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BALTAG, COECKE AND SADRZADEH
1 Introduction

Dynamic Epistemic Logi¢€DEL) is a PDL-style logic to reason about epistemic
actions and updates inraulti-agent systemit focuses in particular on epistemic
programs, i.e. programs that update the information state of agents, and it has ap-
plications to modelling and reasoning about information-flow and information ex-
change between agents. This is a major problem in several fields ssetwae
communicatiorwhere one has to deal with the privacy and authentication of com-
munication protocolsArtificial Intelligencewhere agents are to be provided with
reliable tools to reason about their environment and each other’s knowledge, and
e-commercavhere agents need to have knowledge acquisition strategies over com-
plex networks.

The standard approach to information flow in a multi-agent system has been
presented in9] but it does not present a formal description of epistemic programs
and their updates. The first attempts to formalize such programs and updates were
done by Plazag?], Gerbrandy and Groenevelild], and Gerbrandy]1,12]. How-
ever, they only studied a restricted class of epistemic programs. A general notion
of epistemic programs and updates BIEL was introduced in4,5]. However, in
this approach the underlying logic on propositions is boolean. For computational
purposes one might want to relax this to an intuitionistic setting, hence conceiving
propositions as being structured in a Heyting algebra. On the other hand, contin-
uous lattices are also models of partiality of knowled#jé],[ and are in general
not distributive. Finally, actual physical computational situations such as quantum
computation require (at least) a non-boolean setting.

In this paper we generalize ‘booleaDEL by introducing the notion of aab-
stract epistemic systenThis generalization goes hand-in-hand with the introduc-
tion of non-determinism for states and actions and brings algebraic clarity to the
semantics. The particular algebraic object which we introduce is a refinement of
previously used objects tailored to study concurrency in computer sciéris [
and the dynamics and interaction of physical systerhs $uch an abstract epis-
temic system consists ofcuantale() of epistemic programs Q-right module)M
of epistemic propositiongind each agent is encoded byasgpearance mape. an
endomorphism of the\/, @)-structure We show that the booledDEL of [5] is a
concrete example of such an abstract epistemic system. The axioms of the modal
operators follow immediately from abstract properties of quantales and modules
over them. Crucial notions dEL are definable abstractly and some new notions
emerge naturally. The passage to a non-boolean theory also provides a new insight
into epistemic programs such piblic announcemerand, of a surprisingly differ-
ent statuspublic refutation We sketch an analysis of the muddy children puzzle
and of a cryptographic attack in our setting and also provide a motivating example
for the passage to a non-boolean theory. We also provide a corresponding sequent
calculus in which sequents will typically look like

My, oo Qs Ao mp, o qr, A E O
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BALTAG, COECKE AND SADRZADEH

wherem, ..., m; are propositionsy, ..., ¢ are actions and, ... A, are agents
which resolve into a single proposition or actidén The fragment of the calculus
restricted to actions is the Lambek calcul@S|[ hence resource sensitive.

2 Epistemic propositions and epistemic programs

In this section we slightly recast and enrich the Dynamic Epistemic Logi8]a [

such a way that it enables a smooth passage to the algebraic setting to be introduced
in Section 4. Part of this involves the introduction of non-determinism for both
states and actions.

State models.
For a set ofacts® and a finite set ohgentsA4, astate modeis a triple

A
S = (S5, — ,1t)aca

whereS is the set ofstates A C S x S the accessibility relatiorfor each
agentA € A, andyu : S — P(P) the valuation mapwhich encodes satisfaction

s E ¢ < ¢ € u(s). The “facts”¢p € ® are simple, objectives features of the
world (“objective” in the sense of non-epistemic, i.e. independent of the agents’
knowledge or beliefs), and the valuation map tell us what facts hold in a given state
s € S. Each accessibility relation can be repackaged as a map

fA:S—>73(S)::s»—>fA(s)::{t65|3—A>t},

called theappearance mapf agentA. The significance of the appearance maps is
as follows: ift € fa(s) then, whenever agent is in states he considers state
as a ‘possible world’. In other words, if the actual state of the systemagentA
thinkst may be the actual state.

As an example’, consider two playersl, B and a refere€. In front of every-
body, the referee throws a fair coin, catches it in his palm and fully covers it, before
anybody (including himself) can see on which side the coin has landed. There are
two possible states here, statén which ‘the coin lies Heads’ up£ H € ®),
henceu(s) = {H}, and staté in which the coin lies Tails up=£ 7' € ®), hence
p(t) = {T}. We depict the state mod&bss as

) 1)

A,B,C A,B,C
For every agent there are arrows between any two states (including identical states),
which means that nobody knows the ‘real state’.
We can also consider a case in which agehtandC' can see the face of the
coin, but agentd cannot see it (although he knows that the others see it), so he is

5 For a more elaborated example of an authentication protocol we refer the reagler to [
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still uncertain if the coin is heads or tails. In this case only agémas several
arrows between states whereas agéhtdC' have only one arrow in each state,
which means that if the coin is heads up they know it and similarly for tails up.

HencePTossgets depicted as
@) )
N

A,B,C A,B,C

An epistemic propositio® over a state mode3 is a subseP’ of S, containing all
the states at which the proposition is ‘true’. The magnd f4 of the state model
are extended to elements Bfas follows

u(P) = [Y{uls) | s € P} € P(®) fa(P) = J{fa(s) | s € P} € P(5).

Note that we have to use intersection and not union in defipirg) since a fact

Is entailed by an epistemic proposition when it holds at all the states of the propo-

sition. This makes the passage fr@Ms) to P(®P) contravariant. In other words,

the actual algebra of facts #8(®)°, that is, the complete boolean algeli?&d)

where the order is reversed i.e; < vy < 1 O ©o. While facts are simple

and non-epistemic, and thus cannot be altered by epistemic actions (see further),
epistemic propositions can express complex features of the world, which may de-

pend on the agents’ knowledge (and so may be changed by epistemic actions).
However, notice that each fagt € ® corresponds to an epistemic proposition

P, :={s eS|y € u(s)}, saying that the fact holds in the current state.

