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1 Introduction

Dynamic Epistemic Logic(DEL) is a PDL-style logic to reason about epistemic
actions and updates in amulti-agent system. It focuses in particular on epistemic
programs, i.e. programs that update the information state of agents, and it has ap-
plications to modelling and reasoning about information-flow and information ex-
change between agents. This is a major problem in several fields such assecure
communicationwhere one has to deal with the privacy and authentication of com-
munication protocols,Artificial Intelligencewhere agents are to be provided with
reliable tools to reason about their environment and each other’s knowledge, and
e-commercewhere agents need to have knowledge acquisition strategies over com-
plex networks.

The standard approach to information flow in a multi-agent system has been
presented in [9] but it does not present a formal description of epistemic programs
and their updates. The first attempts to formalize such programs and updates were
done by Plaza [22], Gerbrandy and Groeneveld [13], and Gerbrandy [11,12]. How-
ever, they only studied a restricted class of epistemic programs. A general notion
of epistemic programs and updates forDEL was introduced in [4,5]. However, in
this approach the underlying logic on propositions is boolean. For computational
purposes one might want to relax this to an intuitionistic setting, hence conceiving
propositions as being structured in a Heyting algebra. On the other hand, contin-
uous lattices are also models of partiality of knowledge [10], and are in general
not distributive. Finally, actual physical computational situations such as quantum
computation require (at least) a non-boolean setting.

In this paper we generalize ‘boolean’DEL by introducing the notion of anab-
stract epistemic system. This generalization goes hand-in-hand with the introduc-
tion of non-determinism for states and actions and brings algebraic clarity to the
semantics. The particular algebraic object which we introduce is a refinement of
previously used objects tailored to study concurrency in computer science [1,23]
and the dynamics and interaction of physical systems [7]. Such an abstract epis-
temic system consists of aquantaleQ of epistemic programs, aQ-right moduleM
of epistemic propositions, and each agent is encoded by anappearance mapi.e. an
endomorphism of the(M, Q)-structure. We show that the booleanDEL of [5] is a
concrete example of such an abstract epistemic system. The axioms of the modal
operators follow immediately from abstract properties of quantales and modules
over them. Crucial notions ofDEL are definable abstractly and some new notions
emerge naturally. The passage to a non-boolean theory also provides a new insight
into epistemic programs such aspublic announcementand, of a surprisingly differ-
ent status,public refutation. We sketch an analysis of the muddy children puzzle
and of a cryptographic attack in our setting and also provide a motivating example
for the passage to a non-boolean theory. We also provide a corresponding sequent
calculus in which sequents will typically look like

m1, . . . , q1, . . . , A1, . . . ,mk, . . . , ql, . . . , An ` δ

2



Baltag, Coecke and Sadrzadeh

wherem1, . . . ,mk are propositions,q1, . . . , ql are actions andA1, . . . An are agents
which resolve into a single proposition or actionδ. The fragment of the calculus
restricted to actions is the Lambek calculus [19], hence resource sensitive.

2 Epistemic propositions and epistemic programs

In this section we slightly recast and enrich the Dynamic Epistemic Logic of [5] in
such a way that it enables a smooth passage to the algebraic setting to be introduced
in Section 4. Part of this involves the introduction of non-determinism for both
states and actions.

State models.
For a set offactsΦ and a finite set ofagentsA, astate modelis a triple

S = (S,
A- , µ)A∈A

whereS is the set ofstates,
A- ⊆ S × S the accessibility relationfor each

agentA ∈ A, andµ : S → P(Φ) the valuation mapwhich encodes satisfaction
s |= ϕ ⇔ ϕ ∈ µ(s). The “facts”ϕ ∈ Φ are simple, objectives features of the
world (“objective” in the sense of non-epistemic, i.e. independent of the agents’
knowledge or beliefs), and the valuation map tell us what facts hold in a given state
s ∈ S. Each accessibility relation can be repackaged as a map

fA : S → P(S) :: s 7→ fA(s) := {t ∈ S | s A- t} ,

called theappearance mapof agentA. The significance of the appearance maps is
as follows: if t ∈ fA(s) then, whenever agentA is in states he considers statet
as a ‘possible world’. In other words, if the actual state of the system iss, agentA
thinkst may be the actual state.

As an example,5 consider two playersA, B and a refereeC. In front of every-
body, the referee throws a fair coin, catches it in his palm and fully covers it, before
anybody (including himself) can see on which side the coin has landed. There are
two possible states here, states in which ‘the coin lies Heads’ up (= H ∈ Φ),
henceµ(s) = {H}, and statet in which the coin lies Tails up (= T ∈ Φ), hence
µ(t) = {T}. We depict the state modelToss as

GFED@ABCs:H

A,B,C

GG
oo
A,B,C

// GFED@ABCt:T

A,B,C

GG
.

For every agent there are arrows between any two states (including identical states),
which means that nobody knows the ‘real state’.

We can also consider a case in which agentsB andC can see the face of the
coin, but agentA cannot see it (although he knows that the others see it), so he is

5 For a more elaborated example of an authentication protocol we refer the reader to [2].
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still uncertain if the coin is heads or tails. In this case only agentA has several
arrows between states whereas agentsB andC have only one arrow in each state,
which means that if the coin is heads up they know it and similarly for tails up.
HencePTossgets depicted as

GFED@ABCs′:H

A,B,C

HH

oo
A

// GFED@ABCt′:T

A,B,C

HH
.

An epistemic propositionP over a state modelS is a subsetP of S, containing all
the states at which the proposition is ‘true’. The mapsµ andfA of the state model
are extended to elements ofP as follows

µ(P ) :=
⋂
{µ(s) | s ∈ P} ∈ P(Φ) fA(P ) :=

⋃
{fA(s) | s ∈ P} ∈ P(S) .

Note that we have to use intersection and not union in definingµ(P ) since a fact
is entailed by an epistemic proposition when it holds at all the states of the propo-
sition. This makes the passage fromP(S) to P(Φ) contravariant. In other words,
the actual algebra of facts isP(Φ)op, that is, the complete boolean algebraP(Φ)
where the order is reversed i.e.ϕ1 ≤op ϕ2 ⇔ ϕ1 ⊇ ϕ2. While facts are simple
and non-epistemic, and thus cannot be altered by epistemic actions (see further),
epistemic propositions can express complex features of the world, which may de-
pend on the agents’ knowledge (and so may be changed by epistemic actions).
However, notice that each factϕ ∈ Φ corresponds to an epistemic proposition
Pϕ := {s ∈ S | ϕ ∈ µ(s)}, saying that the fact holds in the current state.

