both leg plane conjugate trans-

lations M and M′ must then be solved by computing both direct linear transformations.

[xj ]×Mjx0 = 0 (4.5)

[x′

k]×M′kx′

0 = 0 (4.6)
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However, the repeating limb plane transformations share a common vanishing line

l′∞ = (0, b, c)⊤. The coefficients of both independent conjugate translations M and M′

can be combined into a single set of simultaneous linear equations of the form shown in

equation 4.7.

[
∆u 0 v 1

0 ∆u′ v′ 1

]



a

a′

b

c




= 0 (4.7)

A minimal solution to this homogeneous set of equations can be obtained from three

repeated point constraints, each with different y coordinates and at least one con-

straint taken from each limb plane. Having computed the elements of the vanishing

line l′∞ = (0, b, c)⊤, a perspective transformation Hl can be computed that maps this

line back to its canonical position l∞ = (0, 0, 1)⊤.

Hl =




1

1

b c


 (4.8)

The combined perspective homography Hp = HlHe then recovers the affine properties

of all parallel motion planes. Figure 4.8 shows the recovered affine motion structure

corresponding to the image sequence shown in figure 4.6.

Figure 4.8: Rectified image of similar poses by applying the perspective transforma-
tion Hp = HlHe that recovers the affine properties of all parallel motion planes within
the cardboard person model. After transformation, all epipolar lines are aligned parallel
to the X axis.
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Although metric properties such as angles are not recovered by the transformation Hp,

structure is now similar across all repeated gait poses. The self-similarity of the affinely

reconstructed limb pose vectors pi between landmark points is then a good cue for

periodicity detection.

For each position of phase within the gait cycle, we compute the corresponding set of leg

segment direction vectors pi over all periods of affinely recovered motion, i.e. pi are the

set of direction vectors formed from the recovered limb angles from the ith period. Each

pose vector is normalized to unit length ‖pi‖ = 1 so that all poses are weighted equally.

We can then determine an orthogonal vector v to this set of pose unit vectors, that

minimizes the residual distances d⊥ = p⊤
i v. The least squares residual cost error C,

corresponding to the sum of squared inner products between the set of similar limb

poses pi and the orthogonal vector v, then has the form.

C =
n∑

i=1

(
p⊤

i v
)2

(4.9)

C = v⊤

(
n∑

i=1

pip
⊤

i

)
v (4.10)

C = v⊤Mv (4.11)

We can then make a symmetric Eigen-decomposition of the moment matrix M via the

substitution Mv = λv. The moment matrix M is symmetric, positive-definite hence all

Eigenvalues are real and non-negative. The two Eigenvectors of the decomposition corre-

spond to the columns of a rotation matrix, thus are orthogonal and of unit norm ‖v‖ = 1.

Correspondingly, we see that the residual cost error is given by C = v⊤λv = λ. The

minimum of the least squares cost function occurs with least Eigenvalue λ, thus the

Eigenvector corresponding to the smallest Eigenvalue is the solution we require for the

best orthogonal vector v.

The self-similarity error ǫ, corresponding to the chosen putative value of periodicity T ,

is then given by computing the root mean square of all T gait phase positions of residual

fitting errors λk. We accumulate these self-similarity errors ǫ within a vector, corre-

sponding to increasing values of putative periodicity.

ǫ =

√√√√ 1

N

T∑

k=1

(λk + λ′

k) (4.12)

Although only one measurement pose vector p1 is required to compute an orthogonal

vector v, we are not able to infer any meaningful information about the periodicity.
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Subsequently, we classify any correspondence sets with only a single pose vector as

invalid and do not include them in the self-similarity cost function. The correspondence

errors are determined from the matching poses of both the upper and lower legs λk, λ
′

k.

There are then a total of N valid pose vectors contributing to the cost summation of

the self-similarity error ǫ. Due to occlusion and missing data, the number of matches is

not fixed over the range of putative periods. The root mean squared residual error ǫ,

shown in equation 4.12, lies within the range (0 : 1) and gives a good measure of how

much the poses deviate from similarity (0 - similar, 1 - dissimilar).

4.2.1.2 Recovering periodicity from self-similarity

The vector of valid self-similarity cost errors is first smoothed by a (1, 4, 6, 4, 1) filter.

The errors within the smoothed vector are then normalized to lie in the range (−1 : 1),

by finding the means of the two largest and two smallest errors and applying the required

translation and scaling transformations. The resulting normalized cost fitting curve is

cyclic in nature with the same period as the subject’s gait. We must also note, that

for long vectors there will be many minima located at integer values of the fundamental

period, of which the global minimum may not be the fundamental.

Figure 4.9: Normalized gait periodicity fitting cost vector. The true periodicity of
gait is approximately 35 frames.

The vector of normalized fitting costs shown in figure 4.9 clearly shows two periods of

gait motion. Even after smoothing there may still be many local minima within the head

section of the cost vector, which occur as a result of poor fitting. Most poorly fitted

values occur in both the head and tail segments of the cost vector, so the periodicity

function is best computed by first multiplying the data vector by a Gaussian envelope

and fitting the resulting data to a first order harmonic series with Gaussian envelope.

x(t) = A1 · e−
(t−t0)2

2σ2 · cos(2πf0t + φ) (4.13)

The envelope is centred about the middle of the cost vector t0 = N/2. The width
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constant σ is computed such that the envelope has a small empirical cut-off tolerance of

λ = 0.0001 at the extents of the vector.

y(t) = e−
(t−t0)2

2σ2 (4.14)

λ = e−
(t0)2

2σ2 (4.15)

ln(λ) = −(t0)
2

2σ2
(4.16)

σ =
t0√

−2 ln(λ)
(4.17)

Figure 4.10 shows the corresponding normalized gait periodicity fitting cost vector mul-

tiplied with a Gaussian envelope. The significance of the noisy cost errors within the

head and tail of the vector is dramatically reduced.

Figure 4.10: Normalized gait periodicity fitting cost vector multiplied with a Gaussian
envelope.

Since the subject’s period is the same as the normalized cost errors, determining the

fundamental frequency f0 of a first order harmonic series that fits the data then gives

a good indication of the required periodicity. There are potentially many local minima

within the parameter space of unknowns P = (f0, A1, φ)⊤, not all of which are located

at integer multiples of the fundamental frequency. The best strategy is to accumulate

the χ2 residual fitting errors of equation 4.13 over a range of putative periodicities

T (frames), while minimizing the set of subsidiary parameters P = (A1, φ)⊤.

For each putative value of periodicity T , we first initialise the fundamental frequency

f0 = 1/T and the set of subsidiary parameters P. Since we have normalized the data

to the range (−1 : 1), we can set the A1 parameter to unity. We then compute the

residual χ2 errors at three sample phase positions (−2π
3 , 0, 2π

3 ) and set the initial φ pa-

rameter to the phase associated with the smallest residual error. Minimization is then
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performed on the subsidiary parameters P = (A1, φ)⊤ using the Levenberg-Marquardt

method with a maximum of 10 iterations. The computed χ2 residual error and the

corresponding subsidiary parameters P are then added to the periodicity accumulation

vector. Once all residual fitting errors have been computed within the vector of pu-

tative periods, the initial frequency estimate f0 is determined by the periodicity value

corresponding to the smallest residual error.

An optimal solution may then be given by minimization until convergence of all three

parameter estimates P = (f0, A1, φ)⊤, by using the Levenberg-Marquardt method. This

boot strapping technique robustly removes the potential of encountering most, if not

all false minima within the parameter space by determining the set of initial parameter

estimates that lie sufficiently close to the true values.

The last optimization step may be considered optional, since the fitting process of a

simple harmonic series to the data is designed only to determine which of the local

minima corresponds to the fundamental periodicity of gait. The accuracy of determining

f0 is far in excess of identifying the required local minimum within the normalized cost

error vector.

The normalized periodicity cost errors shown in figure 4.9 are based on the geometric

properties of subject self-similarity. Fitting a simple harmonic series to these cost errors

reliably determines which of the local minima corresponds to the fundamental periodicity

of gait. Finding this minimum within the cost vector then gives an accurate estimate

of the true periodicity of gait. As such, we can use the calculated periodicity value

T̃ = 1/f0 from the minimization of equation 4.13 as an initial starting point to find

the corresponding local 1D minimum within the normalized cost vector. The true gait

periodicity T is found to sub-temporal accuracy by performing gradient descent then

fitting a quadratic curve to the data at the local minimum.

4.2.2 Recovering affine structure

Since we have found the periodicity of gait to sub-time sample accuracy, the tracked

landmark points are in general not aligned with frame boundaries, at integer multiples

of the period T . Correspondingly, we must interpolate the set of landmark tracks by

assuming linear velocity between consecutive frames. From these interpolated corre-

spondence points of similar gait pose, we recompute the motion epipole e consistent

with the epipolar lines li formed through each of the landmark point clusters.

We first apply the normalization transformation Kn that best maps the set of landmark

point tracks to the unit square with isotropic scaling, x′ = Knx. We then transform the

motion epipole e′ = Kne and re-normalize to unit norm ‖e′‖ = 1.
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Kn =




s tx

s ty

1


 (4.18)

For each correspondence set of landmark point clusters, we then proceed to compute

the optimal point estimates x̂i that lie on the epipolar line satisfying the condition

x̂⊤
i [e′]×x̂j = 0. We first fit the epipolar line corresponding to a landmark point cluster

by using orthogonal regression, with the constraint that this line passes through the

motion epipole e′. Details of line fitting and constrained orthogonal regression are

described within appendix B.1.1. Having computed the epipolar line consistent with the

auto-epipolar geometry, we can then find the optimal set of points x̂i that lie on this

line, closest to each of the corresponding imaged landmark points x′
i. Further details of

orthogonal projection of points onto a line can be found in appendix B.1.2.

From the principle of duality between multiple views and periods of imaged gait motion,

see figure 4.5, the back projected rays formed from a set of optimal point estimates x̂i

intersect in a single worldspace point X. These optimal point estimates lie on the plane π

that passes through the set of camera centres and the imaged epipolar line consistent

within all views, as illustrated in figure 4.11.

Figure 4.11: Back projection of the set of optimal point estimates, that lie on the
plane which passes through all camera centres and the corresponding imaged epipolar
line, meets in a single worldspace point X.

Back projection of all corresponding landmark point clusters then generates the set of

3D point tracks for an assumed single period of reconstructed gait motion. We use the

Direct Linear Transform (DLT) to triangulate each of the worldspace points X.

([x̂k]×Pk) · X = 0 (4.19)

with the set of camera projection matrices:

Pk = [R⊤

e | −k.e′] (4.20)
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where x̂k is the image of the worldspace point X in the kth period image, Re is the 3×3

rotation matrix that aligns the epipolar vector e′ with the X axis, and k is an integer

describing the camera periodicity translation.

We can now apply the assumption that articulated leg motion is approximately planar,

and proceed to fit the set of recovered 3D limb points to a set of planes. Since we have

aligned the epipolar vector e′ with the X axis, one such point that must lie on each of

the worldspace planes is the ideal point (1, 0, 0, 0)⊤. The pencil of planes that intersect

this ideal point have the form π = (0, v2, v3, v4)
⊤, hence the problem reduces to that of

finding two lines within the YZ plane cross section data.

Figure 4.12: Worldspace limb swing planes. The YZ cross section plane contains two
lines l1, l2 of data points.

We evaluate the mean (ȳ, z̄)⊤ of the cross section point distribution and apply a trans-

lation Ht that maps this point to the origin. The two cross section plane lines l1, l2 are

then each computed by orthogonal regression, see appendix B.1 for details. The intersec-

tion point u of the two lines, given by the cross product u = l1 × l2, is then aligned with

the positive Y axis by applying a rotation Hr. Consequently, the pair of transformed

lines are mapped to l′i = Hr
−⊤li = Hrli. The transformed point u′ is then mapped to

the ideal point (1, 0, 0)⊤ by application of the perspective transformation Hα.

Hα =




1 0 0

0 1 0

α 0 1


 (4.21)

Since u′ lies on the Y axis and has the form (y, 0, w)⊤ then the transformation Hαu′

gives us α = −w/y, and the corresponding line mapping Hα
−⊤l′i effectively zeros the first

component of both line normals. The lines are now parallel and can be re-normalized

such that l′′1 = (0, 1,−c1)
⊤ and l′′2 = (0, 1,−c2)

⊤ in order that we can find the points at

which they cut the Z axis (c1, c2). We then apply a further similarity transformation

Hs that translates the mid-point (c1 + c2)/2 to the origin and scales in the Z direction
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to rectify the lines to the form l = (0, 1,±1)⊤. Application of a plane selection trans-

formation Hβ then translates by ±1, mapping the selected set of points onto the z = 0

plane. The combined set of transformations then form the limb plane transformation

Hv = HβHsHαHrHt. A similar set of transformations can be constructed that allows

us to change the matrix order.

Hv = HβHα(Hα
−1HsHα)HrHt

Hv = HβHαHs
′HrHt (4.22)

The projection transformation mapping the back projected worldspace points X into

the image can then be decomposed into block form:

x̂(k) = [Re
⊤| − k.e′]

(
1 0⊤

0 Hv
−1

)(
1 0⊤

0 Hv

)
X (4.23)

x̂(k) = [Re
⊤| − k.e′] H̃−1

v W (4.24)

Where W is the transformed worldspace point on the z = 0 plane and the augmented

4 × 4 matrix H̃−1
v has the form:

H̃−1
v =

[
1

0

∣∣∣∣∣
m2 m3 m4

0 0 1

]



1 0 0 0

0 1 0 0

0 0 1 −β

0 −α 0 1




(4.25)

The corresponding projection transformation of worldspace points W = (u, v, 0, w)⊤

into the image is then given by the 3 × 3 homography mapping x̂ = Hp · (u, v, w)⊤.

Hp =
[

e′ m′
2 − α.(m′

4 − k.e′) (m′
4 − k.e′) − β.m′

3

]
(4.26)

where m′
i = Re

⊤mi and e′ = Re
⊤ · (1, 0, 0)⊤

We finally find both sets of optimal z = 0 plane points by solution of the planar Direct

Linear Transform for each point û, in order to minimize image reprojection error.

([x̂k,β]×Hp(k, β)) · û = 0 (4.27)
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The individual homography matrices that map structure from the z = 0 plane to their

corresponding imaged leg swing planes are given by setting k = 0 and β = ∓1 within

equation 4.26.

Hp1 =
[

p1 p2 p3

]
(4.28)

Hp2 =
[

p1 p2 p′
3

]
(4.29)

In practice, fitting the YZ cross section data to two individual lines can be unreliable due

to the effect of resampling and measurement noise within the back projection process.

Since both worldspace leg swing planes are approximately parallel, both sets of cross

section data points are best fitted to two lines with a common normal N = (a, b)⊤. The

sum of squares fitting cost function C of orthogonal regression, corresponding to both

parallel lines then has the form.

C = N⊤M1N + N⊤M2N (4.30)

C = N⊤(M1 + M2)N (4.31)

C = N⊤M12N (4.32)

The 2 × 2 moment matrix M is generated from the set of component differences ∆xi

between the data points xi and the corresponding centroid x of the distribution. Further

details are given in the discussion on orthogonal regression within appendix B.1.

M =

n∑

i=1

∆xi · ∆x⊤

i where ∆xi = xi − x (4.33)

We can then make a symmetric Eigen-decomposition of the combined moment ma-

trix M12 via the substitution M12 · N = λN, and note that C = N⊤λN = λ gives the

cost error corresponding to both point distributions. The minimum of this least squares

cost function occurs with least Eigenvalue λ, thus the Eigenvector corresponding to the

smallest Eigenvalue is the solution we require for the normal vector N of both fitted

lines.

Subsequently, the perspective homographies Hp that transform points on the z = 0 plane

to the images of the limb swing planes then have a much simpler form, where k = 0

and α = 0 in equation 4.26.
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Hp =
[

e′ m′
2 (m′

4 − β.m′
3)

]
(4.34)

4.2.3 Recovering metric structure

Structure on the z = 0 plane has been recovered up to an affine ambiguity. We need to

find the affine transformation Ha that maps the imaged circular points (1, µ± i · λ, 0)⊤

back to their canonical positions (1,±i, 0)⊤.

Hµ =




1 0 0

−µ/λ 1/λ 0

0 0 1


 (4.35)

We can recover metric structure on the plane by using the known ratios of lengths [62]

between articulated limb landmark points over all reconstructed frame poses. The skele-

tal structure is rigid, hence the length ratio of a limb segment should remain fixed

(unity) over all frames. The squared distance between any two limb segment endpoints

x1 = (u1, v1)
⊤ and x2 = (u2, v2)

⊤ can be written as the inner product d 2 = ∆x⊤∆x,

where ∆x = (u2 − u1, v2 − v1)
⊤ is the endpoint difference vector. If ∆x and ∆x′ are

the endpoint difference vectors for a corresponding limb segment within two different

frames, then an affine transformation Hµ can be computed that restores the metric

properties of the plane. Since lengths between limb segment end points are invariant

to translations, we need only consider the upper-left 2 × 2 sub-matrix H of the affine

transformation matrix Hµ.

∆x′⊤H⊤H∆x′ = ∆x⊤H⊤H∆x (4.36)

If we write the endpoint difference vectors as ∆x = (δx, δy)⊤, ∆x′ = (δx′, δy′)⊤ and the

elements of the symmetric 2× 2 matrix M = H⊤H as m = (M11,M12,M22)
⊤ then the

set of linear constraints on m can be written.

[
(δx2 − δx′ 2) 2(δx2δy2 − δx′ 2δy′ 2) (δy2 − δy′ 2)

]
m = 0 (4.37)

Since m is defined up to scale (2 d.o.f.) then a minimum of two such corresponding pose

constraints are required to fully determine m. We stack all constraints formed from

all known length ratio correspondences and solve the system of homogeneous equations

of the form Ax = 0 through singular value decomposition, see appendix B.2.3. The

rectification matrix Hµ is then formed from the extracted parameters of H⊤H.
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H⊤H = ξ

(
1 + (µ/λ)2 −µ/λ2

−µ/λ2 1/λ2

)
=

(
m1 m2

m2 m3

)
(4.38)

µ = −m2

m3
(4.39)

λ =

√
m1

m3
− µ2 (4.40)

The ideal epipole (1, 0, 0)⊤ is mapped by Hµ to (1,−µ/λ, 0)⊤ so we must also apply a

rotation Hr to align the epipole back along the X axis, such that Ha = HrHµ is the

required affine transformation that recovers metric angles and length ratios on both limb

planes. Since we have ensured that the ideal epipole remains fixed, the transformation

Ha is upper triangular and correspondingly so is its inverse Ha
−1. Points on the metric

plane ŵ are then mapped into the image as:

x̂ = HpHa
−1(Haû)

x̂ = HpHa
−1ŵ (4.41)

Writing pi as the columns of Hp and the coefficients (a, b, c) of the affine matrix Ha
−1,

then the set of homography mapping matrices Hq, that project points on the metric

plane to the images of the limb swing planes, can be written:

Hq1 =
[

p1 p2 p3

]



a b

c

1


 =

[
a · p1 (b · p1 + c · p2) p3

]
(4.42)

Hq2 =
[

p1 p2 p′
3

]



a b

c

1


 =

[
a · p1 (b · p1 + c · p2) p′

3

]
(4.43)

We are only interested in limb length ratios, so scalings are applied to both planes

in order to transform each upper leg segment to unit length. In practice, many data

points may be missing due to occlusion. Even in the ideal case where motion is fronto-

parallel, the hip point on the occluded side of the body may never be imaged. To

robustly compute the scaling transforms, we first compute Hτ the scaling between both

leg swing planes. We evaluate the mean set of limb lengths d and d′ for both planes,

along with the corresponding binary vectors v and v′ (0 or 1 values) of validly computed



Chapter 4 Pose Invariant Gait Reconstruction 146

length flags. The set of mean leg segment lengths are then related by the inter-plane

scaling di = τ · d′
i. A minimal solution to this trivial set of linear equations requires at

least one valid mean length correspondence within the set of limb segments, i.e. the hip

point on the occluded side of the body may never be seen, but the corresponding lower

leg segments are visible for most of the sequence, thus enabling us to determine the

inter-plane scaling factor τ . The solution to this set of inhomogeneous equations of the

form Ax = b is computed by forming the set of normal equations x = (A⊤A)−1A⊤b.

(v · v′ · d′) τ = (v · v′ · d) (4.44)

(v · v′ · d′)⊤(v · v′ · d′) τ = (v · v′ · d′)⊤(v · v′ · d) (4.45)

τ =

∑m
i=1 (viv

′
i) · d′

idi∑m
i=1 (viv

′

i) · (d′

i)
2

(4.46)

Where m is the number of limb segments within the articulated limb model (two for

upper and lower leg). With the scaling transformation Hτ between both leg planes now

known, we can determine the optimal upper leg segment length d̂1 on the first leg swing

plane.

d̂1 =
v1d1 + τv′

1d
′
1

v1 + v′
1

(4.47)

We then compute the isotropic scaling transformation Hs that maps d̂1 to unit length

and update both sets of points and projection homographies.

Hm1 = Hq1 Hs
−1 =

[
q1/s q2/s q3

]
(4.48)

Hm2 = Hq2 Hτ
−1Hs

−1 =
[

q1/s.τ q2/s.τ q′
3

]
(4.49)

Hm2 =
[

q1/s q2/s τ.q′
3

]
(4.50)

where q1,q2,q3 and q′
3 are the column vectors of the homography mapping matrices

Hq in equations 4.42 and 4.43, s is the isotropic scaling factor that maps d̂1 to unit

length and τ is the inter-plane scaling coefficient between both leg swing planes.
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4.2.4 Recovering gait dynamics

Having identified both homography transformations which map points on the metric

plane to the set of imaged leg swing planes, structure on the metric plane is ambiguous

only by a isometric Euclidean transformation (four-fold reflection about X,Y axes and

translation). Since the circular points I,J remain fixed under any similarity transforma-

tion, there are no further constraints that can be obtained solely from point correspon-

dences alone. Any remaining ambiguity must be resolved as a function of the dynamics

of gait.

Since we have identified both imaged leg swing planes, albeit through interpolation of

spatio-temporal motion structure, we can now recompute both sets of leg plane points

wi and w′
i on the metric plane that are sampled at frame boundaries. The points on

the metric plane are computed by applying the inverse mappings wi = (Hm1)
−1 x′

i and

w′
i = (Hm2)

−1 x′
i to the set of normalized image points x′

i.

The four-fold X,Y reflection ambiguity of the metric plane is resolved by consideration

of the gross spatio-temporal motion structure. Two smoothed data vectors ũ and ũ′,

generated from the mean X coordinate positions of articulated limb points by using a

centred three frame filter, are computed and fitted to a linear velocity model with a pair

of simultaneous equations.

ũi = vx · i + u0 (4.51)

ũ′

i = vx · i + u′

0 (4.52)

We choose to normalize gait sequences to emulate a left to right walk, so we ensure that

vx is positive by applying a reflection about the Y axis. We then update both sets of

points wi,w
′

i and homography mappings accordingly. The reflection about the X axis,

to ensure that the sky is upward, is achieved by determining the Y coordinate ordering

(hip → knee → ankle) from the means of each tracked limb point over all frames. The

only remaining ambiguity is then the Euclidean translation between both sets of metric

plane points.

Normal gait is bilaterally symmetric with a half phase shift. Since angles on the metric

plane are invariant to changes in translation, then the set of leg angles can be used

directly to compute the angular reconstruction function θ(t). Any periodic function can

be used to encode the leg angle function θ(t), though the obvious choice is to use a

Fourier series representation.

θ(t) = a0 +
n∑

k=1

ak cos(2πkf0t + φk) (4.53)
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For each articulated leg segment, we compute both sets of valid leg swing plane angles

a,a′ and their corresponding time sample vectors t, t′. We concatenate both angle

vectors A = (a⊤,a′⊤)⊤ and time sample vectors S = (t⊤, t′⊤ + 1
2T

⊤)⊤, where T is the

N-vector of gait period values T that facilitate the half phase bilateral shift. We then

determine, with fixed fundamental frequency f0 = 1/T , the Fourier series representation

of the limb angle function θ(t). The set of minimized Fourier coefficients for each leg

segment are stored in a biometric reconstruction vector Vi, where the coefficients of V

have the form:

V = (a0, a1, φ1, · · · , an, φn)⊤ (4.54)

With the knowledge of the normalized leg lengths D we can find by back substitution

the set of hip points X0 and X′
0 on the metric leg swing planes.

Figure 4.13: Articulated limb segment model. The hip point X0 is defined by a set of
Cartesian (x, y)⊤ coordinates. The remaining articulated limb endpoints are defined by
a connected set of polar coordinates (d, θ)⊤. The first limb segment length is canonically
normalized to unit length.

Figure 4.13 shows the model of articulated limb connections. The hip point X0 is given

by the Cartesian coordinates (x, y)⊤, while the remaining limb endpoints are defined

by a connected set of polar coordinates (d, θ)⊤, where the first limb segment has been

normalized to unit length. The Cartesian coordinates (xi, yi)
⊤ of any limb point with

index i in the model is then given by the equation:

(xi, yi)
⊤ =





(u, v)⊤ i = 0

(u, v)⊤ +
∑i

j=1 Dj · (sin θj , cos θj)
⊤ i ≥ 1

(4.55)

where the pose angles θj are given by evaluating the Fourier series functions θ(t) and

θ(t+T/2) at the current pose frame with the biometric coefficients Vj and fundamental

frequency f0 = 1/T .

Given any endpoint in the articulated limb set, we can compute the putative position
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of the hip point (u, v)⊤ by back substitution. Since a limb segment endpoint is com-

puted relative to its predecessor, measurement fitting errors will be compounded within

the back substitution process. A weighted putative hip point (u′
i, v

′
i, w

′
i)
⊤, where w′

i is

the associated weighting factor, is computed from each of the valid metric plane data

points (x̃i, ỹi)
⊤ of the articulated leg pose. The putative hip point, from any indexed

metric plane data point i = 0 · · ·m within the current leg pose, is given by the set of

equations.

(u′

i, v
′

i, w
′

i)
⊤ =





(m + 1) · (x̃i, ỹi, 1)⊤ i = 0

(m + 1 − i) ·
[
(x̃i, ỹi, 1)⊤ − ∑i

j=1 Dj · (sin θj , cos θj , 0)⊤
]

i ≥ 1

(4.56)

Where m is the total number of segments within the articulated leg model, i.e. two

for a model of upper and lower legs. The fitted hip point (u, v)⊤ is then given by the

summation of all valid weighted points.

(u, v)⊤ =

( ∑m
i=0 u′

i∑m
i=0 w′

i

,

∑m
i=0 v′i∑m
i=0 w′

i

)⊤

(4.57)

We only require a minimum of one metric plane landmark point within a leg pose to

compute the hip point. Even if the hip point itself is never imaged, the back substitution

process will generate the required Euclidean position. This is a common case within

fronto-parallel motion, where the hip point on the occluded side of the body is never

visible.

We recover both swing plane vectors o and o′ of hip point displacement positions,

through the back substitution of all leg poses within the motion sequence. The hip

point displacement function is separable in both X, Y Euclidean directions and can be

parameterised by fitting a modified Fourier series with an additional velocity compo-

nent vx to the recovered hip displacement vectors.

u(t) = vx · t + u0 +

n∑

k=1

ak cos(2πkf0t + φk) (4.58)

u′(t) = vx · t + u′

0 +
n∑

k=1

ak cos(2πkf0(t +
1

2
T ) + φk) (4.59)

We first compute two smoothed data vectors ũ and ũ′, generated from the mean X

coordinate positions of hip points by using a centred three frame filter, then fit the
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linear velocity model to the pair of simultaneous equations in t. This gives a reasonable

estimate of the linear velocity component vx and initial X pose displacements (u0, u
′
0) of

gait on the metric plane. Having recovered the linear motion parameters we can remove

them from the hip displacement vectors o,o′ and generate both vectors z, z′ of purely

oscillatory motion.

We fit a partitioned bilateral Fourier series representation of the hip displacement func-

tion to the sample data o,o′. A first order simple harmonic approximation is first fitted

by partitioning the parameter vector as:

P1 = (vx, a1, φ1 | u0, u
′

0)
⊤ (4.60)

Initial estimates of (a1, φ1) are computed by finding a1 based on the means of the two

largest and two smallest amplitudes within both oscillatory motion vectors z, z′. The

initial estimate of phase φ1 is chosen by evaluating a first order simple harmonic series

at three different phase positions φ1 = (−2π
3 , 0, 2π

3 ) and choosing the value with smallest

residual fitting error.

Minimization with fixed f0 = 1/T of the partitioned first order simple harmonic series P1

gives a good initial estimate of the gross motion structure of the origin limb points on

both swing planes. The computed estimates of P1 are then used to bootstrap the full

partitioned parameterisation.

P = (vx, a1, φ1, · · · , an, φn | u0, u
′

0)
⊤ (4.61)

The parameterisation is similar for the Y component hip displacement function, except

that vy is held fixed (zero). Both are computed using a partitioned Levenberg-Marquardt

algorithm with fixed fundamental frequency f0. See appendix C.4 for further details on

Levenberg-Marquardt minimization and parameter partitioning.

Having found the initial set of pose displacements (u0, v0)
⊤ and (u′

0, v
′
0)

⊤ of the hip

motion functions on both swing planes, we can apply the translations Ho and H′
o that

map them back to the coordinate system origin. We then update the homography

mapping matrices accordingly.
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H1 =
[

m1 m2 m3

]



1 −u0

1 −v0

1


 (4.62)

H2 =
[

m1 m2 m′
3

]



1 −u′
0

1 −v′0
1


 (4.63)

where mi are the column vectors of the reconstruction homography matrices after hav-

ing been updated by the suitable set of reflections in the X, Y axes that restores the

canonical gait coordinate system. We finally apply the inverse normalization transfor-

mation Kn
−1Hi in order that we map metric plane points to real image points. The

homography mapping functions, that map articulated leg motion from the metric plane

to the image plane, then have the form:

x1(t) =
[

h1 h2 h3

]
g(t : f0,D,X,Y,V) (4.64)

x2(t) =
[

h1 h2 h′
3

]
g(t + T/2 : f0,D,X,Y,V) (4.65)

where g(t) is the bilateral Fourier series function of articulated leg motion, X and Y are

the velocity and Fourier coefficients of the metric plane hip displacement functions, V

the Fourier coefficients of the upper and lower leg angle functions, and D is the vector

of normalized leg lengths.

4.2.5 Stratified reconstruction analysis

A synchronized, three camera system is set up as part of the laboratory experiments

described within section 3.4. The cameras are positioned at least three metres apart,

down one side of an indoor test track. Each camera is equipped with a different type of

lens and is orientated to fit the entire test track within its field of view. Four subjects,

who have retro-reflective marker balls attached to the principal joint features of the

skeletal system, are told to walk along a linear trajectory through the field of view of

all cameras. The captured set of image sequences are manually marked and the recon-

struction process performed. Since image acquisition is synchronous and gait dynamics

consistent in all three views, the only parameters that differ between image sequences

are the camera intrinsic and extrinsic parameters.

Figures 4.14, 4.15 and 4.16 show three different camera views of reconstructed gait
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(a) Frame 3 (b) Close up of frame 3

(c) Frame 34 (d) Close up of frame 34

(e) Frame 72 (f) Close up of frame 72

Figure 4.14: Left camera stratified reconstruction sequence: Three poses of a subject
at the beginning, middle and end of the sequence with reprojected landmark points.
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(a) Frame 11 (b) Close up of frame 11

(c) Frame 37 (d) Close up of frame 37

(e) Frame 67 (f) Close up of frame 67

Figure 4.15: Middle camera stratified reconstruction sequence: Three poses of a sub-
ject at the beginning, middle and end of the sequence with reprojected landmark points.
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(a) Frame 1 (b) Close up of frame 1

(c) Frame 32 (d) Close up of frame 32

(e) Frame 55 (f) Close up of frame 55

Figure 4.16: Right camera stratified reconstruction sequence: Three poses of a subject
at the beginning, middle and end of the sequence with reprojected landmark points.
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motion, with each figure depicting three pose positions taken at the start, middle and

end of the image sequence. Reconstruction for fronto-parallel gait motion is reasonably

accurate while the fitting error due to projective distortion is most apparent in both

oblique views. Since most gait motion is observed closer to the focus of expansion

(epipole) both spatially and temporally, the stratified technique of warping back to

the canonical frame favours fitting to these data points. The fitting process on the

metric plane does not minimize reprojection error within the image, hence reconstruction

error is most apparent in points furthest from the focus of expansion, as shown in

figures 4.14(a) and 4.16(e).