In the Tossmodel, H andT are facts expressing the heads up or tails up of
the coin. The epistemic propositions that correspond to these facts are the states
in which the fact holds. The epistemic propositions@rgs}, {t}, {s,t} C {s,t}.

We depict an epistemic proposition over a state model by double-circling the in-
cluded states, hence

A7B7 7B7 @ @ A7B7 A737
A,B,C A,B,C A,B,C A,B,C A,B,C A,B,C A,B,C A,B,C

represent the four epistemic propositionsloss

When a propositio® has exactly one statec P (i.e. P = {s} is a singleton),
we shall use systematic ambiguity, identifying the proposition with the state and
writing e.g. P = {P}.

Action models.
Given a state modd, an action model oves$ is a triple

A

Z = (Ev - 7M)A6A

similar to a state model except that we think of the elemenisas possibl@ctions
instead of possible states and the valuajionX: — P(.S) assigns to each action

4



BALTAG, COECKE AND SADRZADEH

o aprecondition i.e. a proposition:(o) definining the domain of applicability of
o: actiono can happen in a stateiff s € u(o) ; e.g. a truthful announcement of
a fact can only happen in those states where that fact holds. Note thatXifice
is boolean we can equivalently consider the states at which the actiorot take
place. These states, which are the complements of the precondition of an action
are denoted a&er(o) := S\ u(o) for eacho € 3. Theeffectof an action on
states and appearance maps will be defined below in termseagiatemic update
product.

We introduce an action model ov@oss After catching the coin in his hand
the referee might secretly take a peek at the coin before covering it while nobody
notices this. The action model is now depicted as

ABC’

whereo stands for ‘cheating’ and for ‘nothing happens’ ang (o) = {s,t}. The
action model can be refined when replacingy oy andor whereu(oy) = {s}
andu(or) = {t}, specifying what the referee saw in case of deceit. Pictorially

' @/\ABC

Dc
An epistemic programr over an action modeXl is a subsetr of X; the x and f4
maps are both extended covariantly by continuity

= U{“(U) |oen} eP(S) and fa(m U{fA )|oen}eP(E).

The union in the definition of maps for programs says that an epistemic program
is applicable where at least one of its actions is applicable. This maké&theap
follow contravariantly by boolean negation if€er(w) := S\ u(7) or equivalently
Ker(m) :=({Ker(o) | o € 7}. Epistemic programs introduce non-determinism:
wheneverr; C m, thenm, is obtained fromr; by increasing nondeterminism;

7 = {01, 09} stands for “either action; or actiono, takes place”.

In our example with actionsy, or andr the epistemic progranfoy, or}
stands for the non-deterministic actienin the sense that the outcome of the toss
can be either. We depict the program over an action by double-circling the including
actions. Hence the picture of the program= {oy, o7} over)_ is

. @/\ABC
AB
e e

As in the case of states and propositions, we use systematic ambiguity to iden-

tify deterministigorogramsr = {o} with their unique underlying actios.
5
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Update.
Given a state modeéd and an action mode) | over S we define theiupdate
productS ® > to be a new state model given by

S@Y = (J u(o)x{o}  fals,0) = (fa(s)x fa(@) N (SOE)  puls, o) := u(s).

oceY

In simpler terms we hav8 @ ¥ = {(s,0) | s € u(o),0 € ¥} C S x ¥ and also
fa(s,0) C fa(s) x fa(o) thatis(s',0’) € fa(s,o0)iff s € fa(s)ando’ € fa(o).

As it will become more explicit in the abstract algebra of next section, update is
a structure preserving operation in the sense that it hasdeoeffecbn the state
model that it acts on. In our example, after the cheating aetjpmwhere the coin

has lied Heads up4 and B think that nobody knows on which side the coin is
lying. But they are wrong! The system after this action can be updated by taking
the update product of the two moddigssando; depicted above:

Note that in genera$ © 3 andS are not necessarily disjoirit.

Definition 2.1 We define thaipdate producbf an epistemic propositioR overS
and an epistemic programover ) _ as the epistemic proposition

P®m:= U(,u(a)ﬂP)x{a}g P x m over S®Z.

oem

The proposition” ® 7 provides thestrongest postconditiofor P with respect
to epistemic programr. This means that if propositioR is true at the input of
programr then P @ 7 is the strongest proposition that is true at the output.dt
canbe seenthd@ @ = (0 iff PNyu(r) = 0, wheref) is thefalsum(i.e. the trivially
false epistemic proposition ov8).

Modalities.
We define theepistemic modalitjor each agen# € A as the unary connective
which assigns to propositioR C S overS another proposition

OuP = {S €S | fa(s) C P} over S.

6 In fact later, the most important models we shall consider later (DEL models) are closed with
respect to update product, ig.® X C S.

6
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We read 4 P as ‘agentd knows or believes”’. 7
We define thedynamic modalitffor each epistemic programover ) as the
unary connective which assigns to propositlert S overS another proposition

[7]P := {SES‘{S}@WQP}:U{QGP(S)|Q®7T§P} over S.

Note that (as mentioned before) some statesS can be themselves pairs of states
and actiong s, o) which make the above definition well defined. The proposition
[7] P provides theveakest preconditiofor P with respect to the epistemic program
7. This means that if propositioR is true at the output of programthen[r]|P is

the weakest proposition that should have been true before

Sequential composition.
Thesequential compositiol_, @ > °, overS of two action model$ , and) ,
both overS means ‘first doy _, and then dd _,’ and is defined as

Y1035 =1 X%s  fa(or,09) := fa(o1)X faloa) w01, 09) := p(or)N]o1]u(os).