In the Tossmodel,H andT are facts expressing the heads up or tails up of
the coin. The epistemic propositions that correspond to these facts are the states
in which the fact holds. The epistemic propositions are∅, {s}, {t}, {s, t} ⊆ {s, t}.
We depict an epistemic proposition over a state model by double-circling the in-
cluded states, hence

GFED@ABCs:H

A,B,C

GG
oo
A,B,C

// GFED@ABCt:T

A,B,C

GG
ONMLHIJKGFED@ABCs:H

A,B,C

JJ

oo
A,B,C

// GFED@ABCt:T

A,B,C

GG
GFED@ABCs:H

A,B,C

GG
oo
A,B,C

// ONMLHIJKGFED@ABCt:T

A,B,C

JJ

ONMLHIJKGFED@ABCs:H

A,B,C

JJ

oo
A,B,C

// ONMLHIJKGFED@ABCt:T

A,B,C

JJ

represent the four epistemic propositions ofToss.
When a propositionP has exactly one states ∈ P (i.e. P = {s} is a singleton),

we shall use systematic ambiguity, identifying the proposition with the state and
writing e.g.P = {P}.

Action models.
Given a state modelS, an action model overS is a triple∑

= (Σ,
A- , µ)A∈A

similar to a state model except that we think of the elements ofΣ as possibleactions
instead of possible states and the valuationµ : Σ → P(S) assigns to each action
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σ a precondition, i.e. a propositionµ(σ) definining the domain of applicability of
σ: actionσ can happen in a states iff s ∈ µ(σ) ; e.g. a truthful announcement of
a fact can only happen in those states where that fact holds. Note that sinceP(S)
is boolean we can equivalently consider the states at which the actioncannot take
place. These states, which are the complements of the precondition of an action
are denoted asKer(σ) := S \ µ(σ) for eachσ ∈ Σ. Theeffectof an action on
states and appearance maps will be defined below in terms of anepistemic update
product.

We introduce an action model overToss. After catching the coin in his hand
the referee might secretly take a peek at the coin before covering it while nobody
notices this. The action model is now depicted as

76540123σ

C

FF A,B
// /.-,()*+τ

A,B,C

FF

whereσ stands for ‘cheating’ andτ for ‘nothing happens’ andµ(σ) = {s, t}. The
action model can be refined when replacingσ by σH andσT whereµ(σH) = {s}
andµ(σT ) = {t}, specifying what the referee saw in case of deceit. Pictorially

?>=<89:;σH

C

GG

A,B
// /.-,()*+τ A,B,C

ff

?>=<89:;σT C
kk

A,B

OO

An epistemic programπ over an action modelΣ is a subsetπ of Σ; theµ andfA

maps are both extended covariantly by continuity

µ(π) :=
⋃
{µ(σ) | σ ∈ π} ∈ P(S) and fA(π) :=

⋃
{fA(σ) | σ ∈ π} ∈ P(Σ) .

The union in the definition ofµ maps for programs says that an epistemic program
is applicable where at least one of its actions is applicable. This makes theKer map
follow contravariantly by boolean negation i.e.Ker(π) := S \µ(π) or equivalently
Ker(π) :=

⋂
{Ker(σ) | σ ∈ π}. Epistemic programs introduce non-determinism:

wheneverπ1 ⊆ π2 then π2 is obtained fromπ1 by increasing nondeterminism;
π = {σ1, σ2} stands for “either actionσ1 or actionσ2 takes place”.

In our example with actionsσH , σT and τ the epistemic program{σH , σT}
stands for the non-deterministic actionσ, in the sense that the outcome of the toss
can be either. We depict the program over an action by double-circling the including
actions. Hence the picture of the programπ = {σH , σT} over

∑
is

?>=<89:;76540123σH

C

GG

A,B
// /.-,()*+τ A,B,C

ff

?>=<89:;76540123σT C
kk

A,B

OO

As in the case of states and propositions, we use systematic ambiguity to iden-
tify deterministicprogramsπ = {σ} with their unique underlying actionσ.
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Update.
Given a state modelS and an action model

∑
overS we define theirupdate

productS⊗
∑

to be a new state model given by

S⊗Σ :=
⋃
σ∈Σ

µ(σ)×{σ} fA(s, σ) := (fA(s)×fA(σ))∩ (S⊗Σ) µ(s, σ) := µ(s) .

In simpler terms we haveS ⊗ Σ = {(s, σ) | s ∈ µ(σ), σ ∈ Σ} ⊆ S × Σ and also
fA(s, σ) ⊆ fA(s)× fA(σ) that is(s′, σ′) ∈ fA(s, σ) iff s′ ∈ fA(s) andσ′ ∈ fA(σ).
As it will become more explicit in the abstract algebra of next section, update is
a structure preserving operation in the sense that it has noside effecton the state
model that it acts on. In our example, after the cheating actionσH where the coin
has lied Heads up,A andB think that nobody knows on which side the coin is
lying. But they are wrong! The system after this action can be updated by taking
the update product of the two modelsTossandσH depicted above:

GFED@ABCs,σH

C

��

A,B

��

A,B

""EEEEEEEEE

GFED@ABCs, τ

A,B,C

GG
oo
A,B,C

// GFED@ABCt, τ

A,B,C

HH

Note that in generalS ⊗ Σ andS are not necessarily disjoint.6

Definition 2.1 We define theupdate productof an epistemic propositionP overS
and an epistemic programπ over

∑
as the epistemic proposition

P ⊗ π :=
⋃
σ∈π

(µ(σ) ∩ P )× {σ} ⊆ P × π over S⊗
∑

.

The propositionP ⊗ π provides thestrongest postconditionfor P with respect
to epistemic programπ. This means that if propositionP is true at the input of
programπ thenP ⊗ π is the strongest proposition that is true at the output ofπ. It
can be seen thatP ⊗π = ∅ iff P ∩µ(π) = ∅, where∅ is thefalsum(i.e. the trivially
false epistemic proposition overS).

Modalities.
We define theepistemic modalityfor each agentA ∈ A as the unary connective

which assigns to propositionP ⊆ S overS another proposition

�AP :=
{
s ∈ S

∣∣ fA(s) ⊆ P
}

over S.

6 In fact later, the most important models we shall consider later (DEL models) are closed with
respect to update product, i.e.S ⊗ Σ ⊆ S.
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We read�AP as ‘agentA knows or believesP ’. 7

We define thedynamic modalityfor each epistemic programπ over
∑

as the
unary connective which assigns to propositionP ⊆ S overS another proposition

[π]P :=
{
s ∈ S

∣∣ {s} ⊗ π ⊆ P
}

=
⋃{

Q ∈ P(S)
∣∣ Q⊗ π ⊆ P

}
over S .

Note that (as mentioned before) some statess ∈ S can be themselves pairs of states
and actions(s, σ) which make the above definition well defined. The proposition
[π]P provides theweakest preconditionfor P with respect to the epistemic program
π. This means that if propositionP is true at the output of programπ then[π]P is
the weakest proposition that should have been true beforeπ.