A further optimization step, to improve the fitting of the origin limb displacement func-

tion parameters X and Y with all other parameters fixed, was evaluated that minimizes

the image reprojection error of equation 4.64. Since metric plane points are mapped

into the image via the homography transformations H1 and H2, minimization of the pa-

rameters X,Y is no longer separable. The resulting improvement in fitting is marginal,

suggesting that most of the error is due to the coefficients of the homography mapping

matrices. This is hardly surprising, given that the stratified reconstruction technique is

derived from interpolated spatio-temporal motion structure and projective transforma-

tions of the plane. The majority of the reconstruction parameters are defined within the

elements of the bilateral Fourier motion functions X,Y,V, thus further optimization to

minimize reprojection error on these parameters alone requires a large computational

overhead for very little improvement. We conclude that any further minimization, other

than a full bundle adjustment, at this stage is unnecessary.

4.3 Maximum likelihood estimation

As a final optimization step we perform a bundle adjustment procedure that minimizes

image reprojection error with respect to all parameters of the gait projection function.

The set of parameters can be partitioned as:

P = (f0,D
⊤,X⊤,Y⊤,V⊤,h⊤

1 ,h⊤

2 | h⊤

3 ,h′⊤

3 )⊤ (4.66)

The set of parameters are optimized by performing a Levenberg-Marquardt minimiza-

tion on the partitioned vector P. For a discussion on non-linear minimization and the

Levenberg-Marquardt method see appendix C.2. The parameter partitioning is appar-

ent since both planes are independent. Refer to the section in appendix C.4 for details

on parameter partitioning and sparse methods.

Figures 4.17, 4.18 and 4.19 show three different camera views of reconstructed gait

motion with each figure depicting three pose positions taken at the start, middle and
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(a) Frame 3 (b) Close up of frame 3

(c) Frame 34 (d) Close up of frame 34

(e) Frame 72 (f) Close up of frame 72

Figure 4.17: Left camera reconstruction sequences using the pose parameterisation
H = (h⊤

1
,h⊤

2
,h⊤

3
,h′⊤

3
)⊤: Three poses of a subject at the beginning, middle and end of

the sequence with reprojected landmark points.
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(a) Frame 11 (b) Close up of frame 11

(c) Frame 37 (d) Close up of frame 37

(e) Frame 67 (f) Close up of frame 67

Figure 4.18: Middle camera reconstruction sequences using the pose parameterisation
H = (h⊤

1
,h⊤

2
,h⊤

3
,h′⊤

3
)⊤: Three poses of a subject at the beginning, middle and end of

the sequence with reprojected landmark points.
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(a) Frame 1 (b) Close up of frame 1

(c) Frame 32 (d) Close up of frame 32

(e) Frame 55 (f) Close up of frame 55

Figure 4.19: Right camera reconstruction sequences using the pose parameterisation
H = (h⊤

1
,h⊤

2
,h⊤

3
,h′⊤

3
)⊤: Three poses of a subject at the beginning, middle and end of

the sequence with reprojected landmark points.
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end of the image sequence. We can clearly see a marked improvement in the fitting over

the initial stratified reconstruction.

Since all image sequences are acquired from a set of synchronized cameras, the dynam-

ics of subject gait are consistent in all views. The reconstructed set of gait functions

g(t : f0,D,X,Y,V) should match for each of the camera sequences. Figures 4.20 and

4.21 show all three camera views of the reconstructed leg angle motion. The leg angle

motion for both upper and lower limbs is reasonably well aligned.

Figure 4.20: Metric reconstruction of the upper leg limb angles. The corre-
sponding unrectified set of angles are shown in figure 4.2.

Figure 4.21: Metric reconstruction of the lower leg limb angles. The corre-
sponding unrectified set of angles are shown in figure 4.3.

4.4 Imposing a rigid motion transform model

The parameterisation of the leg swing plane, specifically the limb inclination angle to

the vertical, has up until now been defined by a projectivity that maps the ideal line at

infinity to the line formed from the join of both worldspace leg swing planes. Another

way to parameterise the leg pose is to constrain the mapping to consist of only rigid

motion transformations (scaling, rotation and translation). We can compute a subject

limb plane pose by first applying a rotation Hα about the X axis to facilitate the leg swing

plane inclination to the vertical, then apply the leg plane selection translation Hβ to

map the required hip point to ∓1. This is followed by a scaling Hτ in the Z direction that
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generates the correct distance between both hip points. The subject pose projection P

then maps the set of worldspace points X into the image as x′ = PX.

P = K [R | t] HτHβHα (4.67)

The leg plane inclination angles α must have opposite signs because of the bilateral

symmetry of the human posture. From the basic properties of trigonometric func-

tions, cos(−α) = cos(α) and sin(−α) = − sin(α), the set of rotation transformation

coefficients in conjunction with the required limb plane selection β = ∓1 are defined

by (cos α, β sinα). The coefficients of the subject pose projection P can then be writ-

ten.

P = K [R | t]




1

1

τ

1







1

cos α −β sin α

β sinα cos α β

1




(4.68)

Subsequently, the set of z = 0 plane worldspace points X = (u, v, 0, w)⊤ are projected

into the image as x′ = PX.

x′ = K
[

r1 r2 r3 t
]




1

cos α −β sinα

τβ sinα τ cos α τβ

1







u

v

0

w




(4.69)

Projection of planar worldspace structure into the image is then achieved by the corre-

sponding leg plane homography transformations.

H =
[

K · r1 (cos α · K · r2 + τβ sinα · K · r3) (τβ · K · r3 + K · t)
]

(4.70)

The individual left and right leg plane homography transformations H1 and H2 then

have the form:

H1 =
[

m1 (cos α · m2 − sinα · m3) (m4 − m3)
]

(4.71)

H2 =
[

m1 (cos α · m2 + sinα · m3) (m4 + m3)
]

(4.72)
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where m1 = K · r1, m2 = K · r2, m3 = τ · K · r3 and m4 = K · t

The reconstruction algorithm is performed in a similar fashion to the previous method.

We first compute the initial stratified reconstruction of the two leg swing planes, with

the assumption that both are parallel α = 0.

H1 =
[

h1 h2 h3

]
(4.73)

H2 =
[

h1 h2 h′
3

]
(4.74)

The corresponding set of column vectors m are then related to those of h by:

m1 = h1 (4.75)

m2 = h2 (4.76)

m3 =
1

2
(h′

3 − h3) (4.77)

m4 =
1

2
(h′

3 + h3) (4.78)

The elements of the pose transformation mapping M can be parameterised by a single

13-vector.

M = (m⊤

1 ,m⊤

2 ,m⊤

3 ,m⊤

4 , α)⊤ (4.79)

The bundle adjustment procedure that minimizes reprojection error within the image

sequence is then parameterised by the vector:

P = (f0,D
⊤,X⊤,Y⊤,V⊤,M⊤)⊤ (4.80)

The set of parameters are optimized by performing a Levenberg-Marquardt minimization

on the vector P. See appendix C.2 for details on Levenberg-Marquardt minimization.

The elements of the pose projection vector M over parameterise the planar transforma-

tion that maps structure on the metric plane to the imaged limb swing planes, i.e. there

are 13 parameters that encode the set of transformations that have a total of 12 degrees

of freedom. The Jacobian matrix J is therefore rank deficient, as is the Hessian matrix

J⊤Σ−1
x J. The corresponding covariance matrix Σp of the set of estimated parameters P

is then determined by computing the pseudo-inverse, see appendix B.2.1.
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Σp = (J⊤Σ−1
x J)+ (4.81)

4.5 Reconstruction analysis

Figures 4.22, 4.23 and 4.24 show three different camera views of reconstructed gait mo-

tion using the rigid motion transform parameterisation M = (m⊤
1 ,m⊤

2 ,m⊤
3 ,m⊤

4 , α)⊤.

Each series of three images within the figure depicts pose positions taken at the start,

middle and end of the image sequence. The set of reprojected landmark points corre-

sponding to the optimized parameters of gait motion have also been marked within each

of the image frames.

The improvement in fitting over the previous method is most apparent in landmark

correspondences across the bilateral symmetry plane. Minimizing reprojection error

using the first method favours optimizing residual error with respect to the greatest

density of point distribution. The majority of the occluded points occur on one side

of the subject within the set of image sequences. Minimization then favours fitting

the inclined swing planes with a bias towards the set of points on the right side of the

body. Figure 4.17(e) clearly shows a fitting disparity between points on both sides of

the body. Since the left side hip point (landmark no. 08) is imaged in very few frames

then it is unsurprising that the residual error of this point is large when compared to

the others. In fact, because of the nature of the projective transformation model, the

root mean square residual fitting errors between imaged and reprojected points on both

swing planes are individually quite different. This is clearly seen from the comparison

of the individual root mean square image reprojection errors, shown within table 4.1,

corresponding to each separate leg swing plane.

Minimizing reprojection error using the rigid motion transform model M produces a

much closer fitting match than that of the first method. This is due to the more re-

alistic parameterisation of the leg pose. Subsequently, the residual error is distributed

more evenly over both leg planes, as imaged in figure 4.22(e). The difference between

parameterisations is shown by the root mean square pixel reprojection errors of both

independent leg swing planes, shown in table 4.1.

Method left π1 left π2 middle π1 middle π2 right π1 right π2

H 1.735 3.48 2.524 4.11 2.894 4.996

M 1.438 1.984 2.345 2.501 1.985 2.746

Table 4.1: Comparison of root mean square pixel reprojection errors between both
independent leg swing planes (π1, π2) of subject 00 for both methods of reconstruc-
tion. The bundle adjustment methods parameterise the leg swing planes by us-
ing a projectivity H = (h⊤

1
,h⊤

2
,h⊤

3
,h′⊤

3
)⊤, and a set of rigid motion transforms

M = (m⊤
1

,m⊤
2

,m⊤
3

,m⊤
4

, α)⊤.
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(a) Frame 3 (b) Close up of frame 3

(c) Frame 34 (d) Close up of frame 34

(e) Frame 72 (f) Close up of frame 72

Figure 4.22: Left camera reconstruction sequences using the pose parameterisation
M = (m⊤

1
,m⊤

2
,m⊤

3
,m⊤

4
, α)⊤: Three poses of a subject at the beginning, middle and

end of the sequence with reprojected landmark points.
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(a) Frame 11 (b) Close up of frame 11

(c) Frame 37 (d) Close up of frame 37

(e) Frame 67 (f) Close up of frame 67

Figure 4.23: Middle camera reconstruction sequences using the pose parameterisation
M = (m⊤

1
,m⊤

2
,m⊤

3
,m⊤

4
, α)⊤: Three poses of a subject at the beginning, middle and

end of the sequence with reprojected landmark points.
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(a) Frame 1 (b) Close up of frame 1

(c) Frame 32 (d) Close up of frame 32

(e) Frame 55 (f) Close up of frame 55

Figure 4.24: Right camera reconstruction sequences using the pose parameterisation
M = (m⊤

1
,m⊤

2
,m⊤

3
,m⊤

4
, α)⊤: Three poses of a subject at the beginning, middle and

end of the sequence with reprojected landmark points.
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A comparison, for each of the four test subjects, of the root mean square residual fitting

errors between the three reconstruction methods is summarised in table 4.2. Naturally,

we expect the initial stratified reconstruction to have the largest fitting error. The

improvement in reprojection error is quite pronounced between the two MLE methods,

and is reflected in the comparison between reconstructed leg angle functions on the

metric plane. The set of reconstructed leg angles shown in figures 4.25 and 4.26, match

considerably more closely by using the rigid motion transform parameterisation M, over

those of the projectivity parameterisation H shown in figures 4.20 and 4.21.

Method left middle right

Stratified 7.489 6.171 9.033

H 2.349 2.802 3.719

M 1.609 2.479 2.317

(a) Subject 00

Method left middle right

Stratified 8.545 5.485 8.373

H 2.042 3.276 4.667

M 1.496 2.811 2.377

(b) Subject 01

Method left middle right

Stratified 8.794 9.893 9.895

H 2.775 2.821 5.411

M 2.063 2.246 2.481

(c) Subject 02

Method left middle right

Stratified 3.503 3.709 6.732

H 2.285 2.874 3.424

M 1.399 1.895 2.868

(d) Subject 03

Table 4.2: Comparison of root mean square pixel reprojection errors between the
three different reconstruction methods. Errors are compared for subjects in each
camera view. The bundle adjustment methods parameterise the leg swing planes
by using a projectivity H = (h⊤

1
,h⊤

2
,h⊤

3
,h′⊤

3
)⊤, and a set of rigid motion transforms

M = (m⊤
1

,m⊤
2

,m⊤
3

,m⊤
4

, α)⊤.

The reconstructed set of gait functions g(t : f0,D,X,Y,V) for each of the four test

subjects are shown in figures 4.25 to 4.32. Each reconstructed set of leg angle plots,

corresponding to the three different views, match reasonably well. This demonstrates

that the dynamics of gait can be recovered, irrespective of the camera parameters and

the subject’s motion trajectory.

4.5.1 Intra and inter-class variation

We have discussed in the previous chapter, the intra and inter-class variation of the

proposed set of biometric parameters P, for subjects walking over a range of speeds

on a treadmill. We have outlined a suitable Euclidean distance metric ρ = ‖P̂ − P‖
between a known P̂ and unknown P gait feature vector. The parameters within the

feature vector P correspond to the coefficients bk and ψk of the modified Fourier series

that represents the articulated limb angle motion.
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Figure 4.25: Reconstruction of upper leg motion for subject 00 using the rigid motion
transform pose parameterisation M = (m⊤

1
,m⊤

2
,m⊤

3
,m⊤

4
, α)⊤.

Figure 4.26: Reconstruction of lower leg motion for subject 00 using the rigid motion
transform pose parameterisation M = (m⊤

1
,m⊤

2
,m⊤

3
,m⊤

4
, α)⊤.

Figure 4.27: Reconstruction of upper leg motion for subject 01 using the rigid motion
transform pose parameterisation M = (m⊤

1
,m⊤

2
,m⊤

3
,m⊤

4
, α)⊤.
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Figure 4.28: Reconstruction of lower leg motion for subject 01 using the rigid motion
transform pose parameterisation M = (m⊤

1
,m⊤

2
,m⊤

3
,m⊤

4
, α)⊤.

Figure 4.29: Reconstruction of upper leg motion for subject 02 using the rigid motion
transform pose parameterisation M = (m⊤

1
,m⊤

2
,m⊤

3
,m⊤

4
, α)⊤.

Figure 4.30: Reconstruction of lower leg motion for subject 02 using the rigid motion
transform pose parameterisation M = (m⊤

1
,m⊤

2
,m⊤

3
,m⊤

4
, α)⊤.
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Figure 4.31: Reconstruction of upper leg motion for subject 03 using the rigid motion
transform pose parameterisation M = (m⊤

1
,m⊤

2
,m⊤

3
,m⊤

4
, α)⊤.

Figure 4.32: Reconstruction of lower leg motion for subject 03 using the rigid motion
transform pose parameterisation M = (m⊤

1
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θ(t) = a0 + a1 cos(2πf0 · (t + ts)) +

a1 ·
n∑

k=2

bk cos(2πkf0 · (t + ts) + ψk) (4.82)

where bk = ak/a1 are the normalized amplitude coefficients, ψk = φk − kφ1 are the

aligned phase coefficients of the articulated leg angle function and ts = φ1/2πf0 the

required coordinate system time shift. See the discussion of the limb angle function, in

section 3.6.4 on page 92, for further details.

The proposed biometric feature vector contains five components P = (d2, b2, ψ2, b
′
2, ψ

′
2)

⊤,

where d2 is the normalized lower leg segment length, (b2, ψ2) are the normalized ampli-

tude and phase terms of the upper leg angle function, and (b′2, ψ
′
2) the corresponding coef-

ficients of the lower leg angle function. The proposed gait distance metric ρ = ‖P̂ − P‖,
that is suitable for subject identification, can then be written:
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ρ 2 =
(
d̂2 − d2

)2
+

(
b̂2 − b2

)2
+

(
b2
2 (1 − v̂⊤

2 v2)
)2

+

(
b̂ ′

2 − b ′2

)2
+

(
b2
2 (1 − v̂ ′

2
⊤ v ′

2)
)2

(4.83)

where the phase direction vectors v̂ and v are commuted from polar to Euclidean form.

v̂2 = (cos ψ̂2, sin ψ̂2)
⊤ v̂ ′

2 = (cos ψ̂ ′

2, sin ψ̂ ′

2)
⊤ (4.84)

v2 = (cos ψ2, sinψ2)
⊤ v′

2 = (cos ψ′

2, sin ψ′

2)
⊤ (4.85)

We describe the variation between the measurements ρ in two ways. The variation of

differences in measurements from the same subject (intra-class variation), and the vari-

ation of differences between measurements of different subjects (inter-class variation).

We first compute the matrix D of difference measurements ρ, by determining the set

of biometric distances Di,j = ‖Pi − Pj‖ between the reconstructed gait feature vectors

from different camera views. The difference matrix is symmetric and is formed from the

same valid set of test subjects that correspond to the treadmill experiments described

in section 3.6. The difference matrix then has the block form:

D =




Daa Dab Dac

D⊤

ab Dbb Dbc

D⊤
ac D⊤

bc Dcc


 (4.86)

where each sub-block is a 3 × 3 matrix, corresponding to the set of biometric difference

measures for the motion reconstructions within the left, middle and right camera views.

The diagonal blocks Daa, Dbb and Dcc represent the set of parameter differences for

individual subjects over the three camera views, while the off-diagonal blocks Dab, Dac

and Dbc represent the set of parameter differences between different subjects.

The intra and inter-class difference measurement sets are then extracted from the ele-

ments of D. Having created both class data sets, we can then find the intra-class mean

and variance µv, σ
2
v and the inter-class mean and variance µc, σ

2
c .

4.5.1.1 Variation of reconstructed limb motion from different camera views

We first investigate the variation within individual parameters of the biometric feature

vector P = (d2, b2, ψ2, b
′
2, ψ

′
2)

⊤, by evaluation of two properties that are dependent on

the class variances σ2
v and σ2

c .
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The class distinction quantity γ describes the percentage of the intra-class variance

compared with that of the inter-class variance, i.e. γ = 100 × σ2
v/σ2

c . Low percentages

indicate good discrimination between different subjects, while high percentages highlight

the inability of the biometric parameter to distinguish between people at all.

The parameter distinction quantity β describes the intra-class parameter deviation as

a percentage of the mean subject parameter estimate µp , i.e. β = 100 × σv/µp . This

percentage gives us an indication of the relative magnitude of the intra-class parameter

deviation.

Table 4.3 shows the intra and inter-class variance along with the corresponding levels

of class γ and parameter β distinction for the set of reconstructed overground motion

parameters. The order of discrimination between parameters is comparably similar to

the results of treadmill walking. The static geometric parameter d2, corresponding to

the normalized lower leg length, is the most discriminating. The phase components have

the best discrimination between the normalized limb angle function coefficients.

Parameter Intra-class Inter-class γ β γ (TM) β (TM)

d2 1.77829e-05 0.007025 0.25% 0.45% 1.61% 0.91%

b2, b
′
2 1.83886e-05 0.000193 38.86% 1.12% 57.64% 3.78%

ψ2, ψ
′
2 2.16145e-06 1.08406e-05 19.94% 0.64% 40.15% 2.03%

Table 4.3: Individual discrimination of parameters within the biometric feature vec-
tor P. The class and parameter distinction estimates γ (TM) and β (TM) corresponding
to the treadmill motion experiments are also shown for comparison.

Since image acquisition is synchronous between views and the underlying gait motion

is the same, the parameter discrimination quantity β is much better for overground

walking than for treadmill motion. The variation between reconstructions in the left,

middle and right views can then be attributed to the geometric error associated with

the planar limb swing model of leg motion.

Figure 4.33(a) shows the difference matrix D corresponding to the combined parameters

of the proposed biometric feature vector P = (d2, b2, ψ2, b
′
2, ψ

′
2)

⊤. The magnitude of the

intra-class variance is estimated at 1.09% of the inter-class variance level. This indicates

that the set of reconstructed subject biometric feature vectors are well separated.

We then classify each subject by thresholding the difference matrix D at the 3σv devia-

tion level. The thresholded difference matrix shown in figure 4.33(b) indicates that the

pose reconstruction process is good, with an equal error rate in the region of ≃ 3.7%.

4.5.1.2 Variation of parameters between treadmill and overground walking

We have discussed the intra and inter-class variation of biometric parameters from differ-

ent camera views of reconstructed motion. We have also discussed within section 3.6.7.2



Chapter 4 Pose Invariant Gait Reconstruction 172

(a) max = 0.142023, intra = 2.56206e-05,

inter = 0.00235811, γ = 1.09%.

(b) thresh = 3σv , false accept = 0%,

false reject = 7.41%

Figure 4.33: Difference matrices D corresponding to the proposed biometric feature
vector P = (d2, b2, ψ2, b

′
2
, ψ′

2
)⊤. (a) The computed difference matrix D. (b) The thresh-

olded difference matrix at the 3σv deviation level.

the uniqueness of the proposed biometric feature vector, for subject treadmill motion

over a number of customary walking speeds. Here, we cross compare the recovered bio-

metric feature vectors for treadmill and overground walking. Since the same set of limb

markers were used within both experiments, and these experiments run consecutively

as described within the motion capture procedure outlined in section 3.7, we expect the

underlying limb motion to be similar for both experiments.

(a) max = 0.151327, intra = 0.000230645,

inter = 0.00152755, γ = 15.1%.

(b) thresh = 3σv , false accept = 16.67%,

false reject = 16.67%

Figure 4.34: Difference matrices D corresponding to the proposed biometric feature
vector P = (d2, b2, ψ2, b

′
2
, ψ′

2
)⊤. (a) The computed difference matrix D between tread-

mill and overground walking motions. (b) The thresholded difference matrix at the 3σv

deviation level.

Figure 4.34(a) shows the difference matrix D corresponding to the proposed biometric

feature vector P = (d2, b2, ψ2, b
′
2, ψ

′
2)

⊤ between treadmill and overground walking mo-
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tions. The magnitude of the intra-class variance is estimated at 15.1% of the inter-class

variance level. This level of discrimination is better than the treadmill experiments

alone, where the class distinction had a level of γ = 21.03%, however the corresponding

classification error is higher. This may indicate that the separation between the most

dissimilar subject is greater, though the separation between the closest different subject

is small enough to cause a significant increase in classification error.

The thresholded difference matrix shown in figure 4.34(b) shows a relatively high degree

of classification error, with an equal error rate of ≃ 16.7%. The corresponding equal

errors rates for the treadmill and overground walking motions are individually much

lower, with errors of ≃ 3.1% and ≃ 3.7% respectively. This indicates that the recon-

structed biometric features are individually consistent but are different between the two

experiments.

There are a number of possible reasons why the intra-class gait features may differ be-

tween experiments: i) Gait motions may display differences for treadmill walking because

of the unnatural walking surface. ii) The placement of markers changed between exper-

iments. iii) The bilateral limb swing motion model caused a consistent but significant

difference in the reconstructed limb lengths between experiments.

The experimental procedure described within section 3.7 was designed to minimize fluc-

tuations in the naturalness of gait motion, by ensuring that subjects have enough time

to familiarise themselves with treadmill walking. However, we have little further control

over the circumstances that enable us to ensure that motion is natural.

Since the overground walking experiments are run consecutively after those of the tread-

mill, changes in limb marker positions are unlikely and would only present as a change

in the normalized limb length d2 of the subject in question. Table 4.4 shows the set

of normalized limb length parameters d2 for the subjects during the series of treadmill

experiments. The variance σ2
d of the normalized limb lengths d2 remains low for each

subject. The individual parameter distinctions β = 100×σd/µd, that describe the mag-

nitude of the parameter deviation as a percentage of the mean µd, indicate that the

normalized limb lengths deviate within an order of only 1% of their values.

Motion Subject 00 Subject 02 Subject 03

3 km/h 0.900003 0.750785 0.946243

4 km/h 0.902166 0.749397 0.957006

5 km/h 0.900241 0.753096 0.972601

6 km/h 0.912581 0.759761 0.973795

mean µd 0.903748 0.75326 0.962411

variance σ2
d 2.67145e-05 1.58323e-05 0.000131007

distinction β 0.57% 0.53% 1.19%

Table 4.4: Normalized leg length parameters d2 for treadmill walking.
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Table 4.5 shows the corresponding set of normalized limb lengths d2 for the overground

walking experiments. The variance σ2
d of the normalized limb lengths d2 remains low

for each subject. However, the mean parameter estimates µd are significantly different

between treadmill and overground walking experiments, suggesting that this is either a

marker or modelling problem.

Motion Subject 00 Subject 02 Subject 03

left 0.977539 0.78118 1.026218

middle 0.984784 0.789767 1.012254

right 0.979328 0.792153 1.014623

mean µd 0.980551 0.7877 1.0177

variance σ2
d 9.49426e-06 2.22037e-05 3.72289e-05

distinction β 0.31% 0.6% 0.6%

Table 4.5: Normalized leg length parameters d2 for overground walking.

The variance σ2
d of the normalized limb length parameters d2 is similar for each subject

in both experiments. We can then compute the parameter difference ∆d2 between ex-

periments, and express this as a percentage of the mean subject limb length deviation

σs = 5.74805e-03 (all subjects from both experiments), i.e. τ = 100×∆d2/σs. Table 4.6

shows the mean parameter differences ∆d2 between the treadmill and overground walk-

ing experiments. The parameter differences ∆d2 are relatively large and are within the

order of 600% < τ < 1300%, for all subjects between experiments. This indicates that

the difference between the parameters of treadmill and overground walking is between

six and thirteen times higher than the intra-experimental deviation alone.

Subject 00 Subject 02 Subject 03

∆d2 0.076803 0.03444 0.055289

τ 1336.15% 599.16% 961.87%

Table 4.6: Parameter differences ∆d2 between treadmill and overground walking.

One difference between the experiments lies in the fact that the treadmill experiments

use a single set of limb markers, from the swing plane closest to the camera. Both

bilateral limb swing planes are used within the reconstruction of the overground walking

motions. It is often difficult to mark the joint features consistently on both sides of the

body, therefore the difference between marked limb segment lengths on both planes could

account for the dissimilar normalized limb length parameters d2 in tables 4.4 and 4.5.

The articulated limb motion within the treadmill experiments outlined in section 3.6.1

can be modelled by the partitioned parameter vector:

P =
(
h⊤, d2, f0,V

⊤ | X⊤

1 , · · · ,X⊤

N

)⊤

(4.87)

where h is the vector of homography coefficients, corresponding to the limb swing plane,
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that maps metric plane points into the image. Parameter d2 is the normalized lower leg

segment length, f0 the fundamental frequency of gait and V contains the Fourier series

coefficients of the upper and lower limb angle functions. The set of hip positions within

the sequence are encoded by the subsidiary parameters Xi = (ui, vi)
⊤.

The algorithm described within section 3.6.1, to compute the representation of leg mo-

tion during treadmill walking, requires that we supply an initial estimate of the leg swing

plane homography matrix. This was provided by placing a calibration grid against the

subject’s leg plane while in the quiet standing posture. We can use the computed leg

swing plane H1, determined from the coefficients of M in equation 4.71, as a similar

initial estimate in the case of overground walking. We then perform without modifica-

tion, exactly the same algorithm on the marked joint features of the closest leg, for the

overground walking sequences. Table 4.7 shows the corresponding set of normalized limb

lengths d2 for the overground walking experiments, with only a single reconstructed leg

swing plane. The results are similar to the bilateral parameterisation of the overground

walking shown in table 4.5. This suggests that the landmark features have been marked

appropriately on both sides of the body and are not responsible for the parameter dif-

ferences between treadmill and overground walking experiments.

Motion Subject 00 Subject 02 Subject 03

left 0.985986 0.793071 1.016425

middle 0.98625 0.789874 1.00853

right 1.000314 0.801851 1.009163

mean µd 0.990851 0.794933 1.01137

variance σ2
d 4.47978e-05 2.56405e-05 1.28316e-05

Table 4.7: Normalized leg length parameters d2 for treadmill walking. A single limb
plane is used to reconstruct the motion.

One of the advantages of parameterising the set of frame hip positions Xi = (ui, vi)
⊤

independently, is that we can disassociate the error caused by modelling the hip displace-

ment motion from the reconstruction process. Table 4.8 shows the root mean squared re-

projection error corresponding to the bilateral Pm = (M⊤, d2, f0,X
⊤,Y⊤,V⊤)⊤ and the

unilateral Ph = (h⊤, d2, f0,V
⊤ | X⊤

1 , · · · ,X⊤

N )⊤ parameterisations of articulated limb

motion.

We can clearly see a marked reduction in reprojection error for the unilateral param-

eterisation of motion. This suggests that a significant proportion of the error is due

to the mis-modelling of the hip motion. Specifically, the measured difference between

treadmill and overground experimental parameters is an artifact of the lateral depth

deviation and departure from planarity, of the fixed leg swing plane assumption.

The location of joint markers, the camera set-up and the style of walking were all kept

the same for both treadmill and overground walking experiments. In order to make
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Method left middle right

Pm 1.438 2.501 1.985

Ph 0.804 1.413 0.834

(a) Subject 00

Method left middle right

Pm 1.405 3.23 2.235

Ph 0.996 2.383 1.074

(b) Subject 01

Method left middle right

Pm 1.948 2.041 2.409

Ph 0.787 1.247 1.114

(c) Subject 02

Method left middle right

Pm 1.268 1.919 1.743

Ph 0.849 1.092 1.021

(d) Subject 03

Table 4.8: Comparison of root mean square pixel reprojection errors between the
bilateral Pm = (M⊤, d2, f0,X

⊤,Y⊤,V⊤)⊤ (reprojection error of right leg joint features
only) and unilateral Ph = (h⊤, d2, f0,V

⊤ | X⊤
1

, · · · ,X⊤

N )⊤ reconstruction methods.
Errors are compared for subjects in each camera view.

full use of the available resolution, the treadmill was placed half a metre closer to the

camera than the path for overground walking. This allows us to fill the camera view

with each of the subject’s limb motions, thus allowing us to make accurate observations.

The greater depth of the overground walking allows us to image the subject’s motion

in all camera views. The disparity between depths, though only relatively small, is the

likely cause for the difference in parameters between treadmill and overground walking

experiments.

4.6 Reconstruction discussion

Most of the differences between reconstructed gait motions occur in regions of high

curvature. This raises several interesting questions about the sources of error in the

fitting model, the minimization strategy and indeed the model itself. The discussion

given here is intended to show that the author has given some thought to possible

improvements that can be made to the reconstruction process, though due to time

restrictions was not able to explore any of these avenues further.

4.6.1 Lateral displacement

The abrupt changes in the vertical displacement of the body, caused by reciprocal bipedal

locomotion, are minimized by a series of limb motions. These motions reduce the overall

muscular effort required to progress the person forward. As a result, the body’s centre

of gravity follows a smooth three dimensional sinusoidal path. Figure 4.35 illustrates the

resulting lateral deviation of the head and body segments from the progression mid-line

of motion.
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Figure 4.35: Lateral displacement.

The standard pixel reprojection error was discussed within section 3.5.1 to quantify the

level of error over the field of view. The standard pixel error of imaged motion at a

distance of 3212.3 mm from the camera was computed at 2.8 pixels. This level of error

is similar to the root mean square pixel reprojection errors, shown in table 4.2, after

optimization of the gait parameters.

We may model this sinusoidal lateral displacement of subject motion within the param-

eterisation of gait. We can still assume that the motion dynamics of both limbs is planar

and inclined at an angle to the vertical. Each planar subject pose within the sequence

is then laterally displaced in the Z direction by the sinusoidal displacement function.

Figure 4.36 shows the apparent limb sweep generated by this sinusoidal lateral motion

model.

Figure 4.36: Sinusoidal lateral displacement of planar limb motion.

The period of the sinusoidal lateral motion is the same as the gait cycle T , thus it

can be modelled by a simple harmonic function z(t) = γ sin(2πf0t + ψ). The amplitude

coefficient γ represents the extent of the lateral displacement, while the phase term ψ

directly encodes the phase of gait from the neutral double stance position. Double stance

poses then occur at zero positions of the simple harmonic function z(t) = 0.

t =
kT

2
− ψ

2πf0
k = 0, 1, 2, · · · ,∞ (4.88)
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We can compute a subject leg plane pose by first applying a rotation Hα about the X

axis to facilitate the limb swing plane inclination to the vertical, then apply the limb

plane selection translation Hβ to map the required hip point to ∓1. We then apply the

sinusoidal lateral displacement translation Hγ in the Z direction. This is followed by

a scaling Hτ in the Z direction that generates the correct distance between both hip

points for a subject. The subject pose projection P then maps the set of worldspace

points X into the image as x′ = PX.