In simpler terms(o}, 05) € fa(o1,09) iff 07 € fa(o1) andol, € fa(o2) and also
p(or,09) ={s € S| s € ulor),s® o, € u(og)}. Again note that:; e ¥, and
¥, (or X,) are not necessarily disjoirit. The action model over a state modgl
contains an actioskipin which nothing happens iff

skip = {skip} Hskip =5 = Tes) fa(skip) = {skip}

Notice the use of systematic ambiguity: we denoted with the same nslape) (
both the progranskipand its only action. It is easy to see that skip is a unit, up to
iIsomorphism, both for update product and sequential composition.

Definition 2.2 We define thesequential compositionf two epistemic programs
7, over) , andm, over)_, as the epistemic proposition e 7, := 7 X m, over

D210

Concrete epistemic systems.

We now have all the tools to make the passag®BL in the sense off] to
‘concrete epistemic systems’ which we put forward as a stepping-stone towards
‘abstract epistemic systems’. BEL model is essentially one that is closed under
update product and sequential composition (and contask§op while a concrete
epistemic system consists of all the epistemic propositions and all the epistemic
programs of &OEL model:

Definition 2.3 A DEL model is a paifS, > ) whereS is a state model any is
an action model ove8 such thaskipe X, (S®@ X) C Sand(X e X) C X.

7 Taking either ‘knows’ or ‘beliefs’ depends on the context.
8 In fact later we only consider models whee ¥ C X.
9 This action has been denotedraim the preceding examples.

7
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Definition 2.4 Given aDEL model(S, > ), aconcrete epistemic systésthe pair
(P(S),P(X)) which goes equipped with valuatign appearance magsa} ac
and all other operations of thBEL model extended t&(S) and P(X) as we
showed before.

3 The algebra of programs and propositions

A sup-latticeL is a complete lattice with maps which preserve arbitrary joins as
homomorphism. Recall that each sup-lattice also has arbitrary meets, namely

Nai=\/{beL|vib<a}

forany A C L. Hence the designation ‘sup-lattice refers to the fact that we require
structure-preserving maps only to preserve arbitrary joins (cf. the designbtions
calesandframesfor complete Heyting algebradf]). We denotebottomandtop

of L by | andT respectively and define its setatomsas

Atm(L) ={pe L\ {L}|a<p=a= L}
A lattice L is atomisticiff
Va € La=\/{pe€Atm(L) |p <a}.
Every sup-morphisnf* : . — M has a (unique) right Galois adjoirfit satis-

fying
frla)<b

and can be explicitly given as

f*:M—>L::bl—>\/{a€L]f*(a)§b}.

Theleft Galois adjointf* moreover preserves arbitrary meets. We denote an adjoint
pair by f* - f.. In computational terms, one can think of the left Galois adjgint
as assigning weakest preconditions with respect to the progitam

A quantale’’ is a sup-lattice) equipped with a monoid structurg), e, 1)
satisfying

ao(\i/bi>:\/(aobi) (\/aZ)ob:\/(aiob).

Hence for alls € (Q the mapsie — : Q — Q and—ea : Q — () preserve arbitrary
joins and hence they have Galois adjoifit® —) 4 (¢ \ —) and(— e a) 4 (—/a)

10 The term ‘quantale’ was introduced i2]). For a survey on quantales we refer 4], For
insightful categorical perspectives on quantales@nuodules we refer tol[8] and [25].

8
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explicitly given by

a\b::\/{ceQ\aocgb} b/a::\/{ceQ\coagb}.

We refer to(a \ —) and(—/a) as theresidualoperations. Aquantale homomor-
phismis both a sup-homomorphism and a monoid-homomorphism. Examples of
quantales are: the setp(L) of all sup-endomorphisms of a complete latticer-
dered pointwisely; the set of all relations from a &eto itself ordered by pointwise
inclusion — this quantale is isomorphicdep(P(X)); the powerset of any monoid
with composition extended by continuity.

A Q-right modulefor a quantalé) is a sup-latticel/ which goes equipped with
amodule action- ® — : M x Q — M, that is,

ml=m
m®(geq)=Mq)®q¢

m®(\/%‘)=\/(m®q@') (\_/mz')@q:\/(mz'@@

% A

Again we have two right Galois adjoints ® ¢ - [¢|]— andm ® — - {m}— where

[glm := \/{m" € M | m'©q < m} {mym’ = \/{g € Q| mag<mY}.

As for some examples, a quantélds a@-right module over itself with composi-
tion as the tensor and a complete latticés asup(L)-right module with function
application as the tensor.

Definition 3.1 A systemis a pair(M, Q) with @) a quantale and/ a Q)-right mod-
ule[1].

A system isatomisticwhen bothM and () are atomistic and the following
equations hold

m € Atm(M),q € Atm(Q)=m ® q € Atm(M) U {L}
@1, q2 € Atm(Q) = q1 ® g2 € Atm(Q) .

These conditions can be interpreted as the fact that ‘the atoms of both the quantale
and the module behave deterministically’.

Proposition 3.2 i. Epistemic program& () with | J as\/, sequential composi-
tion ase and ‘skip’ as1 form a quantale!! ii. Epistemic proposition®(S) with
U as'\/ and update product ag form a right P(X)-module'. iii. The pair
(P(S),P(X)) is an atomistic system. The atoms of the mod(&) correspond
to thestatess € S, while the atoms of the quantai(>) correspond to thactions
o€ .