Sequential composition.
Thesequential composition

∑
1 •
∑

2 overS of two action models
∑

1 and
∑

2

both overS means ‘first do
∑

1 and then do
∑

2’ and is defined as

Σ1•Σ2 := Σ1×Σ2 fA(σ1, σ2) := fA(σ1)×fA(σ2) µ(σ1, σ2) := µ(σ1)∩[σ1]µ(σ2).

In simpler terms,(σ′
1, σ

′
2) ∈ fA(σ1, σ2) iff σ′

1 ∈ fA(σ1) andσ′
2 ∈ fA(σ2) and also

µ(σ1, σ2) = {s ∈ S | s ∈ µ(σ1), s ⊗ σ1 ∈ µ(σ2)}. Again note thatΣ1 • Σ2 and
Σ1 (or Σ2) are not necessarily disjoint.8 The action model over a state modelS
contains an actionskip in which nothing happens iff9

skip = {skip} µskip = S = >P (S) fA(skip) = {skip} .

Notice the use of systematic ambiguity: we denoted with the same name (skip )
both the programskipand its only action. It is easy to see that skip is a unit, up to
isomorphism, both for update product and sequential composition.

Definition 2.2 We define thesequential compositionof two epistemic programs
π1 over

∑
1 andπ2 over

∑
2 as the epistemic propositionπ1 • π2 := π1 × π2 over∑

1 •
∑

2.

Concrete epistemic systems.
We now have all the tools to make the passage ofDEL in the sense of [5] to

‘concrete epistemic systems’ which we put forward as a stepping-stone towards
‘abstract epistemic systems’. ADEL model is essentially one that is closed under
update product and sequential composition (and contains askip), while a concrete
epistemic system consists of all the epistemic propositions and all the epistemic
programs of aDEL model:

Definition 2.3 A DEL model is a pair(S,
∑

) whereS is a state model and
∑

is
an action model overS such thatskip∈ Σ, (S ⊗ Σ) ⊆ S and(Σ • Σ) ⊆ Σ.

7 Taking either ‘knows’ or ‘beliefs’ depends on the context.
8 In fact later we only consider models whereΣ • Σ ⊆ Σ.
9 This action has been denoted asτ in the preceding examples.
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Definition 2.4 Given aDEL model(S,
∑

), aconcrete epistemic systemis the pair
(P(S),P(Σ)) which goes equipped with valuationµ, appearance maps{fA}A∈A
and all other operations of theDEL model extended toP(S) andP(Σ) as we
showed before.

3 The algebra of programs and propositions

A sup-latticeL is a complete lattice with maps which preserve arbitrary joins as
homomorphism. Recall that each sup-lattice also has arbitrary meets, namely∧

i

ai =
∨
{b ∈ L | ∀i, b ≤ ai}

for anyA ⊆ L. Hence the designation ‘sup-lattice refers to the fact that we require
structure-preserving maps only to preserve arbitrary joins (cf. the designationslo-
calesandframesfor complete Heyting algebras [17]). We denotebottomandtop
of L by⊥ and> respectively and define its set ofatomsas

Atm(L) := {p ∈ L \ {⊥} | a ≤ p ⇒ a = ⊥}.

A latticeL is atomisticiff

∀a ∈ L, a =
∨
{p ∈ Atm(L) | p ≤ a} .

Every sup-morphismf ∗ : L → M has a (unique) right Galois adjointf∗ satis-
fying

f ∗(a) ≤ b

a ≤ f∗(b)

and can be explicitly given as

f∗ : M → L :: b 7→
∨
{a ∈ L | f ∗(a) ≤ b}.

Theleft Galois adjointf ∗ moreover preserves arbitrary meets. We denote an adjoint
pair byf ∗ a f∗. In computational terms, one can think of the left Galois adjointf∗
as assigning weakest preconditions with respect to the programf ∗.

A quantale10 is a sup-latticeQ equipped with a monoid structure(Q, •, 1)
satisfying

a •

(∨
i

bi

)
=
∨
i

(a • bi)

(∨
i

ai

)
• b =

∨
i

(ai • b) .

Hence for alla ∈ Q the mapsa•− : Q → Q and−•a : Q → Q preserve arbitrary
joins and hence they have Galois adjoints(a • −) a (a \ −) and(− • a) a (−/a)

10 The term ‘quantale’ was introduced in [21]. For a survey on quantales we refer to [24]. For
insightful categorical perspectives on quantales andQ-modules we refer to [18] and [25].
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explicitly given by

a \ b :=
∨
{c ∈ Q | a • c ≤ b} b/a :=

∨
{c ∈ Q | c • a ≤ b}.

We refer to(a \ −) and(−/a) as theresidualoperations. Aquantale homomor-
phismis both a sup-homomorphism and a monoid-homomorphism. Examples of
quantales are: the setsup(L) of all sup-endomorphisms of a complete latticeL or-
dered pointwisely; the set of all relations from a setX to itself ordered by pointwise
inclusion — this quantale is isomorphic tosup(P(X)); the powerset of any monoid
with composition extended by continuity.

A Q-right modulefor a quantaleQ is a sup-latticeM which goes equipped with
amodule action−⊗− : M ×Q → M , that is,

m⊗ 1 = m

m⊗ (q1 • q2) = (m⊗ q1)⊗ q2

m⊗ (
∨
i

qi) =
∨
i

(m⊗ qi) (
∨
i

mi)⊗ q =
∨
i

(mi ⊗ q)

Again we have two right Galois adjoints−⊗ q a [q]− andm⊗− a {m}− where

[q]m :=
∨
{m′ ∈ M | m′⊗q ≤ m} {m}m′ :=

∨
{q ∈ Q | m⊗q ≤ m′}.

As for some examples, a quantaleQ is aQ-right module over itself with composi-
tion as the tensor and a complete latticeL is a sup(L)-right module with function
application as the tensor.

Definition 3.1 A systemis a pair(M, Q) with Q a quantale andM aQ-right mod-
ule [1].

A system isatomisticwhen bothM and Q are atomistic and the following
equations hold

m ∈ Atm(M), q ∈ Atm(Q) =⇒m⊗ q ∈ Atm(M) ∪ {⊥}
q1, q2 ∈ Atm(Q) =⇒ q1 • q2 ∈ Atm(Q) .

These conditions can be interpreted as the fact that ‘the atoms of both the quantale
and the module behave deterministically’.