P = K [R | t] HτHγHβHα (4.89)

The transformation matrices Hτ , Hβ and Hα are identical to those described within the

previous sections, while the lateral displacement translation Hγ has the form:

Hγ =




1

1

1 γ sin(2πf0t + ψ)

1




(4.90)

Subsequently, the set of z = 0 plane worldspace points X = (u, v, 0, w)⊤ are projected

into the image as x′ = PX.

x′ = K
[

r1 r2 r3 t
]




1

cos α −β sin α

τβ sinα τ cos α τ(β + γ sin(2πf0t + ψ))

1







u

v

0

w




(4.91)

Projection of planar worldspace structure into the image is then achieved by the corre-

sponding leg plane homography transformations.

H = K
[

r1 (cos α · r2 + τβ sinα · r3) τ(β + γ sin(2πf0t + ψ)) · r3 + t
]

(4.92)

The individual left and right leg plane homography transformations H1 and H2 then

have the form:
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H1 =
[

m1 (cos α · m2 − sinα · m3) (m4 + γ sin(2πf0t + ψ) · m3 − m3)
]

(4.93)

H2 =
[

m1 (cos α · m2 + sinα · m3) (m4 + γ sin(2πf0t + ψ) · m3 + m3)
]

(4.94)

where m1 = K · r1, m2 = K · r2, m3 = τ · K · r3 and m4 = K · t

The elements of the pose transformation mapping M can be parameterised by a single

15-vector.

M = (m⊤

1 ,m⊤

2 ,m⊤

3 ,m⊤

4 , α, γ, ψ)⊤ (4.95)

4.6.2 Fourier coefficients

Following medical studies [3], which suggest that the maximum frequency content of

human walking is ∼ 5 Hz and that the fundamental frequency of normal gait is ∼ 1 Hz,

then a choice of five Fourier harmonics has been employed to model the limb motion dy-

namics of gait. We have demonstrated that good reconstruction results can be achieved

with this number of harmonics. The number of parameters required to fully model the

dynamics of the upper and lower leg motion Pg = (f0,D
⊤,X⊤,Y⊤,V⊤

1 ,V⊤
2 )⊤ on the

metric plane is shown in table 4.9. Together with the 13 parameters of M required to

encode the subject pose, a total of 58 parameters are needed to model the dynamics of

leg motion.

Parameters coefficients total

f0 f0 1

D d2 1

X (vx, a1, φ1, · · · , an, φn)⊤ 11

Y (a1, φ1, · · · , an, φn)⊤ 10

V1 (a0, a1, φ1, · · · , an, φn)⊤ 11

V2 (a0, a1, φ1, · · · , an, φn)⊤ 11

45

Table 4.9: Breakdown of parameters required to model the upper and lower legs of
gait motion with n = 5 Fourier harmonics.

Reconstruction of gait could benefit from a greater number of Fourier harmonics n ≥ 6

in order to obviate the effect of poor fitting in regions of high curvature. It may even be

beneficial to parameterise the hip displacement coefficients X,Y with a different number

of Fourier harmonics than the leg angle function coefficients V.
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4.6.3 Periodic gait series function

The dynamics of gait have been captured by using a modified Fourier series function g(t)

to approximate the articulated leg motion. The Fourier function is formed from an

evenly distributed mixture of harmonic contributions. The power spectra of gait har-

monics show that most of the energy is associated with the lower order harmonics. The

unique features of gait are mostly apparent in the higher order components, where fast

changes in musculature structure causes rapid changes in the limb function. This is

true, specifically during the pre-swing phase of gait where the body weight is rapidly

transferred to the other support limb. The Fourier representation does a respectable

job of representing the general motion structure of the limbs. However, it does tend to

capture the dynamics of the swing phase, since stance/swing phases (stance phase of

one limb is the swing phase of the other) account for 80% of the complete gait cycle.

This is illustrated in the limb angle plots within figures 4.25 to 4.32 which show good

fitting during periods of rapidly changing angle. The gait function during the loading

response and pre-swing phases of gait account for only 20% of the gait cycle but contain

a substantial percentage of the expended energy. The apparent smoothing and subse-

quent misrepresentation of the gait function during such an important phase of gait may

possibly be avoided by changing the gait series function.

4.6.4 Propagation of covariance in initial stratified reconstruction

After computing the set of homography mappings Hm1 and Hm2, that project structure

from the metric plane to the imaged leg swing planes, we may recompute the set of points

wi and w′

i on the metric plane that are sampled at frame boundaries, by applying

the inverse mappings wi = (Hm1)
−1 xi and w′

i = (Hm2)
−1 xi. We have shown that

minimization of the gait function g(t : f0,D,X,Y,V) on the metric plane does not

optimize image reprojection error, hence fitting is biased towards the greatest density

of imaged points closest to the epipole. The minimization described in section 4.2.4 to

recover the parameters of gait dynamics assumes that all recovered metric plane points

have equal measurement deviation errors. Subsequently, the normal equations required

to solve the Newton iteration step can be written J⊤J · δa = J⊤r.

If we know the measurement error deviations Σx of the set of imaged points, then

assuming that there is no uncertainty in any of the homography transformations Hm,

we can propagate the set of image measurement errors to the metric plane by computing

the covariance matrix corresponding to each of the metric plane points wi.

Σw = JxΣxJx
⊤ (4.96)

where the Jacobian matrix is Jx = ∂w/∂x, computed with the inverse homography
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mapping matrices H′
m = H−1

m , that map the imaged points x onto the metric plane as

w = H′
m x. The set of normal equations required to solve the Newton iteration step

then have the form.

J⊤Σ−1
w J · δa = J⊤Σ−1

w r (4.97)

This should obviate some of the bias within the fitting procedure, in order that we obtain

a better initial estimate of the gait parameters. However, we have shown that most of

the source of error corresponds to the set of computed homography matrices, due in

part to the interpolation of spatio-temporal motion structure and the process of back

projection.

4.7 Conclusions

Parameterisation of subject motion is split into two phases: i) Limb stance, non-linear

modelling of the articulated leg motion within the canonical motion plane; ii) Pose

projection, linear projection of the worldspace subject motion structure into the image.

• Limb stance. Human motion is modelled by using a cardboard person assump-

tion. A subject’s body and limb parts are represented as a set of repeating spatio-

temporal motion patterns within separate planes. The canonical representation of

leg motion is approximated by an articulated limb function g(t) on two bilateral

swing planes, which are inclined at an angle with the vertical. The dynamics of

the gait function on both leg planes are related by a half phase shift, such that one

leg undergoes exactly the same motion as the other, only half a gait cycle later.

Corresponding left and right leg poses on the metric plane are then determined

by evaluation of the biometric limb functions at g(t) and g(t + T/2) respectively,

where T is the period of gait.

The canonical representation of gait assumes that a person walks from left to right

with constant velocity. Since we are unable to gauge depth from monocular motion

sequences, the scale ambiguity of a subject’s height is resolved by normalizing the

upper leg segment to unit length. We represent the non-linear articulated leg

function by the modified Fourier series g(t : f0,D,X,Y,V), where D is the vector

of normalized leg lengths, X and Y are the velocity and Fourier coefficients of

the metric plane hip displacement functions, and V the Fourier coefficients of the

upper and lower leg angle functions.

• Pose projection. Projection of this planarized human motion model into the

image is achieved by a parameterised set of homography transformations M that

encode both the individual leg plane homography mappings H1 and H2. Each
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planar homography consists of a set of rigid motion transformations (scaling, ro-

tation and translation). A subject’s leg plane pose is computed by applying a

rotation Hα about the X axis to facilitate the limb swing plane inclination to the

vertical, then applying the leg plane selection translation Hβ to map the required

hip point to ∓1. This is followed by a scaling Hτ in the Z direction that generates

the correct distance between both hip points for a subject. The worldspace ori-

entation, subject displacement and subsequent projection into the image is then

achieved via the linear pin-hole projection transformation K[R | t], where K is

the camera calibration matrix and R, t are the camera extrinsic pose matrices.

Since the canonical spatio-temporal motion structure of gait is modelled on the

metric z = 0 plane, projection of articulated leg points into the image is achieved

by the homography matrices formed from the first, second and fourth columns of

the pose projection transformation.

These two phases of subject motion projection are independent. The pose projection

step is based on the linear projection of planar geometry into the image, thus enables

us to determine an inverse transformation that recovers the canonical motion structure

of subject gait from the corresponding imaged features.

We have demonstrated that gait has sufficient properties that allows us to exploit the

structure of articulated limb motion, in order to remove the unknown camera and pose

ambiguities and reconstruct the underlying gait signature. We have assumed only that

a consistent set of limb landmark points can be tracked within an image sequence and

that people walk in straight lines, over at least two gait cycles.

We developed a stratified approach to linear trajectory gait reconstruction that uses the

constraints of articulated leg motion in order to recover the fronto-parallel view of gait

dynamics. The stratification process of computing this rectification transformation is

split into three stages: Hp,Ha and Hs. Each stage of the rectification is designed to

remove a number of degrees of freedom from the 8 required to fully determine a planar

homography. Constraints are formed in each stage by use of properties and invariants

associated with the particular class of projective transformation.

• Perspective transformation. We first compute the perspective transforma-

tion Hp that recovers the affine properties of the leg swing planes. We initially

assume that all of a subject’s cardboard limb planes are parallel, thus they all

share a common vanishing line within the image. Identification of landmark cor-

respondences and subject periodicity is solved simultaneously by computing the

self similarity of structure over the image sequence. The imaged positions of re-

peated gait poses are related by a conjugate translation of the leg swing plane.

We combine constraints from left and right leg planes in order to determine the

coefficients of both transformations. We then extract the shared vanishing line
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of the limb swing planes from these coefficients and subsequently compute the

required perspective transformation Hp that restores the affine properties of the

limb planes.

• Affine transformation. Metric properties of the plane are then recovered by

identifying the images of the circular points I′ and J′ from the fixed lengths of the

tracked leg segments throughout the image sequence. Linear constraints on the el-

ements of the affine transformation Ha, that maps the imaged circular points back

to their canonical values, are computed from pairs of corresponding leg segments

taken at different frame positions.

• Similarity transformation. The scale ambiguity on both leg planes is removed

by constraining the upper leg segment to be of unit length. The circular points I,J

remain fixed under any similarity transformation Hs, thus the remaining transla-

tional ambiguity is resolved by enforcing the bilateral symmetry constraint between

both planes of recovered gait motion. We then compute a robust estimation of the

gait motion function by fitting the articulated leg motion on both limb planes to

a single modified Fourier series function.

Details of two different reconstruction methods were given that compute the maximum

likelihood estimates of the corresponding set of parameters. The methods differ only in

the way that the metric plane points are projected to the images of the leg swing planes.

The first uses a projectivity to facilitate the leg swing plane inclination angle. Experi-

mental analysis shows that the fitting procedure is sensitive to the distribution of points

between both planes. The unbalanced numbers of points, due to missing or occluded

points on one of the planes, biases the reconstruction in favour of the data on the other

plane.

The second uses only rigid motion transformations (rotation, translation and scale)

to parameterise the plane poses. This offers a more realistic parameterisation of the

mapping between metric and image planes. Correspondingly, this method demonstrates

better reconstruction results over those obtained from the first method. An analysis of

the reconstructed gait functions, corresponding to a trial set of four people, shows that

each subject’s signature matches quite well over a number of different camera viewpoints.

We have identified a number of issues that need to be considered further. A discussion

was given within the previous section that addressed many of these concerns, though

only from a theoretical perspective. More work needs to be done in order to validate

the usefulness of this research and demonstrate its practical significance within the field

of biometric identification.

• Periodicity from self-similarity of pixel correspondences. The task of de-

termining periodicity and point correspondences over the image sequence has been
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made much simpler by the fact that we have manually marked the landmark inter-

est features. There is a wide range of literature on periodicity detection and mo-

tion classification. The self-similarity based periodicity detection method outlined

within this chapter is most closely related to the work of Cutler and Davis [21, 22].

Their work compares re-scaled image regions corresponding to a tracked subject, in

order to determine the periodicity of self-similar pixel structures. Our method ex-

tends this work further by enforcing the geometric constraints of repeating planar

motions, through identification of the imaged conjugate translations corresponding

to subject motion. Our self-similarity method could easily be developed to enable

periodicity detection and correspondence matching from pixel regions alone. Iden-

tification of the conjugate translation enables us to recover the affine properties

of the subject motion. To be of any practical interest, further investigation is re-

quired to enable segmentation of the required landmark features from the affinely

recovered image regions of subject motion.

• Lateral displacement. A series of limb motions are employed to smooth abrupt

changes in the vertical displacement of the body. As a result, the head and body

deviate laterally from the progression mid-line. A more realistic motion model can

be developed to account for this type of displacement. We still assume that the mo-

tion dynamics of both legs is planar and inclined at an angle to the vertical. Each

planar subject pose within the sequence is then laterally displaced in the Z direc-

tion by the simple harmonic lateral displacement function z(t) = γ sin(2πf0t + ψ).

This parameterisation is non-linear and dependent on the position of the subject

within the image sequence, thus can only be modelled within the maximum likeli-

hood estimation procedure. Initial estimates for the motion model parameters are

first computed via the stratified reconstruction method.

• Periodic gait series function. The dynamics of gait have been captured by

using a modified Fourier series function g(t) to approximate the articulated leg

motion. The unique features of gait are mostly apparent in the higher order

Fourier components, where abrupt changes in the musculature structures causes

rapid changes in the limb function. The Fourier motion representation tends to

capture the dynamics of the swing phases better, since they account for 80% of the

complete gait cycle. The apparent smoothing and subsequent misrepresentation

of the limb function during the loading response and pre-swing phases of gait may

possibly be avoided by changing the periodic gait reconstruction basis function.

• Reconstruction error analysis. While the work presented in this chapter

demonstrates that subject motion can be recovered from many viewpoints, lit-

tle has been done to analyse the major sources of reconstruction error. Further

work needs to be performed to test the robustness of the method to the presence

of noise and other sources of imaging error such as camera radial lens distortion.

In order for the method to have any practical application, we must be able to
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quantify the level of uncertainty within each of the reconstruction parameters. We

must then determine what level of landmark measurement error is acceptable in

order for us to compute a reliable set of biometric motion features.

Further work needs to be done in order to validate the invariance of the recon-

structed subject motion to changes in walking speed. The work presented within

section 3.6 demonstrated that suitable biometric features could be extracted from

the reconstructed motion of subjects walking on a treadmill, over a number of

controlled walking speeds. We need to validate these same assumptions in light of

the reconstructed subject motion of overground walking. Subsequently, we should

also compare the reconstructions corresponding to both treadmill and overground

walking, over a number of walking speeds.



Chapter 5

Total Parameterisation of

Generalized Gait Motion

5.1 Introduction

We have shown in the previous chapter that the canonical motion parameters of gait

can be reconstructed along linear trajectories, within single view image sequences. Since

people tend to walk from point to point in straight lines then any generalized gait motion

can be approximated by a set of straight line motion segments. Each piecewise linear

segment of reconstructed gait motion has a canonical view leg motion function and the

corresponding pose projection parameters. Common to all sets of subject pose parame-

ters are the intrinsic parameters of the camera. Common to each subject, within all of

their reconstructed linear motion segments, are the underlying biometric parameters of

limb motion.

The work presented in this chapter is concerned with recovering the camera intrinsic pa-

rameters and subsequently the set of worldspace subject poses from the parameterised

limb swing plane mappings. We first describe the specialized geometry of piecewise linear

gait motion within a fixed ground plane, and develop a strategy to segment this gen-

eralized motion into linear segment blocks. Parameterisation of consistent worldspace

motion is a three step process: i) Reconstruction, perform the algorithm described within

chapter 4 to determine the motion parameterisation of each individual trajectory seg-

ment; ii) Fusion, combine the set of independent trajectory motions for a subject into

a single representation of the underlying motion parameters, and decompose the set

of pose projection homographies into a form consistent with the constrained geometry

of ground plane motion; iii) Optimization, compute the maximum likelihood estimation

corresponding to the parameterisation of worldspace motion and analyse the uncertainty

within each of the recovered parameters.

186



Chapter 5 Total Parameterisation of Generalized Gait Motion 187

Each of these steps forms an essential part of the complete gait reconstruction algorithm.

We analyse the performance of each of the stages within this algorithm, by comparing

the root mean squared image reprojection errors for a number of proposed methods. The

reconstruction algorithm centres about a single example image sequence with multiple

trajectories of subject motion. This image sequence is recorded from subject motion

around a figure of eight test track in an outdoor environment. Consequently, we first

describe the geometry of generalized ground plane motion and outline the details of

the experimental set-up. Further details and subsequent analysis of the motion recon-

struction then correspond to our overall attempt to recover the best parameterisation

of worldspace gait consistent with this experiment.

There is an abundance of literature on camera calibration. Researchers have previously

shown that the intrinsic parameters of the camera can be recovered by identifying the

image of the absolute conic [29]. The IAC may be computed from a set of homographies

that map structure from the metric reference plane to the corresponding projected image

planes. Details of the IAC and camera calibration were previously described within

section 2.5.3. In general, readily identifiable planar patterns such as chess board grids are

used to compute these planar homographies. Calibration techniques that are based on

such planar mappings have been described in the literature by Sturm and Maybank [97],

Liebowitz and Zisserman [63], Trigs [107] and Zhang [120]. The reconstructed gait pose

projection parameters M, described in the previous chapter, encode the set of limb

swing plane homographies. Subsequently, the familiar arguments and principles of the

calibration literature can be followed in order to recover the required intrinsic camera

parameters. Factorization of the set of subject pose projection mappings into camera

intrinsic and extrinsic worldspace pose parameters is then possible for the constrained

type of ground plane gait motion.

The form of the underlying biometric function that represents articulated leg motion

remains somewhat of a research topic. The biometric should ideally be invariant to

changes in stride, cadence and walking speed. Researchers have previously shown that

a modified Fourier representation of the leg angle function offers some invariance to

these changes within a range of walking speeds [19, 12, 117]. This mapping does not

hold across all modes of gait, though there may be unique mappings for walking and

running independently [119]. Reconstruction of each of the individual linear trajectory

segments generates a corresponding set of similar underlying subject biometric param-

eters. We describe a suitable biometric motion function to model the dynamics of gait

and develop a method to fuse the set of independent representations into a single pa-

rameterisation. We compare two methods that fuse the set of biometric parameters; one

linear and another that computes the maximum likelihood estimation by minimizing

image reprojection error.

Subjects typically walk on a flat ground plane, hence the configuration and parameteri-

sation of subject motion is specialized further. The projective nature of planar motion
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is well understood [4, 31, 96]. Parameterisation of the complete reconstruction model is

then partitioned into three sections. The ground plane and camera intrinsic parameters

are common to all frames within the image sequence and form the set of system param-

eters. Each subject has a unique underlying gait motion function that is encoded by

the biometric limb coefficients, thus forming the set of subject parameters. Each subject

then has an arbitrary number of pose parameter segments, where each pose segment in

the piecewise linear motion sequence encodes: the angle, velocity and initial position

of motion on the ground plane, and a number of other circumstantial parameters that

describe the cadence and initial phase offset within the canonical gait cycle. Details

of a sparse minimization technique is then given that computes the maximum likeli-

hood estimate of the corresponding set of partitioned parameters over the entire motion

sequence.

The chapter concludes with an analysis of the reconstruction results, corresponding to

the example image sequence of subject gait containing multiple trajectories of motion.

Subsequently, a discussion on the measured uncertainties within the parameterisation is

given and a number of explanations for the major sources of error considered further.

Finally, details for further development and possible improvements are outlined.

5.2 Imaged ground plane motion

A further specialization of the epipolar geometry occurs when the cameras are related by

motion within a plane. This is the dual situation to a person walking with unconstrained

motion in the ground plane. In this case, the rotation axis between views is orthogonal

to the set of camera translation directions, as illustrated in figure 5.1. Orthogonality

then imposes one constraint on the motion [71].

Figure 5.1: Unconstrained planar subject motion.

Consider the set of worldspace points Xi that are projected to the same point xi = x′
i

in two image views, i.e. xi = PXi = P′Xi. These imaged points xi are then fixed under

the camera motion P 7→ P′. The corresponding fundamental matrix F can be split into

symmetric Fs and anti-symmetric Fa parts.
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F = Fs + Fa (5.1)

Fs =
F + F⊤

2
(5.2)

Fa =
F − F⊤

2
(5.3)

The anti-symmetric part Fa may be written Fa = [v]× and is of rank 2, with 2 degrees

of freedom identified by the homogeneous point v. The mapping x⊤Fax is identically

zero.

(
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 (5.4)

−ax1x2 + bx1x3 + ax1x2 − cx2x3 − bx1x3 + cx2x3 = 0 (5.5)

Consequently, only the symmetric part of F contributes to the correspondence condition

x⊤Fx = 0. Geometrically, Fs can be thought of as a conic in the image plane. The locus

of all worldspace points Xi for which xi = x′
i is known as the horopter curve, which is

generally a twisted cubic in 3-space passing through the two camera centres.

Figure 5.2: Geometric representation of F. The conic Fs represents the symmet-
ric part of F, and the apex point v the skew-symmetric part. The conic Fs is the locus
of intersection of corresponding epipolar lines and represents the image of the horopter
curve.

The image of the horopter is the conic defined by Fs, called the Steiner conic [92], which
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plays an important part in image auto-calibration. Fs is symmetric and in general of

rank 3, with a total of 5 degrees of freedom. Both epipoles e and e′ lie on the conic Fs

and on the polar line lv of the apex point v.

In planar camera motion the rotation axis is orthogonal to the translation direction, thus

orthogonality imposes one constraint on the motion. It was shown by Maybank [71],

that if the rotation axis direction is orthogonal or parallel to the translation direction

then the symmetric part of F is of rank 2, thus the Steiner conic is degenerate and is

equivalent to two non-coincident lines ls and lv.

Fs = lvls
⊤ + lslv

⊤ (5.6)

Figure 5.4(a) shows the geometric construction of the degenerate Steiner conic corre-

sponding to planer camera motion. An arbitrary camera rotation and translation within

the worldspace motion plane can be decomposed into a single rotation about a single

screw axis. Figure 5.3 illustrates the similarity between an arbitrary 2D rigid motion

transformation of an object and its screw decomposition.

(a) (b)

Figure 5.3: A general 2D Euclidean motion and its screw decomposition.
(a) The object undergoes a translation t and a rotation by an angle θ. The motion is
in the plane orthogonal to the rotation axis. (b) This motion is equivalent to a single
rotation about the screw axis S.

The screw axis S constitutes a line of fixed points within the worldspace, and conse-

quently is imaged as the fixed line ls within both views. The screw axis S is parallel

to the normal of the motion ground plane, thus two such identified screw axes are also

parallel and meet at the ideal worldspace point in the direction of the plane normal. The

image of this ideal point is the apex point v, which corresponds to the anti-symmetric

part of F, as shown in figure 5.4(b). The vanishing ground plane horizon line is also

imaged as the fixed line lv between the two images, though is not a line of fixed points.
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(a) (b)

Figure 5.4: Geometric representation of F for planar motion. (a) Degenerate
Steiner conic corresponding to planar motion consists of two lines lv the image of the
vanishing ground plane horizon line, and ls the image of the screw axis of rotation
between the two cameras. (b) Intersection of two different screw axes meets at the
apex point v, which represents the anti-symmetric part of F.

The same geometric construction occurs for subject motion within the ground plane.

The image of the vanishing line of the ground plane lv and the imaged vertical axis

direction v remain fixed throughout the image sequence.

Figure 5.5: Imaged ground plane motion. Each imaged direction of subject mo-
tion ei lies on the image of the ground plane lv. This imaged ground plane line lv
and the imaged vertical axis direction v (not shown) are fixed throughout the image
sequence.

Subject motion is assumed to be piecewise linear, thus the set of imaged subject motion

trajectory epipoles ei must all lie on the fixed ground plane vanishing line lv. Conse-

quently, the vanishing line lv can be recovered from a minimum of two different linear
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motion trajectories. Figure 5.5 shows a composite image of two similar subject poses,

within a single linear motion trajectory segment. We can clearly see that the imaged

subject motion is consistent with the geometric construction of planar motion.

5.3 Experimental set-up

A figure of eight test track, illustrated in figure 5.6, is marked out and a subject is

recorded walking around it. The motion sequence in captured from a single static

camera C. There are four marked way-points (0-3) in the track that define six possible

straight line trajectory segments. Five of these linear trajectory segments have useful

image data. Figure 5.7 shows a composite image of the corresponding figure of eight

test track with a number of marked trajectory segments.

Figure 5.6: Plan view of the figure of eight test track with four way-point markers
(0 - 3) and a single static camera C used within the experimental set-up.

The camera is placed a distance of at least ten metres from the closest point of approach

within the linear trajectory segments. Two light sources (TD beam 800W) are placed

behind the camera and orientated to fully illuminate the test track. The light reflected

from retro-reflective marker patches, that are attached to the subject’s limbs, provides

suitable high contrast pixel regions that enables us to manually mark the required joint

features within the set of images.

The imaged gait motion is captured by using a Sony DCR TRV 900e digital camcorder

with a frame rate of 25 fps and shutter speed of 1/250 seconds. The frames are interlaced

with a resolution of 720 × 576 pixels. Subsequently, we can de-interlace the set of

captured images to produce a similar image sequence with an effective frame rate of

50 fps. Splitting an image into even and odd scan lines halves the vertical height, hence

each image is resized and the missing scan line pixels interpolated from it neighbours.
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Figure 5.7: Image of the figure of eight test track with four way-point markers (0 - 3).

We take care to preserve the positions of the valid pixels, i.e. this is not simply: split

into two half images then rescale them vertically by a factor of two. The interpolation

strategy is dependent on the parity of the scan line fields.

We then calibrate the camera in order to accurately determine the set of true base-

line calibration coefficients. We use Zhang’s calibration algorithm [120], with at least

thirty different imaged poses of the calibration target, in order to determine an accurate

representation of the camera model.

5.3.1 Markers

A subject who walks around the test track is imaged with a full 360 degrees of pose

orientation. Consequently, occlusion is a major problem when manually marking the

set of joint features within the captured image sequence. Attaching a single set of

retro-reflective markers to the principal joint sites on the outside of a subject’s limbs

is insufficient, since we are unable to see these markers at more oblique trajectories

(self-occlusion from the same limb). In order for us to determine the set of landmark

features over the full range of poses, we need to place markers on all four sides of each

limb segment. Figure 5.8 shows this arrangement of markers viewed from a number of

different subject poses.

Accuracy of the motion reconstruction is dependant on the placement of the set of joint

markers. Since four markers are used to define a single joint location, then any mis-

alignment due to poor placement will also be reflected in the computed reconstruction.

Since the set of markers on each side of the limb have a distinct planar configuration,

we can fairly easily ensure that the length ratios between joint markers is similar. How-

ever, while the set of markers on a limb share the same underlying gait motion, we

must be aware that different marker sets on each side of the limb may be inclined at

slightly different angles to the vertical, and have different separation distances between
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: Configuration of landmark points attached to the body. To ensure
that a limb joint is visible within the image sequence four retro-reflective patches are
stuck to the opposing faces of each limb segment.

hip markers. We must then take care to pick joint features from the same side of each

limb segment, within each piecewise linear trajectory of the image sequence, to ensure

that we compute a reconstruction consistent with the planar limb motion assumption.

5.3.2 Motion segmentation

Each assumed linear trajectory segment requires a minimum of two complete gait cycles

in order to compute a valid reconstruction. We choose to divide each linear motion

segment into image sub-sequence blocks of between two to three seconds, in order that

we preserve the linear trajectory assumption. An experimental analysis of normal gait

motion patterns gives an empirical frequency value for the gait cycle close to 1 Hz, thus

the size of each sequence data block is similarly proportional to the number of imaged

gait cycles.

The reconstruction algorithm described in chapter 4 gives a constraint on the minimum
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number of frames required to make a valid rectification. On the other hand, there is no

such constraint on the sample separation of the set of sequence data blocks, i.e. each

block of imaged data must be N frames long, though the number and sample spacing

between each of these data segments within the M frames of the complete image sequence

may be chosen by the experimenter.

Figure 5.9: Marked spatial positions of gait at integer second intervals. Two trajectory
segments are shown each with three second sub-sequence data blocks and a sample
separation of one second. We can clearly see the overlapping region of data between
the two segments.

The maximum number of sample data blocks is achieved with a sample separation of

a single frame, such that N − 1 frames overlap with the proceeding data blocks. The

minimum number of sample data blocks is achieved with a spacing of N frames, with

no corresponding shared frames. A choice of sample separation somewhere in between

gives a good trade-off between reliable estimation of gait reconstruction within curved

trajectories and the computational overhead required to process the data.

Figure 5.9 shows the segmentation strategy employed here. The sample separation is

equivalent to one second of data, approximately every gait cycle. If we choose the sample

data size N to be equivalent to three seconds of data then two gait cycles are shared

between three consecutive data segment blocks.

The data segment blocks can then be analysed so that we can compute the true set of

periodicity and imaged motion epipoles. Section 4.2.1 outlines the basic principle for

determining the subject periodicity and motion direction. In order to find within the

image sequence the set of linear motion segments, we need to break the image sequence

at points of high pose curvature. The periodicity fitting function and the change of

imaged motion direction can be used to determine these high curvature positions. For

now we assume that this problem has been solved and proceed to pick our linear motion

segments manually.

Following identification of the putative linear trajectory segments, we then re-section the

set of sub-sequence data blocks. Tables 5.1 and 5.2 show the division of sub-sequence
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data blocks corresponding to the five straight line trajectory segments between way-

points in the test track.

Name Start Pt End Pt Num Frames (N) Cycles (N/fps) rem

a 0 1 160 3 10

b 2 3 192 3 42

c 3 0 127 2 27

d 0 2 189 3 39

e 1 3 220 4 20

Table 5.1: Computation of the putative number of gait cycles within each of the
five straight line trajectory segments. We assume that the periodicity of normal gait
is approximately 1 second then compute the number of cycles and remaining frames
available for division.

Name Num Frames Block size Cycles trunc.

a 160 53 3 1

b 192 64 3 0

c 127 63 2 1

d 189 63 3 0

e 220 55 4 0

Table 5.2: Each gait cycle frame block size is nominally fps frames in size. We then
evenly distribute the remaining frames over the available gait cycles so that the block
size fps + (rem / Cycles) evenly divides the number of sequence frames with minimal
truncation.

We then break the set of trajectories into piecewise linear motion segments (a, b, c, d, e1,

e2 ) such that each motion segment has three or less cycle sample blocks. Table 5.3 shows

the root mean square reprojection errors corresponding to the individual sub-sequence

data blocks after performing the reconstruction algorithm outlined within chapter 4.

Segment Name Stratified MLE

a 4.675 3.102

b 2.853 1.048

c 2.648 1.321

d 1.526 1.398

e1 2.865 1.619

e2 2.068 1.189

Table 5.3: Piecewise linear segment reprojection error. Root mean squared pixel errors
for both the initial stratified reconstruction and after the bundle adjustment procedure.

5.4 System parameterisation

The camera projection model can be parameterised in many ways. In many cases a linear

pin hole model is good enough. One major source of uncertainty within reconstruction
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is the component of radial distortion caused by the camera lens. We need to use a model

that incorporates these distortion effects, in order to compute an accurate reconstruction.

The camera model employed here has three distinct steps within the projection process.

Extrinsic worldspace pose. The camera and the worldspace coordinate system are

related by a worldspace rotation R and translation t. The ideal camera projects a

worldspace point X as w = [R | t]X. Correspondingly, the ray entering the lens is

represented by the inhomogeneous point w̃ = (w1/w3, w2/w3)
⊤.

Lens distortion. The main distortion effect is seen radially from the camera principal

point. Tangential distortion effects may also be modelled, but in general are negligible

in comparison to these radial components. We use here a symmetric distortion model

u = f(r) · w̃ with two radial components Kr = (k1, k2)
⊤ to facilitate the warping of light

through the camera lens.

f(r) = 1 + k1 · r2 + k2 · r4 (5.7)

where the radial distance component r is a function of the ray point w̃ = (w̃x, w̃y)
⊤ from

the camera principal point, i.e. r2 = (w̃x)2 + (w̃y)
2.

Linear projection. The focal projection of the ray leaving the lens onto the camera

CCD elements is modelled by the pin hole projection x′ = Kx, where x = (ux, uy, 1)⊤

is the post lens distortion point. We use a camera calibration matrix K that has zero

skew and can be parameterised by the 4-vector of focal and principal point coefficients

Kc = (mx, my, u0, v0)
⊤.

