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Abstract

The sequent calculus of classical modal linear logic K DT4,;,, is coded
in the higher order logic using the proof assistant COQ. The encoding
has been done using two-level meta reasoning in Coq. K DT4;;, has been
encoded as an object logic by inductively defining the set of modal linear
logic formulas, the sequent relation on lists of these formulas, and some
lemmas to work with lists.This modal linear logic has been argued to be
a good candidate for epistemic applications. As examples some epistemic
problems have been coded and proven in our encoding in Cog: :the prob-
lem of logical omniscience and an epistemic puzzle: ’King, three wise men
and five hats’

1 Introduction

In this paper we present an encoding of the sequent calculus of modal linear
logic using the Coq proof assistant. The logic has been developed in [10] by
adding K DT4 type modalities to classical linear logic [7].It has the special
feature of adding modalities to linear logic on top of linear exponentials. This
encoding allows us to state and prove theorems of that logic using facilities of
Coq. Previous work in encoding intuitionistic linear logic has been done by
associating the constructs of Coq together with linear logic proofs [13]. In our
encoding we are treating the modal linear logic as an object logic and Coq’s
Calculus of Inductive Constructs (CIC) as the meta logic. This methodology
and its benefits has been presented in [6]. Following this methodology linear
logic formulas and sequent rules have been inductively defined using the set of
inductive datatypes of Coq. Modal logic, too, has been previously encoded in
Coq following the same approach [9]. Our encoding will also take advantage of
Coq’s inductive constructs for implementing sequent rules. The special feature
of our logic is that first we are encoding a modal linear logic and second our
sequents are classical in the sense that we are not limiting ourselves to sequents
with single formulas on the right hand side.The encoding has been done in
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three steps: (i) defining modal linear logic formulas inductively, (ii) defining
modal linear logic sequent rules inductively, and (iii) extending the modality to
an indexed modality thus making our encoded logic a multi-modal linear logic.
Following the work of Hintikka [8], modal logics have been widely used to reason
about the knowledge of agents. It has been argued that modal linear logic is a
good candidate for a non-idealized epistemic logic [3]. In order to study the
capabilities of this logic in dealing with epistemic applications, we will use our
encoding to prove two standard problems of epistemic logic.

In what follows we first discuss our motivations in working with this modal
linear logic in Coq. Then we give a brief overview of the modal linear logic we
use.Some familiarity with both linear and modal logics is assumed. We then
present our encoding of modal linear logic, and give examples of its application
to two well-known epistemic problems: the problem of logical omniscience, and
the “King, three wise men, and five hats” puzzle.Finally, we will discuss briefly
why we chose classical over intuitionistic logic for the epistemic application.

2 Motivation

Reasoning about knowledge has been a central issue in epistemology since Plato
defined knowledge as justified belief. In the twentieth century, the discussion was
renewed by the use of formal logic and modal operators to account for propo-
sitional attitudes such as I know that...or I believe that.... Thus one could use
the tools of modern logic to study how agents reason about knowledge. This
new branch of logic, called epistemic logic, has found applications in computer
science and economics since its inception in the 1960s. But this epistemic logic
has had to deal with a serious drawback known as the problem of logical om-
niscience: if an agent knows that p and knows that 'p implies ¢’, deductive
closure requires that the agent also knows that q. This is obviously not the
case for real agents: we do not know all the consequences, for example, of the
axioms of elementary arithmetic. Nor would it be true of a computer because
the resources necessary for the knowledge of ¢ might not be available to it, if
for example calculation involves exponential complexity.