Proposition 3.2 i. Epistemic programsP(Σ) with
⋃

as
∨

, sequential composi-
tion as• and ‘skip’ as1 form a quantale.11 ii. Epistemic propositionsP(S) with⋃

as
∨

and update product as⊗ form a right P(Σ)-module12 . iii. The pair
(P(S),P(Σ)) is an atomistic system. The atoms of the moduleP(S) correspond
to thestatess ∈ S, while the atoms of the quantaleP(Σ) correspond to theactions
σ ∈ Σ.

11 This construction is implicit in the relational composition of dynamic actions in [15].
12 By this construction it becomes clear that update is a structure preserving map on epistemic
propositions and has noside effects.
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Proposition 3.3 i. The appearance mapsfA : P(S) → P(S), and for allπ ∈ Σ
the maps−⊗ π : P(S) → P(S) are all sup-homomorphisms.ii. The appearance
mapsfA : P(Σ) → P(Σ), and for allπ ∈ Σ the mapsπ•−,−•π : P(Σ) → P(Σ)
are quantale-homomorphisms.iii. For every epistemic propositionP ∈ P(S) and
every epistemic programπ ∈ P(Σ), we have

fA(P ⊗ π) ⊆ fA(P )⊗ fA(π) .

iv. For everystate(i.e. atomic proposition)s ∈ S and everyaction (i.e. atomic
program)σ ∈ Σ we have that:

if s⊗ σ 6= ∅ then fA(s⊗ σ) = fA(s)⊗ fA(σ) .

The last property can be generalised by introducing a notion ofcoherence:

Definition 3.4 A pair (P, π) whereP is an epistemic proposition andπ is an epis-
temic program iscoherentiff

∀s ∈ P, ∀σ ∈ π s⊗ σ 6= ∅

i.e. iff P ⊆ µ(σ) for everyσ ∈ π. This means that propositionP ensures the
possibility of all the actions subsumed by programπ. An equivalent definition
which doesn’t refer to states or actions is the following:

∀P ′ ⊆ P, ∀π′ ⊆ π (P ′ ⊗ π′ = ∅ ⇒ P ′ = ∅ or π′ = ∅) .

Proposition 3.5 If (P, π) is a coherent pair then we have

fA(P ⊗ π) = fA(P )⊗ fA(π) .

Proposition 3.6 i. For A ∈ A the right Galois adjoint to appearancefS
A(−) :

P(S) → P(S) is knowledge�S
A− (=the epistemic modality). ii. For π ∈ P(Σ)

the right Galois adjoint to update−⊗ π : P(S) → P(S) is the dynamic modality
[π]−. iii. The right Galois adjoint to appearancefΣ

A (−) : P(Σ) → P(Σ) intro-
duces an epistemic modality�Σ

A− on actions.iv. The right Galois adjoint to left-
and right-compositionπ •−,−•π : P(Σ) → P(Σ) introduce respectively weakest
pre-specificationπ\− and strongest post-specificationπ/−, and the right Galois
adjoint toP ⊗− : P(Σ) → P(S) introduces{m}−, a variant on this.13

Proof. All follows by construction and basic facts on sets, cartesian products and
relations. 2

13 The residualπ \ − assigns to its argumentδ the weakest programπ \ δ which one has to ef-
fectuateafter effectuatingπ such that the net effect is belowδ. The residual−/π assigns to its
argumentδ the strongest programδ/π which one has to effectuatebeforeeffectuatingπ such that
the net effect is belowδ. The right Galois adjoint does{m}− assigns to its argumentδ the weakest
proposition{m}P before effectuatingπ which guaranteesP after. For a discussion on pre- and
post-specification we refer to [8,16].
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4 Abstract epistemic systems

The propositions of the previous section lead us to the following definitions:

Definition 4.1 A system-endomorphism(M, Q)
f- (M, Q) is a pair(

fM : M → M , fQ : Q → Q
)

wherefM is a sup-homomorphism,fQ is a quantale homomorphism and

fM(m⊗ q) ≤ fM(m)⊗ fQ(q) (1)

for all m ∈ M andq ∈ Q.

Definition 4.2 An (abstract) epistemic systemis a tuple(M, Q, {fA}A∈A) where
(M, Q) is a system and{fA}A∈A are system-endomorphisms.

Interpretation.
The elements of the quantaleQ are to be thought of as theepistemic programs

and its unit asskip, the elements of the moduleM are to be thought of as the
epistemic propositions, or if one wants, the not necessarily deterministic states, the
labelsA ∈ A are theagentswith the endomorphisms{fA}A∈A as theirappearance
maps. Thekernelof a programq ∈ Q is

Ker(q) := {m ∈ M | m⊗ q = ⊥}

and comprises thepreconditions: it contains the epistemic propositions to whichq
cannot be applied. Thestabilizer

Stab(Q) := {m ∈ M | ∀q ∈ Q, [q]m = m}

comprises thefacts: it consists of those epistemic propositions which are stable
under epistemic actions. Thesatisfactionrelation is included in the partial ordering
of M : for a statem ∈ M and factϕ ∈ Stab(Q) we havem |= ϕ ⇔ m ≤ ϕ. All
modalities and other right Galois adjoints discussed and introduced in Proposition
3.6arise also here as right Galois adjoints and hence their interpretation still holds
e.g. “knowledge�M

A is the adjoint to appearancefM
A ”.

Nature of the modalities.
We identify the basic properties of the modalities.

Proposition 4.3 In any epistemic system we have

�M
A > = > �M

A (m ∧m′) = �M
A m ∧�M

A m′ m ≤ m′

�M
A m ≤ �M

A m′ .

11
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Proof: Since�M
A is a right Galois adjoint it preserves arbitrary meets, that is

�M
A (
∧

i mi) =
∧

i �
M
A mi, and hence it preserves the empty meet and binary meets,

and is monotone. 2

Since all other modalities preserve arbitrary meets the same result holds for
them and for all other right Galois adjoints. In an intuitionistic context where
one might takeM to be a frame (i.e. a (complete) Heyting algebra with sup-
homomorphisms) we can internalize the partial order using the defining property
of a Heyting algebra so we obtain

` m → m′

` �M
A m → �M

A m′ .

Hence in the special case thatQ = {1} andA = {∗} we obtain the intuitionistic
modal logicIntK� of [27]. We conclude thatintuitionistic epistemic systems, that
is epistemic systems for whichM is a frame, generalize intuitionistic modal logic
to multiple agents and dynamics in terms of epistemic programs. IfM is moreover
a complete boolean algebra such as the powerset of Section2 then Kripke’s axiom
K follows i.e.

�M
A (m → m′) → (�M

A m → �M
A m′).

Diamonds and corresponding rules arise in that case by duality.

Learning.
The fact that eq(1) in definition 4.1 is aninequalityexpresses learning of agents.

Some of the clauses of the appearance of an agent on an update product might get
eliminated from the left hand side of eq(1) simply because some of the sub-action
of the program might not be applicable on some of the sub-states of the proposition.
This implies that the agent learns something new as the result of update (left hand
side is stronger than the right hand side).