K =




mx u0

my v0

1


 (5.8)

We assume that the camera intrinsic parameters remain fixed throughout the duration of

the image sequence. We can also fix the worldspace pose so that camera and worldspace

coordinate systems coincide, thus the extrinsic pose projection step within the camera

model has the simpler form w = [I | 0]X. The only further assumptions we employ are

that the ground plane is flat and subject motion is piecewise linear within this plane.

5.5 Biometric parameterisation

A brief analysis of the fundamental properties of gait was given within section 3.6 for

subjects walking on a treadmill. We demonstrated that the dynamics of gait can be
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represented by a simple modified Fourier function that is pseudo-invariant to changes in

stride length and cadence within a range of normal walking speeds.

Let the Fourier series representation of an arbitrary signal be defined by the equation.

x(t) = a0 +
n∑

k=1

ak cos(2πkf0t + φk) (5.9)

A time shifted signal x(t − ts) only updates the coefficients of phase within the Fourier

series representation.

x(t − ts) = a0 +
n∑

k=1

ak cos(2πkf0 · (t − ts) + φk) (5.10)

x(t − ts) = a0 +
n∑

k=1

ak cos(2πkf0t + ψk) (5.11)

ψk = φk − 2πkf0ts (5.12)

It is unclear which features of gait represent the origin pose position within the gait cycle.

It is then natural to align the Fourier signals by computing the time shift that zeros

the first coefficient of phase ψ1 = 0, i.e. ts = φ1/2πf0. Correspondingly, ψk = φk − kφ1

are the aligned phase coefficients of the modified series. The signal can then be made

invariant to scale by normalizing the first amplitude coefficient a1 to unity, such that the

set of normalized amplitudes bk are given by bk = ak/a1. The modified Fourier series

representation of the original signal x(t) with added linear velocity term vx then has the

form.

x(t) = vxt + a0 + a1 cos(2πf0 · (t + ts)) +

a1 ·
n∑

k=2

bk cos(2πkf0 · (t + ts) + ψk) (5.13)

The set of modified coefficients ṽ = (b2, ψ2, · · · , bn, ψn)⊤ form the basis for a biometric

parameter vector. The remaining parameters w̃ = (vx, f0, a0, a1, ts)
⊤ of the modified

Fourier series function then form the set of circumstantial parameters of motion.

The normalized gait function x̃(t) formed from the set of biometric parameters ṽ alone

describes the unique underlying limb dynamics of gait motion, and is invariant to initial

subject position, stride length and cadence.
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x̃(t) = cos(2πt) +
n∑

k=2

bk cos(2πkt + ψk) (5.14)

Figures 5.10 and 5.11 show the set of normalized leg angle functions θ̃(t) generated from

each of the individual piecewise linear trajectory segments. We can clearly see, that to

a first order approximation, the signals match reasonably well. The uncertainty within

the fitting of each independent trajectory segment, that is caused by the experimental

marking error, the camera radial lens distortion and the approximation of the planar

limb motion model, is evident from the detail within the peaks of the reconstructed

signals.

Figure 5.10: Upper normalized limb angle functions θ̃(t) shown for each of the indi-
vidual reconstructed linear trajectory segments.

Figure 5.11: Lower normalized limb angle functions θ̃(t) shown for each of the indi-
vidual reconstructed linear trajectory segments.

The set of reconstructed gait parameters G = (f0,D
⊤,X⊤,Y⊤,V⊤)⊤ from the articu-

lated limb function g(t), that describes the components of hip displacement and angular

leg motion, can then be decomposed into the underlying biometric B and circumstantial

W parameter vectors of motion.
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B = (D⊤, X̃⊤, Ỹ⊤, Ṽ⊤)⊤ (5.15)

W = (vx, f0, p⊤,q⊤, r⊤)⊤ (5.16)

where vector p contains the a0 offset coefficients of V, vector q contains the a1 amplitude

coefficients of X,Y,V and vector r contains the ts time shift coefficients of X,Y,V.

5.6 Fusion of subject biometric parameters

Each subject within the image sequence has a single set of underlying biometric pa-

rameters B and a number of circumstantial pose parameter vectors Wi, corresponding

to each motion trajectory segment. For each of the piecewise linear segments of re-

constructed gait motion, we can compute the biometric and circumstantial parameters

G̃i = (B̃⊤
i ,W̃⊤

i )⊤. The problem then is to fuse together the set of biometric parameters

B̃i in such a way, that we can find a maximum likelihood estimate of B that minimizes

the image reprojection error corresponding to the measurement data.

5.6.1 Linear computation of biometric parameters

We first compute a putative set of biometric coefficients B by using a linear algorithm.

Given a set of N reconstructed biometric parameter B̃i segments, we compute a weighted

average of all the amplitude b and limb length d coefficient vectors.

d′ =
N∑

i=1

ωi · di (5.17)

b′ =
N∑

i=1

ωi · bi (5.18)

The weights need not all be fixed as the value 1/N but can be derived from the diagonal

elements of the covariance fitting matrices Σg of the piecewise linear reconstructions.

Values of phase are normalized modulo 2π to the range (−π : π), hence phases distributed

around both extremes of the range must be treated with caution. For each phase angle

ψ′

k of B, we recover the set of unit vectors vi that correspond to the required phase angles

ψk within the set of Bi. If we form the design matrix A by stacking all the weighted

vectors ωi · v⊤
i , then the Eigenvector x with largest Eigenvalue of the 2 × 2 symmetric

Eigen-system A⊤A · x = λx is parallel to the required phase vector. We resolve the sign
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ambiguity of the vector direction by computing the sum of all dot products between x

and vi.

y = sign(
N∑

i=1

v⊤

i x) · x (5.19)

Vector y represents the best phase consistent with all corresponding biometric phase

coefficients. The vector y is then converted back into a phase angle within the required

range (−π : π), such that ψ′

k = ∠y.

5.6.2 Maximum likelihood estimation

Having computed an initial estimate of the biometric parameters B, we can then parti-

tion the parameters of the reconstruction into two segments.

P = (B⊤ | W⊤

1 ,W⊤

2 , · · · ,W⊤

N )⊤ (5.20)

The first partition contains the set of biometric parameters common to all piecewise

linear subject motion segments. The second contains the set of subsidiary circumstantial

parameters Wi that describe the apparent changes in gait dynamics throughout the

image sequence. In addition, we define the auxiliary vector Q of parameterised pose

projection mappings Mi that remain fixed during the minimization process.

Q = (M⊤

1 ,M⊤

2 , · · · ,M⊤

N )⊤ (5.21)

In essence, each piecewise linear reconstruction computes the best set of limb swing

planes parameterised by Mi, along with initial estimates of the gait dynamics B̃i,W̃i.

Identifying each of the limb swing planes allows us to compute the MLE of the partitioned

gait dynamics within these fixed planes. Each set of Wi parameters is independent,

leading to a sparsely structured Jacobian. Minimization of the partitioned parameter

vector P is then computed via a sparse Levenberg-Marquardt algorithm, as described

in appendix C.4.

The biometric fusion process is repeated for each subject within the image sequence.

Table 5.4 shows the results of the biometric fusion process on the residual image repro-

jection errors of the reconstructed motion.

The set of pose projections Mi are fixed for each motion trajectory segment, thus the

optimal set of χ2 residual errors are obtained by reprojection with the individual B̃i
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Segment Name B̃i Linear MLE

a 3.102 3.775 (21.7%) 3.315 (6.87%)

b 1.048 1.482 (41.41%) 1.286 (22.71%)

c 1.321 3.053 (131.11%) 1.878 (42.17%)

d 1.398 2.206 (57.8%) 1.605 (14.81%)

e1 1.619 2.974 (83.69%) 1.793 (10.75%)

e2 1.189 2.566 (115.81%) 1.348 (13.37%)

Table 5.4: Piecewise linear trajectory segment root mean square reprojection errors.
B̃i parameterises the gait dynamics independently for each trajectory segment while
the reprojection errors attributed to both linear and MLE fusion methods reconstruct
the gait motion with a common set of biometric parameters B. Values in brackets are
percentage errors ∆ǫ between computed and B̃i residual r.m.s. errors.

gait parameterisations. Perturbing the biometric parameters B̃i away from these optimal

estimates increases the χ2 fitting errors. Consolidation of the set of biometric parameters

B through the fusion process can then only increase the χ2 fitting errors. We quantify

the goodness of the computed fusion parameterisation by measuring the difference in

root mean square residual errors ∆ǫ, between the fused B and individual B̃i biometric

reconstruction errors, and express this error difference as a percentage of the optimal B̃i

reprojection error.

We can clearly see that performing the maximum likelihood estimation of the subject

biometric parameters reduces the percentage r.m.s. reconstruction errors ∆ǫ by at least

half, when compared to the linear fusion method alone. The mean percentage error

increase ∆ǫ after performing the MLE is of the order ≃ 18%, indicating a good biometric

parameterisation. Comparatively, the mean error increase ∆ǫ caused by linear fusion

alone is of the order ≃ 75%, with a doubling of the reprojection error in places. We then

recommend that the MLE step be performed to compute a good set of initial parameter

estimates, before initiating a global optimization of all available parameters.

5.7 Fusion of system parameters

The set of leg swing plane pose homography mappings H1 and H2 are parameterised

by the camera intrinsic parameters K, the column vectors r1, r2, r3 of the worldspace

pose rotation R and a translation vector t, inter-plane scaling factor τ and leg plane

selection coefficient β = ∓1.

H = K
[

r1 (cos α · r2 + τβ sin α · r3) (τβ · r3 + t)
]

(5.22)

Since all motion is within a common ground plane, each subject pose trajectory can

be parameterised by the common pose rotation RN and an angular motion direction θ
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within the canonical ground plane. We assume that the camera intrinsic parameters K

and ground plane rotation RN remain fixed throughout the image sequence.

[
r1 r2 r3

]
= RNRθ (5.23)

Each subject pose mapping can be parameterised by a 6-vector Z with coefficients:

Z = (θ, α, τ, t⊤)⊤ (5.24)

In order to recover these parameters of pose, we first need to compute the fixed system

parameters K and RN . Once found, the inverses may be applied to decompose the set

of pose transformations M into the required form.

5.7.1 Recovering the camera intrinsic parameters

Any ideal 3D point can be written X = (W⊤, 0)⊤ and is projected into the image via

the perspective transformation x = PX, where the projection matrix P has the form

P = K[R | t].

x = K[R | t]X
x = KRW (5.25)

A point lies on the absolute conic Ω = I if W⊤ΩW = 0. If we make the substitution

W = R⊤K−1x then the conic constraint condition can be written as:

(R⊤K−1x)⊤ Ω R⊤K−1x = 0 (5.26)

x⊤ ω x = 0 (5.27)

where the image of the absolute conic (IAC) is given by

ω = K−⊤K−1 (5.28)

The IAC is only dependent on the coefficients of the camera intrinsic parameters K.

Two special points known as the circular points I = (1, i, 0)⊤ and J = (1,−i, 0)⊤ lie on
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the absolute conic Ω. The imaged circular points I′ and J′ of a planar transformation

H · (1,±i, 0)⊤ must also lie on the IAC.

(
1 i 0

)
H⊤ ω H




1

i

0


 = 0

(h⊤

1 + ih⊤

2 )ω (h1 + ih2) = 0 (5.29)

h⊤

1 ω h1 − h⊤

2 ω h2 + 2ih⊤

1 ω h2 = 0 (5.30)

where the column vectors of the homography matrix H are written as hj . Equating real

and imaginary parts to zero yields the result.

h⊤

1 ω h1 − h⊤

2 ω h2 = 0 (5.31)

h⊤

1 ω h2 = 0 (5.32)

It must be noted that the constrained nature of motion means that there is a one

parameter family of solutions for the calibration because all the camera rotations are

about the same axis. It is then necessary to make assumptions about the camera intrinsic

parameters in order to resolve this ambiguity. In certain cases however, the zero skew

assumption does not resolve the ambiguity. Such a situation arises when the rotation

is about the camera X, Y or Z axes. These exceptions are described in more detail

within [121]. If we restrict the form of the camera intrinsic parameters to have zero

skew then the elements of the IAC are given by:

U = K−1 =




a b

c d

e


 (5.33)

ω = U⊤U =




a2 ab

c2 cd

ab cd b2 + d2 + e2


 =




a′ b′

c′ d′

b′ d′ e′


 (5.34)

The elements of the IAC can be written as a vector w = (a′, b′, c′, d′, e′)⊤. Subsequently,

the real and imaginary parts of the constraint equation 5.30 can then be written in

the form Aw = 0, in terms of the entries of the homography matrix hij . The design
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matrix A is formed by stacking all such constraints from each of the pose homography

transformations.

[
(h2

11 − h2
12) 2(h31h11 − h32h12) (h2

21 − h2
22) 2(h31h21 − h32h22) (h2

31 − h2
32)

(h11h12) (h32h11 + h12h31) (h22h21) (h32h21 + h22h31) (h32h31)

]
w = 0

(5.35)

Since w is defined up to scale (4 degrees of freedom) then a minimal solution to this set

of homogeneous equations can be found from just two non parallel homography matrix

constraints. The solution vector w is found by computing the SVD of the homogeneous

set of equations, see appendix B.2.3 for details. The elements of matrix U are then

extracted from the solution vector w as:

a =
√

a′ , c =
√

c′

b = b′/a , d = d′/c

e =
√

e′ − (b2 + d2)

The calibration matrix K is finally computed from the inverse transformation K = U−1.

Within the presence of noise, the solution to w may have invalid elements of U. Since a′

must be positive, we can remove the homogeneous sign ambiguity by applying the scal-

ing w′ = sign(a′) · w. Consequently, if c′ ≤ 0 or e′ ≤ b2 + d2 then matrix U is invalid.

The camera principal point is notoriously difficult to compute accurately. We can enforce

an empirical tolerance on its position by assuming that it lies within 50 pixels from the

centre of the image. If we fail to compute a valid calibration matrix then we must

constrain the form of K further.

5.7.2 Known principal point

The camera intrinsic parameter matrix K can be decomposed into two parts Kf and Kt.

K = KtKf = λ




1 u0

1 v0

1







mx

my

1


 (5.36)

Subsequently, the planar homography transformation H can be decomposed as:

H = KtKf

[
r1 r2 t

]
(5.37)
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If we know the camera principal point then we can remove Kt from the set of homogra-

phies, by applying the transformation H′ = K−1
t H. The transformed IAC ω′ = K−⊤

f K−1
f

then has a much simpler form since Kf is a diagonal matrix.

U = K−1
f =




a

c

e


 (5.38)

ω′ = U⊤U =




a2

c2

e2


 =




a′

c′

e′


 (5.39)

The elements of the transformed IAC can be written as a vector w = (a′, c′, e′)⊤. Sub-

sequently, the real and imaginary parts of the constraint equation 5.30 can be written

in the form Aw = 0, in terms of the entries of the transformed homography matrix hij .

The design matrix A is formed by stacking all such constraints from each of the trans-

formed pose homography transforms.

[
(h2

11 − h2
12) (h2

21 − h2
22) (h2

31 − h2
32)

(h11h12) (h22h21) (h32h31)

]
w = 0 (5.40)

The elements of matrix U are then extracted from the solution vector w as:

a =
√

a′ c =
√

c′ e =
√

e′

The calibration matrix Kf is finally computed from the inverse transformation Kf = U−1

and subsequently K = KtKf . Again we can remove the homogeneous sign ambiguity

and ensure that a′ is positive. If any of the updated coefficients of w are negative then

the calibration matrix can not be computed. In such a circumstance we must question

the validity of the set of homography matrices corresponding to each of the subject

poses. If all pose mappings are close to parallel within measurement noise, then this

leads to a degenerate configuration and subsequently there is a 1-parameter family of

possible calibrations. We require at least two trajectories separated by an oblique angle

to robustly compute the camera intrinsic parameters.

5.7.3 Known aspect ratio

If we know the camera aspect ratio in addition to the principal point then the only

remaining free parameter describing the camera intrinsic parameters is the effective
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focal length f . The camera calibration matrix can then be decomposed as:

K = KtKaKf = λ




1 u0

1 v0

1







γ

1

1







f

f

1


 (5.41)

We then compute the set of transformed homography matrices H′ = K−1
a K−1

t H and

solve the set of constraint equations of the form Aw = 0.

[
(h2

11 − h2
12 + h2

21 − h2
22) (h2

31 − h2
32)

(h11h12 + h22h21) (h32h31)

]
w = 0 (5.42)

5.7.4 Pose decomposition

The limb swing plane pose vector M computed from the linear trajectory reconstruction

has the form:

M = (m⊤

1 ,m⊤

2 ,m⊤

3 ,m⊤

4 , α)⊤ (5.43)

where m1 = K · r1, m2 = K · r2, m3 = τ · K · r3 and m4 = K · t

We can then construct the set of normalized projection matrices of the form P̂ = [Q | t],
by applying the transformation K−1 to remove the camera intrinsic parameters. We

remove the resulting homogeneous scaling ambiguity by ensuring that the first column

vector has unit norm ‖r̃1‖ = 1. The sign of the ambiguity is removed by ensuring that

the subject is in front of the camera tz > 0.

P̂ =
[

r̃1 r̃2 τ · r̃3 t
]

(5.44)

We assume that all subjects walk on a level ground plane. Although the set of subject

ground planes must be parallel, i.e. share a common normal N, there is no restriction

on the translation between them. This allows us to model subjects walking at street

level, on raised platforms, different floors within a building, etc. The translation vector t

fully encodes the subject’s worldspace displacement, while the normal N encodes the

orientation of the subject’s plane of motion. The problem is then to decompose the

normalized projection matrices into the form:

P̂ = [Q | t]
P̂ = [RNRθHτ | t] (5.45)
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where the inter-plane scaling transformation Hτ is given by:

Hτ =




1

1

τ


 (5.46)

The set of r̃1 motion direction vectors must all lie within a single plane, and the set of

vertical directions r̃2 should all be parallel. Each set of constraints can be stacked to

form a system of equations of the form AN = 0.

[
r̃⊤1

[̃r2]×

]
N = 0 (5.47)

Note that only two of the three equations of [̃r2]×N = 0 are linearly independent, hence

it is customary to only include the first two within the design matrix A. The solution

vector N is found by computing the SVD of the homogeneous set of equations, and

is constrained to have unit norm ‖N‖ = 1, see appendix B.2.3 for details. Having

computed the ground plane normal vector N, we can compute the rotation Hr that

maps this vector back onto the canonical Y axis (0, 1, 0)⊤. Consequently the inverse

rotation R = Hr
⊤ transforms the canonical ground plane to the required pose.

The ground plane normal vector is constrained to have unit norm but has a sign ambi-

guity. There are then two possible vectors N,−N with unit norm parallel to the ground

plane normal. The updated matrix Q′ = HrQ then has the form:

Q′ =




a c

λ2

b d


 (5.48)

We ensure that λ2 is positive, and thus resolve the sign ambiguity, by applying a further

rotation Hλ = diag(−1,−1, 1) where necessary. The ground plane mapping R is also

updated R′ = RHλ as a consequence of applying this transformation.

We next compute the rotation Hθ about the Y axis that aligns the vector (a, 0, b)⊤

with the positive X axis (1, 0, 0)⊤. The inverse rotation Rθ = H⊤

θ then transforms

the canonical X axis within the ground plane to the required position. The updated

matrix Q′′ = HθQ
′ then has the form:

Q′′ =




λ1

λ2

λ3


 (5.49)
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In general λ1 6= λ2 due to noise, hence we compute the best homogeneous scaling

factor λ = (λ1 + λ2)/2 consistent with the rotation matrix. The inter-plane scaling

transformation Hτ is recovered by removing this homogeneous scaling factor. The best

absolute value of τ consistent with a right hand coordinate system is then given by:

τ =
|λ3|
λ

(5.50)

and the updated pose translation vector by:

t′ =
1

λ
· t (5.51)

We choose to align the canonical coordinate system with the first subject pose within

the image sequence. The ground plane rotation matrix is then given by RN = RRθ and

the subsequent angle θ within the first pose vector Z1 is set to zero.

All further subject pose decompositions of the form P̂ = [Q | t] then start by removing

the ground plane rotation RN , such that Q′ = (RN )⊤Q. Consequently, the matrix Q′

has the same form as in equation 5.48. Following the same procedure; the motion

direction rotation Rθ, the inter plane scaling factor τ and the pose translation vector t

can all be computed.

Rθ =




c −s

1

s c


 (5.52)

The parameterised motion direction angle θ within the range (−π : π) is then extracted

from the rotation matrix Rθ, shown in equation 5.52, and the elements of the subject

pose vector Zi set.

θ = sign(s) · arccos(c) (5.53)

The set of the pose vectors Zi then parameterise the mappings Mi consistent with the

ground plane motion, relative to the first subject pose.

5.7.5 Maximum likelihood estimation

We have decomposed the set of pose mappings Mi into a product of system param-

eters K,RN and the set of subject poses Zi. We perform an additional step here to

optimize the set of system parameters before computing the global MLE on all available

parameters.
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We assume that the computed piecewise linear gait function segments g(t : f0,D,X,Y,V)

accurately reflect the dynamics of gait. The reconstructed metric plane points Xi for

the entire set of subjects are then fixed, thus we proceed to optimize both the system

and pose parameters. The parameter vector P can be partitioned into two segments:

P =
(
Kc

⊤,Kr
⊤,N⊤ | Z⊤

1 , · · · ,Z⊤

n

)⊤

(5.54)

The first partition contains the system parameters. The camera model is encoded by the

intrinsic parameters Kc = (mx, my, u0, v0)
⊤ and the components of radial lens distortion

Kr = (k1, k2)
⊤. The ground plane pose rotation RN is represented by the Rodrigues

vector N = (n1, n2, n3)
⊤, see appendix B.3.1 for details. The values of the camera radial

distortion Kr are initialised to zero. The second partition contains the set of independent

piecewise linear subject poses Zi = (θi, αi, τi, t
⊤

i )⊤. In addition, the auxiliary vector Q

of fixed metric plane landmark points Xi is defined as:

Q = (X⊤

1 , · · · ,X⊤

n )⊤ (5.55)

Minimization of the partitioned parameter vector is then computed via a sparse Levenberg-

Marquardt algorithm, see appendix C.4 for details. Table 5.5 shows the calibration co-

efficients of Kc and Kr, computed linearly from the image of the absolute conic and

subsequently the set of minimized parameters from the sparse MLE method.

Method mx my u0 v0 k1 k2

IAC* 811.621 930.129 360.0 288.0 0 0

MLE (Kc) 813.033 913.49 369.14 288.851 0 0

MLE (Kc,Kr) 705.328 878.789 306.946 289.492 -0.211599 0.0904326

Zhang 865.281 947.937 355.645 274.194 -0.224416 0.305238

Table 5.5: Comparison of the camera calibration coefficients Kc and Kr computed
from the image of the absolute conic (known principal point) and the maximum like-
lihood estimate of parameters P. Accurate baseline values for each of the coefficients
are obtained by performing Zhang’s calibration algorithm.

The full IAC method fails to compute the principal point within a 50 pixel tolerance

of the centre of the image. We then assume that the camera principal point lies at

the image centre and compute the remaining coefficients using the reduced form of the

IAC. The camera principal point is often the hardest quantity to estimate using linear

methods. It is no surprise then that the distribution of subject trajectories weighs quite

heavily on the computed calibration coefficients. We need a large number of disparate

trajectories in order to compute an accurate estimate of the camera intrinsic parameters.

In the presence of noise, it may then be beneficial to compute both sets of calibration

coefficients using the known and unknown principal points. Then as an initial step
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before computing the MLE, we choose the set of coefficients that generates the smallest

residual image reprojection error.

Accurate camera coefficients are obtained by performing Zhang’s calibration algorithm

[120]. As an initial estimate of the camera intrinsic and extrinsic parameters both IAC

and MLE methods compare reasonably well with the baseline parameters.

Segment |θc| M Linear MLE (Kc) MLE (Kc,Kr)

a 18.3 3.102 4.708 (51.77%) 3.629 (16.99%) 3.768 (21.47%)

b 29.0 1.048 3.84 (266.41%) 2.316 (120.99%) 1.837 (75.29%)

c 80.8 1.321 35.087 (2556.09%) 2.408 (82.29%) 2.348 (77.74%)

d 27.3 1.398 9.649 (590.2%) 2.304 (64.81%) 1.897 (35.69%)

e1 63.6 1.619 3.715 (129.46%) 2.753 (70.04%) 2.617 (61.64%)

e2 64.6 1.189 3.511 (195.29%) 2.451 (106.14%) 2.365 (98.91%)

Table 5.6: Piecewise linear trajectory segment root mean square reprojection errors.
M parameterises each trajectory segment independently, while the reprojection errors
attributed to both linear decomposition and MLE reconstructions constrain the gait
motion segments to lie within planes parallel to the worldspace ground plane. Values
in brackets are percentage errors ∆ǫ between computed and M residual r.m.s. errors.
|θc| is the true absolute pose trajectory angle (degrees) w.r.t. the camera X axis.

Table 5.6 shows the results of the pose decomposition process on the residual reprojec-

tion errors. The set of metric plane limb points Xi are fixed, thus the optimal set of χ2

residual errors are obtained by reprojection of the individual M pose parameterisations.

Perturbing the pose parameters M away from these optimal estimates increases the χ2

fitting error. The re-parameterisation of the individual M vectors through the decom-

position process can then only increase the χ2 fitting errors. We quantify the goodness

of the decomposition parameterisation by measuring the difference in root mean square

residual errors ∆ǫ, between the decomposed and individual M errors and express this

error difference as a percentage of the optimal M reprojection error.

Reprojection error is worst for oblique trajectories, with respect to the camera coordinate

system, using linear decomposition alone. Removing the camera calibration matrix from

the pose parameters M should generate the matrix Q with orthogonal columns. Given

a poor estimate of the intrinsic parameters, the departure from orthogonality causes

large errors in the computation of the ground plane normal and consequently the pose

trajectory angles.

Table 5.7 shows a comparison of the percentage error increases ∆ǫ of both the biometric

and system parameter maximum likelihood estimation steps. The table clearly shows

that the decomposition of the system and pose projection parameters accounts for most

of the reconstruction uncertainty.
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Segment Name M Biometric System

a 3.102 6.87% 21.47%

b 1.048 22.71% 75.29%

c 1.321 42.17% 77.74%

d 1.398 14.81% 35.69%

e1 1.619 10.75% 61.64%

e2 1.189 13.37% 98.91%

Table 5.7: Piecewise linear trajectory segment root mean square reprojection percent-
age errors ∆ǫ after performing maximum likelihood estimation of both biometric and
system parameters.

Segment Name θc Linear MLE (Kc) MLE (Kc,Kr)

a -18.3 -33.3 -33.7 -27.2

b 151.0 153.9 149.8 148.4

c -99.2 -137.8 -95.8 -101.6

d 27.3 26.0 25.8 21.4

e1 116.4 112.8 112.2 110.1

e2 115.4 112.8 112.1 110.1

Table 5.8: Computed trajectory angles for both linear and MLE pose decomposition
methods. θc is the true pose trajectory angle (degrees) w.r.t. the camera X axis.

Table 5.8 shows the set of computed pose trajectory angles θ, for both linear and MLE

methods. We can see quite clearly the disparity between true and decomposed trajectory

angles. Figures 5.12 and 5.13 show the corresponding set of reprojected limb points for

trajectory segments ‘a’ and ‘c’ respectively. Three different frames from the beginning,

middle and end of these sequences are shown. The poorly estimated trajectory angle for

segment ‘c’, using linear decomposition alone, has a noticeably bad set of reprojected

limb points.

Fusion of the subject biometric parameters requires us to minimize 33 + 12n parameters

per subject, where n is the number of linear trajectory segments for that subject. The

Jacobian matrices also require extensive computation of trigonometric functions. Max-

imum likelihood estimation of the system parameters requires us to minimize a total of

9 + 6m parameters, where m is the complete number (all subjects) of linear trajectory

segments in the system. Both minimizations are sparse and of the order O(n), though

evaluation of the gait functions g(t : f0,D,X,Y,V) to compute the set of metric plane

points Xi need only be performed once for the system parameters. If we initialise a

global parameter optimization with poor estimates of the system parameters, we risk

undoing all the hard work required to compute the fused biometric parameters within

the first few iterations of the global optimization step. For this reason, we recommend

that the MLE of the system parameters is an essential and compulsory step required

before computing the global parameter optimization.
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(a) Linear: frame 1 (b) MLE: frame 1

(c) Linear: frame 80 (d) MLE: frame 80

(e) Linear: frame 160 (f) MLE: frame 160

Figure 5.12: Reconstruction of trajectory segment ‘a’ after linear pose decomposition
(a,c,e) and after maximum likelihood estimation of the pose parameters (b,d,f).
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(a) Linear: frame 1 (b) MLE: frame 1

(c) Linear: frame 64 (d) MLE: frame 64

(e) Linear: frame 127 (f) MLE: frame 127

Figure 5.13: Reconstruction of trajectory segment ‘c’ after linear pose decomposition
(a,c,e) and after maximum likelihood estimation of the pose parameters (b,d,f).
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5.8 Fusion discussion

Biometric and system parameter fusion is a two step process. Each step is independent,

can be performed simultaneously and requires only that we have access to the sub-

ject pose tree of reconstructed gait functions g(t : f0,D,X,Y,V) and pose projection

mappings M.

Each subject pose is modelled by a linear motion trajectory with limbs that swing within

bilateral planes. The reconstruction phase described in chapter 4 essentially identifies

these bilateral planes and the representation of limb motion within them. The fusion

step allows us to use the elements of these reconstructions independently. The set of

consistent biometric parameters B and Wi are computed by fixing the bilateral limb

planes and optimizing the biometric gait functions within them. The consistent set of

system parameters Kc,Kr,N and the parameterised subject poses Zi are computed by

fixing the reconstructed limb points within the metric plane and optimizing the set of

bilateral limb planes.

Figure 5.14: Data flow diagram of the gait reconstruction algorithm that shows the
three main steps (reconstruction, fusion and optimization) within the processing chain.

The basis function used to represent the dynamics of limb motion is arbitrary, since the

initial reconstruction phase is concerned only with identifying the set of bilateral limb

swing planes and the intermediate representation of gait. A periodic function is chosen

that accurately represents the dynamics of gait within a small number of parameters.

The obvious choice is to use a Fourier series representation, and good reconstruction

results have been obtained with five Fourier harmonics. Complicated basis functions risk

introducing many local minima within the parameter space, with potentially disastrous

consequences for minima far from the global optimum. The topology of the parameter

space is often proportionally as complex as the basis function, and as a result convergence

may be slow.
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Fusion of the biometric parameters recovers an initial estimate of the unique properties

of a subject’s motion dynamics, that are consistent over a range of gait modes. The

form of the biometric function and indeed the question of what are the unique features

of a subject’s gait remain largely unanswered, see the discussion in section 3.6.5. The

function should ideally be invariant to changes in gait mode, i.e. speed, stride and

cadence. We have outlined a modified Fourier function, that to first order approximates

an invariant representation of gait.

If we intend to perform maximum likelihood estimation within the fusion stage, then we

recommend that minimization should be performed on both biometric and system pa-

rameters. Performing the MLE within the fusion stage generates a good initial estimate

of the global parameters and potentially widens the region of convergence. The fusion

step then removes some of the risk of encountering outlying local minima and potential

slow convergence far from the true minimum, within the global parameter space.

Segment Name M Linear MLE

a 3.102 5.215 (68.12%) 3.925 (26.53%)

b 1.048 4.065 (287.88%) 1.935 (84.64%)

c 1.321 35.057 (2553.82%) 2.682 (103.03%)

d 1.398 9.832 (603.29%) 2.021 (44.56%)

e1 1.619 4.423 (173.19%) 2.717 (67.82%)

e2 1.189 4.19 (252.4%) 2.448 (105.89%)

Table 5.9: Piecewise linear trajectory segment root mean square reprojection errors
of the decomposed parameters. Values in brackets are percentage errors ∆ǫ between
computed and M residual r.m.s. errors.

Table 5.9 shows the root mean square residual errors after performing the two meth-

ods of parameter fusion on both biometric and system parameters. The fusion process

combines all piecewise linear motion segment information and forms it into a realistic

worldspace motion model. The percentage errors ∆ǫ generated from the reprojection of

the fused parameters gives an indication of the quality of the worldspace model decompo-

sition. The errors determined from computation of the parameters, using linear methods

alone, clearly demonstrates a poor conversion between piecewise linear segments and the

worldspace model. Where maximum likelihood estimation has been employed to refine

the parameter estimates in the fusion process, the percentage errors are significantly

reduced and distributed more evenly.