' This construction is implicit in the relational composition of dynamic actiond & [
12 By this construction it becomes clear that update is a structure preserving map on epistemic
propositions and has reide effects

9
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Proposition 3.3 i. The appearance maps, : P(S) — P(S), and forallr € X
the maps- @ 7 : P(S) — P(S) are all sup-homomorphismg. The appearance
mapsf, : P(X) — P(X), and for allr € ¥ the mapsre—, —e7: P(X) — P(X)
are quantale-homomorphismidi. For every epistemic propositioR € P(S) and
every epistemic program € P(X), we have

Ja(P®m) C fa(P) ® fa(m).

iv. For everystate(i.e. atomic propositiony € S and everyaction(i.e. atomic
program)o € ¥ we have that:

if sc#£0 then f4(s®0c) = fa(s) ® fa(o).

The last property can be generalised by introducing a noti@oloérence

Definition 3.4 A pair (P, 7) whereP is an epistemic proposition andis an epis-
temic program icoherentff

Vse P, Voenms®@ao#0

i.e. iff P C u(o) for everyo € w. This means that propositioR ensures the
possibility of all the actions subsumed by program An equivalent definition
which doesn't refer to states or actions is the following:

VPPCP V' Cr(Por=0= P =0orx" =0).

Proposition 3.5 If (P, 7) is a coherent pair then we have

fa(P @) = fa(P) @ fa(r).

Proposition 3.6 i. For A € A the right Galois adjoint to appearancg;(—) :
P(S) — P(S) is knowledge 15— (=the epistemic modalidy ii. For 7 € P(%)
the right Galois adjoint to update @ 7 : P(S) — P(S) is the dynamic modality
[7]—. iii. The right Galois adjoint to appearancg;(—) : P(X) — P(X) intro-
duces an epistemic modalify’; — on actions.iv. The right Galois adjoint to left-
and right-compositiomre —, — e : P(X) — P(X) introduce respectively weakest
pre-specificationr\ — and strongest post-specificatian —, and the right Galois
adjointtoP ® — : P(X) — P(9) introduces{m}—, a variant on this!*

Proof. All follows by construction and basic facts on sets, cartesian products and
relations. O

13 The residualr \ — assigns to its argumentthe weakest program \ § which one has to ef-
fectuateafter effectuatingm such that the net effect is belodv The residual- /= assigns to its
argument the strongest progrady 7 which one has to effectuateeforeeffectuatingr such that
the net effect is below. The right Galois adjoint doefgn} — assigns to its argumebttthe weakest
proposition{m} P before effectuatingr which guarantee® after. For a discussion on pre- and
post-specification we refer t8,[16].

10
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4  Abstract epistemic systems
The propositions of the previous section lead us to the following definitions:

Definition 4.1 A system-endomorphisti/, Q) AN (M, Q) is a pair
(MM —-M, f?Q—-Q)
where f is a sup-homomorphisnf< is a quantale homomorphism and

fMmeq) < fM(m) @ f(q) (1)
forallm € M andq € Q.

Definition 4.2 An (abstract) epistemic systeima tuple(M, Q,{fa}ac4) Where
(M, Q) is a system andlf 4} 4c4 are system-endomorphisms.

Interpretation.

The elements of the quantalgare to be thought of as thepistemic programs
and its unit asskip, the elements of the modul®/ are to be thought of as the
epistemic proposition®r if one wants, the not necessarily deterministic states, the
labelsA € A are theagentswith the endomorphism§f 4} 4c 4 as theirappearance
maps Thekernelof a program; € Q is

Ker(q) . ={meM|m®q=_1}

and comprises thpreconditions it contains the epistemic propositions to whigh
cannot be applied. Th&tabilizer

Stab(Q) :={m € M |Vq € Q, [gJm = m}

comprises thdacts it consists of those epistemic propositions which are stable
under epistemic actions. Tlsatisfactiorrelation is included in the partial ordering

of M: for a statem € M and facty € Stab(Q)) we havem = ¢ < m < . All
modalities and other right Galois adjoints discussed and introduced in Proposition
3.6 arise also here as right Galois adjoints and hence their interpretation still holds
e.g. “knowledgeé 1 is the adjoint to appearangd!”.

Nature of the modalities.
We identify the basic properties of the modalities.

Proposition 4.3 In any epistemic system we have

m < m/

M _ M _ M M
Oy T=T O) (mAm')=0ymAOYm T <O

11
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Proof: Since Y is a right Galois adjoint it preserves arbitrary meets, that is
0% (A; mi) = N\, O4'm;, and hence it preserves the empty meet and binary meets,
and is monotone. O

Since all other modalities preserve arbitrary meets the same result holds for
them and for all other right Galois adjoints. In an intuitionistic context where
one might takeM to be aframe (i.e. a (complete) Heyting algebra with sup-
homomorphisms) we can internalize the partial order using the defining property
of a Heyting algebra so we obtain

Fm—m
M Mo °
FOYm — Oym

Hence in the special case that= {1} and A = {x} we obtain the intuitionistic
modal logicInt K of [27]. We conclude thaintuitionistic epistemic systenihat
Is epistemic systems for whicl/ is a frame, generalize intuitionistic modal logic
to multiple agents and dynamics in terms of epistemic programy. i§ moreover
a complete boolean algebra such as the powerset of S&dtiam Kripke’s axiom
K follows i.e.

O (m — m') — (O m — O4m).

Diamonds and corresponding rules arise in that case by duality.

Learning.

The fact that edl) in definition 4.1 is annequalityexpresses learning of agents.
Some of the clauses of the appearance of an agent on an update product might get
eliminated from the left hand side of dg(simply because some of the sub-action
of the program might not be applicable on some of the sub-states of the proposition.
This implies that the agent learns something new as the result of update (left hand
side is stronger than the right hand side).

