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Abstract

We present an algebra and sequent calculus to reason about dynamic epistemic logic, a logic
for information update in multi-agent systems. We contribute to it by equipping it with a logical
account of resources, a semi-automatic way of reasoning through the algebra and sequent calculus,
and finally by generalizing it to non-boolean settings.

Dynamic Epistemic Logic(DEL) is a PDL-style logic [14] to reason about epistemic actions and
updates in amulti-agent system. It focuses in particular on epistemic programs, i.e. programs that update
the information state of agents, and it has applications to modelling and reasoning about information-
flow and information exchange between agents. This is a major problem in several fields such assecure
communicationwhere one has to deal with the privacy and authentication of communication protocols,
software reliability for concurrent programs,Artificial Intelligencewhere agents are to be provided with
reliable tools to reason about their environment and each other’s knowledge, ande-commercewhere
agents need to have knowledge acquisition strategies over complex networks.

The standard approach to information flow in a multi-agent system has been presented in [8] but
it does not present a formal description of epistemic programs and their updates. The first attempts to
formalize such programs and updates were done by Plaza [19], Gerbrandy and Groeneveld [12], and
Gerbrandy [10, 11]. However, they only studied a restricted class of epistemic programs. A general
notion of epistemic programs and updates forDEL was introduced in [5]. In our papers [2, 3], we
introduced an algebraic semantics based on the notion ofepistemic systemsand a sequent calculus for a
version ofDEL, but the completeness of the sequent calculus was still an open problem. In this paper,
we summarize the material in [2, 3] and present an updated version of the sequent calculus for which
we have proved the completeness theorem with regard to the algebraic semantics.

Our work contributes toDEL in three ways. First, it introduces a logical account of actions and
agents asdynamicandepistemic resourcesin situations of information exchange. In these situations
each new repetition of the same announcement might add new information to the agents. Thus it makes
a difference whether or not unlimited “supplies” of these actions are available. We consider epistemic
action asdynamic resources, which are similar to the usual use-only-once resources of linear logic
[13]. We will also deal withepistemic resourcesto capture the presence of agents in a given situation
(or availability of agents as computing resources for other agents). These resources capture the cases
where presence of agents makes a difference in the validity of some deductions and execution of some
actions by other agents. In other words, some deductions are only valid (and some actions are only
executable) in the presence of certain agents, i.e. valid not in the real world, but in the world as it
appearsto these agents. Note that agents and actions are not only resources but also “consumers of
resources”; actions need certain preconditions to be executable and agents need certain contexts to be
able do their reasoning.
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Our second contribution toDEL focuses on the structure of epistemic programs by considering
them as fundamental operations of an abstract algebraic structure rather than concrete constructions on
Kripke structures. This move enables us to reason about epistemic programs and their updates in a
semi-automatic way through algebraic equations as well as proof search in a sequent calculus (whose
development was much facilitated by the algebraic structure). In this setting, agents and propositions as
well as actions are considered in Lambek-calculus style sequents which will typically look like

m1, . . . , q1, . . . , A1, . . . ,mk, . . . , ql, . . . , An ` δ

wherem1, . . . ,mk are propositions,q1, . . . , ql are programs andA1, . . . An are agents which resolve
into a single proposition or programδ. The fragment of the calculus restricted to programs is the Lambek
calculus [17], which can be modelled by a quantaleQ. The interaction between programs and states is
modelled by the action ofQ on aQ-right module. This fragment of our structure has been used to study
concurrency in computer science [1, 21] and the dynamics and interaction of physical systems [7]. The
crucial additional epistemic features are captured by (lax) endomorphisms of the above structure, one
endomorphism for each agent.

Finally, in our third contribution we generalize the boolean setting ofDEL to non-boolean contexts
that model partiality of knowledge and information update. In such settings the negation of a proposi-
tions or program is not necessarily a proposition or program. An example would be information update
in AI where refutation of a robot’s beliefs via epistemic programs such as communication with other
robots or environment, would not necessarily be a new belief. In the same line, the negation of an
epistemic program might not be a program . The generalization to non-boolean settings also enables
us to encode information update in an intuitionistic and thus computational way. For a more elaborated
example please refer to [2].