The accuracy of the computed initial worldspace parameters is then dependent on the

uncertainty within each of the fitted linear motion trajectory segments. These segments

are computed by using a simple pin hole projection model. Consequently, radial lens

distortion is one of the dominant sources of error within the initial fitting process. We

should take care to reduce as much as possible the distortion effects by modelling data

across small patches of the image surface. This is another good reason for breaking

linear motion sequences into three second blocks.
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5.9 Global optimization of parameters

We have now computed some sensible initial estimates of both the subject biometric pa-

rameters B, with corresponding circumstantial pose parameters Zi,Wi, and the system

parameters Kc,Kr,N.

Kc = (mx, my, u0, v0)
⊤ (5.56)

Kr = (k1, k2)
⊤ (5.57)

N = (n1, n2, n3)
⊤ (5.58)

B = (D⊤, X̃⊤, Ỹ⊤, Ṽ⊤)⊤ (5.59)

Z = (θ, α, τ, t⊤)⊤ (5.60)

W = (vx, f0, p⊤,q⊤, r⊤)⊤ (5.61)

These parameters are partitioned into three distinct categories, namely the system, sub-

ject and pose blocks. The system parameters encode the geometric properties of the

camera and worldspace motion plane, and are fixed throughout the image sequence.

The subject parameters encode the unique properties related to the dynamics of a sub-

ject’s gait. These parameters are independent and fixed for each of the N subjects

viewed throughout the image sequence. The pose parameters encode the circumstantial

properties of each piecewise linear trajectory segment of a subject’s motion. Each set

of pose parameters is independent and describes the spatial position, velocity, cadence,

initial phase of gait and other properties of the motion segment. We define these three

entities by combining the corresponding parameter vectors.

a = (K⊤

c ,K⊤

r ,N⊤)⊤ (5.62)

b = (D⊤, X̃⊤, Ỹ⊤, Ṽ⊤)⊤ (5.63)

c = (Z⊤,W⊤)⊤ (5.64)

There is then a hierarchical relationship between the system, subject and each of the

subject’s poses that is best described by a tree structure. This tree of parameters can be

flattened into a single parameter vector P with three partitions, and completely captures

the properties of the imaged worldspace motion.

P = (a⊤ | b⊤

1 , · · · ,b⊤

n | c⊤1 , · · · , c⊤m)⊤ (5.65)
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5.9.1 General sparse LM minimization

Many minimization problems within projective geometry can be partitioned into two

sections. A detailed discussion on non-linear estimation of parameters that are parti-

tioned in such a way is addressed in appendix C.4. Minimization of a set of parameters

that are partitioned into three distinct sections can be treated in much the same way.

The hierarchical structure of the relationship between parameter blocks will be reflected

in the formation of the normal equations. The form of the Jacobian matrix is sparse,

whose shape can be exploited in order to make great time savings when solving for a

large number of subsidiary parameters. We describe here the general solution of a set

of parameters partitioned into three sections using the Levenberg-Marquardt method.

We first naively assume no independence between parameter blocks within each of the

partitions.

In general, the form of the normal equations required to compute the parameter update

vector δp can be written as shown in equation 5.66; where J is the Jacobian matrix,

Σx the diagonal covariance matrix of measurement error deviations and r the residual

fitting error vector between measured and reprojected model points.

J⊤Σ−1
x J · δp = J⊤Σ−1

x r (5.66)

We augment the diagonal elements of the Hessian matrix D = J⊤Σ−1
x J with the Levenberg-

Marquardt scaling factor (1 + λ), denoted by the updated blocks U∗,Y∗ and V∗. The

normal equations of 5.66 can then be re-written in block form:




U∗ X W

X⊤ Y∗ Z

W⊤ Z⊤ V∗







δa

δb

δc


 =




ea

eb

ec


 (5.67)

We then proceed to apply a set of transformations to both sides of the equations that

eliminate the upper triangle of blocks above the diagonal. We first apply the set of

transformations to the left hand side of the equations.




I −WV∗−1

I −ZV∗−1

I







U∗ X W

X⊤ Y∗ Z

W⊤ Z⊤ V∗


 =




U′ X′ 0

X′⊤ Y′ 0

W⊤ Z⊤ V∗


 (5.68)




I −X′Y′−1

I
I







U′ X′ 0

X′⊤ Y′ 0

W⊤ Z⊤ V∗


 =




U′′ 0 0

X′⊤ Y′ 0

W⊤ Z⊤ V∗


 (5.69)
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U′ = U∗ − WV∗−1W⊤ (5.70)

X′ = X − WV∗−1Z⊤ (5.71)

Y′ = Y∗ − ZV∗−1Z⊤ (5.72)

U′′ = U′ − X′Y′−1
X′⊤ (5.73)

Then correspondingly apply the same transformations to the right hand side of the

equations. The transformed right hand vector is updated as:




I −WV∗−1

I −ZV∗−1

I







ea

eb

ec


 =




ea
′

e′b
ec


 (5.74)




I −X′Y′−1

I
I







ea
′

e′b
ec


 =




ea
′′

e′b
ec


 (5.75)

ea
′ = ea − WV∗−1ec (5.76)

e′b = eb − ZV∗−1ec (5.77)

ea
′′ = ea

′ − X′Y′−1
e′b (5.78)

The complete transformation matrix T can be written as the product of the two indi-

vidual matrices.

T =




I −X′Y′−1

I
I







I −WV∗−1

I −ZV∗−1

I




T =




I −X′Y′−1 (X′Y′−1ZV∗−1 − WV∗−1)

I −ZV∗−1

I


 (5.79)

We then proceed to solve the set of linear equations.
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U′′

X′⊤ Y′

W⊤ Z⊤ V∗







δa

δb

δc


 =




ea
′′

e′b
ec


 (5.80)

U′′ · δa = ea
′′

δa = U′′−1
ea

′′ (5.81)

We find the parameter update vector δb by back substitution of the computed update

vector δa. Having already computed Y′−1 previously, this step consists of only a few

matrix multiplications.

X′⊤ · δa + Y′ · δb = e′b

δb = Y′−1 ·
(
e′b − X′⊤ · δa

)
(5.82)

We can then perform a final back substitution step with both δa and δb in order to

compute the update vector δc. Again V∗−1 has already been computed before so this

step consists of only a few matrix multiplications.

W⊤ · δa + Z⊤ · δb + V∗ · δc = ec

δc = V∗−1
(
ec − W⊤ · δa − Z⊤ · δb

)
(5.83)

We then compute the new putative set of parameters P′ = (a⊤ + δa⊤,b⊤ + δb⊤, c⊤ + δc⊤)⊤

and test whether P′ decreases the χ2 fitting function. We update the Levenberg-

Marquardt factor λ and parameter vector P accordingly. The iteration process con-

tinues until convergence of the parameters, or the maximum number of iterations is

exceeded. Besides changing the solution step of the normal equations, the parameter

update and termination conditions remain unchanged from the basic implementation

given in appendix C.2.

5.9.2 Covariance matrix

The covariance matrix Σp is computed by inverting the Hessian matrix Σp = (J⊤Σ−1
x J)−1.

Note that the unmodified diagonal blocks of the Hessian matrix U,Y,V are used here
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instead of those formed from augmentation by the Levenberg-Marquardt scaling fac-

tor (1 + λ). We proceed to compute the covariance matrix by Gaussian elimination.




U X W

X⊤ Y Z

W⊤ Z⊤ V







ΣU ΣX ΣW

ΣX
⊤ ΣY ΣZ

ΣW
⊤ ΣZ

⊤ ΣV


 =




I
I

I


 (5.84)




U′′

X′⊤ Y′

W⊤ Z⊤ V







ΣU ΣX ΣW

ΣX
⊤ ΣY ΣZ

ΣW
⊤ ΣZ

⊤ ΣV


 = T (5.85)

where

T =




I −X′Y′−1 (X′Y′−1ZV−1 − WV−1)

I −ZV−1

I


 (5.86)

U′′ · ΣU = I
ΣU = U′′−1

(5.87)

U′′ · ΣX = −X′Y′−1

ΣX = −U′′−1
X′Y′−1

ΣX = −ΣUX′Y′−1
(5.88)

U′′ · ΣW = X′Y′−1
ZV−1 − WV−1

ΣW = U′′−1
X′Y′−1

ZV−1 − U′′−1
WV−1

ΣW = −ΣXZV−1 − ΣUWV−1 (5.89)

X′⊤ · ΣX + Y′ · ΣY = I
ΣY = Y′−1 − Y′−1

X′⊤ΣX

ΣY = Y′−1 −
(
X′Y′−1

)⊤

ΣX (5.90)
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X′⊤ · ΣW + Y′ · ΣZ = −ZV−1

ΣZ = −Y′−1
ZV−1 − Y′−1

X′⊤ΣW

ΣZ = −Y′−1
ZV−1 −

(
X′Y′−1

)⊤

ΣW (5.91)

W⊤ · ΣW + Z⊤ · ΣZ + V · ΣV = I
ΣV = −V−1W⊤ΣW − V−1Z⊤ΣZ

ΣV = −
(
WV−1

)⊤
ΣW −

(
ZV−1

)⊤
ΣZ (5.92)

5.9.3 Block sparse LM method

We have thus far ignored the independence of the set of parameters within each of

the partitions. The computational overhead of naively inverting the V∗ block is the

most dominant factor, while solving the normal equations. The independence of each

set of pose parameters allows us to solve the normal equations while only inverting

each of the independent V∗
i blocks, a computation of the order O(n) rather than the

O(n3) required for the naive approach. It is difficult to express the tree relationship

mathematically using familiar matrix notation, without causing unnecessary confusion.

The strategy outline is best visualised, more by way of example rather than rigorous

mathematical notation. Let a parameter vector P, partitioned into three segments,

represent the worldspace model.

P = (a⊤ | b⊤,b′⊤, · · · | c⊤1 , c⊤2 , c⊤3 , c′
⊤

1 , c′
⊤

2 , · · · )⊤ (5.93)

Where b represents the subject parameters for the first person, b′ the parameters for the

second person, b′′ the third person, and so forth. The corresponding set of circumstantial

subject pose parameters are then given by ci for the first person, c′j for the second

person, and so forth. Note that each subject can have an arbitrary number of pose

parameter blocks, hence the use of different indices (i, j, · · · ) and summations without

qualification of limits.

The Jacobian matrix J is sparsely structured and has the form shown in equation 5.94.
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J =




A1 B1 C1

A2 B2 C2

A3 B3 C3

A′
1 B′

1 C′
1

A′
2 B′

2 C′
2

...
...

. . .




(5.94)

Ai = ∂xi

∂a
Bi = ∂xi

∂b
Ci = ∂xi

∂ci

A′
j =

∂x′
j

∂a
B′

j =
∂x′

j

∂b′ C′
j =

∂x′
j

∂c′j

...
...

...

(5.95)

The block form of the normal equations, corresponding to the general case shown in

equation 5.67, then has a more sparsely structured shape. Note that we have chosen to

align the ground plane coordinate system with the first subject pose within the system.

The θ parameter within the first pose block is then fixed (zero), thus the Jacobian C1

has one less column than the remaining blocks. Correspondingly, the Hessian blocks W1

and Z1 also have one fewer columns, V1 both one fewer rows and columns, and δc1, ec1

one less row each.




U X X′ · · · W1 W2 W3 W′
1 W′

2 · · ·
X⊤ Y Z1 Z2 Z3

X′⊤ Y′ Z′
1 Z′

2
...

. . . · · ·
W⊤

1 Z⊤
1 V1

W⊤
2 Z⊤

2 V2

W⊤
3 Z⊤

3 V3

W′⊤

1 Z′⊤

1 V′
1

W′⊤

2 Z′⊤

2 V′
2

...
...

. . .







δa

δb

δb′

...

δc1

δc2

δc3

δc′1
δc′2
...




=




ea

eb

eb′

...

ec1

ec2

ec3

ec′1

ec′2

...




(5.96)
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U =
∑

i A
⊤
i Σ−1

xi Ai +
∑

j A′⊤

j Σ−1
x′jA

′
j + · · ·

X =
∑

i A
⊤

i Σ−1
xi Bi X′ =

∑
j A′⊤

j Σ−1
x′jB

′
j · · ·

Wi = A⊤
i Σ−1

xi Ci W′
j = A′⊤

j Σ−1
x′jC

′
j · · ·

Y =
∑

i B
⊤

i Σ−1
xi Bi Y′ =

∑
j B′⊤

j Σ−1
x′jB

′
j · · ·

Zi = B⊤
i Σ−1

xi Ci Z′
j = B′⊤

j Σ−1
x′jC

′
j · · ·

Vi = C⊤
i Σ−1

xi Ci V′
j = C′⊤

j Σ−1
x′jC

′
j · · ·

(5.97)

ea =
∑

i A
⊤

i Σ−1
xi ri +

∑
j A′⊤

j Σ−1
x′jr

′
j + · · ·

eb =
∑

i B
⊤
i Σ−1

xi ri eb′ =
∑

j B′⊤

j Σ−1
x′jr

′
j · · ·

eci = C⊤

i Σ−1
xi ri ec′j = C′⊤

j Σ−1
x′jr

′
j · · ·

(5.98)

We augment the diagonal elements of the Hessian matrix with the Levenberg-Marquardt

scaling factor (1+λ), then apply the transformation matrix to both sides of the equations

to eliminate the W and Z blocks.




I −W1V
∗−1
1 −W2V

∗−1
2 −W3V

∗−1
3 −W′

1V
′∗−1
1 −W′

2V
′∗−1
2 · · ·

I −Z1V
∗−1
1 −Z2V

∗−1
2 −Z3V

∗−1
3

I −Z′
1V

′∗−1
1 −Z′

2V
′∗−1
2

. . . · · ·
I

I
I

I
I

. . .




(5.99)

The set of transformed normal equations are then of the form.
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Ũ X̃ X̃′ · · ·
X̃⊤ Ỹ

X̃′
⊤

Ỹ′

...
. . .

W⊤
1 Z⊤

1 V∗
1

W⊤
2 Z⊤

2 V∗
2

W⊤
3 Z⊤

3 V∗
3

W′⊤

1 Z′⊤

1 V′∗

1

W′⊤

2 Z′⊤

2 V′∗

2
...

...
. . .







δa

δb

δb′

...

δc1

δc2

δc3

δc′1
δc′2
...




=




ẽa

ẽb

ẽb′

...

ec1

ec2

ec3

ec′1

ec′2

...




(5.100)

Ũ = U∗ −
∑

i

WiV
∗−1
i W⊤

i −
∑

j

W′
jV

′∗−1
j W′⊤

j − · · · (5.101)

ẽa = ea −
∑

i

WiV
∗−1
i eci −

∑

j

W′
jV

′∗−1
j ec′j − · · · (5.102)

X̃ = X − ∑
i WiV

∗−1
i Z⊤

i X̃′ = X′ − ∑
j W′

jV
′∗−1
j Z′⊤

j · · ·

Ỹ = Y∗ − ∑
i ZiV

∗−1
i Z⊤

i Ỹ′ = Y′∗ − ∑
j Z′

jV
′∗−1
j Z′⊤

j · · ·

ẽb = eb − ∑
i ZiV

∗−1
i eci ẽb′ = eb′ − ∑

j Z′
jV

′∗−1
j ec′j · · ·

(5.103)

We then apply the second transformation matrix to both sides of the equations, to zero

the X block and thus eliminate the upper triangle of blocks above the diagonal.




I −X̃Ỹ−1 −X̃′ Ỹ′
−1 · · ·

I
I

. . .

I
I

I
I

I
. . .




(5.104)
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The set of transformed normal equations with eliminated upper triangle of blocks are

then of the form.




Ü

X̃⊤ Ỹ

X̃′
⊤

Ỹ′

...
. . .

W⊤
1 Z⊤

1 V∗
1

W⊤
2 Z⊤

2 V∗
2

W⊤
3 Z⊤

3 V∗
3

W′⊤

1 Z′⊤

1 V′∗

1

W′⊤

2 Z′⊤

2 V′∗

2
...

...
. . .







δa

δb

δb′

...

δc1

δc2

δc3

δc′1
δc′2
...




=




ëa

ẽb

ẽb′

...

ec1

ec2

ec3

ec′1

ec′2

...




(5.105)

Ü = Ũ −
(
X̃Ỹ−1X̃⊤

)
−

(
X̃′ Ỹ′

−1
X̃′

⊤
)

− · · · (5.106)

ëa = ẽa −
(
X̃Ỹ−1ẽb

)
−

(
X̃′ Ỹ′

−1
ẽb′

)
− · · · (5.107)

We then solve the set of linear equations to compute the parameter update vectors.

Ü · δa = ëa

δa = Ü
−1

ëa (5.108)

We find the individual parameter update vectors (δb, δb′, · · · ) by back substitution of

the update vector δa. Having already computed the blocks (Ỹ−1, Ỹ′
−1

, · · · ) previously,

this step consists of only a few matrix multiplications.

X̃⊤ · δa + Ỹ · δb = ẽb

X̃′
⊤ · δa + Ỹ′ · δb′ = ẽb′



 · · · (5.109)

δb = Ỹ−1
(
ẽb − X̃⊤ · δa

)

δb′ = Ỹ′
−1

(
ẽb′ − X̃′

⊤ · δa
)





· · · (5.110)
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We can then perform a final back substitution step in order to compute the update

vectors (δci, δc′j , · · · ). Again the individual blocks (V∗−1
i ,V′∗−1

j , · · · ) have already been

computed before, so this step consists of only a few matrix multiplications.

W⊤
i · δa + Z⊤

i · δb + V∗
i · δci = eci

W′⊤

j · δa + Z′⊤

j · δb′ + V′∗

j · δc′j = ec′j



 · · · (5.111)

δci = V∗−1
i

(
eci − W⊤

i · δa − Z⊤

i · δb
)

δc′j = V′∗−1
j

(
ec′j − W′⊤

j · δa − Z′⊤

j · δb′

)
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The covariance matrix is computed in much the same way. Note that the unmodified

diagonal blocks of the Hessian matrix U,Y,V are used here instead of those formed

from augmentation by the Levenberg-Marquardt scaling factor (1 + λ).

Since the pose projection M discussed within chapter 4 over parameterises the map-

ping from metric to image planes, computation of the covariance matrix for each set of

individual linear motion segments requires inverting the Hessian by use of the pseudo

inverse. Here, the parameterisation of the worldspace model P is of full rank, thus

inversion of all the required matrices can be performed by using any of the standard

methods.

Only the diagonal elements of the covariance matrix are required for the computation of

the confidence limits of each parameter independently. With a little extra effort the set of

cross covariance blocks can also be computed, though this will not be discussed further.

Without further working we give the equations required to compute the diagonal blocks

of the covariance matrix.

ΣU = Ü
−1

(5.113)

ΣX = −ΣUX̃Ỹ−1

ΣX′ = −ΣUX̃′ Ỹ′
−1



 · · ·

ΣWi = −ΣXZiV
−1
i − ΣUWiV

−1
i

ΣW′j = −ΣX′Z′
jV

′−1
j − ΣUW′

jV
′−1
j



 · · ·

ΣY = Ỹ −
(
X̃Ỹ−1

)⊤

ΣX

ΣY′ = Ỹ′ −
(
X̃′ Ỹ′

−1
)⊤

ΣX′





· · · (5.114)
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ΣZi = −
(
Ỹ−1ZiV

−1
i

)
−

(
X̃Ỹ−1

)⊤

ΣWi

ΣZ′j = −
(
Ỹ′

−1
Z′

jV
′−1
j

)
−

(
X̃′ Ỹ′

−1
)⊤

ΣW′j





· · ·

ΣVi = −
(
WiV

−1
i

)⊤
ΣWi −

(
ZiV

−1
i

)⊤
ΣZi

ΣV′j = −
(
W′

jV
′−1
j

)⊤

ΣW′j −
(
Z′

jV
′−1
j

)⊤

ΣZ′j
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5.10 Reconstruction analysis

Table 5.10 shows a comparison between the root mean squared residual errors for each

individual linear trajectory segment M, the fused parameter estimates and after global

maximum likelihood estimation. Individual reprojection by M does not take the compo-

nents of radial lens distortion into account. Unsurprisingly, the reprojection errors after

initial parameter fusion are greater than the individual M errors. We can clearly see

that the global MLE improves the residual fitting errors, when compared to the initial

reconstruction using the fused parameters. The difference in residual errors with and

without components of radial distortion is quite noticeable. The mean percentage error

increase over each independent M error, without radial components is ≃ 24%, while

inclusion of Kr often makes significant reductions in the percentage fitting errors. The

mean percentage error increase by including the coefficients Kr is ≃ 1%, an order of

magnitude better than modelling the motion without radial lens distortion.

Seg M Fused (Kc) Fused (Kc,Kr) MLE (Kc) MLE (Kc,Kr)

a 3.102 3.802 (22.56%) 3.925 (26.53%) 3.213 (3.57%) 1.423 (-54.12%)

b 1.048 2.381 (127.19%) 1.935 (84.63%) 1.439 (37.30%) 1.016 (-3.05%)

c 1.321 2.733 (106.88%) 2.682 (103.02%) 2.292 (73.50%) 1.971 (49.20%)

d 1.398 2.425 (73.46%) 2.021 (44.56%) 1.626 (16.30%) 1.188 (-15.02%)

e1 1.619 2.846 (75.78%) 2.717 (67.82%) 1.729 (6.79%) 1.893 (16.92%)

e2 1.189 2.531 (112.86%) 2.448 (105.88%) 1.292 (8.66%) 1.342 (12.86%)

Table 5.10: Piecewise linear root mean square reprojection errors shown for each
individual trajectory segment M, after parameter fusion and maximum likelihood es-
timation with and without radial distortion coefficients Kr. Values in brackets are
percentage errors ∆ǫ between computed and M residual r.m.s. errors.

Figures 5.15 and 5.16 show the comparison of the reconstructed leg angle functions θ̃(t)

between minimized subject biometric coefficients B after global MLE, and each of the

individually computed sets of coefficients B̃i.

We can clearly see the improvement in reprojection error by including the full camera

distortion model Kc,Kr within the optimization procedure. The trajectory segment of

subject motion, shown within figure 5.17, covers a large proportion of the camera field
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Figure 5.15: Comparison of upper normalized limb angle functions θ̃(t) shown for
each of the individual reconstructed linear trajectory segments M and after maximum
likelihood estimation.

Figure 5.16: Comparison of lower normalized limb angle functions θ̃(t) shown for
each of the individual reconstructed linear trajectory segments M and after maximum
likelihood estimation.

of view. The middle frames corresponding to the pose reprojection M match quite well,

while image frames at the beginning and end of the sequence show significant differ-

ences. Due to the effects of radial lens distortion, the residual image error is distributed

unevenly, with an increasing level of error seen further from the camera principal point.

The representation of imaged subject motion using the camera parameters Kc,Kr is

sufficiently well modelled. The corresponding residual errors are distributed evenly over

the set of image sequence frames.

5.10.1 System parameters

We compare here the set of reconstructed camera parameters, found by global parameter

optimization, to those obtained through an accurate calibration algorithm. The baseline

camera coefficients are computed by performing Zhang’s calibration algorithm [120],

with a sufficiently large number of image frames. Table 5.11 shows the camera intrinsic

parameters Kc computed for the global optimization, with and without components
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(a) M : frame 1 (b) Global MLE : frame 1

(c) M : frame 80 (d) Global MLE : frame 80

(e) M : frame 160 (f) Global MLE : frame 160

Figure 5.17: Comparison of the reprojected limb points for individual pose parame-
terisations M (a,c,e) and after global MLE with camera coefficients Kc,Kr (b,d,f). The
image frames are taken from the beginning, middle and end of the motion trajectory
segment ‘a’.
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of radial distortion Kr. The levels of uncertainty within each parameterisation are

indicative of what we might expect.

Method mx my u0 v0

MLE (Kc) 830.60 ± 39.62 923.64 ± 35.71 230.48 ± 20.97 531.86 ± 35.61

MLE (Kc,Kr) 707.91 ± 25.59 815.05 ± 26.01 360.49 ± 4.03 221.98 ± 3.76

Zhang 865.28 ± 1.24 947.93 ± 1.37 355.64 ± 2.27 274.19 ± 2.44

Table 5.11: Camera intrinsic coefficients with corresponding 3σ confidence limits com-
puted from the worldspace gait model. Accurate calibration coefficients are given by
performing Zhang’s calibration algorithm.

The parameters found by modelling the worldspace motion without Kr have much higher

uncertainties than those with distortion coefficients. The computed principal point is

also significantly different to the baseline values. The distribution of worldspace data

is mostly within the X and Z directions of the ground plane coordinate system. The

imaged data within these directions provides most of the fitting constraints, while the

principal point will tend to drift within the imaged Y direction, in order to compensate

for the apparent effect of radial distortion through projective warping. The worldspace

subject ty positions are then free to take whatever values that are necessary to achieve

the required reprojection, and unsurprisingly are also significantly different from the

baseline values.

The parameters found by modelling the worldspace motion with distortion coefficients Kr

have similar values to the baseline parameters. The difference in focal parameters can

be explained by the close coupling with the lens distortion coefficients. Lens distor-

tion scales the image radially from the principal point, thus the focal parameters will

also be adjusted to compensate for the apparent difference between baseline and com-

puted radial parameters. Table 5.12 shows the computed and baseline radial distortion

coefficients Kr and their corresponding uncertainties.

Method k1 k2

MLE (Kc,Kr) −0.135964 ± 0.049123 −1.856917 ± 0.352171

Zhang −0.224416 ± 0.007648 0.305238 ± 0.045303

Table 5.12: Camera radial distortion coefficients with corresponding 3σ confidence
limits computed from the worldspace gait model. Accurate radial coefficients are given
by performing Zhang’s calibration algorithm.

Comparison of the radial coefficients are best visualised by plotting the distortion profile

for both sets of parameters. Figure 5.18 shows a plot of the radial distortion function

f(r) = 1 + k1 · r2 + k2 · r4 within the visible range of rays entering the lens. The cor-

responding plot shown in figure 5.19 shows the complete distortion mapping of rays

entering the lens with projection onto the focal plane x(r) = mx · r · f(r), for the cross

section of the lens X axis.
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Figure 5.18: Comparison of lens distortions for MLE and baseline coefficients. Lens
distortion function f(r).

Figure 5.19: Comparison of lens distortions for MLE and baseline coefficients. Lens
projection onto focal plane x(r) = mx · r · f(r).

The disparity between lens distortion mappings is evident in figure 5.19. The close cou-

pling between parameters of the projection process Kc,Kr and worldspace points X

means that if we perturb one set of parameters away from the true values then the

other two parameters must also be adjusted to compensate. Subsequently if the opti-

mal χ2 error is achieved with a set of radial distortion coefficients Kr slightly different

from the true baseline values then both Kc and worldspace points X will also differ in

value. Figure 5.20 shows the comparison of reconstructed worldspace points between

the computed optimal and baseline values.

As the experimenter, we are able to control many of the aspects of worldspace motion

that may influence the uncertainty within the modelling process. We can ensure that

the ground plane is as flat as possible by choosing a suitable location, and that motion is

piecewise linear by manually picking the trajectory segments within the image sequence.

If we fix the camera intrinsic parameters during optimization with the true baseline val-

ues of Kc and Kr, then a substantial proportion of the residual errors can be attributed

to the uncertainty within the underlying biometric and circumstantial parameters of
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(a) (b)

Figure 5.20: Comparison of reconstructed worldspace points. The plotted
worldspace points represent the initial positions of the subject at the start of the trajec-
tory segment within the XZ ground plane. (a) Positions computed from the optimized
Kc,Kr camera parameters. (b) Positions computed with the fixed baseline camera
intrinsic parameters.

subject motion.

Table 5.13 shows that the greatest percentage error ∆ǫ improvement in fitting is achieved

for imaged subject motion covering a significant proportion of the field of view. The

worst percentage error increase corresponds to the most oblique trajectory, with imaged

motion within a localized region of the image space.

Seg M MLE MLE (Kc,Kr)

a 3.102 3.015 (-2.805%) 1.423 (-54.126%)

b 1.048 1.111 (6.011%) 1.016 (-3.053%)

c 1.321 2.392 (81.075%) 1.971 (49.205%)

d 1.398 1.543 (10.372%) 1.188 (-15.021%)

e1 1.619 1.909 (17.912%) 1.893 (16.924%)

e2 1.189 1.358 (14.214%) 1.342 (12.868%)

Table 5.13: Piecewise linear root mean square reprojection errors shown for each in-
dividual trajectory segment M and maximum likelihood estimation with fixed baseline
camera parameters (MLE) and computed intrinsic coefficients Kc,Kr. Values in brack-
ets are percentage errors ∆ǫ between computed and M residual r.m.s. errors.

The underlying subject biometric parameters are similar for both sets of estimated

parameters. Figures 5.21 and 5.22 show a comparison of both reconstructed upper and

lower leg normalized angle functions θ̃(t) over a single period of gait. The maximum error

difference between the optimized and baseline reconstructions of the upper normalized

leg angle functions is 0.025, corresponding to a 0.625 degree limb angle difference. The

maximum error difference between the optimized and baseline reconstructions of the
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lower normalized leg angle functions is 0.02, which corresponds to a 0.8 degree limb

angle difference.

(a)

(b)

Figure 5.21: Comparison of the reconstructed upper normalized limb angle
functions θ̃(t). (a) Optimized parameters computed with the fixed baseline camera
parameters (MLE). (b) Difference between reconstructed limb functions computed with
the minimized camera intrinsic parameters Kc,Kr and with the fixed baseline camera
parameters.

Since the reconstruction algorithm is based on metric rectification of landmark points,

the position and uncertainty within which these markers are measured is the major

contributing factor within the accuracy of the reconstruction. To ensure that an imaged

limb joint can be marked for any arbitrary pose within the entire image sequence, four

retro-reflective marker patches were attached to the opposing faces of each joint site

on the body. The choice of the four imaged landmarks for each limb joint was picked

consistently over a linear trajectory segment. However, the use of all available trajectory

segments in the global optimization circumvents a consistent choice of markers over the

entire image sequence. We have chosen to robustly parameterise this difference in marker

placement within the set of poses, by ensuring independent inter-plane scaling factors τ



Chapter 5 Total Parameterisation of Generalized Gait Motion 235

(a)

(b)

Figure 5.22: Comparison of the reconstructed lower normalized limb angle
functions θ̃(t). (a) Optimized parameters computed with the fixed baseline camera
parameters (MLE). (b) Difference between reconstructed limb functions computed with
the minimized camera intrinsic parameters Kc,Kr and with the fixed baseline camera
parameters.

and inclination angles α within the circumstantial pose parameters Z of subject motion.

Symmetric markers on opposite sides of the body are not visible within the images.

Joint markers on the outside of one leg coupled with markers on the inside of the other

leg are used in all the fronto-parallel views, hence the mid symmetry plane between the

marker set may not be entirely parallel with the ground plane normal, thus accounting

for a significant proportion of the source of deviation between worldspace motion model

and what we actually measure.

The assumption of constant velocity over a linear segment between way-points may not

be entirely true. Subjects tend to slow down while approaching turning points and,

in order to make a smooth transition between trajectories, the motion path becomes

slightly elliptical. Restricting the camera intrinsic parameters by fixing Kc and Kr
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with the baseline coefficients in effect reduces the degrees of freedom in which we can

distort the motion to our advantage. For example, speed up/down effects of motion

across the field of view can be removed by applying a suitable adjustment to the radial

coefficients to approximate rectification back to linear motion. All but one of the linear

trajectories account for imaged motion across the field of view. The set of turning points

are all imaged within a small band at the edges of the view. It then seems reasonable to

conclude that the apparent linearization of gait motion, by adjustment of the radial lens

coefficients, accounts for some of the differences between baseline and computed camera

parameters.

Method v1 v2 v3

MLE 0.007103 ± 0.004421 0.319089 ± 0.015115 0.016467 ± 0.001186

Table 5.14: Computed Rodrigues vector N corresponding to the pose rotation of the
worldspace ground plane. The corresponding uncertainties are computed at the 3σ
confidence limits.

Table 5.14 shows the computed worldspace ground plane pose rotation, encoded as

a Rodrigues 3-vector, and the corresponding uncertainties. We must note that the

reconstructed worldspace is not the same as the true worldspace, since we have chosen

to normalize the set of upper leg segments for each subject to unit length. Consequently,

the trajectories are similar to those of the true metric worldspace, but distances from the

camera are scaled. The properties of parallelism and distance ratio relationships hold,

although intersection constraints do not. Without prior knowledge of each subject’s

height, that enables us to reconstruct the true metric worldspace, we are unable to find

the intersection point where two people may meet in space. In essence, the reconstructed

space may be termed a normalized space.