We can also force the equality by introducing the notion of coherence:

Definition 4.4 A pair (m, q) wherem ∈ M andq ∈ Q is coherentiff

∀m′ ≤ m, ∀q′ ≤ q (m′ ⊗ q′ = ⊥ ⇒ m′ = ⊥ or q′ = ⊥)

For example in anatomisticsystem, every atomic pair(m, q) ∈ Atm(M)×Atm(Q)
wherem /∈ ker(q) is coherent.

Definition 4.5 A strong epistemic systemis a tuple(M, Q, {fA}A∈A) where(M, Q)
is a system and for all coherent pairs(m, q) we have the following equality

fM(m⊗ q) = fM(m)⊗ fQ(q) .

Representation Theorems.

Theorem 4.6 Every atomistic strong epistemic system for which bothM and Q
are completely distributive boolean algebras can be represented as a concrete epis-

12
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temic system.

Proof: It suffices to setS := Atm(M), Σ := Atm(Q) andΦ := Stab(Q). The ac-
cessibility relations arise from the appearance maps, satisfaction fromϕ ∈ µ(s) ⇔
s ≤ ϕ for s ∈ S andϕ ∈ Φ and preconditions fromµ(σ) := S \Ker(σ) for σ ∈ Σ.
2

Theorem 4.7 Every concrete epistemic system(P(S),P(Σ)) is an atomistic strong
(abstract) epistemic system(M, Q, {fA}A∈A) .

Proof: By propositions3.2, 3.3, and3.5. 2

5 Some dynamic epistemic situations

For a given epistemic system(M, Q, fA)A∈A the following are some examples of
some special epistemic programs that can be defined in the system. Note that
Ker(q) =↓ (

∨
Ker(q)), where↓ a := {b ∈ L | b ≤ a}, and hence “being not

in the precondition ofq” exists as a proposition inM for all q ∈ Q.

(i) Public refutation of the propositionm ∈ M is an epistemic programq ∈ Q
with {fA(q)}A∈A = q andKer(q) =↓m. We depict it as

76540123'&%$ !"#q

A∈A

GG

(ii) Private refutation to subgroup This is also a program that privately refutes a
propositionm to the subgroupβ of agents.Ker(q) is the same as before and
{fA(q)}A∈β = q and{fA(q)}A∈A\β = 1. It is depicted as

76540123'&%$ !"#q

A∈β

GG A/∈β
//765401231

A∈A

GG

(iii) Failure test of a propositionm is a programq that tests whenm fails. It is
a particular case of private refutation wherem is refuted to an empty set of
agentsKer(q) =↓m and{fA(q)}A∈A = 1. Pictorially

76540123'&%$ !"#q
A∈A

//765401231

A∈A

GG

(iv) Public announcementis also definable in our setting. However, while “being
not in the precondition ofq” is a proposition inM for all q ∈ Q, this is not
the case for “being in the precondition ofq”. To see this consider the lattice
{⊥ ≤ a, b, c ≤ >} with q such thatKer(q) = {⊥, a} where in the language
of Section 2 we haveµ(q) = {b, c}, which can not be represented by a single
element ofM . The reason for this is that this lattice is non-boolean. Hence
public announcement of the propositionm ∈ M is an epistemic programq ∈

13
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Q for which fA(q) = q and for which
∨

Ker(q) has aboolean complement
(
∨

Ker(q))c, satisfying(
∨

Ker(q))c = m.

We now present some case studies. Given an epistemic system(M, Q, fA)A∈A on
which we impose particular conditions which encode the desired state and action
models.

Cheating.
Consider the ’cheating’ scenario of the first section where the set of agents is

A = {A, B, C}. Recall that there are two possibilities in the state modelToss, s in
which the coin is Heads up andt in which it is Tails up. We model this abstractly
by assuming as given an epistemic system(M, Q), with s, t ∈ M andσH ∈ Q. The
facts are encoded as stabilizers, i, e. we are given propositionsH, T ∈ Stab(Q).
All these are assumed to satisfy the following conditions:fi(s) = fi(t) = s ∨ t
for all i ∈ A s ≤ H, t ≤ T, H ∧ T = ⊥; the epistemic programσH ∈ Q has
mapsfA(σH) = fB(σH) = 1 andfC(σH) = σH , and kernelKer(σH) =↓t. This
program describes an instance of cheating where the coin is heads up.s⊗σH ∈ M
is the propositions after it is updated byσH .

Let us reason about this scenario, using our algebraic setting, e. to prove that
s⊗ σH ≤ �CH. Indeed by{fA}A∈A being system homomorphisms and eq(1) we
have

fA(s⊗ σH) ≤ fA(s)⊗ fA(σH) = (s ∨ t)⊗ 1 = s ∨ t ,

and the same goes forfB. On the other hand

fC(s⊗ σH) ≤ fC(s)⊗ fC(σH) = (s ∨ t)⊗ σH = (s⊗ σH) ∨ (t⊗ σH) = s⊗ σH

sincet ∈ Ker(σH). We haves ≤ H iff s ⊗ σH ≤ H ⊗ σH and by the definition
of Stab(Q) we gets⊗ σH ≤ H. ThusfC(s⊗ σH) ≤ H and by adjunction we get
s ⊗ σH ≤ �CH which means after updating his initial state by taking a peek, the
referee knows that the coin is heads up.

If the referee is honest he uncovers the coin without taking a peek. He then
publicly refutes the ‘coin being tails’. The epistemic program in this case is the
public refutation of propositiont wherefA(q) = fB(q) = fC(q) = q andKer(q) =
{t}. It follows thats ⊗ q ≤ �AH, and the same goes forB andC. Hence all the
agents know that the coin is Heads up after the public refutation.

The muddy children puzzle.
We refer the reader for a detailed description of the general case of the muddy

children puzzle to [9]. This general version has been encoded and as usual solved
by induction in our algebraic setting in [6]. In this paper we treat the case of three
childrenA, B, C playing in the mud withA andB having muddy foreheads. Their
father publicly announces that at least one of them has mud on his forehead and
asks once if they know that they are dirty. After they all simultaneously reply
“No!” once, the muddy childrenA andB will know that they are muddy. This
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simple case has only one round (since the number of dirty children is 2), but the
general case withk dirty children shall havek − 1 rounds of ”No!” replies.