Thus, epistemic logic embodies strong idealizations about the deductive pow-
ers of the agents. One way to go about solving this problem is to find what are
the causes of these idealizations. Following Girard’s analysis leading to Linear
Logic [7], logical systems are made of logical rules concerning the connectives
and structural rules, some of them, known as contraction and weakening are to
blame for idealizations. These rules are shown below:

A AFA THAAA

Contraction AFA Left '-AA Right
r-A kA ,
Weakening T, AF A Left 'kFAA Right



Contraction enables us to use a formula infinitely many times in a proof.
Weakening, on the other hand, allows us to bring unused hypothesis into our
proofs resulting in having unrelated hypothesis in the proofs. Hence, proofs in a
substructural logic that has no such structural rules can neither use a hypothesis
infinitely many times, nor use an unrelated hypothesis. These logics should be a
good candidate to reason about the knowledge of non-idealized agents. As it will
be shown, the theorem that deals with the idealization: the problem of logical
omniscience, is still provable in such logic. But this substructural version of
logical omniscience should not cause us the idealization problems that are faced
in classical modal logics. The reason being that our structural rules are under
control in such logic, so the proofs in this logic shall not exceed the epistemic
capacities of the agents.

In order to study the capabilities of such logics in dealing with epistemic
applications, we have chosen to work on a modal linear logic. Linear logic has
several more interesting mathematical properties than being a substructural
logic. These mathematical properties might also be considered as proper moti-
vations for an epistemic modal logic. In this paper we have only focused on the
resource management and substructural properties of linear logic, leaving the
study and applications of other properties as a future work . One problem of
applying linear logic to epistemic application is the complexity of its proofs. To
partly overcome this problem, we have decided to encode it in the Coq proof
assistant. The encoding will enable us to state and prove theorems of the modal
linear logic using Coq’s facilities. To show the capabilities of this encoding in
epistemic applications, we will prove two standard theorems of this field using
Coq.

3 Modal Linear Logic K DT4y;,

Linear Logic is a logic introduced by Girard in 1987 [7] as a refinement of
classical logic. It is a substructural logic in the sense that it dismisses contraction
and weakening in their original form. A sequent of the form I H A in linear
logic means that resource presented by I' are to be consumed yielding resources
A deduced. This makes linear logic a resource-sensitive logic. We can also
think of the sequent I' F A as a process that consumes the resources I' to
produce the resources A. This resource-sensitive property of linear logic makes
the conjunction and disjunction of classical logic ambiguous. For example We
can use A A B both for producing A and also A A B itself(refer to [7] for a
more detailed discussion).To overcome these ambiguities, linear logic uses two
distinct connectives for each of conjunction and disjunction. They are called
multiplicatives. and additives respectively. We write A ® B and A& B for the
two connectives for additives, and A® B and A ® B for the two multiplicatives.
Negation is defined by means of the following sequent rules:

'-AA N-AA

A8 e ~ "2 Right
Negation T.ALra “f Al a9



The two multiplicatives are De Morgan duals of each other [2]:

DABEA DHAA DiEBA o

Times T,A@BFA © T T,FA®B.AA, °
ILAFA T.,BFA, T'+A B,A

B L B R

Par F,F17A28 BFA,Al FFAQ? B,A

The same is true for the two additives. Linear implication will be the same
as linear deduction and will be denoted by A —o B. Multiplicatives, additives
and linear implication have left and right sequent rules [7]. An infinite resource,
i.e. a resource that can be consumed more than once is shown using the linear
exponentials and be written as !A and its De Morgan dual 74 [2]:

PAFA T B,?A
Of Comse TIAFA 'L T4, 7A 1
T, AF7A THAA
=2 0 — == 9
Why Not IT,7ARTA ' F?A, Delta

Exponentials are used to control the structural rules mentioned before. Linear
contraction and weakening are shown below:

IVIAJJAE A Left FH1A1A A Rioht
Contraction TJIAFA ¢ THIAA *9
A r-A

Left Right

Weakening T',JJAF A I'HIAA

Modalities can be added to linear logic in many different ways. An exam-
ple is the view that considers exponentials as a kind of modality enriched with
structural rules [1].These different ways result in different combinations of lin-
ear logic with modal logic, e.g. some such combinations and their semantics
have been studied in [10].As part of our motivation, we are interested in a
combination that keeps exponentials and adds modalities on top of them. The
resulting logic K DT4,;,, has an algebraic semantics , which has been proven to
be sound and complete [10]. The BNF of this logic is shown below:

A= a|lA|7A|KGAJA® AJA R A|A D AJALA|A — A|Al|1|O\T| 1
where:

e ¢ is an atomic formula



1,1, T, and 0 are the units for ®, B , &, and @ respectively

K is the modal operator

e j is a natural number ranging over a denumerably infinite set

K; A intuitively means that ¢ knows A.

The modal axioms and rules of the system K DT4 or S4 & la Hilbert are:
e Axiom K : K(A— B) —» (KA — KB)
e Axiom D : KA — BA
e Axiom T : KA — A

Axiom S4: KA —- KKA

o Generalization(Nec.) rule:

ﬁ Nec

Not all of these axioms are independant. For instance axiom D is derivable
from axiom 7. Although deductive systems for modal logic are traditionally
presented in Hilbert style, natural deduction and sequent calculus systems exist.
Unfortunately these systems do not satisfy all of the nice properties of modal
Hilbert style systems [10]. The sequent calculus presenation of modal logic that
we use in this paper can be found in [11, 12].

The single modality K can be extended to multi modalities K; as mentioned
in [10]. We will limit ourselves to a logic with only one multi modality K; as
opposed to one with both B; and K;. The sequent rules of this system are shown
below. None of these sequent rules involve any of the classical connectives, so
they can be used as they are in the modal linear logic K DTy;,,.

PAEBA LAEB L
TRules KT IGAF BA “¢/ K[, KAF KB Y
T,AFO I,AF B .
KDRules K. I Ar0 “el! KT.K AL K,B ot
F T, K,AF
LAFBA o KLKAFB oo

S/Rules T,K;AF B,A K.I,K,AF KB

where the modal rules I' is a multiset of formulas and K;I' is the multiset
{K;A|A €T}



Note that if we limit ourselves to only one multi modality K;, axioms D
and T in the Hilbert system become the same. Accordingly, the KD and T
sequent rules become the same or in more exact terms T implies K D. Thus
we remove the KD rules from our system to avoid redundancy. It can be
shown that the modal Hilbert-style axioms (in their multi modal version) are
derivable from their sequent counterparts. For example to derive axioms K, it
suffices to assume I' F K;(A — B) and prove I' F K;A — K;B. The proof is
straightforward:

AFA BFB
A B,AFB

I'FK(A—B) K(A=B) FKA=KB &
TFKA— KB Cut

— L

TR

Nec. rule takes a more general form:

r-A
KL F KA Ve
It can be shown that the Hilbert-style Nec. rule can be deduced from its sequent
counterpart as follows, assume I' H K; A and prove I' - A.

AF A
FF&A‘&AFAgM
TFA ut

It has been mentioned in [5, 9] that the combination of the deduction theorem:

I'ArB

rr4a-p P

with the Nec. rule makes it possible to prove the wrong proposition that if A is
true then agent i knows that A.

T A A
T AF KA Vee

Tr Ao KA Ded:

It is easy to prove that this problem does not occure in K DT'4;;,, because of the
limited version of the Nec. rule. For the complete sequent rules of K DT4y;,
refer to [10].

4 Encoding the Sequent Rules

The logic K DT4;, is encoded in Coq following the two-level meta-reasoning
methodology presented in [6].Thus K DT4;;, is treated as an object logic while
the sequent rules are encoded using the Calculus of Inductive Constructs(CIC).



We shall first define the connectives of K DT4;;, inductively, then augment
the grammar. In the next step all the sequent rules of our logic are defined
inductively using the previously defined linear proposition type. Multi-sets are
implemented using Coq’s list type.Thus, we shall have some lemmas to work
with lists.

