Theoretical
Computer Science

L)
ELSEVIER Theoretical Computer Science 170 (1996) 297-348

Models for concurrency: Towards a classilication

Vladimiro Sassone*!, Mogens Nielsen, Glynn Winskel
BRICS 2, Computer Science Department, University of Aarhus, Ny Munkegade, Bldng 540,
DK-8000 Aarhus, Denmark

Received November 1994
Communicated by G. Rozenberg

Abstract

Models for concurreney can be classified with respect to three relevant parameters: behaviour/
system, interleaving/noninterleaving, lincar/branching time. When modelling a process, a choice
concerning such parameters corresponds to choosing the level of abstraction of the resulting
semantics.

In this paper, we move a step towards a classification of models for concurrency based on the
parameters above. Formally, we choose a representative of any of the eight classes of models
obtained by varying the three parameters, and we study the formal relationships between them
using the language of category theory.

0. Introduction

Much effort in the development of the theory of concurrency has been devoted to
the study of suitable models for concurrent and distributed processes, and to the formal
understanding of their semantics,

As a result, in addition to standard models like languages, automata and transition
systems [6, 13], models like Petri nets [12], process algebras [9,4), Hoare traces [5)],
Mazurkiewicz traces [8), synchronisation trees [20] and event structures [10,21] have
been introduced.

The idea common to the models ahove is that they are hased on atomic units of
change — transitions, actions, events or symbols from an alphabet — which are indivisible
and constitute the steps out of which computations are built.

The difference between the models may be expressed in terms of the parameters ac-
cording to which models are often classified. For instance, a distinction made explicitly
in the theory of Petri nets, but sensible in a wider context, is that between so-called

* Corresponding author.
! Supported by EU Human Capital and Mobility grant ERBCHBGCTS20005,
% Basic Research in Computer Science, Centre of the Danish National Research Foundation.

0304-3975/96/$15.00 © 1996—Elsevier Science B.V. All rights reserved
PIISG304-3975(926)00011-4

298 V. Sassone et al. | Theoretical Computer Science 170 (1996) 297-348

‘system’ models allowing an explicit representation of the (possibly repeating) states
in a system, and ‘behaviour’ models abstracting away from such information, which
focus instead on the behaviour in terms of patterns of occurrences of actions over
time. Prime examples of the first type are transition systems and Petri nets, and of
the second type, trees, event structures and traces. Thus, we can distinguish among
models according to whether they are sysfem models or behaviour models, in this
sense. Further distinctions are whether they can faithfully take into account the differ-
ence between conctrrency and nondeterminism and, finally, whether they can represent
the branching structure of processes, i.e., the points in which choices are taken, or
not. So, relevant parameters when looking at models for concurrency are: behaviour
or system model, interleaving or noninterleaving model, and linear or branching time
model.

These parameters correspond to choices of the level of abstraction at which we
examine processes and which are not necessarily fixed for a process once and for all.
It is the actual application one has in mind for the formal semantics which guides the
choice of the abstraction level. It can therefore be of value to be able to move back
and forth between the representation of a process in on¢ model and its representation in
another, if possible in a way which respects its structure. In other words, it is relevant to
study translations between models, and particularly with respect to the three parameters
above.

This work presents a first step towards a classification of models for concurrency
based on the three parameters, which also represent a further step towards the iden-
tification of systematic connections between transition based models. More precisely,
we study a representative for cach of the eight classes of models obtained by varying
the parameters behiatiour/system, interleaving/noninterleaving and linearfbranching in
all the possible ways. Tntuitively, the situation can be graphically represented, as in
the picture below, by a three-dimensional frame of reference whose coordinate axes
represent the three parameters:

Beh/Sys

Lin/Bran
Int/Nonint

Our choices of models are summarised in Table 1. It is worth noticing that, with
the exception of the new model of transition systems with independence, each model
is well-known.

The formal relationships between models are studied in a categorical setting, using
the standard categorical tool of adjunctions. The ‘translations’ between models we
shall consider are coreflections or reflections. These are particular kinds of adjunctions

V. Sassone et al. | Theorerical Computer Science 170 (1996} 297-348 269

Table 1

The models

Beh/Ing/Lin Hoagre languages HL
Beh/Int/Bran synchronisation trees ST
Beh/Nanint/Lin deterministic labelled event structures dLES
Beh/Nonint/Bran lnbelled event structures LES
Svys/lnt/Lin deterministic transition systems drs
Sys/Int/Bran transition systems T8
Sys/Nonlnt/Lin deterministic transition systems with independence drsi
Sys/Nonint/Bran transition systems with independence TSI

between two categories which imply that one category is embedded, fully and faithfully,
in another.