5.10.2 Subject and pose parameters

Tables 5.15 to 5.24 at the end of the chapter, show the computed subject biometric pa-

rameter estimates of B and the corresponding confidence limits, after performing global

optimization on all available parameters. Each table also contains the same parameter

estimates B and corresponding confidence limits, computed from each of the independent

pose M maximum likelihood estimations. We can calculate the mean uncertainties from

this set of individual trajectory parameter estimates. The mean parameter uncertain-

ties can then be compared to those obtained through global optimization. Figures 5.23

and 5.24 show the comparison between these estimated uncertainties. There is a clear

reduction in the computed parameter uncertainties, achieved by performing the global

optimization which can be attributed to the more realistic worldspace motion model

and the fact that there is a larger supporting measurement data set. We can then

quantify this reduction in uncertainty between both parameterisations by quoting the

uncertainty differences ∆σ, as a percentage of the computed individual mean uncer-
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tainties. The mean percentage difference uncertainty reduction is of the order ≃ 72%

between the finally estimated and mean of the linear trajectory uncertainty estimates.

(a) D (b) ∆σd

Figure 5.23: Estimated subject biometric parameter uncertainties computed at the 3σ
confidence limits. Shown here are the mean uncertainties attributed to the independent
set of pose projections M and the uncertainties computed from the global optimiza-
tion. The reduction in uncertainties between parameterisations is quantified by the
uncertainty difference as a percentage of the mean individual uncertainties ∆σ.

We have already briefly discussed the effects of non constant velocity on the intrinsic

parameters of the camera. In order to correct for apparent changes in velocity, the radial

lens distortion parameters are adjusted from their true values to effectively linearize the

motion. We may then wish to consider replacing the simple linear displacement function

x(t) = at + b within the biometric motion equation g(t) with a suitable quadratic func-

tion x(t) = at2 + bt + c. The linear velocity assumption precludes that the dynamics of

gait remain constant. If we add an acceleration term then we must also couple this with

a change in cadence f0. We can then model this change in fundamental frequency by the

linear function f(t) = ωt + f0. The modified Fourier series biometric motion function

can then be modelled by the equation.

x(t) = (at2 + bt + c) + a1 cos(2π(ωt + f0) · (t + ts)) +

a1 ·
n∑

k=2

bk cos(2πk · (ωt + f0) · (t + ts) + ψk) (5.116)

Each linear trajectory reconstruction M then computes the initial linear estimates of

velocity and cadence. The higher order terms a, ω may then be initialised to zero before

optimization, and form part of the subject circumstantial parameters W.

W = (a, b, ω, f0, p⊤,q⊤, r⊤)⊤ (5.117)

where vector p contains the c offset coefficients of V, vector q contains the a1 amplitude

coefficients of X,Y,V and vector r contains the ts time shift coefficients of X,Y,V.
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(a) X : bk (b) X : ψk

(c) Y : bk (d) Y : ψk

(e) V1 : bk (f) V1 : ψk

(g) V2 : bk (h) V2 : ψk

Figure 5.24: Estimated subject biometric parameter uncertainties computed at the 3σ
confidence limits. Shown here are the mean uncertainties attributed to the independent
set of pose projections M and the uncertainties computed from the global optimization.
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(a) ∆σx : bk (b) ∆σx : ψk

(c) ∆σy : bk (d) ∆σy : ψk

(e) ∆σv1 : bk (f) ∆σv1 : ψk

(g) ∆σv2 : bk (h) ∆σv2 : ψk

Figure 5.25: Estimated biometric parameter uncertainties computed at the 3σ confi-
dence limits. The reduction in uncertainties between the independent set of pose pro-
jections M and the uncertainties computed from the global optimization is quantified
by the uncertainty difference as a percentage of the mean individual uncertainties ∆σ.
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5.11 Conclusions

We have demonstrated that generalized gait motion can be approximated by piecewise

linear planar motion. The complete reconstruction algorithm requires no prior knowl-

edge of the camera or worldspace, only that we can identify the limb joint landmarks

for each subject. Reconstruction of generalized gait motion is a three step process:

linear trajectory reconstruction, parameter fusion and finally global optimization. We

have shown that the imaged motion can be decomposed into an accurate worldspace

model, where the projection of worldspace structure includes modelling of radial lens

distortion. We also gave details of how to model trajectory segments with non linear

velocities, though without qualification of results. In the context of biometric gait anal-

ysis, this is a positive step towards making already established and future techniques

more robust to changes in subject pose.

The set of limb swing plane homography mappings, computed from each reconstructed

linear trajectory segment, form linear constraints on the camera intrinsic parameters.

A minimum of two non parallel motion trajectories are required to find the intrinsic

parameters of a camera, with the assumption of zero skew.

We assume that the camera intrinsic parameters and the ground plane rotation are

fixed throughout the image sequence. Consequently, they can be removed from the set

of planar homographies, such that the ground plane pose rotation aligns the canonical

X axis with the first subject motion trajectory. The remaining set of reconstructed

piecewise linear trajectory segments are then each parameterised by a single trajectory

angle θ within the canonical ground plane. In the presence of image noise and effects

of camera radial lens distortion, the set of reconstructed gait trajectory segments do

not exactly satisfy the conditions for planar motion. We have discussed the accuracy

of reconstruction through linear decomposition alone, as well as performing maximum

likelihood estimation of both camera and subject pose parameters. The worldspace

decomposition process accounts for the greatest significant proportion of the reprojection

error within the initial fitting process. We model the camera by including components of

radial lens distortion. Subsequently, the linear decomposition method provides a good

set of initial estimates for the parameters of the camera and ground plane.

Each linear trajectory segment reconstructs the individual representations of the un-

derlying biometric parameters. We described two methods to fuse the reconstructed

parameters into a single representation. The linear method assumes each of the biomet-

ric coefficients are independent, thus fusion of these parameters can be thought of as no

more than a statistical average over the complete set of coefficients. We also discussed

a method that computes the maximum likelihood estimate of the fused parameters, by

minimizing the image reprojection error. There is a significant improvement in residual

fitting error when compared to using the linear method alone.
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The parameter fusion step can be thought of as a half way stage between computing the

set of reconstructed linear motion segments and the full worldspace model optimization.

Its objective is twofold: i) Decompose the set of linear trajectory segment poses into

a consistent planar motion parameterisation; and ii) Generate a consolidated set of

underlying biometric parameters for each subject.

Maximum likelihood estimation of both sets of parameters are computed by sparse meth-

ods that minimize image reprojection error. We first consider the set of reconstructed

limb plane homographies as fixed, thus minimization of the biometric parameters on

the metric plane is enabled by direct reprojection of structure using these homogra-

phies. On the other hand, minimization of the camera and ground plane parameters is

achieved by assuming that the set of reconstructed metric plane limb points are fixed,

thus optimizing reprojection error though the parameterised worldspace projections.

Computation of the set of fused parameters through linear methods alone can give a poor

conversion between piecewise linear segments and the worldspace model. Performing

maximum likelihood estimations, on both biometric and system parameters within the

fusion stage, generates good initial estimates of the global parameters and widens the

region of convergence. The fusion step then removes some of the risk of encountering

outlying local minima and potential slow convergence far from the true minimum, within

the global parameter space.

The final global optimization step partitions the worldspace model into three sections:

system, subject and pose parameters. The system parameters encode the camera in-

trinsic coefficients and ground plane pose rotation, the subject parameters encode the

underlying dynamics of gait motion and the pose parameters determine the correspond-

ing circumstantial values of initial gait phase and trajectory. We gave details of a sparse

Levenberg-Marquardt minimization method that gives a true maximum likelihood es-

timate of the camera intrinsic, ground plane and each subject’s underlying biometric

parameters over the entire image sequence. The computed camera intrinsic parameters

compare reasonably well with those obtained though an accurate calibration algorithm.

An analysis of the parameter uncertainties was given, and showed that the global opti-

mization method makes a significant improvement in both the level of uncertainty within

the parameters and the root mean squared reprojection errors, when compared to the

individual linear trajectory pose reconstructions.

While the algorithm can handle an arbitrary number of subjects, only a single subject

has been used for testing. A large number of frames need to be manually marked for

each subject, so the restriction mainly depends on the time required to mark up an

image sequence. Similarly, the subject has been imaged walking with almost constant

velocity around the test track. Further analysis needs to be done with more subjects

and with walking at a number of different speeds.

Each subject, and their corresponding set of linear motion poses, influences the con-
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straints on the camera intrinsic and ground plane rotation parameters. Predictions

about changes in velocity and deviation from the path at turning points can only be val-

idated by reconstructing the true 3D motion. In a slight oversight by the experimenter,

no ground truth data was taken with the same landmark positions, that would have

allowed us to compare reconstructions. Further work needs to be done to determine the

accuracy within which we need to compute the landmark positions, in order to give a

good reconstruction.

The gait function is able to reconstruct the subject motion fairly well, but in the presence

of noise and with many data segments the reconstructed waveforms appear smoothed

due to the nature of the Fourier representation. The detail within high energy phases of

gait (loading response and initial swing) is missed. The higher the uncertainty within

the reconstruction, the more like the basis function the gait waveform becomes. Since

the first harmonic within the Fourier gait function of equation 5.13 contains no infor-

mation about the underlying biometric, then it may be beneficial to replace this first

order term with a function representing a statistically average gait motion. Instead of

trying to measure the reconstructed gait signature itself, we then measure the departure

from normal gait. Uncertainty within the reconstruction then shapes the reconstructed

waveform more towards the statistically average gait function, thus preserving the detail

within the high energy phases of gait.

There need not only be a single average gait motion function. A database of average

gait functions can be generated to represent all the various gait modes. This range of

modes can be wider than just the two normal walking and running types, but can also

encompass the pathological conditions. From a reconstruction point of view, finding

the function that best describes the gait mode gives us extra information about the

circumstance of subject motion. How to best use the information reconstructed across

different gait modes, in order to generate a unique biometric signature, is though a topic

for further research.
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5.12 Tables of parameter estimates

We present here the computed parameter and corresponding uncertainty estimates af-

ter global optimization for the set of subject biometric parameters B. The maximum

likelihood estimate (MLE) is found by optimizing all available parameters, including the

camera intrinsic coefficients Kc and Kr. For comparative purposes we also show the pa-

rameter estimates and uncertainties for each individual linear trajectory pose segment,

obtained through pose projection M. We finally show the set of parameter estimates

and uncertainties for each of the pose data blocks Z and W after optimization.

Param a b c d e1 e2 MLE

d2 0.79343 0.73767 0.72992 0.78166 0.79959 0.79557 0.76549

Table 5.15: Computed parameter estimates for parameters D. Individual parameter
estimates for each linear trajectory pose segment (a-e) and after global MLE are shown.

Param a b c d e1 e2 MLE

d2 0.03361 0.01501 0.02539 0.01814 0.02231 0.02004 0.00671

Table 5.16: The corresponding uncertainties of parameter estimates D computed at
the 3σ confidence limits.

Param a b c d e1 e2 MLE

b2 0.64409 0.56664 0.99231 0.88868 0.75239 0.79025 0.46713

ψ2 -1.40415 -0.82466 -1.80979 -0.49576 -1.94606 -1.78927 -1.67389

b3 0.0615 0.23226 0.35118 0.31576 0.40475 0.51466 0.19041

ψ3 0.22714 -3.10169 -1.03506 1.60238 1.64414 2.02166 0.33561

b4 0.22131 0.16079 0.27717 0.14345 0.35818 0.26729 0.05965

ψ4 -0.91308 0.58736 1.43422 2.594 -2.79931 -2.63596 -0.43209

b5 0.06317 0.11661 0.11865 0.20255 0.12165 0.08803 0.02993

ψ5 -0.42605 2.38018 -2.15466 2.9069 -0.85679 -0.04464 -0.48506

Table 5.17: Computed parameter estimates for parameters X. Individual parameter
estimates for each linear trajectory pose segment (a-e) and after global MLE are shown.
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Param a b c d e1 e2 MLE

b2 0.27762 0.17842 0.66027 1.06204 0.4764 0.4222 0.082072

ψ2 0.76599 0.47638 1.0148 1.16425 0.86091 0.73876 0.24272

b3 0.24768 0.16704 0.46178 0.6805 0.3965 0.36399 0.078802

ψ3 5.04482 0.86791 1.85822 1.5928 1.50309 1.1851 0.52048

b4 0.24569 0.16221 0.44212 0.38965 0.39137 0.33195 0.066878

ψ4 1.78867 1.1707 2.35214 3.85267 1.83366 1.80178 1.15596

b5 0.22848 0.14463 0.38763 0.23025 0.32785 0.27912 0.061301

ψ5 3.66608 1.43854 4.02042 3.39437 3.31894 3.59887 2.08607

Table 5.18: The corresponding uncertainties of parameter estimates X computed at
the 3σ confidence limits.

Param a b c d e1 e2 MLE

b2 1.78687 2.778 1.375 1.4889 4.35266 3.72119 1.93923

ψ2 0.1859 0.74311 -0.14958 1.22678 -1.87541 -1.93033 -0.72983

b3 0.43535 0.74199 0.26348 0.18721 0.32759 0.30959 0.10605

ψ3 -1.2744 -0.27206 -1.62704 0.24026 -1.9351 -1.94579 -1.45557

b4 0.22428 0.27056 0.10224 0.09282 0.34549 0.23377 0.18312

ψ4 -2.71894 -1.46198 3.13696 0.34272 -0.91272 -1.27855 2.20407

b5 0.06535 0.13641 0.01124 0.05001 0.22536 0.26309 0.01634

ψ5 1.5245 2.5714 2.57685 -0.11371 -0.46521 -0.35844 -1.41926

Table 5.19: Computed parameter estimates for parameters Y. Individual parameter
estimates for each linear trajectory pose segment (a-e) and after global MLE are shown.

Param a b c d e1 e2 MLE

b2 0.82122 0.89186 0.26502 1.09513 2.28349 1.40108 0.16992

ψ2 0.88524 0.72058 0.32092 2.82343 0.90761 0.65415 0.14631

b3 0.38193 0.35171 0.14888 0.57633 0.48014 0.34331 0.06469

ψ3 1.43064 1.09075 0.71374 7.14951 1.8665 1.39638 0.64521

b4 0.34058 0.2723 0.14133 0.61514 0.47837 0.33049 0.07141

ψ4 2.11897 1.63676 1.50266 7.86026 2.30031 1.95434 0.47336

b5 0.3018 0.22569 0.13585 0.27983 0.42509 0.30992 0.05703

ψ5 4.84785 2.39385 11.9591 6.67012 2.90929 1.9895 3.54183

Table 5.20: The corresponding uncertainties of parameter estimates Y computed at
the 3σ confidence limits.

Param a b c d e1 e2 MLE

b2 0.21527 0.2533 0.11636 0.31704 0.30655 0.31474 0.27867

ψ2 2.61757 2.70672 2.20133 2.34053 2.49635 2.51714 2.78381

b3 0.08845 0.14989 0.02016 0.14992 0.16716 0.18676 0.12651

ψ3 -2.83351 -2.51929 -1.32011 3.12348 -2.53854 -2.41671 -2.76678

b4 0.01681 0.03281 0.01895 0.06527 0.00962 0.02885 0.02981

ψ4 -0.34205 0.34917 2.96454 2.80206 0.78146 1.06585 2.34835

b5 0.01089 0.02073 0.01607 0.06036 0.02211 0.03999 0.01615

ψ5 -2.44617 2.48466 -1.13019 2.51263 2.52848 2.66093 -2.6584

Table 5.21: Computed parameter estimates for parameters V1. Individual parameter
estimates for each linear trajectory pose segment (a-e) and after global MLE are shown.
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Param a b c d e1 e2 MLE

b2 0.09023 0.03952 0.07155 0.12095 0.05404 0.05416 0.01792

ψ2 0.38331 0.16423 0.64288 0.75943 0.18077 0.16952 0.06501

b3 0.08304 0.03735 0.06943 0.14042 0.04834 0.04878 0.01665

ψ3 0.85554 0.26102 3.47868 1.06521 0.31401 0.29133 0.13625

b4 0.07556 0.03534 0.06726 0.10456 0.04569 0.04446 0.01441

ψ4 4.65207 1.12954 3.58584 1.95327 4.79756 1.59195 0.47727

b5 0.06476 0.03183 0.05509 0.06501 0.03983 0.03827 0.01289

ψ5 5.87016 1.53397 3.48077 1.06594 1.83809 1.00295 0.80295

Table 5.22: The corresponding uncertainties of parameter estimates V1 computed at
the 3σ confidence limits.

Param a b c d e1 e2 MLE

b2 0.60971 0.62663 0.47776 0.59257 0.71095 0.75503 0.61337

ψ2 1.9263 1.92781 1.91356 2.04861 1.84794 1.90877 1.99381

b3 0.14521 0.11888 0.13487 0.14109 0.18495 0.20147 0.13791

ψ3 -3.12982 -3.0294 -2.83897 -2.80517 3.11058 3.02179 -3.05652

b4 0.03885 0.03033 0.03244 0.04031 0.04768 0.07688 0.03081

ψ4 -2.60091 -3.00026 3.09014 -2.48211 2.81317 2.91047 -2.63747

b5 0.05307 0.04865 0.04831 0.03599 0.04469 0.06095 0.03824

ψ5 -1.89449 -1.73374 -1.51014 -1.46848 -2.06199 -1.89003 -1.41737

Table 5.23: Computed parameter estimates for parameters V2. Individual parameter
estimates for each linear trajectory pose segment (a-e) and after global MLE are shown.

Param a b c d e1 e2 MLE

b2 0.07412 0.03859 0.09177 0.03824 0.07683 0.07821 0.01854

ψ2 0.18248 0.08831 0.28071 0.08914 0.18202 0.18523 0.04405

b3 0.06214 0.03198 0.07475 0.03074 0.05976 0.05841 0.01483

ψ3 0.48422 0.29208 0.65949 0.25025 0.40975 0.38269 0.12018

b4 0.05882 0.03072 0.07332 0.03009 0.05631 0.05507 0.01465

ψ4 1.54863 1.01938 2.25261 0.75578 1.15562 0.73408 0.48229

b5 0.05784 0.02972 0.06973 0.02905 0.05141 0.04973 0.01365

ψ5 1.11766 0.64189 1.48979 0.84864 1.1825 0.86968 0.36843

Table 5.24: The corresponding uncertainties of parameter estimates V2 computed at
the 3σ confidence limits.

Param a b c d e1 e2

θ 0 -2.954048 1.411748 -0.795410 -2.35076 -2.33378

α -0.288967 -0.382725 -0.406140 -0.473025 -0.316038 -0.297291

τ 0.365178 0.326499 0.352361 0.221292 0.241182 0.234599

tx -9.099784 8.66166 -8.003123 -6.579745 3.39558 1.524352

ty 0.196966 0.283015 0.037971 0.192821 0.389252 0.324117

tz 19.448342 24.474308 30.076081 17.719765 15.729377 19.125916

Table 5.25: Computed parameter estimates for pose parameters Z shown after global
optimization.
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Param a b c d e1 e2

θ 0 0.013962 0.017697 0.025589 0.010290 0.009425

α 0.013655 0.015718 0.004088 0.020363 0.002799 0.00213

τ 0.014291 0.018608 0.009985 0.013675 0.007201 0.006409

tx 0.208517 0.204597 0.255819 0.14359 0.119761 0.114534

ty 0.092779 0.113465 0.143423 0.084625 0.073544 0.0891393

tz 0.615131 0.764941 0.83771 0.535921 0.482151 0.594262

Table 5.26: The corresponding uncertainties of parameter estimates Z computed at
the 3σ confidence limits.

Param a b c d e1 e2

vx 0.935972 0.928409 0.926257 0.90898 0.928522 0.928393

f0 4.09485 3.83101 3.886208 3.588989 3.676642 3.692307

p1 0.084088 0.06132 0.213168 0.058756 0.281066 0.247376

p2 -0.365631 -0.419974 -0.418252 -0.417963 -0.384351 -0.400053

q1 0.106221 0.086503 0.093265 0.066537 0.062599 0.055458

q2 0.045884 0.044089 0.025222 0.045167 0.044797 0.042783

q3 0.470347 0.461969 0.49871 0.453301 0.426513 0.444543

q4 0.592971 0.554872 0.470002 0.564661 0.587755 0.573584

r1 0.032321 -0.395125 0.328061 0.032446 0.284525 0.308541

r2 -0.528276 0.146931 0.28888 -0.529569 0.258062 0.281097

r3 0.058979 -0.336322 0.334445 0.076322 0.329275 0.345886

r4 -0.076076 -0.474677 0.20623 -0.071946 0.184042 0.198977

Table 5.27: Computed parameter estimates for pose parameters W shown after global
optimization.

Param a b c d e1 e2

vx 0.000253 0.000102 0.000214 0.000093 0.000163 0.00014

f0 0.072801 0.060021 0.108952 0.048088 0.084872 0.086925

p1 0.006187 0.005781 0.004353 0.006279 0.004645 0.00515

p2 0.003998 0.003388 0.006353 0.003651 0.005305 0.006068

q1 0.007769 0.006170 0.008491 0.006738 0.005398 0.005754

q2 0.003564 0.003475 0.001911 0.003694 0.003147 0.003028

q3 0.01122 0.009292 0.013654 0.009608 0.009537 0.010571

q4 0.007784 0.006870 0.008464 0.006441 0.009079 0.009113

r1 0.014429 0.014194 0.01367 0.016122 0.013513 0.014573

r2 0.012129 0.012153 0.011704 0.012265 0.011363 0.011364

r3 0.003555 0.002975 0.003144 0.002819 0.002683 0.002706

r4 0.002555 0.002495 0.002589 0.00259 0.002766 0.002779

Table 5.28: The corresponding uncertainties of parameter estimates W computed at
the 3σ confidence limits.



Chapter 6

Conclusions

In conclusion to this thesis, we restate our hypotheses and describe what are believed to

be the novel contributions achieved within this work. We then finalize the chapter with

some suggestions for further development.

6.1 Restatement of hypotheses

We hypothesize that gait has the following features and properties.

• Human locomotion can be modelled as a collection of dynamically mov-

ing, articulated limb segments. Each limb is connected to the trunk and is

composed of a number of inter-connected bone and joint structures. Each bone

segment is rigid and of fixed length. These bone segments are allowed to freely

pivot about the corresponding joint positions, although only within a constrained

arc of motion.

• Articulated leg motion is approximately planar. While in reality the dis-

placement of leg motion is within all three Euclidean directions, almost all the of

the perceived motion is contained within a single plane. The variation of motion

out of this plane is subtle and negligible in comparison to this major motion plane.

Human motion can then be modelled by using a cardboard person assumption.

A subject’s body and leg segments are represented as a set of repeating spatio-

temporal motion patterns within separate planes.

• Normal gait is bilaterally symmetric with a half phase shift. Walking

uses a repetitious sequence of leg motion to move the body forward. This series

of events is repeated by each leg with reciprocal timing. The stance period of one

leg equals the swing of the other, thus motion on one leg swing plane is related to

the motion of the other by a period of half the gait cycle.

247
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• Natural gait motion is piecewise linear. In general, people tend to walk

in straight lines with constant velocity. Deviation from this assumption infers

inconsistent, non-repetitious leg motion and consequently suggests unnatural gait.

Imaged gait can then be split piecewise into natural segments of gait motion.

• Each individual has a set of possibly unique static features. The static

geometric features of gait that remain invariant over time are based on the fixed

length measurements of limb segments. Similarly, there are static motion features

that are derived from the representation of the dynamic leg motion function. These

features are invariant to the circumstantial changes in subject motion such as stride

length, cadence and consequently gait speed.

• Parameterisation of each linear segment of gait motion can be split into

two phases. i) Limb stance, non-linear modelling of the articulated limb motion

within the canonical motion plane; ii) Pose projection, linear projection of the

worldspace subject motion structure into the image.

These two phases of subject motion projection are independent. The pose projec-

tion step is based on the linear projection of geometry into the image, thus we can

employ a stratified approach, based on the geometric constraints of fixed limb seg-

ment lengths, to compute the inverse transformation that recovers the canonical

motion structure of subject gait.

• Gait motion commonly occurs within a fixed ground plane and is imaged

by a static camera. A further specialization of the epipolar geometry occurs

when the cameras are related by motion within a plane. This is the dual situation

to a person walking with unconstrained motion on the ground plane. In this case,

the rotation axis is orthogonal to the translation direction. The imaged vanishing

line of the ground plane is a fixed line and the vanishing point of the vertical

direction a fixed point throughout the image sequence.

6.2 Contributions

Even though gait patterns are repeatable most of the time, changes in walking conditions

affect these motion patterns. There are many factors, both physical and psychological

that can influence the variations between our motion patterns such as walking speed,

cadence, ground surface, load carrying and state of mind. The human skeletal structure

is articulated but with fixed length limb segments. The geometric length properties of

these limb segments provide one set of static parameters of gait motion that remain

constant over the entire image sequence. Articulated leg motion can be modelled with a

suitable periodic function, hence motion parameterisation may be robustly determined

from all available leg data within the image sequence. A further set of static parameters
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of gait motion can be determined from the coefficients of the articulated leg motion

function.

• Modelling of articulated leg motion. Each articulated leg pose is represented

by a Euclidean hip displacement (x, y)⊤ position followed by a series of connected

rigid length bone segments defined by polar coordinates (d, θ)⊤. The angular

motion of each leg segment θ(t) can be represented by a Fourier series function.

Good reconstruction results have been obtained with five Fourier harmonics.

• Relationship between motion parameterisation and walking speed. The

set of reconstructed leg angle Fourier coefficients vary significantly over the range

of walking speeds. Within each reconstruction, the amplitude harmonic coeffi-

cients have an exponential relationship, such that the first amplitude is the most

significant, and encodes the gross angular variation. The higher amplitude har-

monics are the least significant and are more responsive to measurement noise. The

relationships between first harmonic amplitude and gait speed, and fundamental

frequency and walking speed are both approximately linear.

• Static measurements of parameterised gait motion. The dynamics of artic-

ulated leg motion can be represented by a modified Fourier series that is pseudo-

invariant to changes in stride length and cadence, within the range of customary

walking speeds (3 - 6 km/h). We can align the Fourier signals by computing

the time shift that zeros the first coefficient of phase. The signals may then be

made invariant to scale by normalizing the first amplitude coefficients to unity.

We represent the underlying biometric leg function through the set of normalized

harmonic coefficients (b2, ψ2, · · · , b5, ψ5)
⊤. The circumstantial parameters of gait

motion (f0, a0, a1, ts)
⊤ then allow us to distort this underlying biometric leg func-

tion by applying a series of linear deformations in order to better fit the waveform

to the measured limb motion.

– f0 - scale waveform within the temporal axis.

– a1 - scale waveform within the θ axis.

– ts - offset waveform along the temporal axis.

– a0 - offset waveform along the θ axis.

The modified Fourier series function encodes the visual motion of the dynamics

of articulated leg motion. However, there is no clear relationship between the

underlying muscle motion and the resulting representation of leg angle function.

• Parameterisation of articulated leg motion corresponding to overground

walking. Human motion is modelled by using a cardboard person assumption. A

subject’s body and limb parts are represented as a set of repeating spatio-temporal

motion patterns within separate planes. The canonical representation of leg motion
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is approximated by an articulated limb function g(t) on two bilateral swing planes,

which are inclined at an angle with the vertical. The dynamics of the gait function

on both leg planes are related by a half phase shift, such that one leg undergoes

exactly the same motion as the other, only half a gait cycle later. Corresponding

left and right leg poses on the metric plane are then determined by evaluation of

the biometric limb functions at g(t) and g(t + T/2) respectively, where T is the

period of gait.

The canonical representation of gait assumes that a person walks from left to right

with constant velocity. Since we are unable to gauge depth from monocular motion

sequences, the scale ambiguity of a subject’s height is resolved by normalizing the

upper leg segment to unit length. We represent the non-linear articulated leg

function by the modified Fourier series g(t : f0,D,X,Y,V), where D is the vector

of normalized leg lengths, X and Y are the velocity and Fourier coefficients of

the metric plane hip displacement functions, and V the Fourier coefficients of the

upper and lower leg angle functions.

We develop a stratified approach to linear trajectory gait reconstruction that uses the

geometric constraints of articulated leg motion in order to recover the fronto-parallel

view of gait dynamics. The stratification process for computing this rectification trans-

formation is split into three stages: perspective, affine and similarity transformations of

the imaged leg swing plane.

• Projection of worldspace subject leg plane poses into the image. Pro-

jection of the planarized human motion model into the image is achieved by a

parameterised set of homography transformations M that encode both the indi-

vidual leg plane homography mappings. Each planar homography consists of a set

of rigid motion transformations (scaling, rotation and translation). A subject’s leg

plane pose is computed by applying a rotation Hα about the X axis to facilitate

the leg swing plane inclination to the vertical, then applying the limb plane selec-

tion translation Hβ to map the required hip point to ∓1. This is followed by a

scaling Hτ in the Z direction that generates the correct distance between both hip

points for a subject. The worldspace orientation, subject displacement and subse-

quent projection into the image is then achieved via the linear pin-hole projection

transformation K[R | t], where K is the camera calibration matrix and R, t are

the camera extrinsic pose matrices. Since the canonical spatio-temporal motion

structure of gait is modelled on the metric z = 0 plane, projection of articulated

leg points into the image is achieved by the homography matrices formed from the

first, second and fourth columns of the pose projection transformation.

• Stratified perspective transformation. The first step in the stratified recon-

struction process is to compute the perspective transformation Hp that recovers
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the affine properties of both leg swing planes. We initially assume that all of a

subject’s cardboard limb planes are parallel, thus they all share a common vanish-

ing line within the image. Identification of landmark correspondences and subject

periodicity is solved simultaneously by computing the self-similarity of structure

over the image sequence. The imaged positions of repeated gait poses are related

by a conjugate translation of the leg swing plane. We combine constraints from

left and right leg planes in order to determine the coefficients of both transforma-

tions. We then extract the shared vanishing line of the leg swing planes from these

coefficients and subsequently compute the required perspective transformation Hp

that restores the affine properties of the limb planes.

• Stratified affine transformation. Metric properties of the leg swing plane are

then recovered by identifying the images of the circular points I′ and J′ from

the fixed lengths of tracked leg segments throughout the image sequence. Linear

constraints on the elements of the affine transformation Ha, that maps the im-

aged circular points back to their canonical values, are computed from pairs of

corresponding leg segments taken at different frame positions.

• Stratified similarity transformation. The scale ambiguity on both leg planes

is removed by constraining the upper leg limb segment to be of unit length. The

circular points I,J remain fixed under any similarity transformation Hs, thus the

remaining translational ambiguity is resolved by enforcing the bilateral symmetry

constraint between both planes of recovered gait motion. We then compute a

robust estimation of the gait motion function by fitting the articulated leg motion

on both limb planes to a single modified Fourier series function.

In reality, people typically walk on a flat ground plane, hence the configuration and

parameterisation of subject motion is specialized. Furthermore, people tend to walk

in straight lines over a small number of gait cycles, thus an arbitrary length sequence

of gait motion can be segmented piecewise into linear sections of gait. Reconstruction

of a generalized gait motion is achieved in a three step process: i) Linear trajectory

reconstruction; ii) Parameter fusion; and iii) Maximum likelihood estimation of the

global motion parameterisation.

• Parameter fusion. The parameter fusion step can be thought of as a half way

stage between computing the set of reconstructed linear motion segments and the

full worldspace model optimization. Its objective is twofold: i) Decompose the set

of linear trajectory segment poses into a consistent planar motion parameterisa-

tion; and ii) Generate a consolidated set of underlying biometric parameters for

each subject.

Maximum likelihood estimation of both sets of parameters are computed by sparse

methods that minimize image reprojection error. We first consider the set of



Chapter 6 Conclusions 252

reconstructed leg plane homographies as fixed, thus minimization of the biometric

parameters on the metric plane is enabled by direct reprojection of structure using

these homographies. On the other hand, minimization of the camera and ground

plane parameters is achieved by assuming that the set of reconstructed metric

plane leg points are fixed, thus we optimize image reprojection error through the

set of parameterised worldspace projections.

Since each subject pose projection is modelled by a set of homographies that

map structure from the metric plane to the images of the leg swing planes, we can

recover the camera intrinsic parameters by a method similar to Zhang’s calibration

algorithm [120]. At least two different trajectories of gait motion are required to

form the required constraints on the image of the absolute conic ω.

• Fusion of each piecewise segment of articulated leg motion into a single

underlying gait motion function. Each linear trajectory segment reconstructs

the individual representations of the underlying biometric parameters. Fusion of

these biometric parameters recovers an initial estimate of the unique properties of

a subject’s motion dynamics that are consistent over a range of gait modes.