4.1 Encoding Linear and Modal Connectives

Following [13], we define inductively a set of linear logic propositions: MLin-
Prop, which stands for Modal LINear PROPosition. The smallest formulas of
our modal linear logic will be the different cases of induction.The definition is
shown below:

Inductive MLinProp : Set =
| Implies : (MLinProp) — (MLinProp) — MLinProp
| Times : (MLinProp) — (MLinProp) — MLinProp
| Par : (MLinProp) — (MLinProp) — MLinProp
| Plus : (MLinProp) — (MLinProp) — MLinProp
| With : (MLinProp) — (MLinProp) — MLinProp
| 0OfCourse : (MLinProp) — MLinProp
| WhyNot : (MLinProp) — MLinProp
| Box : (mat) — (list MLinProp)—(1list MLinProp)
| Negation : (MLinProp) — MLinProp
| One : MLinProp
| Zero : MLinProp
|L : MLinProp
| T : MLinProp

Now we can use our MLinProp as a Coq type. We can define variables of
this type. For example we can define A and B as modal linear propositions,
and D as a list of Modal linear proposition:

Variable A, B: MLinProp. Variable D: (list MLinProp).

We can also define predicates over this type. For example red is a l-ary
modal linear predicate:

Variable red: nat — MLinProp.

Note that all of the connectives input linear propositions, but the modality
Box, which takes as input a list of linear propositions. This is because the
modality sequent rules mentioned before. These rules need our modality to
operates over a list of formulas rather than a single formula. The modality
is also an indexed modality, making our logic a multi-modal linear logic. A
multi-modal logic is a logic an indexed modality One of the applications of
such a modality is the epistemic application as will be discussed later. In this
application we want to be able to reason about the knowledge of a group of



agents. This means that each modality K;, has to be indexed to express the
knowledge of each agent. For example KD intuitively means that agent one
knows that D i.e. he knows all of the formulas of the list D. The modality
operator can be seen as a binary operator with two operands: an integer! and
a list of formulas.

Using Coq’s syntax definition and pretty-printing facilities, we can give a
notation to each of our modal linear connectives. This will allows us to infix
and prefix our connectives.The Coq code for Bang, Times, and Box is given
below. We are augmenting the grammar rules and give pretty-printing rules to
represent Bang as “!”, Times as “*”, and Box as “K”.The reader is assumed to
be familiar with the syntax of these Coq commands (see section 6.7.3 and 6.7.4
of Coq Manual).

Grammar command command2 :=

OfCourse [‘‘!”’ command2($c)] — [{((0fCourse $c)))].

Syntax constr level 2:

[(((0fCourse $c)))]1—L[ 1"’ $cl.

Grammar command command6 :=

Times [command5($cl) ‘‘*’’ command6($c2)] — [(((Times $cl $c2)))].
Box [command5($c1) ‘‘K’’ command6($c2)] — [{{(Box $cl $c2)))].
Syntax constr level 6:

PTimes [{((Times $c1 $c2)))] — [ $ci:L "*" $c2:E ].

Syntax constr level 6:

PBox [(((Box $c1 $c2)))]— [ $ci:L "K" $c2:E ].

The notation for all of our modal linear connectives is given in the table
below for further reference. The full Coq code has been given in the appendix.

’ Connective \ Symbol \ Syntax in Coq \ Example ‘

Times ® Hok Ax*xB
Par B % A%%B
Plus <) D A++B

With & & A&B
Box K K KD

OfCourse ! ! 1A

Implies —o —o A—oB

4.2 Encoding Linear and Modal Sequent Rules

In the second phase of our encoding, we will implement the sequent calculus of
our modal linear logic. The sequent rules are defined inductively. The induction
is made on the linear sequent relation I' = A. The sequent relation LinCons
has been represented as a 2-ary function. It takes two arguments as input: the
hypothesisI' and the conclusion A. Remember that I' and A are implemented
as lists of formulas. These lists together with the exchange and permutation
rules will act as multisets. The output of the linear sequent relation LinCons is



either true or false and is defined as a Coq proposition Prop. The Coq code for
LinCons is shown below:

Inductive LinCons : (list MLinProp) — (list MLinProp) —
Prop :=

The connective “F” is defined as a binary operator with a low precedence
using the Coq Syntax and pretty-printing commands:

Grammar command command9 :=

LinCons [command8($t1) ¢‘F’’ command9($t2)] — [(((LinCons $t1 $t2)))].
Syntax constr level 9:

PLinCons [(((LinCons $t1 $t2)))1— [ $t1 “‘F’’ $t2 ].

The axiom and the sequent rules of the modal linear logic will be the cases
of the induction. They are added individually. For example the axiom Identity
is added as follows:

Identity :
(A : MLinProp)
(FAF A

The sequents of our system are of the form D1~ ‘A + D2 ‘B, where D1
and D2 are lists of formulas of type MLinProp, and A and B are formulas of
the type MLinProp. Note that we have lists on both sides of the sequent. In
other words our logic is not intuitionistic as opposed to that of [13]. This helps
us to encode all the connectives of linear logic including Par "%’ Following the
encoding of [13], two symbols ~ and ¢ are used to work with lists in Coq; ~
is used to concat two lists and ‘ presents a singleton list. For example, D1~ ‘A
concatenates two list D1 and the singleton A. The empty list will be shown
asEmpty. Logical and structural rules of modal linear logic are added next.
These rules are coded using Coq’s implication — for deduction. For example
the Cut rule [2]:

NMEAA; To, AF Ay
[, Ta AL A

ut

is coded as below:

| Cut :
(A, B : MLinProp)(D1,D2,D3,D4 : (list MLinProp))
((D1FD3 ™ ¢A)— (D2~ ‘AF D4) — (D1 = D2+ D3, D4))

As examples of logical rules, the Coq code for Par Left and Times Right is
shown below:

| ParLeft :

(A, B, C1, C2 : MLinProp) (D1, D2 , D3,D4 : (list MLinProp))
(D1~ ‘AR < C1 7 D3) — (D2~ ‘Bt ‘C2~ D4) — (D1~ D2~
C(A%%B) F <C1 = “C2 - D3~ D4))



|TimesRight :

(A, B : MLinProp)(D1, D2 , D3 , D4: (list MLinProp))
(D1 F ‘AT D3) — (D2F ‘B~ D4) — (D1 -~ D2 F ‘(A
x*x B) T D3 7 D4))

The modal sequent rules are T, and S4. The different thing about these rules
is that the modal operator has two operands: an index ¢ and a list of formulas
D. K;D will be shown as iK' D in Coq.For example the T rule below:

T,AF B
iKT,iKAF iKB

will be code as:

| TRule :
(i : nat)(A,B : MLinProp) (D : (list MLinProp))
(D~ ‘AF ‘B) = (‘“(iKD) ~ ‘(iK‘A)F ‘(iK*‘B)))

4.3 Some Lemmas to Work with Lists

For the reason of clarity, we have chosen to work with sequents with distin-
guished formulas to the left and right hand sides of “+":

T A+ B,A
But most of the time I' and A are empty lists and the sequent is of the form:
AFB

Sequents of this form cause us problem because encoded rules of our logic cannot
be applied to them. As an example consider the following deduction which is a
valid one:

AFA

AFApp Of1

We will face difficulties in proving this deduction because it does not match
the general format of the encoded seqeunts. Thus no rule can be applied to
A+ A® B whereas @R should be applicable. To solve the problem we will have
to add Nil lists to the left hand side of the leading formulas A and A @ B. Thus
the above deduction will look like the following after these changes:

Empty, A+ Empty, A
Empty, A+ Empty, A® B

@Rl

This will be done using two lemmas: AddNilLeft and AddNilRight. AddNil-
Front is shown below:
Lemma AddNilLeft:

(D1,D2: (List MLinProp))((Empty ~ D1F D2) — (D1F D2)).