Cheating scenario. As an example consider a gameToss with two playersA,B and a refereeC.
In front of everybody, the referee throws a fair coin, catches it in his palm and fully covers it, before
anybody (including himself) can see on which side the coin has landed. There are two possible states
here, states in which ‘the coin lies Heads’ up (H), and statet in which the coin lies Tails up (T ). We
depict the state modelToss as

ONMLHIJKs :H

A,B,C

JJ

oo
A,B,C

// ONMLHIJKt :T

A,B,C

II
.

For every agent there are arrows between any two states (including identical states), which means that
nobody knows the ‘real state’. These arrows signify the accessibility relation for each agent and can be
re-packaged as appearance mapsfA for each agentA. The significance of these maps is that ift ∈ fA(s)
then whenever states is possible for agentA, he also considers statet as possible.H andT are facts,
i.e. the objective part of the world that in this case expresses the heads up or tails up of the coin. The
subsets of states i.e.∅, {s}, {t}, {s, t} ⊆ {s, t} correspond toepistemic propositionsover Toss. The
epistemic propositions corresponding to facts are the states in which the facts hold, in this case{s}, {t}
are epistemic propositions corresponding to factsH andT . Depicting an epistemic proposition over a
state model by double-circling the included states gives us the following models
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that represent the four epistemic propositions ofToss.



Now consider thecheating program where after catching the coin in his hand the referee secretly
takes a peek at the coin before covering it and realizes that it is heads up while nobody notices this. This
is an epistemic program and can be expressed by the action modelCheatdepicted as

GFED@ABCσH

C

II

A,B
// ?>=<89:;τ

A,B,C

HH

whereσH stands for ‘cheating’ andτ for ‘nothing happens’. The states where this cheating action
cannot happen are the states in which the factH is not true. In other words the ‘kernel’ ofσH is {t}. In
σH , the appearance maps for agents arefC(σH) = {σH} andfA(σH) = fB(σH) = {τ} that is agent
C knows that a cheating has happened where as agentsA andB think nothing has happened.

Update. Given the state modelTossand the action modelCheat,their update product is a new state
model that expresses the state of the world after the cheating action. In this example, afterCheat the
coin has lied heads up, and agentC knows it. However, agentsA andB think that nobody knows on
which side the coin is lying. But they are wrong! This is expressed by the update productToss⊗ Cheat
depicted as

WVUTPQRSs⊗σH

C
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A,B

##H
HHHHHHHHH

ONMLHIJKs⊗τ

A,B,C

JJ

oo
A,B,C

// ONMLHIJKt⊗τ
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In the updated model, we denote for example bys ⊗ σH the output state obtained by applying action
σH to input states. The updated appearance of the cheating action to agentC i.e. fC(s⊗ σH) is equal
to {s ⊗ σH} which implies that agentC has certain knowledge of the situation. On the other hand
fA(s ⊗ σH) = fB(s ⊗ σH) = {s ⊗ τ, t ⊗ τ} implies A and B are still uncertain about the face of the
coin. To complete our pictorial introduction of epistemic concepts, we define the sequential composition
of two epistemic actionsσ andσ′ asσ • σ′ ⊆ σ × σ′ and interpret it as ‘first doσ, then doσ′’. For a
more detailed discussion of the concepts introduced here, we refer the reader to [2].

Algebraic model: epistemic systems. The algebraic semantics of epistemic propositions and updates
is given byepistemic systemsi.e. (M,Q, {fA}A∈A). The first part of an epistemic system(M,Q) is a
system, i.e. a pair quantaleQ and moduleM with a right action− ⊗ − : M ×Q → Q. A quantaleQ
is a complete lattice with join preserving maps (sup-lattice for short) together with a monoid structure
(Q, •, 1) on it. An example of a complete lattice is the power set of a setX. An example of a quantale
would be the set of relations on a setX or P(X × X). A Q-right moduleM is also a sup-lattice
with a right action− ⊗ − : M × Q → M on the quantale. The module right action has to preserve
the unit of quantalem ⊗ 1 = m and all joins on both arguments(∨Mmi) ⊗ q = ∨M (mi ⊗ q) and
m ⊗ (∨Qqi) = ∨M (m ⊗ qi). Note that for a setX its powersetP(X) forms a right module over its
quantaleP(X ×X). For more details and examples of these concepts refer to [1]. The second part of
an epistemic system consists of a family of endomorphisms{fA}A∈A of the systemfA = (fM

A , fQ
A )

wherefM
A : M → M andfQ

A = Q → Q. These maps are required to satisfy anupdate inequality

fM
A (m⊗ q) ≤ fM

A (m)⊗ fQ
A (q) .