We can also force the equality by introducing the notion of coherence:

Definition 4.4 A pair (m, q) wherem € M andq € @ is cohereniff

Vm' <m, V¢ <qg(m'®q¢d=1 = m'=_1lorqd =1)
For example in aatomisticsystem, every atomic paim, q) € Atm(M)x Atm(Q)
wherem ¢ ker(q) is coherent.

Definition 4.5 A strong epistemic systeisia tuple(M, Q, { fa} ac4) where(M, Q)
is a system and for all coherent paffs, ¢) we have the following equality

Mm®q) = fMm)® fq).

Representation Theorems.

Theorem 4.6 Every atomistic strong epistemic system for which bathand @
are completely distributive boolean algebras can be represented as a concrete epis-

12
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temic system.

Proof: It suffices to seb := Atm(M), ¥ := Atm(Q) and® := Stab(Q). The ac-
cessibility relations arise from the appearance maps, satisfactionAfrem(s) <
s < pfors € Sandy € ® and preconditions from(o) := S\ Ker(o) foro € .
O

Theorem 4.7 Every concrete epistemic systéR(.S), P(X)) is an atomistic strong
(abstract) epistemic systef/, Q, { fa}taca) -

Proof: By propositions3.2, 3.3, and3.5. O

5 Some dynamic epistemic situations

For a given epistemic syste(d/, @, f4) ac4 the following are some examples of
some special epistemic programs that can be defined in the system. Note that
Ker(q) =] (\/ Ker(q)), where| a := {b € L | b < a}, and hence “being not

in the precondition of” exists as a proposition in/ for all ¢ € Q.

(i) Public refutation of the propositionn € M is an epistemic program € ()
with {f4(q)} 4c4 = g andKer(q) =] m. We depict it as

AeA

(i) Private refutation to subgroup This is also a program that privately refutes a
propositionm to the subgroup of agents.Ker(q) is the same as before and

{fa(@)}aes = gand{fa(q)} aca\s = 1. Itis depicted as

+
\_J
Aep AeA
(i) Failure test of a propositionmn is a programy that tests whem: fails. It is
a particular case of private refutation whereis refuted to an empty set of
agentsKer(q) =l m and{fa(q)} e = 1. Pictorially

Q

AeA

(iv) Public announcements also definable in our setting. However, while “being
not in the precondition of” is a proposition in)M for all ¢ € @, this is not
the case for “being in the precondition gf To see this consider the lattice
{L < a,b,e < T} with ¢ such thatKer(q) = {_L, a} where in the language
of Section 2 we have(q) = {b, ¢}, which can not be represented by a single
element ofM. The reason for this is that this lattice is non-boolean. Hence
public announcement of the propositione M is an epistemic program

13
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@ for which f4(q) = ¢ and for which\/ Ker(q) has aboolean complement
(\/ Ker(q))¢, satisfying(\/ Ker(q))c = m.

We now present some case studies. Given an epistemic sysfef, f4)ac4 ON
which we impose particular conditions which encode the desired state and action
models.

Cheating.

Consider the 'cheating’ scenario of the first section where the set of agents is
A ={A, B,C}. Recall that there are two possibilities in the state maddsk s in
which the coin is Heads up antdn which it is Tails up. We model this abstractly
by assuming as given an epistemic systém 0), with s,t € M andoy € Q). The
facts are encoded as stabilizers, i, e. we are given propositiofise Stab(Q).
All these are assumed to satisfy the following conditioffigs) = fi(t) = sV t
foralli € As < H,t <T,HAT = 1; the epistemic programy € Q has
mapsfa(oy) = fe(oy) = 1 and fc(oy) = oy, and kernelKer(oy) =|t. This
program describes an instance of cheating where the coin is headsup, € M
Is the propositiors after it is updated by 5.

Let us reason about this scenario, using our algebraic setting, e. to prove that
s® oy < UOcH. Indeed by{ f4}c4 being system homomorphisms and Bafe
have

fa(s®@og) < fa(s) @ falog) =(sVE)@1=sVt,
and the same goes f@g. On the other hand

fels@on) < fo(s) @ felon) = (sVi)@op = (s®@on)V (t@oy) =s®@on

sincet € Ker(oy). We haves < H iff s ® oy < H ® oy and by the definition

of Stab(Q) we gets ® oy < H. Thusfo(s ® o) < H and by adjunction we get

s ® oy < OcH which means after updating his initial state by taking a peek, the
referee knows that the coin is heads up.

If the referee is honest he uncovers the coin without taking a peek. He then
publicly refutes the ‘coin being tails’. The epistemic program in this case is the
public refutation of propositiohwheref 4 (¢) = f5(q) = fc(q) = gandKer(q) =
{t}. It follows thats ® ¢ < 04 H, and the same goes fér andC. Hence all the
agents know that the coin is Heads up after the public refutation.

The muddy children puzzle.

We refer the reader for a detailed description of the general case of the muddy
children puzzle to9]. This general version has been encoded and as usual solved
by induction in our algebraic setting iB][ In this paper we treat the case of three
children A, B, C' playing in the mud withA and B having muddy foreheads. Their
father publicly announces that at least one of them has mud on his forehead and
asks once if they know that they are dirty. After they all simultaneously reply
“No!” once, the muddy childremd and B will know that they are muddy. This

14



BALTAG, COECKE AND SADRZADEH

simple case has only one round (since the number of dirty children is 2), but the
general case with dirty children shall havé — 1 rounds of "No!” replies.