As before, we model this by postulating as given an epistemic system(M, Q).
The set of agentsA includes children{A, B, C}. The moduleM includes all pos-
sible initial statessβ with β ⊆ A being those children that are dirty. Since the
children cannot see their own foreheads (which might be dirty or not) we have
fM

i (sβ) = sβ\{i} ∨ sβ∪{i} for each childi. Let D∅ be the fact that no child
has a dirty forehead andDi be the fact that childi has a dirty forehead, hence
{D∅} ∪ {Di ∈ M | i ∈ A} ⊆ Stab(Q), and alsosβ ≤ Di for all i ∈ β. Let
q be a round of no answers of the 3 children, i.e.q is the public refutation of
�ADA ∨ �BDB ∨ �CDC and henceKer(q) = �ADA ∨ �BDB ∨ �CDC and
fi(q) = q for each childi. Let q0 ∈ Q be the be father’s announcement that at
least one child has mud on his forehead henceKer(q0) =↓ D∅ andfi(q0) = q0 for
each childi. We have to show that after the first round of refutationq each muddy
child (e.g.A) knows that he is dirty, i.e.s{A,B} ≤ [q0 • q]�ADA and similarly for
child B. By adjunction on dynamic and epistemic modalities and module equation
(m⊗ q1)⊗ q2 = m⊗ (q1 • q2) we get

fA((s{A,B} ⊗ q0)⊗ q) ≤ DA . (2)

By thefA inequality (i.e. eq(1)) it suffices to show

fA(s{A,B} ⊗ q0)⊗ fA(q) ≤ DA

Again by eq(1) and the assumptionfA(q0) = q0

fA(s{A,B} ⊗ q0) ≤ fA(s{A,B})⊗ q0

update both sides byfA(q) = q

fA(s{A,B} ⊗ q0)⊗ q ≤ (fA(s{A,B})⊗ q0)⊗ q

So to prove eq(2) it suffices to show

(fA(s{A,B})⊗ q0)⊗ q ≤ DA

ReplacingfA by its value will get us

((s{A,B} ∨ s{B})⊗ q0)⊗ q ≤ DA

hence
((s{A,B} ⊗ q0)⊗ q) ∨ ((s{B} ⊗ q0)⊗ q) ≤ DA .

The first disjunct is given by the assumptionss{A,B} ≤ DA andDA being a fact
and thus stable under updates, i.e.(DA ⊗ q0)⊗ q ≤ DA. For the other disjunct we
shall show thats{B}⊗ q0 ≤ �BDB ∈ Ker(q) which gives us(s{B}⊗ q0)⊗ q = ⊥
and⊥ ≤ DA. To see this use the adjunction to getfB(s{B}⊗ q0) ≤ DB, by eq(1) it
suffices to showfB(s{B})⊗ fB(q0) ≤ DB. Now replacefB with its values and get
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(s{B}∨s{A,B})⊗q0 ≤ DB which is equal to(s{B}⊗q0)∨(s{A,B}⊗q0) ≤ DB. This
inequality holds since by assumptions{B} ≤ DB and alsos{A,B} ≤ DB. Hence the
result follows.

Note that this proof can be straightforwardlly extended to the general case by
induction on the number of dirty children.

A cryptographic attack.
Two agentsA andB share a secret key so that they can send each other en-

crypted messages over some communication channel. The channel is not secure:
some outsiderC may interpret the messages or prevent them from being delivered
(although he cannot read them because he does not have the key). Suppose the
encryption method is publicly known but the key is secret. It is also known thatA
is the only one who knows an important secret for example if some factP holds
or not. Suppose now thatA sends an encrypted message toB communicating the
secret. B gets the message and he is convinced that it must be authentic. Now
bothA andB are convinced that they share the secret and thatC doesn’t. However
suppose thatC notices two features of the specific encryption method: first that
the shape of the encrypted message can show whether it contains a secret or it is
just junk, second that without knowing the key or the content of the message he
can modify the encrypted message to its opposite i.e. if it originally saidP hold,
it will now say thatP does not hold. Now the outsiderC will secretly intercept
the message, change it appropriately and send it toB without knowing the secret.
Now A andB mistakenly believe that they share the secret, while in factB got the
wrong secret instead!C has succeeded to manipulate their beliefs.

We can encode this situation in an epistemic system. The agents involved in-
clude{A, B, C}. Let s, t ∈ M satisfys ≤ P and t � P . The only agent that
knows ifP holds or not isA thusfA(s) = s and similarlyfA(t) = t. On the other
handB andC do not know this sofB(s) = fC(s) = fB(t) = fC(t) = s ∨ t. Call
the message in whichP holdsP and the one in which it does not hold̄P . The
epistemic actions that correspond to the cryptographic attack are the following:α
in which the messageP is intercepted, modified and sent toB, β in which the mes-
sageP̄ is intercepted, modified and sent toB, α′ in whichA sends the messageP
to B, β′ in whichA sends the messagēP to B, and finallyγ which corresponds to
sending a junk message. Thus

{α, β, α′, β′, γ} ⊆ Q and P, P̄ ∈ Stab(Q) and P ∧ P̄ = ⊥, P ∨ P̄ = > .

In actionsα andβ agentC is uncertain about which messageP or P̄ has been sent
sofC(α) = fC(β) = α ∨ β. On the other hand, agentA is sure that he has sent a
message (either thatP holds or that it doesn’t) toB and thatB has received exactly
the same secret i.e.fA(α) = α′ andfA(β) = β′. However ifP has been sent,B
has received̄P sofB(α) = β′ and the other way aroundfB(β) = α′. Furthermore

fA(α′) = fB(α′) = α′ , fA(β′) = fB(β′) = β′ , fC(α′) = fC(β′) = α′ ∨ β′ ∨ γ .
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C also considers possible that only a junk message has been sent and that is why he
seesγ while in α′ andβ′. If a junk message has been sent,A andB are sure about
it fA(γ) = fB(γ) = γ while C is unsure if it was a junk message orP or P̄ , thus
fC(γ) = α′ ∨ β′ ∨ γ. The kernel of each action is the states to which the actions
cannot be applied. Thus we encode

Ker(α) = Ker(α′) = ↓ P̄ and Ker(β) = Ker(β′) = ↓P .

The epistemic programα∨β expresses the action of communicating the secretP or
P̄ in the above scenario. Now let us update the states with the epistemic program
α ∨ β and show that after update, ifP holds, thenA knows thatB knows thatP
holds

s⊗ (α ∨ β) ≤ 2A2BP .

Since this is equal to

(s⊗ α) ∨ (s⊗ β) ≤ 2A2BP ,

ands ≤ P ∈ Ker(β), we gets⊗ β = ⊥, so it suffices to show that

s⊗ α ≤ 2A2BP ,

but by adjunctionfB(fA(s⊗α)) ≤ P . By eq(1) we getfA(s⊗α) ≤ fA(s)⊗fA(α),
order preservation offB will give us

fB(fA(s⊗ α)) ≤ fB(fA(s)⊗ fA(α)) ≤ fB(fA(s))⊗ fB(fA(α)).

Now it suffices to show

fB(fA(s))⊗ fB(fA(α)) ≤ P.