We call the elements of the quantaleepistemic programs, the elements of the moduleepistemic
propositionsand the endomorphismsfA the appearance mapsof agentA. The module right action
M ⊗ Q → M is the epistemic update of a proposition by a program. The update relationfM

A (m ⊗
q) ≤ fM

A (m) ⊗ fQ
A (q) says that agents update their knowledge according to the way they perceive

the proposition and the program. Since the partial order onM i.e. m ≤ m′ is the logical entailment
between propositionsm ` m′, the update relation being an inequality insists on learning of agents
after update, since the perception of the updated proposition entails the perception of the non-updated
ones. Comparing the entailment on the appearance mapsfM

A (m) ` fM
A (m′) with the entailment of

propositionsm ` m′ enables us to deal with interesting situations such as having a wrong perception of
the world due to deceit. For example ifm 0 m′ butfM

A (m) ` fM
A (m′) then agentA has been deceived

since in realitym does not implym′ but he thinks it does! In the same way iffM
A (m) = m then agent

A has certain knowledge of what is going on in reality where as iffM
A (m) = > then he has absolutely

no knowledge of reality (everything is possible for him).
The appearance map of programsfQ

A (q) to agents expresses how agents perceive the programs. The
partial order on the programs inQ is also the entailment between programs. For exampleq ` q′ says that
programq is more deterministic than programq′. Epistemic actions ofDEL such asinformation hiding
or encryptionandmisinformationsuch as lying and cheating are dealt with in sequents likeq ` fQ

A (q)
andq 0 fQ

A (q) respectively.
The module action or the update product can be seen as a one argument map− ⊗ q : M → M on

M . By definition this map preserves all joins and thus has a meet-preserving Galois right adjoint. The
Galois right adjoint to the update−⊗q a [q]− is the dynamic modality of dynamic logic or the weakest
precondition [15] of programq. Recall that in dynamic logic[q]m means after running programq the
propositionm holds. The epistemic modality2Am, which says agentA knowsor believesthatm1, also
comes from an adjunction. It is the Galois right adjoint to appearance mapsfA(−) a 2A−. In any
epistemic system we have

�M
A > = > �M

A (m ∧m′) = �M
A m ∧�M

A m′ m ≤ m′

�M
A m ≤ �M

A m′ .

In the special case where the moduleM is a boolean algebra, the first property corresponds to axioms
T, and the last correspond to axiom K or monotonicity of normal modal logics [8].

Using the dynamic modality we can now definefactsas a part of the system that isstableunder
update

Stab(Q) = {m ∈ M | ∀q ∈ Q, [q]m = m} .

The kernel of each actionq that consists of propositions to whichq cannot be applied is defined as

Ker(q) = {m ∈ M | m⊗ q = ⊥}

where⊥ is the false proposition. For a more detailed discussion of the algebra and its interpretation, in
particular the appearance maps, we refer the reader to [3].

Cheating scenario revisited. As an example we will now encode the ’cheating’ scenario algebraically.
We will then briefly show how this encoding enables us to reason about the knowledge of agents after
update in a semi-automatic way. For the set of agentsA = {A,B, C}, recall that there are two possibil-
ities in the state modelToss, s in which the coin is Heads up andt in which it is Tails up, that is given

1The 2 modality covers both knowledge and belief. In contexts where no wrong belief is allowed it can be read as
knowledge, i.e. justified true belief, in the rest as justified belief.



an epistemic system(M,Q, {fA}A∈A), s, t ∈ M andσH ∈ Q. Facts are stable propositions of module
H,T ∈ M . All these are assumed to satisfy the following conditions:fi(s) = fi(t) = s∨t for all i ∈ A
ands ≤ H, t ≤ T,H ∧ T = ⊥; the epistemic programσH ∈ Q has mapsfA(σH) = fB(σH) = τ and
fC(σH) = σH , and kernelKer(σH) = t. This program describes an instance of cheating where the
coin is heads up.s⊗ σH ∈ M is the propositions after it is updated byσH .

We can now prove propositions about the impact of update on the knowledge of agents. For example
after the cheating update agentC knows that the coin is heads up

s⊗ σH ≤ 2CH .