10



Each of these lemmas has a dual to eliminate the added Nils if necessary. Elim-
inating Nils will be done using ElimNilLeft and ElimNilRight lemmas. FElimNil-
Right is shown below.

Lemma ElimNilRight:

(D1, D2 : (ListMLinProp))((D1 + D2) — (D1t Empty ~ D2)).

There are several other approaches to this problem. For example we could
encode our sequents in such a way that left and right hand sides of the “H”
consist of only one list and no distinguished formula. Then the problem would
be solved by making a singleton list out of the single formulas that appear on the
RHS and LHS of “F”. While in this approach, list concatenation and singleton
lists could be dealt with the same way as the encoding of [13].

5 Epistemic Applications

5.1 Proving a monomodal theorem

In this section we are going to prove a common property of most of the modal
logics, i.e. closure under material implication:

Kl(A —O B) = KlA —O KlB

To make the theorem more interesting, we slightly changed it to the following
form:

KlA, Kl(A —0 B) l_ KlB
In informal terms, if an agent knows A and A —o B then he also knows B. The
proof tree is given below:
AHA BEB
A (A—-oB)FB
K1A7K1A —o B " KlB

—o L
TRule

The proof in Coq is done in the same steps as the proof tree above. But we
had to add Nil to the left of our sequents to be able to apply the Implies Left
rule and the Identity axiom.The coq code is shown below:

Intros.

Apply TRule.

Apply AddNilLeft.
Apply ImpliesLeft.
Apply AddNilLeft.
Apply Identity.
Apply Identity.

Note that the above theorem says that agents know all the logical conse-
quences of their knowledge . This makes the agents of a classical modal logic

11



idealized. But our modal logic by being substructural only allows agents to do
proofs that do not exceed their cognitive capacities. It has embedded expo-
nentials in structural rules to control the proofs so that they will not become
unfeasible. This is one of the measures that make our logic a better candidate
for an epistemic logic.

5.2 Proving a multimodal theorem

A standard puzzle of multi-modal logics is the The king, three wise men and 5
hats puzzle. It goes like this: a king has got three wise men and 5 hats: 2 green
and 3 red. He asks the wise men to close their eyes and puts a hat on the head
of each of them. Then asks them to open their eyes and poses a question to
each of them in order. He asks the first man: ’'Do you know the color of your
hat?” He answers: 'No’. The same question is asked from the second man and
he, too, answers No. But when the third man is asked the same question, he
answers: ='Yes! The color of my hat is red’. How this is possible? We will
show here that this conclusion can be made based on the information provided
by the answers of previous wise men and using the sequent rules of our modal
linear logic.In more formal terms we have: if agent three knows that agent one
does not know the color of his hat, and he knows that agent two does not know
the color of his hat and moreover he knows that agent two knows that agent one
does not know the color of his hat, he will conclude the color of his own hat.
Agent 3 ,therefore, knows the color of the hats of the other agents, the following
three items that help him together with a good number of assumptions and
some lemmas to conclude the color of his own hat, which is red:

1. Agent one does not know the color of his hat.
2. Agent two does not know the color of his hat.
3. Agent two knows that agent one does not know the color of his hat.

These information will help agent three to conclude that the color of his own
hat is red. From (1) it can be concluded that at least one of the agents two and
three wear a red hat. Because if both of them had green hats and since we only
have two green hats, agent one would know the color of his hat. So a corollary
of (1) is that agents 2 and three both know the following fact: At least one of
agents two or three wears a red hat (or both of them do) This fact, together
with (2) and (3) above help agent three to conclude that his hat is red. The fact
that agent two does not know the color of his hat shows that agent three is not
wearing a green hat. Because if this was the case, agent two, who knows that
at least one of them is wearing a red hat, would have easily concluded the color
of his own hat. In order to prove this theorem in the Coq, we have to define
three agents, two color predicates and one definition.