Here we draw on the experience in recasting models for concurrency as categories,
detailed, e.g., in [22]. Briefly the idea is that each model (transition systems are one
such model) will be equipped with a notion of morphism, making it into a category
in which the operations of process calculi are universal constructions. The morphisms
will preserve behaviour, at the same time respecting a choice of granularity of the
atomic changes in the description of processes — they are forms of simulations. One
of their roles is to relate the behaviour of a construction on processes to that of
its components. The reflections and coreflections provide a way to express that one
model is embedded in (is more abstract than) another, even when the two models are
expressed in very different mathematical terms. One adjoint will say how to embed the
more abstract model in the other, the other will abstract away from some aspect of
the representation. The preservation properties of adjoints can be used to show how a
semantics in one model franslares to a semantics in another.

The diagram below, in which arrows represent coreflections and the ‘backward’
arrows reflections, shows the ‘cube’ of relationships summarizing the results of this
paper.

3 Here a coreflection is an adjunction in which the unit is a natural isomorphism, and a reflection an adjunction
where the counit is a natural isomorphism.

300 V. Sassone et al [Theoretical Computer Science 170 (1996} 297. 348

Although our main concern here is conceptual, on abstract relationships between
models, of course all the ‘abstraction’ adjoints have clear computational meanings and,
therefore, possible applications. In particular. moving along Nonint ~» Int enforces
the reduction of concurrency to nondeterminism, whilst moving along Sys — Beh
is essentially moving from ‘machines’ to their ‘behaviours’. The translations Bran —
Lin purge the models from nondeterministic branching, enforcing a linear time setting.
The usefulness, e.g., in specification, verification, and semantics, of these reductions is
largely proved in literature.

Establishing the coreflection LES <> TSI, the new notion of occurrence transition
systems with independence arises naturally. These prove to be rather interesting struc-
tures. In particular, by means of them we shall identify yet another characterisation
of coherent, finitary, prime algebraic domains, one expressible simply in terms of the
structure of transition systems.

Although most of the chosen models are well known, among the adjunctions in
the cube only HL =< ST, ST < TS and ST <& LES have already appeared in
literature. Some related results are presented in [2], in which the authors focus on
the interleaving/noninterleaving and linear/branching axes studying the relationships
between four chosen models of concurrency different from ours.

This paper is a full and extended version of [15]; some of the results presented here
appear also in [11, 14]). In order to keep the size of the paper in reasonable bounds,
some of the most technical proofs are only sketched.

1. Preliminaries

In this section, we study the interleaving models. We start by briefly recalling some
well-known relationships between languages, trees and transition systems [22], and
then, we study how they relate to deterministic transition systems.

Definition 1.1 (Labelled transition systems). A labelled transition system is a struc-
ture T = (S5, L, Tran) where S is a set of siates, s’ € S is the initial state, L is a
sct of labels, and Tran CS x L x § is the transition relation.

The fact that (s,a,s') ¢ Tranr — also denoted by s -+ s/, when no ambiguity is
possible — indicates that the system can evolve from state s to state s’ performing an
action a. The structure of transition systems immediately suggests a notion of simulation
maorphisms; initial states must be mapped to initial states, and for every action the
first system can perform in a given state, it must be possible for the second system
to perform the corresponding action — if any — from the corresponding state. This
guarantees that morphisms are simulations.

Definition 1.2 (Labelled transition system morphisms). Given the labelled transition
systems Iy and Ty, a morphism h:T — T is a pair (6,1), where a:5;, — S, is a

V. Sassone et al. | Theoretical Computer Science 170 (1996) 297-348 301

function and 4 : Ly, — Lz, a partial function, such that?
(i) a(sh,) =57,

(ii) (s,a,5") € Trang, implies

{(a(s), Aa),o(s")) € Trany, if ila,

o(s} = a(s) otherwise.

It is immediate to see that labelled transition systems and labelled transition system
morphisms, when the obvious componentwise composition of morphisms is considered,
give a category, which will be referred to as TS.

A particularly interesting class of transition systems is that of syrchronisation trees,
i.e., the tree-shaped transition systems.

Definition 1.3 (Synchronisation trees). A synchronisation tree is an acyclic, reach-
able transition system S such that

(s",a,5), (s",b,s) € Trang implies s =s5" and a=2~¢b

We shall write ST to denote the full subcategory of TS consisting of synchronisation
trees.

In a synchronisation tree part of the information about the internal structure of sys-
tems is lost, whilst the information about their behaviour is maintained. In particular,
it is not anymore possible to discriminate between a system which reaches again and
again the same state, and a system which passes through a sequence of states, as far as
they are able to perform the same actions. However, observe that the nondeterminism
present in a state can still be expressed in full generality. In this sense, synchronisation
trees are branching time and interleaving models of behaviours.