The proofs goes smoothly by using the adjunction and moving the epistemic modality to the left hand
side of the inequality

fC(s⊗ σH) ≤ H .

We will then use the update inequality to distribute thefC over its arguments and then replace the
parameters by their encoded values

fC(s⊗ σH) ≤ fC(s)⊗ fC(σH) = (s ∨ t)⊗ σH = (s⊗ σH) ∨ (t⊗ σH)

which is equal tos⊗ σH sincet ∈ Ker(σH). All we have to do now is to shows⊗ σH ≤ H, which is
obvious recalling the orders ≤ H and the stability ofH underσH .

More examples including the muddy children puzzle and a MITM cryptographic attack have been
discussed in full detail in [2, 3]. The muddy children puzzle shows the importance of repetition of
epistemic actions where as the cryptographic attack uses different sorts of epistemic programs that
signify private and public message passing that might lead to deceit of agents in the internet.

Sequent Calculus. We define the objects of our sequent calculus by mutual induction on two sets, the
set offormulasdenoted asm ∈ LM and the set of epistemic programs denoted asq ∈ LQ, respectively

m ::= ⊥ | > | p | s | m ∧m | m ∨m | 2Am | fM
A (m) | [q]m | m⊗ q

q ::= ⊥ | 1 | σ | q • q | q ∨ q | fQ
A (q)

whereA is in the setA of agents,p is in the setΦ of facts,s is in a setVM of atomic propositional
variables, andσ is in a setVQ of atomic action variables. We denote byLM the set of allm-formulas,
LQ the set of allq-formulas.

We have two kinds of sequents

• M -sequentsΓ `M δ whereΓ is a sequence of propositions, programs and agentsΓ ∈ (LM ∪
LQ ∪ A)∗ andδ is a propositionδ ∈ LM .

• Q-sequentsΓ `Q δ whereΓ is a sequence of programs and agentsΓ ∈ (LQ ∪ A)∗ andδ is a
programδ ∈ LQ.

To describe what these sequents mean, we require commas to apply to the left and we define their
role as follows

q, q′ := q • q′ m,A := fA(m) q, A := fA(q) m, q := m⊗ q m, m′ := m ∧m′ .

For example, a sequenceΓ = (m,A, q, B, m′) meansm′ ∧ fB(fA(m) • q) . In this way we identify any
M-sequenceΓ with a corresponding element ofM and similarly for Q-sequences2.

Thesatisfaction relation|= on each sequence is defined as
2If the M-sequence does not start with an element ofM , we have to add>M to its left. Similarly for a Q-sequence we add

1 to its left.



• Γ |=M m′ iff Γ ≤M m′ ,

• Γ |=Q q′ iff Γ ≤Q q′ ,

The meaningof a sequentΓ ` δ is given by the corresponding satisfaction statementΓ |= δ. To
provide the reader with a way to “read out” our sequents in natural language, we capture theintuitive
meaningof a sequentΓ ` δ in the following inductive manner3:

• A,Γ ` δ means that agentA knows, or believes(depending on the context), thatΓ ` δ holds.
This captures features ofA’s own reasoning: the sequentΓ `M δ is accepted byA as a valid
argument.

• q, Γ ` δ means that after actionq happens the sequentΓ ` δ will hold.

• m,Γ ` δ means that in contextm (i.e. in any situation in whichm is true) the sequentΓ ` δ
must hold.

This more “intuitive” reading can be obtained by taking the adjoints (which live on the right-side
of `) of the formulas on the left hand side of a sequent. That is why the reading has a reverse order
(left to right) than the comma application (right to left). For instance, the sequentm, A,B `M m′

after applying commas on the left would meanfB(fA(m)) ≤ m′, and after applying the adjoints would
correspond tom ≤ 2A2Bm′. This has now the exact shape of its intuitive meaning which is ‘in context
m agentA believes that agentB believes thatm′’4.

This reading shows that our sequent calculus expresses two forms of resource sensitivity. One is
the use-once form of linear logic [13] that comes from the quantale structure on epistemic programs.
This, as will be seen later, is encoded in the Lambek calculus rules onQ-sequents. One could call these
dynamic resources. The other form deals withepistemic resources: the resources available to each
agent that enable him to reason in a certain way (i.e. to deduct a result from some assumptions). These
resources are encoded in the way the context appears to the agent in sequents, for instanceΓ in the
sequentΓ, A, Γ′ `M δ is the context and hence thefA(Γ) is the resource that enables agentA to do the
Γ′ `M δ reasoning. Note thatΓ′ `M δ might not be a valid sequent in the contextΓ, but it is valid in
the context given byΓ’s appearance to agentA. To summarize, in our setting not only propositions, but
also actions and agents are treated as resources (available or not for other actions or for reasoning of
other agents).