As before, we model this by postulating as given an epistemic systény).
The set of agentsl includes childref A, B, C'}. The modulelM includes all pos-
sible initial statess;z with 5 C A being those children that are dirty. Since the
children cannot see their own foreheads (which might be dirty or not) we have
fM(sg) = sy V spugy for each childi. Let Dy be the fact that no child
has a dirty forehead anf); be the fact that child has a dirty forehead, hence
{Dp}U{D; € M | i € A} C Stab(Q), and alsosz < D, for all i € . Let
g be a round of no answers of the 3 children, igis the public refutation of
UsD4 VUgDpg V DcDC and henCd{GT(q) = 04Dy VUgDgV DcDC and
fi(q) = q for each childi. Let g, € @ be the be father’s announcement that at
least one child has mud on his forehead heRee(q,) =| Dy andf;(qo) = qo for
each childi. We have to show that after the first round of refutatjceach muddy
child (e.g. A) knows that he is dirty, i.es;4 5y < [g0 ® ¢|04D 4 and similarly for
child B. By adjunction on dynamic and epistemic modalities and module equation
(M®q)®q@=me (q q)we get

Ja((s{a.B ®q0) ®q) < Dy (2
By the f, inequality (i.e. eql)) it suffices to show
fa(s(aBy ® q0) ® falq) < Da
Again by eq() and the assumptiofu(qo) = qo
fa(sga,By @ @) < fa(siapy) @ qo
update both sides bf(¢) = ¢
fa(sgapy ® @) ® ¢ < (falsiapy) ® @) ® q
So to prove ed) it suffices to show
(fa(sga,By) ® qo) ® q < Dy
Replacingf4 by its value will get us
((sga.By Vs(B)) ® Qo) ® ¢ < Dy

hence

((sga,81 ® q0) ® @) V ({5} ® q0) ® q) < Da..
The first disjunct is given by the assumptiong z; < D4 andD,4 being a fact
and thus stable under updates, {B.4 ® qy) ® ¢ < D,. For the other disjunct we
shall show thatz, ® qo < OpDp € Ker(q) which gives ugs iz ® o) ® ¢ = L
andL < D,. To see this use the adjunction to ggl(s 53 ® ¢o) < Dp, by eqq) it
suffices to show's(s¢sy) ® f(q) < Dp. Now replacefp with its values and get
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(S{B} V S{A,B}) ®qo < Dp whichis equal t({S{B} ®q0) V (S{A,B} ®qo) < Dg. This
inequality holds since by assumptiejyy < Dp and alscs;4 5y < Dp. Hence the
result follows.

Note that this proof can be straightforwardlly extended to the general case by
induction on the number of dirty children.

A cryptographic attack.

Two agentsA and B share a secret key so that they can send each other en-
crypted messages over some communication channel. The channel is not secure:
some outside€’ may interpret the messages or prevent them from being delivered
(although he cannot read them because he does not have the key). Suppose the
encryption method is publicly known but the key is secret. It is also knownAhat
is the only one who knows an important secret for example if someAdublds
or not. Suppose now that sends an encrypted messagdstcommunicating the
secret. B gets the message and he is convinced that it must be authentic. Now
both A and B are convinced that they share the secret andihdaesn’t. However
suppose that’ notices two features of the specific encryption method: first that
the shape of the encrypted message can show whether it contains a secret or it is
just junk, second that without knowing the key or the content of the message he
can modify the encrypted message to its opposite i.e. if it originally Babld,
it will now say that P does not hold. Now the outsidér will secretly intercept
the message, change it appropriately and send/ tathout knowing the secret.
Now A and B mistakenly believe that they share the secret, while in Fagot the
wrong secret instead! has succeeded to manipulate their beliefs.

We can encode this situation in an epistemic system. The agents involved in-
clude{A, B,C}. Lets,t € M satisfys < P andt <« P. The only agent that
knows if P holds or not isA thus f4(s) = s and similarlyf,(t) = ¢t. On the other
handB andC' do not know this s¢fs(s) = fo(s) = f(t) = fe(t) = s Vv t. Call
the message in whick holds P and the one in which it does not hold. The
epistemic actions that correspond to the cryptographic attack are the following:
in which the messagg is intercepted, modified and sent/y 5 in which the mes-
sageP is intercepted, modified and sent® «’ in which A sends the messade
to B, ' in which A sends the messagdeto B, and finallyy which corresponds to
sending a junk message. Thus

{a, 3,0/, 3,7} CQ and P, P € Stab(Q) and PAP=1, PVP=T.

In actionsa and3 agentC is uncertain about which messaBeor P has been sent
so fo(a) = fo(B) = a vV B. On the other hand, agedtis sure that he has sent a
message (either that holds or that it doesn't) t& and thatB has received exactly
the same secret i.€f4(a) = o/ and f4(3) = . However if P has been senf3
has received® so fz(a) = 3 and the other way arountk(3) = o'. Furthermore

fald) = fe(e) =ad", fa(B) = fe(8)=0", fe(ld) = fe(f)=a' Vi Vnr.
16
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C' also considers possible that only a junk message has been sent and that is why he
seesy while in o/ and/'. If a junk message has been sefitand B are sure about

it f4(7) = fs(y) = v while C'is unsure if it was a junk message Bror P, thus

fe(y) = & Vv B' v ~. The kernel of each action is the states to which the actions
cannot be applied. Thus we encode

Ker(a) = Ker(o/) = | P and Ker(3) = Ker(8') = | P.

The epistemic programV 3 expresses the action of communicating the seret
P in the above scenario. Now let us update the statéth the epistemic program
a VvV 3 and show that after update, # holds, then4 knows thatB knows thatP
holds

s® (aVF) <O,0P.

Since this is equal to
(s®a)V(s®B) <O,0P,
ands < P € Ker(f3), we gets ® § = L, so it suffices to show that
s@a < 0O,0gP,

but by adjunctionfz(fa(s®a)) < P. By eq(l) we getfa(s®@a) < fa(s)® fala),
order preservation ofg will give us

fe(fa(s @ a)) < fp(fa(s) @ fa(a)) < [B(fa(s)) @ fo(fala)).