We described two methods to fuse the reconstructed parameters into a single rep-

resentation. The linear method assumes each of the biometric coefficients are

independent, thus fusion of the parameters is achieved by a process of consoli-

dation, via the statistical average over the complete set of coefficients. We also

described a method that computes the maximum likelihood estimate of the fused

biometric parameters, by minimizing image reprojection error. There is a sig-

nificant improvement in residual fitting error when compared to using the linear

method alone.

• Fusion of the pose projections of each piecewise segment of gait motion

into a consistent planar worldspace motion parameterisation. Each sub-

ject pose is modelled by a linear motion trajectory with legs that swing within

bilateral planes. The reconstruction phase described in chapter 4 essentially iden-

tifies these bilateral planes and the representation of leg motion within them. A

consistent set of camera intrinsic parameters Kc and Kr, ground plane normal N

and the parameterised subject poses Zi are computed by fixing the reconstructed

leg points within the metric plane and optimizing the set of bilateral limb planes.

We have described two methods to fuse the reconstructed parameters into a sin-

gle representation. The linear method removes the identified camera calibration

matrix from each of the leg plane homographies, then proceeds to decompose

the elements of the extrinsic worldspace matrices into a product of the consistent

ground plane rotation RN , and the set of pose trajectory rotations Rθ within this

plane. We also described a method that computes the maximum likelihood esti-

mate of the fused system parameters by minimizing image reprojection error. We
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showed that reprojection error is worst for oblique trajectories, with respect to the

camera coordinate system, when performing linear decomposition alone.

• Global optimization of parameters. The final global optimization step parti-

tions the worldspace model into three sections: system, subject and pose parame-

ters. The system parameters encode the camera intrinsic coefficients and ground

plane pose rotation, the subject parameters encode the underlying dynamics of gait

motion and the pose parameters determine the corresponding circumstantial values

of initial gait phase and trajectory. The form of the Jacobian matrix is sparse, and

has a shape which can be exploited when solving for the potentially large number

of subsidiary parameters. We gave details of a sparse Levenberg-Marquardt min-

imization method that gives a true maximum likelihood estimate of the camera

intrinsic, ground plane and each subject’s underlying biometric parameters over

the entire image sequence.

6.3 Further work

• Periodicity from self-similarity of pixel correspondences. The task of de-

termining periodicity and point correspondences over the image sequence has been

made much simpler by the fact that we have manually marked the landmark inter-

est features. There is a wide range of literature on periodicity detection and mo-

tion classification. The self-similarity based periodicity detection method outlined

within chapter 4 is most closely related to the work of Cutler and Davis [21, 22].

Their work compares re-scaled image regions corresponding to a tracked subject, in

order to determine the periodicity of self-similar pixel structures. Our method ex-

tends this work further by enforcing the geometric constraints of repeating planar

motions, through identification of the imaged conjugate translations corresponding

to subject motion. Our self-similarity method could easily be developed to enable

periodicity detection and correspondence matching from pixel regions alone. Iden-

tification of the conjugate translation enables us to recover the affine properties of

subject motion. To be of any practical interest, further investigation is required to

enable segmentation of the required landmark features from the affinely recovered

image regions of subject motion.

• Lateral displacement. Smoothing of the abrupt changes in the vertical displace-

ment of the body is achieved by a series of limb motions. As a result, the head

and body deviate laterally from the progression mid-line, thus a more realistic

motion model can be employed to account for this type of displacement. We still

assume that the motion dynamics of both legs is planar and inclined at an angle

to the vertical. Each planar subject pose within the sequence is then laterally

displaced in the Z direction by the simple harmonic lateral displacement func-

tion z(t) = γ sin(2πf0t + ψ). This parameterisation is non-linear and dependent
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on the position of the subject within the image sequence, thus can only be mod-

elled within the maximum likelihood estimation procedure. Initial estimates for

the motion model parameters are first computed via the stratified reconstruction

method.

• Periodic gait series function. The dynamics of gait have been captured by

using a modified Fourier series function g(t) to approximate the articulated leg

motion. The unique features of gait are mostly apparent in the higher order Fourier

components, where abrupt changes in the limb’s muscles cause rapid changes in the

leg function. The Fourier motion representation tends to capture the dynamics

of the swing phases better, since the swinging motion from both legs accounts

for 80% of the complete gait cycle. The apparent smoothing and subsequent

misrepresentation of the gait function during the loading response and pre-swing

phases of gait may possibly be avoided by changing the periodic gait reconstruction

basis function.

Since the first harmonic within the Fourier gait function contains no information

about the underlying biometric then it may be beneficial to replace this first order

term with a function representing a statistically average gait motion. Instead of

trying to measure the reconstructed gait signature itself, we then measure the

departure from normal gait. Uncertainty within the reconstruction then shapes

the reconstructed waveform more towards the statistically average gait function,

thus preserving the detail within the high energy phases of gait.

• Reconstruction error analysis for differing viewpoints. While the work pre-

sented in this thesis demonstrates that subject motion can be recovered from many

viewpoints, little has been done to analyse the major sources of reconstruction er-

ror. Further work needs to be performed to test the robustness of the method

in the presence of noise and other sources of imaging error, such as camera radial

lens distortion. In order for the method to have any practical application, we must

be able to quantify the level of uncertainty within each of the reconstruction pa-

rameters. We must then determine what level of landmark measurement error is

acceptable, in order for us to compute a reliable set of biometric motion features.

• Reconstruction error analysis for differing gait speeds. Further work needs

to be done in order to validate the invariance of the reconstructed subject motion

to changes in walking speed. The work presented within section 3.6 demonstrated

that suitable biometric features could be extracted from the reconstructed motion

of subjects walking on a treadmill, over a number of controlled walking speeds.

We need to validate these same assumptions in light of the reconstructed subject

motion sequences of overground walking. Subsequently, we should also compare

the reconstructions corresponding to both treadmill and overground walking, over

a suitable range of walking speeds.
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• Global parameterisation analysis for multiple subject motions. While the

gait reconstruction algorithm can handle an arbitrary number of subjects, only a

single subject has been used for testing. A large number of frames need to be

manually marked for each subject, so the restriction mainly depends on the time

required to mark up an image sequence. Similarly, the subject has been imaged

walking with almost constant velocity around the test track. Further analysis

needs to be done with more subjects and with walking at a number of different

speeds.

6.4 Publications associated with this thesis

• N. M. Spencer and J. N. Carter. Viewpoint invariance in automatic gait recog-

nition. In Proc. Third IEEE Workshop on Automatic Identification Advanced

Technologies (AutoID’02), pages 1-6, 2002.

• N. M. Spencer and J. N. Carter. Towards pose invariant gait reconstruction. In

Proc. International Conference on Image Processing (ICIP’05), Genova, Italy,

volume III, pages 261-264, September 2005.



Appendix A

Projective Geometry

A.1 Classes of planar transformations

Geometry is the study of properties invariant under groups of transformations. From

this point of view, 2D projective geometry is the study of properties of the projective

plane P
2 that are invariant under a group of transformations known as projectivities. A

projectivity is an invertible mapping from points in P
2 (homogeneous 3 vectors) to points

in P
2 and lines to lines. Projectivities form a group since the inverse of a projectivity is

also a projectivity, as is the composition of two projectivities. A projectivity is called a

collineation, a projective transform or a homography : the terms are synonymous.

There are several important specializations of the projective transformations. We intro-

duce these specializations starting from the most specialized and progressively generalize

up to the most general projective transformation. This defines a hierarchy of transforma-

tions which any general projective transform can be broken down into. The distortion

effects of each transformation group is described and a number of invariant proper-

ties mentioned about each. The more specialized transformations inherit the group of

invariants of the more generalized transformations so to conserve space the invariants

associated with more general transformation classes will be omitted from the discussions

relating to the more specialized classes.

A.1.1 Euclidean Transformation

x′ = Hex =

[
R t

0⊤ 1

]
x (A.1)

Where R is a 2 × 2 rotation matrix (an orthogonal matrix whose transpose is the

same as its inverse: R⊤R = R−1R = I), and t is a translation 2-vector. A Euclidean
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transformation has three degrees of freedom, 1 for rotation and 2 for translation. The

transformation can be computed from two point correspondences. Figure A.1 shows the

deformation of shape caused by applying the transformation to a geometric object.

Figure A.1: Deformation of the Euclidean transformation is composed of rotation and
translation only.

Lengths, areas and angles remain constant when the transformation is applied to any

geometric object.

A.1.2 Similarity Transformation

x′ = Hsx =

[
sR t

0⊤ 1

]
x (A.2)

Where R is a 2 × 2 rotation matrix, t is a translation 2-vector and s is a scalar that

represents the isotropic scaling. Figure A.2 shows an example of the deformation caused

by applying the transformation to a geometric object.

Figure A.2: Deformation of the similarity transformation is composed of scaling, ro-
tation and translation only.

Angles, ratio of lengths, ratio of areas, and the circular points remain constant. One

extra degree of freedom is added to the previous three of the Euclidean transformation,

and as each point correspondence imposes two constraints on the transformation, two

correspondences fully define the transformation. The term metric structure which is

commonly used in reconstruction contexts implies that the rectification is defined up to

a similarity.
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Under any similarity transformation there are two points on the line at infinity l∞ which

are fixed. These are the circular points I and J. The circular points get their name from

the property that every circle on the image plane intersects l∞ at two fixed complex

ideal points. Starting from the homogeneous representation of a conic and noting that

a circle is a specialized conic with a = c and b = 0.

ax2
1 + bx1x2 + cx2

2 + dx1x3 + ex2x3 + fx2
3 = 0 (A.3)

a(x2
1 + x2

2) + dx1x3 + ex2x3 + fx2
3 = 0 (A.4)

This conic intersects l∞ in the ideal points for which x3 = 0, so by substitution of x3

into the homogeneous equation for a circle.

x2
1 + x2

2 = 0 (A.5)

Setting x1 = 1 then x2
2 = −1, i.e. x2 = ±i, or in vector form.

I =




1

i

0


 J =




1

−i

0


 (A.6)

The same result is obtained by setting x2 = 1 as the vector is homogeneous and repre-

sents the same result up to scale. Identifying the circular points in an imaged plane allows

the recovery of similarity properties (angles and ratios of lengths). Algebraically the cir-

cular points are the orthogonal directions of Euclidean geometry (1, 0, 0)⊤ and (0, 1, 0)⊤

packaged into a single complex conjugate entity.

I = (1, 0, 0)⊤ + i(0, 1, 0)⊤ (A.7)

Consequently once the circular points are identified orthogonality and other metric prop-

erties are then determined. It can be easily shown that these points remain fixed under

the similarity transformation.
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I′ = HsI (A.8)

=




s cos θ −s sin θ tx

s sin θ s cos θ ty

0 0 1







1

i

0


 (A.9)

=




s(cos θ − i sin θ)

s(sin θ + i cos θ)

0


 (A.10)

Since eiθ = cos θ − i sin θ and ieiθ = i cos θ + sin θ then

I′ = seiθ




1

i

0


 = I (A.11)

with an analogous proof for J. The invariance of the circular points to the similarity

transformation suggests that once the image of the absolute conic or dual conic is defined

metric structure can only be recovered up to the similarity transformation.

A.1.3 Affine Transformation

x′ = Hax =

[
A t

0⊤ 1

]
x (A.12)

Where A is a non-singular 2 × 2 matrix and t is a translation 2-vector. The affine

matrix has six degrees of freedom: four for the A matrix elements and a further two

for the translation vector. The matrix can therefore be determined from three point

correspondences.

The basic properties of affine transforms are:

• Maps straight lines to straight lines

• Maps parallel straight lines to parallel straight lines

• Preserves ratios of lengths along a given straight line

We investigate the properties of affine transformations geometrically by introducing a

specialized type of affine transform namely the parallel projection.
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Figure A.3: Deformation of the affine transformation preserves parallelism, ratio of
areas, ratio of lengths on collinear or parallel lines (midpoints), linear combinations of
vectors (centroids) and the line at infinity l∞.

A parallel projection maps straight lines to straight lines. Let l be a line in the plane π1

and let Ha be a parallel projection mapping π1 onto the plane π2. Now consider all the

rays associated with Ha that pass through l. Since these rays are parallel, they must

fill a plane. Call this plane π. The image of l under Ha consists of those points where

the rays that pass through l meet π2. These points are simply the points of intersection

of π with π2. Since any two intersecting planes in R
3 meet in a line, it follows that the

image of l under Ha is a straight line. Figure A.4 shows geometrically the intersection

of the plane π through l on plane π1 and the plane π2, and demonstrates that straight

lines are mapped to straight lines between planes.

Figure A.4: Affine transformation maps straight lines to straight lines.

A parallel projection maps parallel straight lines to parallel straight lines. Let l1 and m1

be parallel lines in the plane π1, and let Ha be a parallel projection mapping π1 onto the

plane π2. Let l2 and m2 be the lines in π2 that are the images under Ha of l1 and m1.

If l2 and m2 are not parallel, they must meet at some point, P2 say. Let P1 be the

point on π1 which maps to P2. Then P1 must lie on both l1 and m1. Since l1 and m1

are parallel, no such point of intersection can exist, which is a contradiction. If follows

that l2 and m2 must indeed be parallel.

A parallel projection preserves ratios of lengths along a given straight line. Let A, B, C

be three points on a line in the plane π1, and let Ha be a parallel projection mapping π1
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Figure A.5: Affine transformation maps straight parallel lines to straight parallel lines.

onto the plane π2. Let P, Q, R be the points in π2 that are the images under Ha

of A, B, C. We know from property 1 that P, Q, R lie on a line; we have to show that

the ratio AB : AC is equal to the ratio PQ : PR. If the planes π1 and π2 are parallel

then the parallel projection is an isometry, and so the ratios AB : AC and PQ : PR are

equal, as required. On the other hand, if π1 and π2 are not parallel then we can construct

a plane π′
1 through the point P which is parallel to π1. This plane intersects the ray

through B and Q at some point B′, and the ray through C and R at some point C ′. In

this case the ratios AB : AC and PB′ : PC ′ are equal. Now consider the triangle PC ′R.

The lines B′Q and C ′R are parallel, since they are rays from the parallel projection.

Hence B′Q meets the sides PR and PC ′ in equal ratios. Thus PQ : PR = PB′ : PC ′.

It follows that PQ : PR = AB : AC as required.

Figure A.6: Affine transformation preserves ratios of lengths along a given straight
line.

In particular, if a point is the midpoint of a line segment then under parallel projection

the image of the point is the midpoint of the image of the line segment.

Under the affine transformation the line at infinity l∞ is mapped onto itself. Using

the transformation rule for lines, it is easily verified that the line at infinity remains

invariant.
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l′∞ = Ha
−⊤l∞ =

[
A−⊤ 0

−t⊤A−⊤ 1

] 


0

0

1


 =




0

0

1


 = l∞ (A.13)

However l∞ is not fixed pointwise under an affine transformation.

[
A t

0⊤ 1

] 


x1

x2

0


 =




A

(
x1

x2

)

0


 (A.14)

The ideal points are not fixed pointwise on the line at infinity l∞ by the affine transfor-

mation unless A(x1, x2)
⊤ = λ(x1, x2)

⊤.

A.1.4 Perspective Transformation

x′ = Hpx =

[
A t

v⊤ v

]
x (A.15)

Where A is a non-singular 2×2 matrix, t is a translation 2-vector and v is a 2-vector of

perspective coefficients. The matrix has nine elements with only their ratio significant,

so the transformation is specified by eight parameters. Note also that it is not always

possible to scale the matrix so that the parameter v is unity since it may be zero.

The transformation may be computed from four point correspondences, with no three

collinear on either plane.

Figure A.7: Deformation of the perspective transformation preserves none of the pre-
vious properties, though the cross ratio (ratio of ratio of lengths) remains invariant.

Ideal points defined by the intersection of parallel scene lines depend only on the line

direction. This was shown earlier through example and can be algebraically expressed

by describing lines as a series of points with initial position vector and parameterised

direction l = x(λ) = U + λD.
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x(λ) =




Ux + λDx

Uy + λDy

1


 (A.16)

=




Ux

λ
+ Dx

Uy

λ
+ Dy

1
λ


 (A.17)

As λ → ∞ the parameterised point on the line l becomes ideal and is a function of

direction only.

x(∞) =




Dx

Dy

0


 (A.18)

Ideal points when transformed by the affine matrix remain ideal, however ideal points

transformed under the perspective transformation become finite.

[
A t

v⊤ v

] 


x1

x2

0


 =




A

(
x1

x2

)

v1x1 + v2x2


 (A.19)

From this result we see that parallelism of lines is not preserved by the perspective

transformation.

A.1.5 Cross Ratio

The ratio of distances is not preserved under a perspective transformation, however,

the ratio of ratios of distances is invariant. The cross ratio of four points on a line

is preserved under perspective transformations. There are many results in projective

geometry which result in an interpretation in terms of the cross ratio. It seems likely

that all invariant properties of a geometric configuration can ultimately be interpreted

in terms of some number of cross ratio constructions.

The cross ratio is defined with respect to figure A.8 and is given by

Cr {P1,P2,P3,P4} =
(X3 − X1)(X4 − X2)

(X3 − X2)(X4 − X1)
(A.20)
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Figure A.8: The cross ratio for all lines cutting the pencil is the same i.e.
Cr {P1,P2,P3,P4} = Cr {P′

1,P′
2,P′

3,P′
4}. This configuration corresponds to per-

spective projection onto a line.

where X1, X2, X3, X4 represent the corresponding positions of each point along the line,

e.g. (X3 − X1) is the distance between points P3 and P1.

The pairs of points P1,P2 and P3,P4 are called harmonic if

Cr (P1,P2,P3,P4) = −1 (A.21)

The harmonic relation is associated with the orthogonality of directions in higher di-

mensional spaces. Note that it is permissible, with the cross ratio defined as above,

to write the projective parameter of point (1, 0)⊤ as ∞, and to use this in cross ratio

computations.

Since points and lines are dual, there exists an equivalent cross ratio for lines. The

dual relation to collinearity is incidence at a point. The cross ratio of the pencil can be

defined in terms of the angles between the lines.

Other permutations of the points in the definition of the cross ratio will also lead to a

scalar invariant. The four points can be permuted 4! different ways. There are only six

distinct values of the cross ratio within the 24 permutations. If the cross ratio for the

standard definition is defined as τ then the six distinct values are related by the set.

{
τ,

1

τ
, 1 − τ,

1

1 − τ
,
τ − 1

τ
,

τ

τ − 1

}
(A.22)

There exists a rational function of the cross ratio value which is independent of the

effects of permutation, namely the j-invariant which is defined by:

j(τ) =

(
τ2 − τ + 1

)3

τ2 (τ − 1)2
(A.23)
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Matrices and Linear Systems

B.1 Orthogonal regression

Figure B.1: Orthogonal regression of a set of points minimizes the sum of perpendic-
ular distances between point distribution and fitted line.

We seek a line L which minimizes the sum of squared distances between the measured Xi,

and estimated X̂i points. The perpendicular distance of a point Xi = (xi, yi, 1)⊤ from

the line L = (a, b, c)⊤ can be expressed by the function:

d⊥(Xi,L) =
axi + byi + c√

a2 + b2
(B.1)

The corresponding sum of squares cost function for the complete point distribution is

given by:
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C =
n∑

i=1

d⊥(Xi,L)2 (B.2)

C =
n∑

i=1

(
a′xi + b′yi + c′

)2
(B.3)

Writing the line normal as N = (a′, b′)⊤ where ‖N‖ = 1 and xi as the inhomogeneous

2-vector representation of Xi then

C =
n∑

i=1

(N⊤xi + c′)2 (B.4)

We then proceed to minimize the cost function C over the parameter c′ by first differen-

tiating, then finding the minimum.

∂C
∂c′

= 2
n∑

i=1

(
N⊤xi + c′

)
= 0 (B.5)

∂C
∂c′

=

n∑

i=1

N⊤xi +

n∑

i=1

c′ = 0 (B.6)

c′ = − 1

n

n∑

i=1

N⊤xi = −N⊤x (B.7)

Here x represents the centroid of the point set. We are then able to substitute back

into the cost function of equation B.4 the minimized expression of c′ to obtain a least

squares expression in terms of the line normal and point set.
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C =
n∑

i=1

(
N⊤xi − N⊤x

)2
(B.8)

=
n∑

i=1

(
N⊤∆xi

)2
where ∆xi = xi − x (B.9)

=
n∑

i=1

(N⊤∆xi)(∆x⊤

i N) (B.10)

= N⊤

(
n∑

i=1

∆xi · ∆x⊤

i

)
N (B.11)

= N⊤MN (B.12)

We can then make a symmetric Eigen-decomposition of the moment matrix M via the

substitution MN = λN, and note that C = N⊤λN = λ gives the cost error of the point

distribution. The minimum of the least squares cost function occurs with least Eigen-

value λ, thus the Eigenvector corresponding to the smallest Eigenvalue is the solution

we require for the line normal vector N, and substitution of the minimized N into equa-

tion B.7 gives the required value for parameter c′ of the line L. The moment matrix M

is symmetric, positive-definite hence all Eigenvalues are real and non-negative.

B.1.1 Constrained orthogonal regression

The minimization may also be constrained so that the line L passes through a point X̃,

which may be ideal. The problem can then be stated as: minimize the fitting cost

error ‖AL‖ subject to ‖L‖ = 1 and X̃⊤L = 0, where design matrix A is formed by

stacking each of the point constraints of the form (ui, vi, 1) · L = 0.

We first define the orthogonal complement of the constraint equation X̃⊤L = 0 by

computing a rotation matrix R that maps the constraint vector X̃ = (ũ, ṽ, w̃)⊤ onto the

Z axis (0, 0, 1)⊤. The homogeneous vector that represents the constraint point is then

equivalent to X̃ ≡ R⊤(0, 0, 1)⊤ and consequently the two other vectors orthogonal to X̃

are given by the transformations of both X and Y axes.

C⊥ = R⊤




1 0

0 1

0 0


 (B.13)

The constraint vector X̃ and the complement matrix C⊥ are orthogonal such that

X̃⊤C⊥ = 0. Any 2-vector v then satisfies the equation:
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(X̃⊤C⊥) · v = 0 (B.14)

Subsequently, the fitted line consistent with the constraint equation X̃⊤L = 0 is param-

eterised by the mapping L = C⊥ · v, for suitable v. Since C⊥ has orthogonal columns

then ‖L‖ = ‖C⊥v|| = ‖v‖. The problem then reduces to minimize ‖(AC⊥) · v‖ sub-

ject to ‖v‖ = 1. We then compute the moment matrix M = (AC⊥)⊤(AC⊥) i.e.

M = (C⊥)⊤(A⊤A)C⊥. Writing each imaged constraint point as Xi = (ui, vi, 1)⊤ then

the symmetric matrix A⊤A is defined as:

A⊤A =




∑
i u

2
i

∑
i ui · vi

∑
i ui∑

i ui · vi

∑
i v

2
i

∑
i vi∑

i ui

∑
i vi n


 (B.15)

The Eigenvector with smallest Eigenvalue of the 2 by 2 symmetric matrix M is the

solution we require for the parameter vector v. The fitted line consistent with the

constraint point X̃⊤ is then found by applying the mapping transform L = C⊥ · v.

B.1.2 Orthogonal projection of points onto a line

We seek to find the point X̂ that lies on the line L = (a, b, c)⊤, closest to an arbitrary

point X = (x, y, 1)⊤.

Figure B.2: Orthogonal projection of a point onto a line.

We first normalize the line L such that its normal vector N = (a, b)⊤ has unit norm

‖N‖ = 1. Any orthogonal line to L has the form L⊥ = (b,−a, c′)⊤. The orthogonal

line that passes through the point X must satisfy the condition X⊤L⊥ = 0, thus can be

written.

L⊥ =




b

−a

−bx + ay


 (B.16)
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The intersection of both lines L and L⊥ then generates the required point X̂ = L⊥ × L.

X̂ =




b2x − aby − ac

a2y − abx − bc

1


 (B.17)

B.2 Singular value decomposition

Given a matrix A, the SVD is a factorization such that A = UDV⊤, where U is a matrix

with orthogonal columns, V a square orthogonal matrix, and D is a diagonal matrix

with non-negative entries, which are known as the singular values. The decomposition

may be carried out in such a way that the diagonal entries of D are in descending order,

and we assume that this is always done, thus the column of V corresponding to the

smallest singular value is the last column.

The SVD exists for non-square matrices. Of most interest is the case where A has more

rows than columns i.e. A is an m × n matrix where m ≥ n. In this case A may be

factorized as A = UDV⊤ where U is an m × n matrix with orthogonal columns, D is

an n × n diagonal matrix and V is an n × n orthogonal matrix. The fact that U has

orthogonal columns means that U⊤U = In×n. Furthermore U has the norm-preserving

property that ‖Ux‖ = ‖x‖ for any vector x.

A description of the singular value decomposition algorithm is not given here. A de-

scription of how it works is given in [38] and a practical implementation is given in [87].

B.2.1 Pseudo-inverse

Given a diagonal matrix D we define its pseudo-inverse to be the diagonal matrix D+

such that

D+
ii =

{
0 if Dii = 0

D−1
ii otherwise

(B.18)

Given an m × n matrix A with m ≥ n, let the SVD of A be A = UDV⊤. The

pseudo-inverse of matrix A is then defined by the matrix.

A+ = VD+U⊤ (B.19)
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B.2.2 Least squares solution of linear equations

Consider a system of equations of the form Ax = b, where A is an m×n matrix. There

are then three possibilities for the solution vector x.

• If m < n then there are more unknowns than equations. There will not be a

unique solution, but rather a vector space of solutions.

• If m = n then there will be a unique solution provided that matrix A can be

inverted.

• If m > n then there are more equations than unknowns. The system will not have

a solution in general, unless by chance b lies in the span of the columns of A.

In the case where we have more equations than unknowns m > n then it makes sense to

find a vector x that is closest to providing a solution to the system Ax = b. We seek the

least squares solution x that minimizes the vector norm ‖Ax−b‖ to the over-determined

system of equations.

Let the SVD of A be A = UDV⊤, then the problem can be restated as find x, where

DV⊤x = U⊤b, that minimizes the vector norm ‖DV⊤x − U⊤b‖. If we make the

substitutions y = V⊤x and b′ = U⊤b then the problem then becomes one of minimizing

‖Dy − b′‖. This set of equations has the form, where D is an m × n matrix with non

zero diagonal entries.




d1

d2

. . .

dn

0







y1

y2

...

yn




=




b′1
b′2
...

b′n

b′n+1
...

b′m




(B.20)

Clearly the closest the vector Dy can approach to b′ is (b′1, b
′
2, · · · , b′n, 0, · · · , 0)⊤. This

is achieved by setting yi = b′i/di for i = 1, · · · , n. Note that if matrix A is rank deficient

then some of the di are zero hence following the convention for the pseudo-inverse any

zero di values set the corresponding yi values to zero. In the presence of noise the set of

equations may be of full rank even if the system is theoretically rank deficient. In such

a case we may wish to zero the corresponding number of yi values to enforce the rank

constraint. Having computed the vector y we can recover x from the substitution by

applying the transformation x = Vy.
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B.2.3 Least squares solution of homogeneous equations

If we consider the over determined system of equations of the form Ax = 0. The obvious

solution x = 0 is not of interest, so we seek a non-zero solution to the set of equations.

We note that if x is the solution to this set of equations, then so is kx for any scalar k.

A reasonable constraint would be to seek a solution for which ‖x‖ = 1. Our problem

statement then becomes: find the x that minimizes ‖Ax‖ subject to ‖x‖ = 1.

If we let the SVD of A be A = UDV⊤, then we must minimize ‖UDV⊤x‖. However

‖UDV⊤x‖ = ‖DV⊤x‖ since U has the norm preserving property ‖Ux̃‖ = ‖x̃‖. Simi-

larly ‖V⊤x‖ = ‖x‖ since V is an orthogonal matrix, thus we need to minimize ‖DV⊤x‖
subject to the condition ‖V⊤x‖ = 1. The problem can then be restated by using the

substitution y = V⊤x, hence we are required to minimize ‖Dy‖ subject to ‖y‖ = 1.

Since the elements of D are ordered in descending order the minimized solution of y

under the constraint ‖y‖ = 1 is y = (0, 0, · · · , 1)⊤, where y has only one non zero entry,

1 in the last position. Finally the required solution x = Vy is simply the last column

of V.

B.2.4 Approximating a 3 × 3 matrix by a rotation matrix

The problem considered here is to solve the best rotation matrix R to approximate a

given 3 matrix Q such that the Frobenius norm of the difference between matrices R − Q

is minimized.

min
R

‖R − Q‖2
F subject to R⊤R = I (B.21)

If the trace of a square matrix is defined as the sum of all diagonal elements of the

matrix.

trace(A) =
n∑

i=1

aii (B.22)

The trace function has the properties:

trace(A) = trace(A⊤) (B.23)

trace(A + B) = trace(A) + trace(B) (B.24)

trace(αA) = α · trace(A) (B.25)
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The Frobenius matrix norm can be written as:

‖R − Q‖2
F = trace((R − Q)⊤(R − Q)) (B.26)

= trace(R⊤R − R⊤Q − Q⊤R + Q⊤Q) (B.27)

= 3 − 2 · trace(R⊤Q) + trace(Q⊤Q) (B.28)

The problem of minimizing equation B.21 is equivalent to that of maximizing trace(R⊤Q).

Let the Singular Value Decomposition of Q be Q = UDV⊤, where D = diag(d1, d2, d3).

trace(R⊤Q) = trace(R⊤UDV⊤) (B.29)

= trace(V⊤R⊤UD) (B.30)

Now define an orthogonal matrix Z = V⊤R⊤U then:

trace(R⊤Q) = trace(ZD) =
3∑

i=1

zii · di (B.31)

Since Z is an orthogonal matrix then:

3∑

i=1

zii · di ≤
3∑

i=1

di (B.32)

Clearly the maximum is achieved when Z = I hence matrix R is best approximated by

the transform.

I = V⊤R⊤U (B.33)

R = UV⊤ (B.34)

B.3 Parameterising a rotation matrix

A rotation matrix R is a 3 × 3 matrix that is orthogonal RR⊤ = R⊤R = I with

unit determinant det(R) = 1. The inverse of a rotation matrix is the same as its

transpose R−1 = R⊤.
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Another way of representing a 3D rotation is to specify an axis of rotation of unit length r

and an angle of rotation about the axis α in radians. These two quantities can be jointly

specified by a single 3-vector v = α · r. The angle of rotation is given by the magnitude

of the vector α = ‖v‖ and the axis of rotation is given by normalizing the vector to unit

length r = v / ‖v‖.

B.3.1 Rodrigues Formula

If we define the matrix representation of the cross product r × p = [r]×p, where [r]× is

a skew-symmetric 3 by 3 matrix i.e. ([r]×)⊤ = −[r]×.

[r]× =




0 −rz ry

rz 0 −rx

−ry rx 0


 (B.35)

The conversion from vector to matrix representation is given by the Rodrigues formula.

R = cos α · I + (1 − cos α)r · r⊤ + sinα · [r]× (B.36)

We first note that cosα · I + (1 − cos α)r · r⊤ is symmetric, and sinα · [r]× is skew-

symmetric. To convert from the matrix to vector representation, the transpose of equa-

tion B.36 is then given by

R⊤ = cos α · I + (1 − cos α)r · r⊤ − sinα · [r]× (B.37)

Any matrix A can be decomposed into the sum of symmetric (A + A⊤)/2 and skew-

symmetric (A − A⊤)/2 parts. The skew-symmetric part of R is then given by the

equation.

(R − R⊤)/2 = sin α · [r]× = [sinα · r]× (B.38)

The value of sinα is given by the length of the vector sinα · r, from which we can

recover the rotation angle α and subsequently compute the rotation axis vector r and

the Rodrigues rotation vector v = α · r.
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Non-Linear Minimization

C.1 Newtonian iteration

An arbitrary function can be approximated at a local position u by computing a Taylor’s

series about u.

f(x) = f(u) + f ′(u)(x − u) +
1

2
f ′′(u)(x − u)2 · · · (C.1)

For any function of multiple variables a = (a1, · · · , aN )⊤ we can make a second order

Taylor’s approximation to the function about a suitable local position u.

f(a) = f(u) +
∑

i

∂f

∂ai

∣∣∣∣
u

(ai − ui) +
1

2

∑

i,j

∂2f

∂ai∂aj

∣∣∣∣
u

(ai − ui)(aj − uj) (C.2)

f(a) = c + b⊤(a − u) +
1

2
(a − u)⊤D(a − u) (C.3)

where

c = f(u) N − vector

b = ∇f(u) = ∂f
∂ai

∣∣∣
u

N − vector

D = ∂2f
∂ai∂aj

∣∣∣
u

N × N − matrix

The matrix D, whose components are the second partial derivatives of the function, is

called the Hessian matrix of the function at u.