Replace thefA with its values and showfB(s) ⊗ fB(α′) ≤ P , do the same forfB

and get(s∨t)⊗α′ ≤ P , hence(s⊗α′)∨(t⊗α′) ≤ P which is equal to(s⊗α′) ≤ P
sincet ≤ P̄ ∈ Ker(α′). By the assumptions ≤ P we obtains ⊗ α′ ≤ P ⊗ α′

which leads tos⊗ α′ ≤ P becauseP is a fact.

A non-boolean example.
An intuitive example of an epistemic system(M, Q, fA)A∈A where refutations

are first class citizens rather than announcements is the refutation of theories in sci-
entific practice. Hence the underlying latticeM is naturally non-boolean. Let the
elements of the moduleM be theorieswritten in some logical language e.g.DEL;
a theory being a consistent set of sentences closed under logical deduction. For
obvious reasons negating a theoryth ∈ M is in general itself not a theory — alge-
braically a theory should be conceived as a filter. The join inM is the intersection of
the sentences belonging to the corresponding theories while the meet is the closure
of their union. The quantaleQ consists ofexperimentsperformed by (groups of)
agents in order to check some testable consequences of theories. This experiment
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might be public or private, and some of the outsiders might be deluded into reject-
ing, misunderstanding or misinterpreting the outcome.14 The appearancefM

A (m)
of a theory to an agent can be thought of as the agent’s interpretation of the theory
m, and similarly the appearancefQ

A (q) is the agent’s interpretation of the outcome
of an experimentq. Following Popper’s conception, a positive result of an experi-
ment cannot provide a proof of a theory but a negative one provides a falsification
of the theory, hence we can refute it. For each such refutationr ∈ Q we have a
kernelKer(r) ∈ M which tells us which theories can be refuted, namely those
which satisfyth⊗ r = ⊥.

6 The sequent calculus of epistemic systems

We define the objects of our sequent calculus by mutual induction on two sets, the
set offormulasdenoted asm ∈ LM and the set of epistemic programs denoted as
q ∈ LQ, respectively

m ::=⊥ | > | p | s | m ∧m | m ∨m | 2Am | fA(m) | [q]m | m⊗ q

q ::=⊥ | 1 | σ | q • q | q ∨ q | fA(q)

whereA is in the setA of agents,p is in the setΦ of facts,s is in a setVM of
atomic propositional variables, andσ is in a setVQ of atomic action variables.
We denote byLM the set of allm-formulas,LQ the set of allq-formulas, andA
the set of agents. We have two kinds of sequents,M -sequentsΓ `M δ where
Γ ∈ (LM ∪ LQ ∪ A)∗ andδ ∈ LM , andQ-sequentsΓ `Q δ whereΓ ∈ (LQ ∪ A)∗

andδ ∈ LQ. To describe what these sequents mean, we extend the notation to two
operations

−�− : LM × (LM ∪ LQ ∪ A) → LM and −�− : LQ × (LQ ∪ A) → LQ

by puttingq � q′ := q • q′, m � A := fA(m), q � A := fA(q), m � q := m ⊗ q,
andm�m′ := m ∧m′. For a sequent

Γ = (γ1, · · · , γn) ∈ (LM ∪ LQ ∪ A)∗ ∪ (LQ ∪ A)∗

we put
⊙

Γ := ((((]� γ1)� γ2)� γ3) · · · )� γn, where] is the top element ofM
for M -sequents, and the unit element ofQ for Q-sequents.15 Obviously we have

Γ ∈ (LM ∪ LQ ∪ A)∗ ⇒
⊙

Γ ∈ LM and Γ ∈ (LQ ∪ A)∗ ⇒
⊙

Γ ∈ LQ .

Define asatisfaction relation|= on LM asm |= m′ ⇔ m ≤ m′ and similarly on
LQ asq |= q′ ⇔ q ≤ q′. Now a sequentΓ ` δ (for either`M or `Q) is said to
bevalid iff

⊙
Γ |= δ. We also allow sequents with empty consequents, denoted as

14 E.g. arguments for Darwinism such as the discovery of fossils are interpreted by creationists as
“the fossils have been put in place by God”.
15 Note that the top element ofM is the unit for

⊙
on M (i.e. ∧) and that the unit element ofQ

(i.e. 1) is the unit for
⊙

onQ (i.e. •)
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Γ ` . We interpret such a sequent as being equivalent toΓ ` ⊥, or in other words⊙
Γ = ⊥.

The meaning of a sequent.
The meaningof a sequentΓ ` δ is given by its corresponding satisfaction

statement
⊙

Γ |= δ. To provide the reader with a way to “read out” our sequents
in natural language, we capture theintuitive meaningof an M-sequent (Q-sequents
can be read in a similar way)Γ `M δ in the following inductive manner:

• A, Γ `M δ means that agentA knows, or believes, thatΓ `M δ holds. So this
captures features ofA’s own reasoning: the sequentΓ `M δ is accepted byA as
a valid argument.

• q, Γ `M δ means that, after actionq happens, the sequentΓ `M δ will hold.
• m, Γ `M δ means that, in contextm (i.e. in any situation in whichm is true), the

sequentΓ `M δ must hold.

For instance, the sequentm, A, q, B,m′ `M m′′ can be read as: in context
m, agentA believes that after actionq agentB will believe that, in contextm′,
propositionm′′ must hold .

This reading shows that our sequent calculus expresses two forms of resource
sensitivity. One is the use-once form of linear logic [14] that comes from the quan-
tale structure on epistemic programs. This, as will be seen later, is encoded in the
Lambek calculus rules onQ-sequents. One could call thesedynamic resources.
The other form deals withepistemic resources: the resources available to each
agent that enable him to reason in a certain way (i.e. to deduct a result from some
assumptions). These resources are encoded in the way the context appears to the
agent in sequents, for instanceΓ in the sequentΓ, A, Γ′ `M δ is the context and
hence thefA(Γ) is the resource that enables agentA to do theΓ′ `M δ reasoning.
Note thatΓ′ `M δ might not be a valid sequent in the contextΓ, but it is valid in
the context given byΓ’s appearance to agentA. To summerize, in our setting not
only propositions, but also actions and agents are treated as resources (available or
not for other actions or for reasoning of other agents).