Now it suffices to show

fB(fa(s)) ® fe(fale)) < P.

Replace thef 4 with its values and showiz(s) ® fz(a’) < P, do the same fofp
and getsVt)®a' < P,hencgs®@a’)V(t®a’) < Pwhichisequaltqs®a’) < P
sincet < P € Ker(a'). By the assumptios < P we obtains ® o/ < P ® o
which leads ts ® o/ < P because” is a fact.

A non-boolean example.

An intuitive example of an epistemic system/, @, f1)ac4 Where refutations
are first class citizens rather than announcements is the refutation of theories in sci-
entific practice. Hence the underlying lattiée is naturally non-boolean. Let the
elements of the modul&/ betheorieswritten in some logical language e QEL;
a theory being a consistent set of sentences closed under logical deduction. For
obvious reasons negating a theokyc M is in general itself not a theory — alge-
braically a theory should be conceived as afilter. The joii/irs the intersection of
the sentences belonging to the corresponding theories while the meet is the closure
of their union. The quantal@ consists ofexperimentperformed by (groups of)
agents in order to check some testable consequences of theories. This experiment
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might be public or private, and some of the outsiders might be deluded into reject-
ing, misunderstanding or misinterpreting the outcothelhe appearancgl! (m)

of a theory to an agent can be thought of as the agent’s interpretation of the theory
m, and similarly the appearangf§ (q) is the agent’s interpretation of the outcome

of an experimeng. Following Popper’s conception, a positive result of an experi-
ment cannot provide a proof of a theory but a negative one provides a falsification
of the theory, hence we can refute it. For each such refutatian) we have a
kernel Ker(r) € M which tells us which theories can be refuted, namely those
which satisfyth @ r = 1.

6 The sequent calculus of epistemic systems

We define the objects of our sequent calculus by mutual induction on two sets, the
set offormulasdenoted asn € L), and the set of epistemic programs denoted as
q € Lg, respectively
ma=L|T|p|ls|mAm|mVm|Oam| fa(m)|[gm]|m®q
qgu=L[1]o|qeq|qVaql falq)
where A is in the setA of agents,p is in the set® of facts, s is in a setV),, of
atomic propositional variables, andis in a setV;, of atomic action variables.
We denote byL,, the set of alln-formulas, L the set of allg-formulas, and4
the set of agents. We have two kinds of sequenfssequentd” +,, § where
I'e (Lyy ULgUA)*andd € Ly, and@Q-sequent§’ ¢ d wherel’ € (Lg U A)*
ando € L. To describe what these sequents mean, we extend the notation to two
operations

—O—:Lyx(LyULgUA)— Ly and —0—:Lox(LogUA)— Lg

by puttingg © ¢ :=qe ¢, m® A := fa(m),q® A := fa(q), m©®q:=m®yq,
andm ®m' := m A m’. For a sequent

FZ(VD'" 77n)€<LMULQUA)*U(LQUA)*

we putO T = (((FO©71) ©72) ©73) =) © 7, Wheref is the top element af/
for M-sequents, and the unit element@for Q-sequents® Obviously we have

Pe(LyULqUA= ()l ely and Te(LoUA=()lelq.

Define asatisfaction relatior}= on L, asm = m’ < m < m’ and similarly on
Lgasq = ¢ < ¢ < ¢. Now a sequent’ I~ § (for eithert-,; or ) is said to
bevalidiff ()T = §. We also allow sequents with empty consequents, denoted as

14 E g. arguments for Darwinism such as the discovery of fossils are interpreted by creationists as
“the fossils have been put in place by God”.

15 Note that the top element &ff is the unit for) on M (i.e. A) and that the unit element ¢f

(i.e. 1) is the unit for®) on Q (i.e. o)
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I' - . We interpret such a sequent as being equivalehtto L, or in other words

O = L.

The meaning of a sequent.

The meaningof a sequent’ - ¢ is given by its corresponding satisfaction
statemen{-) " = . To provide the reader with a way to “read out” our sequents
in natural language, we capture théuitive meaningf an M-sequent (Q-sequents
can be read in a similar way) t-,, ¢ in the following inductive manner:

« A T' k), 6 means that ageM knows, or believes, thdt +,, § holds. So this
captures features of's own reasoning: the sequent-,, ¢ is accepted by as
a valid argument.

* ¢,I' k), 6 means that, after actionhappens, the sequeint-,, ¢ will hold.

 m,I' 5,  means that, in context (i.e. in any situation in which is true), the
sequent’ ,, 6 must hold.

For instance, the sequent, A, q, B,m' ,, m” can be read as: in context
m, agentA believes that after actiop agentB will believe that, in contextrn/,
propositionm” must hold .

This reading shows that our sequent calculus expresses two forms of resource
sensitivity. One is the use-once form of linear lodid][that comes from the quan-
tale structure on epistemic programs. This, as will be seen later, is encoded in the
Lambek calculus rules o@-sequents. One could call thedgnamic resources
The other form deals witlepistemic resources the resources available to each
agent that enable him to reason in a certain way (i.e. to deduct a result from some
assumptions). These resources are encoded in the way the context appears to the
agent in sequents, for instanten the sequent’, A, 1" +,; ¢ is the context and
hence thef4(I") is the resource that enables agdrb do thel” +-,, § reasoning.
Note thatl” ,; § might not be a valid sequent in the conté&xtbut it is valid in
the context given by’s appearance to agedt To summerize, in our setting not
only propositions, but also actions and agents are treated as resources (available or
not for other actions or for reasoning of other agents).