Sequent rules. The rules for identity,⊥, and 1 (on the left) are the same for bothM andQ sequents.
So in the following we drop the subscripts of̀where applicable:

⊥,Γ ` δ (⊥L) Γ `
Γ ` ⊥ (⊥R) Γ `M > (>R)

δ ` δ (Id) `Q 1 (1R) Γ,Γ′ ` δ
Γ,1,Γ′ ` δ (1L)

Theoperational rules for M -sequentsare

3Sequents with empty consequents, denoted asΓ ` are equivalent toΓ ` ⊥.
4Examples such asΓ, m ` m′ make more sense whenM is a Heyting Algebra with the adjunction between implication

and conjunction i.e.a ∧ b ≤ c iff a ≤ b → c



Γ,q `M δ
Γ `M [q]δ (DyR) m,Γ `M δ

[q]m,q,Γ `M δ (DyL)

Γ,A `M δ
Γ `M 2Aδ (2R) m,Γ `M δ

2Am,A,Γ `M δ (2L)

Γ `M δ
Γ,A `M fM

A (δ) (fM
A R) m,A,Γ `M δ

fM
A (m),Γ `M δ

(fM
A L)

Γ,m,m′,Γ′ `M δ
Γ,m∧m′,Γ′ `M δ (∧L) Γ `Mδ Γ `M δ′

Γ `M δ∧δ′ (∧R)

Γ `M δ
Γ `M δ∨δ′ (∨R1)

Γ `M δ′

Γ `M δ∨δ′ (∨R2)

m,Γ `M δ m′,Γ `M δ
m∨m′,Γ `M δ (∨ML) Γ,q,Γ′ `M δ Γ,q′,Γ′ `M δ

Γ,q∨q′,Γ′ `M δ (∨QL)

Γ `M δ
Γ,q `M δ⊗q (⊗R) ΓM , q,Γ′ `M δ

ΓM ⊗ q,Γ′ `M δ (⊗L)

Γ,q,q′,Γ′ `M δ
Γ,q•q′,Γ′ `M δ (•ML)

whereΓM ∈ L∗
M , ΓQ ∈ L∗

Q, ΓA ∈ A∗, δ, δ′ ∈ LM and if ΓM = (m1, · · · ,mn) thenΓM ⊗ q :=
(m1 ⊗ q, · · · ,mn ⊗ q).

Theoperational rules for Q-sequentsconsist of Lambek calculus rules for∨, plus the following
rules for• andfA

ΓQ,ΓA `Q δ Γ′
Q,ΓA `Q δ′

ΓQ,Γ′
Q,ΓA `Q δ•δ′ (•QR)

Γ,q1,q2,Γ′ `Q δ
Γ,q1•q2,Γ′ `Q δ (•QL)

Γ `Q δ

Γ,A `Q fQ
A (δ)

(fQ
A R)

ΓQ,A,Γ `Q δ

fQ
A (ΓQ),Γ `Q δ

(fQ
A L)

whereδ, δ′ ∈ LQ and forΓQ = (q1, q2, · · · ) , fA(ΓQ) = fA(q1) • fA(q2) • · · · .

As structural rules we have two M-Weakenings, Q-Weakening, M-Contraction, and M-Exchange,
respectively

Γ `M δ
Γ′,Γ `M δ (weak1)

Γ,Γ′ `M δ
Γ,m,Γ′ `M δ (weak2)

Γ `Q δ
A,Γ `Q δ (weakA)

Γ,m,m,Γ′ `M δ
Γ,m,Γ′ `M δ (contr) Γ,m,m′,Γ′′ `M δ

Γ,m′,m,Γ′′ `M δ (exch)

two rules expressingInvariance of facts (under epistemic actions) (rules which can be seen as “Action
Weakening’ and “Action Strengthening” inM -sequents)

Γ `M P
Γ,q `M P (fact1)

Γ,q `M P
Γ `M P (fact2)

whereP ∈ Φ (the set of facts), and finally several restricted versions of the Cut Rule: propositional cut
in M -sequents, action cut inQ sequents and action cut in mixedM −Q sequents5

5We think these cuts are eliminable and are working on theCut-Elimination theorem.