A namral way of studying the behaviour of a system consists of considering its
computations as a synchronisation tree, or, in other words, of ‘unfolding’ the transition
system by decorating each state with the history of the computation which reached it.

Definition 1.4 (Unfoldings of transition systems). Let T be a transition system. A
path m of T is ¢, the empty path, or a sequence ¢ - -¢,, n2> 1, where

(i) ;€ Trany, fori=1,...,n;

(ii) 1, = (shay,51) and 4 = (s;_ 1,4, 8), for i =2,...,a.

We shall write Path(T) to indicate the set of paths of T and x, to denote a generic
path leading to state s.

Define 75.51(T) to be the synchronisation tree (Path(T), ¢, Ly, Tran), where

((t1 - ba)ya.(t1 -~ tatni1)) € Tran

S by = (8n 1,0, 5) and Ly = (Sn,d, Spe1).

4 We nse f| x to mean that a partial function f is defined on argument x. Dually, 7 stands for undefined.

302 V. Sassone et al | Theoretical Computer Science 170 (1996) 297-348

This procedure amounts to abstracting away from the internal structure of a tran-
sition system and looking at its behaviour. It is very interesting to notice that this
simple construction is functorial and, moreover, that if forms the right adjoint to the
inclusion functor of ST in TS. In other words, the category of synchronisation trees
is coreflective in the category of transition systems. The counit of such adjunction is
the morphism (¢,idy,):t5.51(T) — T, where ¢:Path(T) — St is given by ¢(c) = 57,
and ¢((r) -+ 1,)) =5 if 1, = (5", 4,5).

While looking at the behaviour of a system, a further step of abstraction can be
achieved forgetting also the branching structure of a tree. This leads to another weil-
know model of behaviour: Hoare languages.

Definition 1.5 (Hoare languages). A Hoare language is a pair (H,L), where § #
HCL* and sa € H = 5 € H. A partial map A : Ly — L| is a morphism of Hoare
languages from (Hp,Lo) to (H),L) if for each s € Hy it is i(s) € H,, where 1 : L} —
L} is defined by

AHHa) if Ala;

)t(s) otherwise.

/T(e) =¢ and i[(sa) = {
These data pive the category HL of Hoare languages.

Observe that any language (H,L) can be seen as a synchronisation tree just by
considering the strings of the language as states, the empty string being the initial
state, and defining a transition relation where s — s if and only if sa = s'. Let
hlst((H,L)) denote such a synchronisation tree.

On the contrary, given a synchronisation tree S, it is immediate to see that the strings
of labels on the paths of § form a Hoare language. More formally, for any transition
system T and any path m = (5}, a1,51) - * - (Sn—1,an, 5y) in Path(T), define Act(rn) to be
the string q - - - @, € L}. Morcover, let AcH(1) denote the set of strings

{Act(n) | = € Path(T)}.

Then, the language associated to § is st.hI(S)} = Act(S), and simply by defining
sthi((a,2)) = A, we obtain a functor st.4l : ST — HL. Again, this constitutes the left
adjoint to kl.st ; HL — ST given above. The situation is illustrated below, where —»
represents a coreflection and — a reflection.

Theorem 1.6.

HL— a9 8T —— TS.

The existence of a (co)reflection from category A to B tells us that there is a full
subcategory of B which is equivalenr to A (in the formal sense of equivalences of
categories). Once a (co)reflection is established, it is often interesting to identify such
a subcategory. In the case of HL and ST the question is answered below.

V. Sassone et al. | Theoretical Computer Science 170 (1996) 297-348 303

Proposition 1.7 (Languages are deterministic trees). The full subcategory of ST con-
sisting of those synchronisarion trees which are deterministic, say dST, is equivalent
to the category of Hoare languages.

2, Deterministic transition systems

Speaking informally behaviour/system and lineat/branching are independent parame-
ters, and we expect to be able to forget the branching structure of a transition system
without necessarily losing all the internal structure of the system. This leads us to
identify a class of models able to represent the internal structure of processes without
keeping track of their branching, i.¢., the points at which the choices are actually taken.
A suitable model is given by deterministic transition systems.

Definition 2.1 (Deterministic transition systems). A transition system T is determin-
istic if

(s,a,5), (5,a,5") € Trany implies s =s".
Let TS be the full subcategory of TS consisting of those transition systems which
are deterministic.