Sequent rules.
The rules for identity,⊥, and 1 (on the left) are the same for bothM andQ

sequents. So in the following we drop the subscripts of` where applicable:

⊥,Γ ` δ (⊥L)
Γ `
Γ ` ⊥ (⊥R) Γ `M > (>R)

δ ` δ (Id) `Q 1 (1R)
Γ,Γ′ ` δ

Γ,1,Γ′ ` δ (1L)

Theoperational rules for M -sequentsare
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Γ,q `M δ
Γ `M [q]δ ([ ]R)

m,Γ `M δ
[q]m,q,Γ `M δ ([ ]L)

Γ,A `M δ
Γ `M 2Aδ (2R)

m,Γ `M δ
2Am,A,Γ `M δ (2L)

Γ `M δ

Γ,A `M fM
A (δ)

(fM
A R)

m,A,Γ `M δ

fM
A (m),Γ `M δ

(fM
A L)

Γ,m,m′,Γ′ `M δ
Γ,m∧m′,Γ′ `M δ (∧L)

Γ `M δ Γ `M δ′

Γ `M δ∧δ′ (∧R)

Γ `M δ
Γ `M δ∨δ′ (∨R1)

Γ `M δ′

Γ `M δ∨δ′ (∨R2)

m,Γ `M δ m′,Γ `M δ
m∨m′,Γ `M δ (∨ML)

Γ,q,Γ′ `M δ Γ,q′,Γ′ `M δ
Γ,q∨q′,Γ′ `M δ (∨QL)

Γ `M δ
Γ,q `M δ⊗q (⊗R)

ΓM , q,Γ′ `M δ
ΓM ⊗ q,Γ′ `M δ (⊗L)

Γ,q,q′,Γ′ `M δ
Γ,q•q′,Γ′ `M δ (•ML)

whereΓM ∈ L∗
M , ΓQ ∈ L∗

Q, ΓA ∈ A∗, δ, δ′ ∈ LM and if ΓM = (m1, · · · , mn)
thenΓM ⊗ q := (m1 ⊗ q, · · · , mn ⊗ q).

Theoperational rules for Q-sequentsconsist of Lambek calculus rules for∨,
plus the following rules for• andfA

ΓQ,ΓA `Q δ Γ′Q,ΓA `Q δ′

ΓQ,Γ′Q,ΓA `Q δ•δ′ (•QR)
Γ,q1,q2,Γ

′ `Q δ

Γ,q1•q2,Γ′ `Q δ (•QL)

Γ `Q δ

Γ,A `Q f
Q
A (δ)

(fQ
A R)

ΓQ,A,Γ `Q δ

f
Q
A (ΓQ),Γ `Q δ

(fQ
A L)

whereδ, δ′ ∈ LQ and forΓQ = (q1, q2, · · · ) , fA(ΓQ) = fA(q1) • fA(q2) • · · · .

Asstructural rules we have two M-Weakenings, Q-Weakening, M-Contraction,
and M-Exchange, respectively

Γ `M δ
Γ′,Γ `M δ (weak1)

Γ,Γ′ `M δ
Γ,m,Γ′ `M δ (weak2)

Γ `Q δ

A,Γ `Q δ (weakA)

Γ,m,m,Γ′ `M δ
Γ,m,Γ′ `M δ (contr)

Γ,m,m′,Γ′′ `M δ
Γ,m′,m,Γ′′ `M δ (exch)

two rules expressingInvariance of facts (under epistemic actions) (rules which can
be seen as “Action Weakening’ and “Action Strengthening” inM -sequents)
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Γ `M P
Γ,q `M P (fact1)

Γ,q `M P
Γ `M P (fact2)

whereP ∈ Φ (the set of facts), and finally several restricted versions of the Cut
Rule: propositional cut inM -sequents, action cut inQ sequents and action cut in
mixedM −Q sequents16

Γ `M m m,Γ′ `M δ
Γ,Γ′ `M δ (MCut)

Γ `Q q q,Γ′ `Q δ

Γ,Γ′ `Q δ (QCut)

ΓQ,ΓA `Q q Γ,ΓA, q `M δ

Γ,ΓQ,ΓA `M δ (MQCut)

Theorem 6.1 (Completeness).The rules presented above are sound and complete
with regard to the algebraic semantics given by epistemic systems.

Proof (Sketch). Denote the equivalence relation created by logical consequence
`a as∼=. We construct two Lindenbaum-Tarski algebras:M0 of equivalence classes
of M-formulas over∼=M andQ0 of equivalence classes of Q-formulas over∼=Q.
Using the sequent rules we first show that all the algebraic operations of epistemic
systems∨, fA, 2A,⊗, [ ], • are well-defined over equivalence classes of formulas.
We then show that(M0, Q0, {fA}A∈A) satisfies the finite versions of all the equa-
tions of an epistemic system. We embed this structure into an epistemic system
(M, Q, {fA}A∈A) by takingM = Idl(M0) andQ = Idl(Q0) where e.g.Idl(M0)
is the family of ideals overM0 with inclusion as order and intersection as meet. The
rest of operations∨, fA,⊗, • are extended to ideals by applying them pointwise and
then taking the downward closure. Finally we show that(M, Q, {fA}A∈A) forms
an epistemic system and that(M0, Q0, {fA}A∈A) is faithfully embedded in it. 2

7 Conclusion and elaborations

We have developed an algebraic axiomatics in terms of a simple mathematical ob-
ject: a sup-latticeM , which encodes states, epistemic propositions as well as facts;
a quantaleQ (acting onM ) which encodes update by epistemic programs; and
a family of endomorphisms of the(M, Q,

∨
M ,
∨

Q,⊗, •, 1)-structure encoding the
agents in terms of their epistemic modalities. From this structure many useful other
modalities arise, including dynamic modalities and residuals. This algebraic ax-
iomatics generalizes Dynamic Epistemic Logic to non-boolean settings, while still
capturing the same concepts. Furthermore it provides an algebraic way of dealing
with epistemic scenarios such as the muddy children puzzle. We list some possible
further elaborations on this line of thought.

• We would like to develop a boolean version of the sequent calculus presented

16 We think these cuts are eliminable and are working on theCut-Elimination theorem.
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here for concrete epistemic systems and prove its completeness with regard to
Kripke semantics. Such a development will lead to a more refined version of our
representation Theorem4.6for a boolean dynamic epistemic logic.

• In this paper, following dynamic epistemic logic, we dealt with the same update
schema for all agents. This is a postulate of “uniform rationality” and it means
that the mechanism for information update is the same for all agents. It makes
sense, if not being necessary, to consider personalized updates, where each agent
updates his information in a different way than other agents do. We think that
such personalized updates could be better dealt with by moving to a categorical
semantics. We are currently working on such semantics. It would also be inter-
esting to compare our categorical approach with coalgebraic epistemic features
which are currently studied e.g. [3].

• Part of the motivation of this work was a marriage of epistemics and resource-
sensitivity [20]. Although we have introduced dynamic and epistemic resources
in our setting, we would like to refine our logic and make it more resource-
sensitive by relativizing our notion of “consequence” to “logical” actions avail-
able to agents. This will allow us to deal with classical resource sensitive prob-
lems such as the problem of logical omniscience.
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