Γ `M m m,Γ′ `M δ
Γ,Γ′ `M δ (MCut)

Γ `Q q q,Γ′ `Q δ
Γ,Γ′ `Q δ (QCut)

ΓQ,ΓA `Q q Γ,ΓA, q `M δ
Γ,ΓQ,ΓA `M δ (MQCut)

Theorem (completeness). The sequent calculus presented above is sound and complete with regard
to the algebraic semantics given by epistemic systems.

Example of derivation. We prove a non-Boolean version of the so-called “Action-Knowledge Axiom”
of DEL, stated in [5], which allows one to permute the dynamic and epistemic modalities in a certain
way:

2A[fQ
A (q)]m ` [q]2Am .

To prove this axiom, letΓ be the formula2A[fQ
A (q)]m. Then we haveΓ ` 2A[fQ

A (q)]m, by the Identity
rule (Id), and so we have the derivation :

Γ ` 2A[fQ
A (q)]m

[fQ
A (q)]m ` [fQ

A (q)]m

2A[fQ
A (q)]m, A ` [fQ

A (q)]m
2L

Γ, A ` [fQ
A (q)]m

MCut

Γ, A, fQ
A (q) ` [fQ

A (q)]m⊗ fQ
A (q)

⊗R
q ` q

q, A ` fQ
A (q)

fQ
A R

Γ, q, A ` [fQ
A (q)]m⊗ fQ

A (q)
MQCut

m ` m

[fQ
A (q)]m, fQ

A (q) ` m
DyL

[fQ
A (q)]m⊗ fQ

A (q) ` m
⊗L

Γ, q, A ` m
MCut

Γ, q ` 2Am
2R

Γ ` [q]2Am
DyR

Application: A “Coordinated Attack”. The derived rule corresponding to the “Action-Knowledge Ax-
iom” can be used to predict the knowledge (or beliefs) of an agent after an action, based only on action’s
appearance to the agent and on his prior beliefs (before the action). For instance, suppose that in order
to coordinate their attacks, generalA sends to generalB a messagem, meaning “Atack at dawn!”;
but suppose the messenger has been caught by the enemy, who substitutes him with a fake messenger
bearing another messagem′, saying “Attack in the morning!”. Suppose generalB does not suspect
this was hapenning. We denote byq the “real” action going on (i.e. the action ofA sending message
m), and byq′ the action ofA sending messagem′. Then we encode thecontentof (the message sent
during) these actions by stating as additional axioms:q `M m andq′ `M m′. We also encode the
appearanceof these actions, e.g. puttingfB(q) = q′, to encode the fact that, whenq happens, B thinks
thatq′ is happening. To predict what will B believe after the actionq, first use the[ ]-right introduction
to derive fromq′ `M m′ that` [q′]m′, then applyM -Weakening(weak1) to getB ` [q′]m′. Apply
2-introduction to the right to get̀ 2B[q′]m′. Then use the above derived rule corresponding to the
“Action-Knowledge Axiom” and the fact thatfB(q) = q′, to conclude that̀ [q]2Bm′. So we can
predict that, after receiving the fake message, general B will believe that he is supposed to attack in the
morning.

More generally, by adding additional rules, we can encode various dynamic epistemic scenarios [2,
3], such as the Cheating Scenario discussed above, and prove their properties using the sequent rules.
For example, in [3] we have encoded a version of theMan-in-the-Middlecryptographic attack, and we
have proved some of its properties using the sequent calculus above.



Further elaborations

1. Concerete epistemic systems. We would like to develop a boolean version of our sequent calculus
and prove its completeness with regard to kripke semantics.

2. Coalgebras. We are enriching our algebra with personalized updates by moving to a categorical
algebraic semantics studied in [22]. It would be interesting to investigate the connection between
our categorical methods and the coalgebraic methods studied in e.g. [4].

3. Resource sensitivity. We would like to make our systems more resource sensitive to deal with
classical resource sensitive problems in epistemic logic such aslogical omniscience[18]. The
money gamesof [16] and Thelogic of bunched implicationsof [20] might provide useful insights,
fragments and tools.
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