1. Three agents:

agentl, agent2, agent3 : nat.

12



2.

3.

Two color predicates:

e (red i): the color of the hat of ith agent is red

e (green i): the color of the hat of ith agent is green
Definition

When each agent knows the color of his hat, it means he knows
whether it is red or green. This can be shown using the additive
Plus because it expresses a choice between two cases, where both
of the cases cannot happen at the same time.

(Lhat i): agent ¢ knows that his hat is either red or
green.

or in Coq terms:

Definition Lhat := [i: mnat] (K; ‘(red 7)) & (K;
‘(green 1)) .

We will use the same proof method as of Lescanne [9] with 6 axioms but in
a linear logic environment:

1.

AOne:Each hat is either red or green. This can again be shown using the
additive Plus because (green i) and (red i) cannot both happen at the
same time, i.e. each hat cannot be both red and green at the same time.

(i:nat) (Empty F ‘((green i)® (red i))).

ATwo:ATwo says that if two agents wear a green hat then the third one
wears a red one. In this axiom, as opposed to the previous one, we want
to be able to express that two cases happen at the same time, i.e. both
agents wear a green hat. One of the Multiplicative connector seems a good
option. We are going to use Par.

Axiom ATwo : (‘((green agent2) % (green agent3)) F ‘(red
agentl)).

AThree: If agent2 has a green hat, then agent one knows it. The reason
is obvious because he is seeing the hat of agent2.

(‘(green agent2) F ‘(agentl K ‘(green agent2))).

AFour: If agent3 has a green hat, then agent one knows it. The reason is
obvious because he is seeing the hat of agent3.

(‘(green agent3) F ‘(agentl K ‘(green agent3))).

AFive : If an agent is wearing a red hat, then he is not wearing a green
one.

(‘(red i) F ‘(Not (green i))).

ASix : If an agent is wearing a green hat, then he is not wearing a red
one.

13



(‘(green 1)) F ‘(Not (red i))).

The theroem to be proved in sequent calculus is:
(agent2 K (Not (Lhat agentl))), (Not (Lhat agent2)) - (red agent3)

Or in Coq terms:
Theorem ThirdKnows :
(“(Not (Lhat agent2)) ~ (‘(agent2 K ‘(Not(Lhat agent1)))) F ‘(red
agent3)) .
The proof is done mostly with cuts. The proof tree and the Coq code is
given in the appendix.

6 Discussion and Conclusion

The first version of this encoding was done in an intuitionistic fragment of
modal linear logic. In that fragment sequents were limited to have only single
formulas on their right hand side. Thus the first encoding of our logic had lists
only in the left hand side of sequents and the right hand side contained only
a single formula. This fragment did not have all the connectors of linear logic.
In particular it missed Par ® , the dual of Times ®. The reason being that
sequent rules for Par, shown below are not intuitionistic:

LEAB o I1,A-C T5,BFD
Par THAR B I,T5,A% BFC,D

The problem with the intuitionistic fragment that dismissed Par was that in the
proof of the puzzle at some stage we had to work with the dual of Times. Our
choice of linear connectives in the encoding of the puzzle shown in the previous
section, led us to prove the following sequent in the proccess of the proof of
puzzle:

Not ((red 1) ® (red 2)) F (green 1) B (green 2)

The proof seemed impossible in the fragment without % . In order to be
able to solve the puzzle and to keep to our presented encoding, we decided to
work with the full fragment of modal linear logic. Nevertheless, one way to stay
in an intuitionistic fragment would be to re-phrase the puzzle and the axioms
using the intuitionistic version pf ® introduced in [2]. Changing to a classical
fragment, we had to add lists to both sides of our sequents:

D1~ ‘Ar-D2 ™ ‘B

As presented before, the puzzle was proven in this fragment. Witnessing this
experiment, we believe that classical modal linear logic is a better candidate for
such epistemic applications .