274
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Since we have obtained a Taylor’s approximation of the function, we can compute the

putative gradient of the function about the local point u by differentiating equation C.3

with respect to the elements of a.

∂f(a)

∂a
= b + D(a − u) (C.4)

∇f(a) = ∇f(u) + D(a − u) (C.5)

To determine the minimum of the function we must find the set of parameters a that

have zero gradient ∇f(a) = 0.

∇f(u) + D(a − u) = 0 (C.6)

a = u − D−1∇f(u) (C.7)

This implies that at a current point in the parameter space u = acur we can jump to the

function minimum if we are able to compute the local gradient ∇f(acur) and Hessian

matrix D. This update step is known as a Newton iteration and approximates the local

shape of the function by a quadratic in order to find a better local minimum. The basic

idea is to iterate until convergence of the parameters a, such that the parameter update

step is smaller than some small tolerance ǫ i.e. |anext − acur| < ǫ.

anext = acur − D−1∇f(acur) (C.8)

If the functional approximation is good at the current local point then the update

computes a set of parameters close to the actual minimum. On the other hand if we

have a poor local approximation to the shape of the function at the current point then

about all we can do is take a step down the local gradient direction ∇f(acur) toward

the minimum by some constant factor µ.

anext = acur − µ · ∇f(acur) (C.9)

C.2 Levenberg-Marquardt minimization

If we are able to model the data by some non-linear function with a set of parameters a

then we can compute a χ2 merit function that describes a goodness of fit of the pa-

rameters to the measurement data points x. The Levenberg-Marquardt method varies
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smoothly between Newton iteration and gradient descent, in that where a Newton it-

eration step fails to decrease the χ2 error, a step down the local function gradient is

taken. The method varies continuously between the two depending on how close to the

minimum we are and the shape of the function at the local point. The method has

become the standard of non-linear least squares minimization routines.

The vector of data points are measured with a degree of uncertainty and correspond-

ingly we define the measurement error deviation vector σ. The function f(a) computes

the set of data point estimates x̂ = f(a) that models the measurement data vector

x = (x1, · · · , xM )⊤. The corresponding χ2 merit function is then given by equation C.10.

χ2(a) =
M∑

i=1

(
xi − f(a : i)

σi

)2

(C.10)

The gradient of the χ2 function with respect to the model parameters a, which will be

zero at the χ2 minimum, is given by the set of equations C.11.

∂χ2

∂ak
= −2

M∑

i=1

1

σ2
i

(xi − f(a : i)) · ∂f(a : i)

∂ak
k = 1, · · · , N (C.11)

We must take another partial derivative in order to build up the Hessian matrix. We use

the differentiation product rule y = u(x) · v(x) such that y′ = u′(x) · v(x) + u(x) · v′(x)

defines the required set of partial derivatives. Equation C.11 is re-written as a product

of the elements ui and vi.

∂χ2

∂ak
= −2

M∑

i=1

ui · vi k = 1, · · · , N (C.12)

ui =
xi − f(a : i)

σ2
i

vi =
∂f(a : i)

∂ak
(C.13)

The set of partial derivatives of elements ui and vi obtained by differentiation with

respect to the model parameters a are given by:

∂ui

∂al
= − 1

σ2
i

∂f(a : i)

∂al

∂vi

∂al
=

∂2f(a : i)

∂al∂ak
l = 1, · · · , N (C.14)

Consequently the form of the second order partial derivatives is given by substitution of

the required terms into the product rule y′ = u′(x) · v(x) + u(x) · v′(x).
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∂2χ2

∂al∂ak
= −2

M∑

i=1

((
− 1

σ2
i

· ∂f(a : i)

∂al

∂f(a : i)

∂ak

)
+

(
xi − f(a : i)

σ2
i

· ∂2f(a : i)

∂al∂ak

))
(C.15)

Since we know the model function then the xi − f(a : i) terms are just the random

measurement errors within the experiment, which tend to cancel out over the summation

(zero mean). We can then remove the second derivative term from the product such

that the elements of the Hessian matrix D are given by the equation.

∂2χ2

∂al∂ak
= 2

M∑

i=1

1

σ2
i

· ∂f(a : i)

∂al

∂f(a : i)

∂ak
(C.16)

We define the Jacobian J as the M ×N matrix of partial differentials obtained from the

estimated points x̂ = f(a) with respect to the model parameters a.

J =




∂x̂1
∂a1

· · · ∂x̂1
∂aN

∂x̂2
∂a1

· · · ∂x̂2
∂aN

...
...

∂x̂M

∂a1
· · · ∂x̂M

∂aN




(C.17)

The diagonal M × M covariance matrix of measurement data error deviations Σx.

Σx =




σ2
1

σ2
2

. . .

σ2
M




(C.18)

The residual fitting error M - vector r.

r =




x1 − x̂1

x2 − x̂2

...

xM − x̂M




(C.19)

The Newton iteration step is then given by:
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D · (anext − acur) = −∇f(acur) (C.20)

J⊤Σ−1
x J · δa = J⊤Σ−1

x r (C.21)

Solution of this set of equations of the form Ax = b then gives the set of parameter

updates δa. The new parameters are then adjusted by the update.

anext = acur + δa (C.22)

We can then test whether the updated set of parameters anext decreases the χ2 error.

If the parameter update fails to decrease the χ2 error then we must take a step down

the local gradient direction ∇f(acur) toward the minimum by some constant factor µ.

Consider the constant µ in the gradient descent equation C.9. We do not know what scale

this parameter should be in order to facilitate a suitable step down the local gradient

direction. Marquardt’s first insight is that the components of the Hessian matrix, even

it they are not usable in any precise fashion, give some information about the order of

magnitude of the problem scale. The quantity χ2 is non-dimensional, in that it is a pure

number. On the other hand elements of ∇f(acur) = ∂χ2

∂ak
have dimensional units of 1/ak

and elements of δa units of ak.

anext − acur = −µ · ∇f(acur)

δa = −µ · ∇f(acur) (C.23)

The constants of proportionality ck between elements of the vectors ∇f(acur) and δa

must have dimensional units of a2
k, i.e.

∆ak = −ck · ∆χ2

∆ak
(C.24)

where units of ∆χ2 are just pure numbers. The diagonal elements of the Hessian matrix

Dkk = ∂2χ2

∂a2
k

have similar units, in that they are reciprocally related ∆χ2/∆a2
k. The

scalar mapping between the two vectors is then given by:

δak = − 1

λ · Dkk
· ∇f(acur)k (C.25)

where λ is a non-dimensional scaling factor that can be adjusted to cut down the gra-

dient step. Setting λ ≫ 1 decreases the update step while setting λ ≪ 1 increases
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it. Marquardt’s second insight is that the two update equations for Newton iteration

and gradient descent steps can be combined. We rearrange the gradient descent equa-

tion C.25 into a form similar to the Newton iteration equation C.20.

λ · Dkk · δak = −∇f(acur)k (C.26)

The two can be combined by defining a new matrix D∗ with augmented diagonal ele-

ments.

D∗

kk ≡ (1 + λ) · Dkk (C.27)

D∗

jk ≡ Djk (j 6= k)

The parameter update equation can then be written.

D∗ · δa = −∇f(acur) (C.28)

When λ is very large the matrix D∗ is forced into being diagonally dominant, hence

the update equation goes over to being identical to the gradient descent step in equa-

tion C.26. As λ approaches zero the update equation becomes identical to the Newton

iteration equation C.20. The parameter λ can be varied to facilitate a smooth transition

between Newton iteration and gradient descent. Given an initial guess for the set of

parameters a the Levenberg-Marquardt method can be implemented as follows:

1. Compute the initial χ2(a) residual error.

2. Set an initial value for the Levenberg-Marquardt parameter λ = 0.001.

3. Compute the Jacobian matrix J and the residual error vector r for the model

function with the set of parameters a. Form the set of normal equations C.21,

where D = J⊤Σ−1
x J and −∇f(acur) = J⊤Σ−1

x r.

4. Augment the diagonal elements of D with the scaling factor (1 + λ) to form the

matrix D∗.

5. Solve the linear equations C.28 for the set of update parameters δa and evaluate

the merit function χ2(a + δa).

6. If χ2(a+δa) ≥ χ2(a) fails to decrease the fitting cost then increase the Levenberg-

Marquardt parameter λ by a factor of 10 and go back to step 4. If however the

change in fitting cost is lower than a small tolerance ǫr such that |χ2(a + δa) −
χ2(a)| < ǫr or the relative change in the update parameters is smaller than a small
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tolerance ǫa such that ‖δa‖ / ‖a + δa‖ < ǫa then return with the set of minimized

parameters a.

7. Since the update decreased the fitting cost, update the set of trial parameters

a ← (a + δa), decrease the Levenberg-Marquardt parameter λ by a factor of 10

and go back to step 3. If however the change in fitting cost is lower than a small

tolerance ǫr such that |χ2(a+δa)−χ2(a)| < ǫr or the relative change in the update

parameters is smaller than a small tolerance ǫa such that ‖δa‖ / ‖a + δa‖ < ǫa

then return with the new set of minimized parameters a.

The Levenberg-Marquardt parameter λ is updated by applying multiplicative scaling

factors 10 (increase), 1/10 (decrease). For some minimization problems you may find

that the method spends a lot of time switching between two states i.e. [i, d, i, d, i, · · · ]
where i denotes a λ parameter increase and d a decrease. This indicates that half the

updates (and solution of the normal equations) failed to decrease the χ2 error. We can

keep a history of the past T update states and detect such a situation. It is advantageous

to then apply an asymmetric update that decreases λ by a factor of 1/2 on successful

decrease of the χ2 merit function i.e. bias the method in favour of gradient descent to

reduce the number of failed iterations.

Once the set of minimized parameters a have been computed the covariance matrix Σa

can be computed by inverting the Hessian matrix Σa = D−1. For some minimization

problems the vector a over-parameterises the model. i.e. The nine parameters of a

homography matrix encode the projective mapping that has only eight degrees of free-

dom. In this case the Jacobian matrix J is rank degenerate, hence so is the Hessian

matrix D = J⊤Σ−1
x J. In this case the pseudo-inverse must be used to compute the

covariance matrix Σa = (J⊤Σ−1
x J)+. It is worth knowing in advance the theoretical

rank of the system in order that we can enforce the rank constraint.

C.3 Confidence limits

We can summarize the probability distribution of errors within parameter estimation in

the form of confidence limits. A confidence region is just a section of the N dimensional

parameter space a that contains a certain percentage of the total probability distribution.

We can express a confidence by saying e.g. “there is a 99 percent chance that the true

parameters fall within this region around the predicted value”. Certain percentages are

customary within scientific usage, namely σ− 68.3%, 2σ− 95.4% and 3σ− 99.73%. The

confidence and shape of the region are chosen by the experimenter, though obviously

you want the shape of the region to be reasonably well centred about the estimated

measurement a0.
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If we are able to model the measurement data through a set of parameters a, then

we can compute a χ2(a) minimization between measured data points x and the set of

corresponding estimates x̂ from the fitting function f(a).

χ2(a) =
M∑

i=1

(
xi − f(a : i)

σi

)2

(C.29)

The χ2 fitting function error is minimum at the estimated parameters a0. If the vector

of parameters a is perturbed away from a0 then χ2 increases. The region within which

χ2 increases by no more than a set amount ∆χ2 defines some N dimensional confidence

region around a0. There is then a suitable ∆χ2 that causes the region to contain 68.3

percent, etc. of the probability distribution of parameter vectors a. These regions are

taken as the confidence limits for the estimated parameters a0.

We are usually not interested in the full N dimensional confidence region but in individual

regions of some smaller number of parameters ν. In this case the confidence regions in

the ν dimensional subspace are the projections of the N dimensional regions, defined by

the fixed ∆χ2 boundaries, into the ν dimensional spaces of interest. We are frequently

only interested in the confidence interval of each parameter taken separately, and as such

ν = 1. The χ2 distribution with ν = 1 degree of freedom has the same distribution as

that of the square of a single normally distributed quantity, thus ∆χ2 < 1 occurs 68.3

percent (1σ) of the time, ∆χ2 < 4 occurs 99.73 percent (2σ) of the time, etc.

The covariance matrix that comes out of the χ2 minimization has a clear quantitative

interpretation only if the measurement errors are normally distributed. Let δa be a

change in the parameters whose first component is arbitrary δa1, but the rest of whose

components are chosen to minimize the χ2 error. Since δa by hypothesis minimizes χ2 in

all but the first component the remaining components of the normal equations continue

to hold and have the form:

J⊤Σ−1
x J · δa = J⊤Σ−1

x r

D · δa = b (C.30)

δa = Σa




b1

0
...

0




(C.31)

Where Σa is the covariance matrix D−1 of the estimated parameters a.
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Σa =




Σa11 · · · Σa1N

...
. . .

ΣaN1 ΣaNN


 (C.32)

b1 is an arbitrary constant we can adjust to give the desired left hand side.

δa1 = Σa11 · b1 (C.33)

b1 = δa1/Σa11 (C.34)

The value of ∆χ2 is given in general by the equation.

∆χ2 = δa⊤ D δa (C.35)

This can be rewritten by substitution of δa from equation C.31. We also note that both

D and Σa are symmetric and are inverses of one another.

∆χ2 =
(

b1 0 · · · 0
)

Σ⊤

a D Σa




b1

0
...

0




(C.36)

∆χ2 =
(

b1 0 · · · 0
)

Σa




b1

0
...

0




(C.37)

∆χ2 = b2
1 · Σa11 (C.38)

If we then substitute the value of b1 from equation C.34 into expression C.38 we can

compute a relationship between the confidence region ±δa1 and the formal standard

error ±σ1 =
√

Σa11 defined from the covariance matrix.
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∆χ2 =

(
δa1

Σa11

)2

· Σa11 (C.39)

Σa11 · ∆χ2 = δa2
1 (C.40)

δa1 = ±
√

∆χ2
√

Σa11 (C.41)

δa1 = ± k · σ1 (C.42)

We then find that the 68.3 percent confidence region corresponds to ±σ1, the 95.4

percent region corresponds to ±2σ1, etc. We can use the same argument for each of the

subsequent parameters of a such that δai = ± k · σi is the confidence region associated

with each parameter ai.

The root mean square measurement error ǫ may be used in equation C.29 instead of the

individual measurement errors σi. Where we do not know the individual measurement

errors, we can assume that all data points have been specified with the same error σi = 1.

This enables us to compute a χ2 minimization of the parameters a, then measure the

root mean square fitting error ǫ between estimated and real data points. Using this

value of ǫ we can then compute a credible estimate of the confidence limits associated

with the set of model parameters a.

C.4 Sparse Levenberg-Marquardt minimization

The LM algorithm described in section C.2 is suitable for a relatively small number of

parameters. However when minimizing cost functions with respect to a large number of

parameters the simple LM algorithm is not very suitable. The central step of the LM

algorithm requires the solution of the normal equations which has a complexity O(N3).

For large parameter vectors the computational cost of solving these equations is high,

and susceptible to roundoff error. However many minimization problems have a certain

block sparse structure that one can take advantage of in order to reduce the complexity

of the minimization problem.

C.4.1 General sparse LM method

In the context of computer vision sparse techniques are useful in most reconstruction

problems where the parameter vector can be split into two sections P = (a⊤,b⊤)⊤.

The first parameterises the set of system entities i.e. the set of homography / camera

matrices and the second, the set of worldspace points. The Jacobian matrix J = [∂x̂/∂P]

has a block structure of the form J = [A | B], where A = [∂x̂/∂a] and B = [∂x̂/∂b].
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The set of normal equations J⊤Σ−1
x J · δp = J⊤Σ−1

x r that need to be solved in order to

compute the parameter updates then have the form:

[
A⊤Σ−1

x A A⊤Σ−1
x B

B⊤Σ−1
x A B⊤Σ−1

x B

] (
δa

δb

)
=

(
A⊤Σ−1

x r

B⊤Σ−1
x r

)
(C.43)

[
U W

W⊤ V

] (
δa

δb

)
=

(
ea

eb

)
(C.44)

We then augment the diagonal elements of the Hessian matrix with the Levenberg-

Marquardt scale factor (1 + λ). This augmentation alters the matrices U and V such

that the normal equations can be written.

[
U∗ W

W⊤ V∗

] (
δa

δb

)
=

(
ea

eb

)
(C.45)

We aim to apply a set of transforms to both sides of the equation in order to make the

parameter updates independent. We multiply each side of the normal equations by the

matrix:

[
I −WV∗−1

0 I

]
(C.46)

This results in the elimination of the top right hand block of the Hessian matrix.

[
U∗ − WV∗−1W⊤ 0

W⊤ V∗

] (
δa

δb

)
=

(
ea − WV∗−1eb

eb

)
(C.47)

The first set of update parameters δa may then be solved by solution of the set of

equations of the form Ax = b.

(U∗ − WV∗−1W⊤) · δa = ea − WV∗−1eb (C.48)

Subsequently the second set of update parameters δb can be found by back-substitution

of δa and solution of the corresponding equations of the form Ax = b.

W⊤δa + V∗δb = eb

V∗δb = eb − W⊤δa (C.49)



Appendix C Non-Linear Minimization 285

C.4.2 Covariance matrix

The covariance matrix of the estimated parameters P is given by Σp = (J⊤Σ−1
x J)−1 and

in the over-parameterised case by the pseudo-inverse Σp = (J⊤Σ−1
x J)+. The covariance

matrix Σp can be computed by a process of Gaussian elimination.

[
U W

W⊤ V

] [
Σa Σab

Σ⊤

ab Σb

]
=

[
I

I

]
(C.50)

[
U − WV−1W⊤ 0

W⊤ V

] [
Σa Σab

Σ⊤

ab Σb

]
=

[
I −WV−1

0 I

]
(C.51)

If we define the matrix Y = WV−1, where we assume that matrix V is invertible, then

the individual covariance matrices of the parameter vector are given by:

(U − WV−1W⊤)Σa = I
Σa = (U − WV−1W⊤)+ (C.52)

(U − WV−1W⊤)Σab = −WV−1

Σab = −ΣaY (C.53)

W⊤Σab + VΣb = I
VΣb = I + W⊤ΣaY

Σb = V−1 + Y⊤ΣaY (C.54)

C.4.3 Block sparse LM method

The sparse LM method gives a clear advantage when the Jacobian matrix obeys a

certain sparseness condition. If the parameter vector can be divided up into segments

P = (a⊤,b⊤
1 ,b⊤

2 , · · · ,b⊤
n )⊤, such that each of the parameters bi are independent then

the Jacobian matrix has the form.
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J =




A1 B1

A2 B2

...
. . .

An Bn




(C.55)

We suppose further that all the measurements Xi are independent with covariance matri-

ces Σxi such that Σx = diag(Σx1, · · · , Σxn). The corresponding set of normal equations

can be written.




∑
i A

⊤

i Σ−1
xi Ai A⊤

1 Σ−1
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x2 B2 · · · A⊤
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B⊤
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1 Σ−1
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B⊤
2 Σ−1
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x2 B2

...
. . .

B⊤
n Σ−1

xnAn B⊤
n Σ−1
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δa

δb1

δb2

...
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∑
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xi ri

B⊤
1 Σ−1

x1 r1
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x2 r2
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U W1 W2 · · · Wn

W⊤
1 V1

W⊤
2 V2

...
. . .

W⊤
n Vn







δa

δb1

δb2

...

δbn




=




ea

eb1

eb2

...

ebn




(C.57)

We augment the diagonal elements of the Hessian matrix with the Levenberg-Marquardt

scaling factor (1+λ), then apply the transformation matrix to both sides of the equations.




I −W1V
∗−1
1 −W2V

∗−1
2 · · · −WnV

∗−1
n

0 I
0 I
...

. . .

0 I




(C.58)

The set of equations we need to solve in order to compute the parameter updates is

given by.
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U − ∑
i WiV

∗−1
i W⊤

i

W⊤
1 V∗

1

W⊤
2 V∗

2
...

. . .

W⊤
n V∗

n







δa

δb1

δb2

...

δbn




=
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i WiV

∗−1
i ebi

eb1

eb2

...
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(C.59)

We note that the transformation step only requires that we compute the inverse of each

of the V∗
i blocks and the corresponding set of matrix multiplications WiV

∗−1
i W⊤

i and

WiV
∗−1
i ebi. The first set of update parameters δa may then be solved by solution of

the set of equations of the form Ax = b.

(U −
∑

i

WiV
∗−1
i W⊤

i ) · δa = ea −
∑

i

WiV
∗−1
i ebi (C.60)

Subsequently the second set of update parameters δb can be found by back-substitution

of δa and solution of the corresponding equations of the form Ax = b. This substitution

step can be performed for each of the individual parameter updates δbi.

W⊤

i δa + V∗

i δbi = ebi

δbi = V∗−1
i · (ebi − W⊤

i δa) (C.61)

Since we have already computed the inverses of each of the V∗
i blocks then this parameter

back substitution solution step amounts to no more than a few matrix multiplications.

For parameter vectors with large numbers of b1, · · · ,bn blocks then solution of the

normal equations using the basic LM method requires a computational complexity of the

order O(n3) in inverting the Hessian matrix. On the other hand by applying the sparse

LM method the computational complexity is of the order O(n) required for inversion of

each of the independent V∗

i blocks of the Hessian matrix.

If we define the matrix Yi = WiV
−1
i , where we assume that matrix Vi is invertible,

then the individual covariance matrices of the partitioned block parameter vector are

given by:
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Σa = (U −
∑

i

WiV
−1
i W⊤

i )+ (C.62)

Σabi = −ΣaYi (C.63)

Σbi,bi = V−1
i + Y⊤

i ΣaYi (C.64)

Σbi,bj = Y⊤

i ΣaYj (i 6= j) (C.65)



Appendix D

Implementation and Software

D.1 Introduction

There are a number of commercially available tools and libraries for use within computer

vision, such as: Matlab, OpenCV, IUE, Targeted and VCL. Correspondingly, there are

also many freely available numerical libraries, such as: Numerical Recipes in C++, and

old Fortran code from LAPLACE and MAILSACK. Although these software libraries

provide a large range of basic algorithms, due to the complexity of certain optimization

problems within projective geometry, many of the larger sparse optimization methods

are not freely available.

We give here the details of the software libraries and visualisation tools, that were

implemented to provide the means required to label and analyse the captured image

data. The software was built primarily out of necessity, though also provided a chance

to further improve the author’s understanding of projective geometry and computer

vision. The algorithms employed to build a number of the tools used throughout the

project are described within the text of Hartley and Zisserman [40]. The work within

this chapter demonstrates the significant practical contribution made by the author in

conjunction with the written theoretical material.

D.2 Testing

The software was built by using a modular design. Many of the minimization problems

encountered during the project require that we evaluate a sufficiently complex model

function. As a result, many of the components have been standardized and broken into

smaller pieces, i.e. the homography transformation of one point set to another and the

parameterisation of a rotation matrix by using a Rodrigues vector. This also enables us

to test and verify each smaller component independently.

289
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While the projection function that models the subject motion is already fairly compli-

cated, computation of the analytical Jacobian matrix is an order of magnitude more

complex. Splitting and testing each of the standard transformation functions removes

many of the possibilities for introducing coding errors. Subsequently, the time it takes

to track down and eliminate errors is also reduced. Due to the nature of a research

project, many developers often use numerical differentiation methods (forward differ-

ence) to compute the Jacobian matrices. Since all the optimization problems within

this project are similar and sparse, the large number of parameters involved requires

some extremely long computation times to evaluate the Jacobian matrices. Analyt-

ical computation of the Jacobian matrices is therefore preferable and more accurate.

Building the complete Jacobian matrix out of those derived from each individual stan-

dard transformation function is then just a question of performing a number of simple

matrix-matrix multiplications.

For testing purposes, the computed analytical Jacobian matrices may be compared to

their numerical forward difference counterparts by determining the Frobenius norm of

the difference between both matrices. For the matrices to be deemed similar, this norm

should differ by no more than some small empirical tolerance value.

D.3 Geometry Tools

The software tools built during the author’s time at university arose and evolved as a

result of the necessity to understand the basic principles of projective geometry. The

geometry library is separate and written in C++, allowing it to be compiled on almost

any platform. The visualisation tools make extensive use of graphical features, hence a

degree of platform dependence is necessary. Software tools to perform manual marking of

data and image visualisation were built using C++ and the Microsoft Foundation Classes

(MFC) within Visual Studio 6.0. With the exception of a few important numerical

routines, such as singular value decomposition, all software was implemented by the

author during the period of study.

D.3.1 Primitive Visualisation

In order to enable interest features within an image to be manually marked to sub-pixel

accuracy, a visualisation tool was built that allows users to zoom and move around to

any part of the image plane. Points, lines and digital curves can be manually placed

and manipulated within the image plane by appropriate interaction with the mouse.

Primitives may be given numerical properties, such as an integer identification number

that corresponds to a specific landmark index. The manual marking tool allows us to

specify how we wish to handle applying new primitives to the image. New points may be
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applied by clicking the mouse, with each point being added with increasing, decreasing

or constant parameter values. We can page through the images of a sequence by clicking

the appropriate button or corresponding keystroke on the keyboard. We have found

that the fastest way to manually mark interest features, that track through an image

sequence, is to pre-select a constant parameter value and insert a single point at a time

onto each image frame within the sequence. Since a tracked interest point does not move

very far between frames, applying consecutive point features requires that we only move

the mouse a small distance, click the mouse once then press a single key on the keyboard

to advance the frame. This process is repeated until all required landmark features are

identified. The visualisation tool keeps track of any changes that have occurred to the

geometry within the image sequence, hence saving all the modified geometry to a file is

simple. Figure D.1 illustrates this simple point and click user interface that allows us to

identify the low level 2D primitive features within the set of images.

Figure D.1: Manual marking tool. The user interface allows a simple point and click
interface to manually identify point features within an image.

The tool provides an easy way to display information about each primitive. Primitive

attributes can be changed by right clicking close to the object to open the properties

dialog. Primitives can be selected and grouped together. The selection mechanism

allows us to identify the input primitives required for certain types of image operation.

The tool provides an easy way to select, group, delete and parameterise primitives either

by primitive type, area selection, group relationship, parameter or frame position.

D.3.2 Planar geometry

Planar transformation of structure is achieved by a 3 × 3 matrix mapping known as

a homography. One of the most important features of the image tool is its ability

to apply planar image distortions. The distorted output images are computed by the
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method of bilinear interpolation. We can specify an arbitrary image transformation by

manually entering the elements of the homography matrix or by loading them from a

file. The image distortion dialog box also allows us to generate the homography mapping

by applying a number of rigid motion transformations (rotation, translation and scale)

to the current matrix, by entering the appropriate values into the custom controls.

Additional controls allow us to set the identity matrix, compute the matrix transpose

and matrix inverse. We can also specify the size of the output image should it differ

from the input dimensions. Figure D.2 shows the image distortion dialog box.

Figure D.2: Linear warping tool. Distortion of the image can be performed by speci-
fying an arbitrary rectification homography.

Rectification of the geometric primitives within the image by the required planar trans-

formation may also be performed. A number of sources can be used for the transfor-

mation homography. The two-view geometry toolbar maintains a number of special

matrices that correspond to specific two-view mappings. Stereo point correspondences

are determined by the epipolar geometry between views, which is encoded by the funda-

mental matrix F. Similarly, point correspondences between the scene and image planes

are determined by the homography mapping H. These matrices can be computed from

point correspondences alone, which can be manually picked within two selected views or

from values entered directly into the correspondence table. We can then select this pla-

nar homography within the image distortion dialog box to perform the required image

transformation.

The two-view dialog box also provides additional functionality to enable users to manip-

ulate the set of stored transformation matrices. We can pre-multiply or post-multiply

these matrices by an arbitrary 3×3 matrix. The toolbar also allows us to import and ex-

port point correspondences and sets of points from a variety of different text file formats.

These points may then be added to any chosen image.
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Primitives can also be used to form constraints on the elements of the rectification

mapping. We can select geometric features, such as a line to compute the perspective

transformation that maps it back to the ideal line, or a point in order to determine

the stereopsis transformation that replaces it back to the ideal point. The stratified

rectification toolbar also allows us to pick points from within the image that define a set

of endpoint constraints. These endpoints are used to determine the affine transformation

that restores the specified known length ratios. The computed rectification matrix can be

used within the image distortion dialog to distort the image view. Figure D.3 shows the

stratified rectification toolbar that allows us to enter the required algebraic constraints

in order to compute the required rectification transformation.

Figure D.3: Geometric stratified rectification constraints. Constraints formed from
the known ratio of lengths between line segment endpoints can be identified by manually
picking features from within the image.

D.3.3 Multiple view geometry

Throughout this project we need to be able to accurately measure a set of 3D points.

In order to do this we must provide a method to calibrate an array of cameras. We have

implemented Zhang’s calibration technique [120], which requires that we mark imaged

corner positions of a planar calibration target. Subsequently, we have built a tool that

allows us to easily determine this set of points within each image, by clicking as close

as possible the four corner points of the imaged calibration target. We have also auto-

mated this extraction process by using a technique based on the KLT corner detector

to identify the calibration target point features. Consequently, the complete calibration

algorithm can be automated and consists of four independent steps: i) Interest feature

segmentation and detection; ii) Initial calibration; iii) Re-segmentation of interest fea-

tures; iv) Final calibration. Figure D.4 shows a screen shot of the calibration toolbar

and the corresponding output after performing the algorithm.
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Figure D.4: Camera calibration tool. The tool allows the user to manually identify
the image of the planar calibration target within each of the images of the sequence.
The tool also fully automates the process of feature detection and camera calibration.

This calibration algorithm accurately determines the intrinsic parameters of the camera

model. In order to determine worldspace structure we must compute the extrinsic pose

parameters between the cameras in the array. We have also implemented a stereo cal-

ibration algorithm that computes these extrinsic parameters between pairs of cameras.

Larger numbers of cameras in the array can then be calibrated in a pairwise fashion in or-

der to compute a consistent set of projection matrices. Further details of the calibration

algorithm are outlined in section 2.5.3.

Once the set of camera intrinsic and extrinsic parameters are determined then image

correspondences may be back projected to triangulate the set of worldspace points. The

three view toolbar allows us to manually pick point correspondences within three selected

image views. These points are then added to the correspondence table and may be

subsequently back projected. The toolbar also allows us to compute the correspondences

within the camera views based on the set of integer identification numbers. This enables

us to quickly triangulate the set of worldspace points over the entire set of image frames.

Figure D.5 illustrates the three view tool bar and the triangulation process.

After triangulation of the worldspace structure we can view the set of worldspace points

by using the virtual viewing tool. This tool uses the OpenGL rendering interface to

display a set of primitives that resemble the 3D points, planes and the set of cameras.

Figure D.6 shows an image taken from the right camera view together with the cor-

responding virtual view, as seen from slightly behind the camera in order to show the

placement of all the cameras in relation to the triangulated point set.
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Figure D.5: Multiple view geometry. Point correspondences within two and three
views can be manually selected in order to back project the set of rays that intersect
in the worldspace points.

Figure D.6: Virtual view tool. The set of back projected worldspace points from the
set of cameras can be viewed from a virtual camera. The position and orientation of
the virtual camera can be controlled by using the mouse.
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D.4 Gait system

The complete gait system requires that we input only the joint landmark features for

each piecewise linear segment of subject motion. The set of outputs can be saved at each

stage of the gait algorithm into simple text files. Consequently, no graphical interface

is necessary and the gait system can be compiled as a simple command line program.

Further analysis of the output data can be visualised later with the geometry tools.

Figure D.7 shows: i) The single input text file to the system containing the set of subject

image sequences, location of the output files and the system configuration parameters;

ii) The set of computed output text files from the system.

Figure D.7: Input (left) and output (right) from the gait algorithm.

The data and functionality of the complete gait system is best wrapped up within a

single C++ class. The set of subject landmark position data matrices are stored within

a tree structure in the class. The individual stages of the reconstruction algorithm are

wrapped within a set of class methods. Each individual stage of the gait algorithm

calls a number of virtual message handler routines: OnBeginXXX(), OnEndXXX() and

OnFailXXX(). In the base implementation class these functions are empty, though

they may be overridden in any further classes that inherit the base class. A number

of experiments within this project are implemented by inheriting the behaviour of the

base class and overriding the behaviour of the message handlers in order to output the

required information to the text files. The gait system is then configured through a

number of options in the configuration file and the complete reconstruction algorithm

performed by a single call to the Run() method.
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