Sequent rules.
The rules for identity,L, and 1 (on the left) are the same for bath and @
sequents. So in the following we drop the subscripts-afihere applicable:

rr
Trrs L FrT B 7 (TR
LI F s
5o Ud) — 1 0B iy (1)

Theoperational rules for M-sequentsare
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Tqbad m,D Fyy 6
T Fy g ([1F) [dmal Fyy 6 (D)
DAy 6 m, Fpp o
Ty, 040 (OF) Tam AT Fpy 5 (OL)
IV v m, AL Far o
R ) ) ML
DAy o) U4 R )T b o A E)
Cmm/ T -y 0 IV [y 0
Tmam! T Fyy 5 (L) T Fy ons (AR
N Ty o
Ty ove (Vi) Ty ove (V)
m,F I—M ) m’,F I—M 0 F,q,F/ I—M ) F,q/,F/ l_M 0
mvm!/ T Fa o (VarL) | RRVAVZ748 R o V) (VoL)
FI—M(S FM, q,F/ |_M6
TqFas 00g (OF) Ty © g1 by 8 (©L)
Tq.q' I Fard
C,qeq I Fpp 0 (eML)
wherel'y, € Ly, Tg € L, Ta € A%, 6,0" € Ly and ifT'yr = (my, -+ ,my,)

thenl'y, ® q := (ml®Qa"' >mn®Q)'

Theoperational rules for )-sequentsconsist of Lambek calculus rules for

plus the following rules fos and f 4

Polakgd T Ta kg o
To.Ih. LA Fg ded

kg
TAFg £9(6)

(f$R)

(eQR)

Tq1,02." ¢ 6
Lqreqe,I" Fg 0

(eQL)

FQ,A,F f—Q )
o) kg s

(f3L)

whered, o’ € Lo and forl'g = (g1, q2, -+ ), fa(l'g) = fa(q1) ® fa(qz) e---.

As structural rules we have two M-Weakenings, Q-Weakening, M-Contraction,

and M-Exchange, respectively

L P 66 (weak;)

T by 6
T'T Fyf 5

F,m,F’ I_M

Lo/ T =y 6
Com/ m,I" by 0

CmmI’ by 6
F,m,F’ l_M )

(contr)

L'kg o
(weaks) m (weak 4)

(exch)

two rules expressintpvariance of facts (under epistemic actidiigles which can
be seen as “Action Weakening’ and “Action StrengtheninglMprsequents)
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T by P T by P
Tqry P Jact) T p (fact)

where P € ® (the set of facts), and finally several restricted versions of the Cut
Rule: propositional cut inV/-sequents, action cut i) sequents and action cut in
mixed M — Q sequents’

Ty m  mI by Fhga ¢l'tgé
NASYE (MCut) T rgs  (@Cub)

Lolatga Tl qbpo
TToTA Far 0

(MQCut)

Theorem 6.1 (Completeness)The rules presented above are sound and complete
with regard to the algebraic semantics given by epistemic systems.

Proof (Sketch). Denote the equivalence relation created by logical consequence
F-as=>=. We construct two Lindenbaum-Tarski algebras; of equivalence classes

of M-formulas over=,, and @, of equivalence classes of Q-formulas o%es.

Using the sequent rules we first show that all the algebraic operations of epistemic
systemsv, f4,04,®, [ ], ® are well-defined over equivalence classes of formulas.
We then show thatMy, Qo, { fa}aca) Satisfies the finite versions of all the equa-
tions of an epistemic system. We embed this structure into an epistemic system
(M, Q,{fa}aca) by takingM = Idl(M,) and@ = Idl(Q,) where e.g.Idl(M,)

Is the family of ideals oved/, with inclusion as order and intersection as meet. The
rest of operations, f4, ®, e are extended to ideals by applying them pointwise and
then taking the downward closure. Finally we show thet @, { f4}ac4) forms

an epistemic system and th@t/y, Qo, { f4} ac4) is faithfully embedded init. O

7 Conclusion and elaborations

We have developed an algebraic axiomatics in terms of a simple mathematical ob-
ject: a sup-latticé//, which encodes states, epistemic propositions as well as facts;
a quantalel) (acting onM) which encodes update by epistemic programs; and
a family of endomorphisms of theélZ, @, \/,,. \/Q, ®, e, 1)-structure encoding the
agents in terms of their epistemic modalities. From this structure many useful other
modalities arise, including dynamic modalities and residuals. This algebraic ax-
iomatics generalizes Dynamic Epistemic Logic to non-boolean settings, while still
capturing the same concepts. Furthermore it provides an algebraic way of dealing
with epistemic scenarios such as the muddy children puzzle. We list some possible
further elaborations on this line of thought.

» We would like to develop a boolean version of the sequent calculus presented

16 We think these cuts are eliminable and are working orGheElimination theorem.
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here for concrete epistemic systems and prove its completeness with regard to
Kripke semantics. Such a development will lead to a more refined version of our
representation Theorem6for a boolean dynamic epistemic logic.

« In this paper, following dynamic epistemic logic, we dealt with the same update
schema for all agents. This is a postulate of “uniform rationality” and it means
that the mechanism for information update is the same for all agents. It makes
sense, if not being necessary, to consider personalized updates, where each agent
updates his information in a different way than other agents do. We think that
such personalized updates could be better dealt with by moving to a categorical
semantics. We are currently working on such semantics. It would also be inter-
esting to compare our categorical approach with coalgebraic epistemic features
which are currently studied e.@g][

» Part of the motivation of this work was a marriage of epistemics and resource-
sensitivity 20]. Although we have introduced dynamic and epistemic resources
in our setting, we would like to refine our logic and make it more resource-
sensitive by relativizing our notion of “consequence” to “logical” actions avail-
able to agents. This will allow us to deal with classical resource sensitive prob-
lems such as the problem of logical omniscience.
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