As conclusion, we have encoded a classical modal linear logic K DTy, in
higher order logic using proof assistant Coq. The encoding was done follow-
ing the tow-level meta-reasoning in Coq presented in [6] and used before in a
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previous encoding of intuitionistic linear logic in Cog [13]. The logic has been
previously developed [10] by adding KD, T, and S4 modalities other than expo-
nentials to Girard’s classical linear logic. The encoding provided us with Coq’s
facilities to show how this logic can be successfully used in epistemic applica-
tions. However, the main result of this work was to show the feasibility of Cog
as a proof assistant for the classical modal linear logic. The epistemic examples
presented here demonstrated the benefits’s of the encoding specially in dealing
with lists of formulas on both sides of the sequent relation. A good suggestion
for a further project would be to try to prove other puzzles of epistemic logic
such as 'Muddy Children’ or the puzzles that cannot be solved in classical epis-
temic logics and are only solvable in epistemic linear logic. Proving the latter
puzzles will show the differences of linear logic over classical logics and thus will
provide us with benifits of using linear logic as an epistemic logic over classical
ones. One could also use Cog to compare the linear logic proofs with their clas-
sical logic counterparts. There are Coq encoding’s for classical epistemic logics
both in natural deduction [4] and Hilbert style systems [9]. Complexity analy-
sis and proof automation using Cog’s mechanisms are yet other further project
that can be built on this work.
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7.2 Coq Code

Section Hats.

Load MALL.

Variables red, green : mnat — MLinProp.
Variables agentl, agent2, agent3 : nat.
Definition Lhat := [i:nat](i K ‘(red i)) ++ (i K ‘(green i)).
Axiom AOne :

(i:nat) (D : (list MLinProp))

(DF ¢ ((green i) %% (red 1))).

Axiom ATwo :

(“((green agent2) %% (green agent3)) F ‘(agentl K ‘(red agentl))).
Axiom AThree :

(‘(green agent2) F ‘(agentl K ‘(green agent2))).
Axiom AFour :

(‘(green agent3) F ‘(agentl K ‘(green agent3))).
Axiom AFive :

(i : nat)(‘(red i) F ‘(Not (green i))).

Axiom ASix :

(1 : nat)(‘(green i) F ‘(Not (red i))).

Lemma Duals :

(i, j : nat)

(“(Not ((green i)Proof.

Apply TimesLeft.

Apply AddNilRight.

Apply NegationRight.

Apply NegationRight.

Apply Parleft.

Apply NegationRight.

Apply AFive.

Apply NegationRight.

Apply AFive.

Qed.

(* Main Theorem *)

Theorem ThirdKnows :

(‘(Not (Lhat agent2)) ~— (‘(agent2 K ‘(Not(Lhat agentl1))))F ‘(red agent3)).
(* Proof *)

Intros.

Apply Cut with (Times (red agent2) (red agent3)).
Apply AddNilLeft.

Apply S4Rulel.

Apply Cut with (Negation (agentl K ‘(red agentl))).
Apply AddNilLeft.

Apply NegationLeft.

Apply AddNilRight.

Apply ExchangeRight.

18



Apply ElimNilRight.
Apply NegationRight.
Unfold Lhat.

Apply PlusRightl.
Apply Identity.
Apply Cut with (Negation (Par (green agent2) (green agent3))).
Apply AddNilLeft.
Apply NegationLeft.
Apply AddNilRight.
Apply ExchangeRight.
Apply ElimNilRight.
Apply NegationRight.
Apply ElimNilLeft.
Apply ATwo.

Apply ElimNilLeft.
Apply Duals.

Apply Cut with (red agent3).
Apply AddNilLeft.
Apply TimesLeft.
Apply ElimNilLeft.
Apply Identity.
Apply Identity.

End Hats.
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