Consider the binary relation ~ on the state of a transition system 7 defined as the
least equivalence which is forward closed, ie.,

s~s and (s,q,u), (s',a,u') € Trany = u=~u,

and define is.dis(T) = (S/z,[slT]_n_,,LT, Tran,), where S/~ are the equivalence classes
of ~ and

([s]~.a.[s']~) € Tran. & A5a,§)€ Trany with §~ s and 5 ~ s,

It is casy to sec that the transition system ts.dfs(TS) is deterministic. Actually, this
construction defines a functor which is left adjoint to the inclusion dTS — TS. In the
following we briefly prove this fact. Since confusion is never possible, we shall not
use different notations for different ~’s.

Given a transition system morphism (g,4) : Ty — Ti, define fs.dis{(o,2)) to be
(5,2), where & : 87,/ ~— 87,/ = is such that 6([s]~.) = [o(s)]~.

Proposition 2.2 (ts.dts : TS — dTS is a functor). The pair (6,4): ts.dts(Tp) —
ts.dis(Ty) is a transition system morphism.

Proof. We show that & is well-defined. For (s,a,5), (s,4,5") € Trang, if Aa,
then o(s') = a(s) = o(s"); otherwise, (a{s), A{a), o(s")), {a(s), A{a),a(s")) € Trany,.
Therefore, in both cases, a(s') =~ o(s”). Now, since (s,a,s’) € Tranr, implies

304 V. Sassone et al. ! Theoretical Compurer Science 170 (1996) 297-348

(a(s), A(a),o(s")) € Tran, or a(s) = a(s'), it follows that g(~) C~. It is now easy
to show that (4,1) is a morphism. [J

It follows easily from the previous proposition that #s.dts is a functor.

Clearly, for a deterministic transition system, say DT, there are no pairs (s,a,5'),
(s.a,5") € Tranpr with s’ % s”. Thus, ~ is the identity, and we can choose a candidate
for the counit by considering, for any deterministic transition system DT, the morphism
(&,id) : ts.dts(DT) — DT, where &([s].) = s.

Proposition 2.3 ((¢,id) : ts.dts(DT) — DT is couniversal). For any deterministic
transition system DT, any transition system T, and any morphism (9, 2) : ts.dts(T) —
DT, there exists a unique k in TS such thar (g, id) o ts.dis(k) = (n, A).

1s.dis(DT)— . pr
Ls'.dts(k)]
.4
15.dts(T)

Proof. The morphism & must be of the form (¢, 4), for some . We choose ¢ such that
a(s) = #{[s]~). This clearly makes & be a transition system morphism. Moreover, the
diagram commutes: (g,id) o ts.dts((c,4)) = (¢ 0 G,4), and e(d([5s]~)) = &([c(s)])~) =
a(s) = n([s]~). To show uniqueness of %, suppose that there is &' which makes the
diagram commute. Necessarily, k' must be of the kind (o', 1). Now, since a'([5]~) =
[6/(5)]~, in order for the diagram to commute, it must be ¢'(s) = #([s]~). Therefore,
o' =cand then k' =k. O

Theorem 2.4 {1s.dts 1). The functor is.dts is left adjoint to the inclusion functor
dTS «— TS. Therefore, the adjunction is a reflection.

Proof. By standard results of Category Theory (see [7, Ch. IV, p. 81]). O

Remark. It is worth noticing that ¢s.dts does not coincide with the classical ‘subset
construction® of automata theory, which is not even functorial on TS. Our construction,
as implied by the kind of simulations the morphisms of TS are, preserves behaviours
‘weakly’: rs.dis(T) simulates T, ie., the behaviours of T are behaviours of rs.des(T),
but not necessarily the converse, i.c., 5.ds(T) may exhibit more behaviours (see, c.g.,
Example 5.1).

Next, we present a universal construction from Hoare languages to deterministic
trangition system, namely a coreflection HL <o dTS. Let (#,L) be a language. Define
hldis(H,L) = (H,¢,L, Tran), where (s,a,5a) € Tran for any sa € H, which is trivially
a deterministic transition system.

On the contrary, given a deterministic transition system DT, define the language
dish(DT) = (Act{(DT),Lpr). Concerning morphisms, it is immediate that if

V. Sassone et al. | Theoretical Computer Science 170 [1996) 297348 305

(a,1) : DTy — DT, is a transition system morphism, then 4 : Aer(DTy) — Act(DTy)
is a morphism of Hoare languages. Of course then, defining dts.Al((6,2)) = A, we have
a functor from dTS to HL.

Now, consider the language dis.hl o Al.dts(H,L). It contains a string 2, - - - a, if and
only if the sequence (e.qp,a1)(ay.@a@z) --(a;---ay_1,8pa - -a,) 18 1in
Path(hl.dts(TY)) if and only if a;- -4, is in H. It follows immediately that id :
(H.L) — dtshl o hl.dts(H,L} is a morphism of languages. We will show that id
is actually the umit of the coreflection.

Proposition 2.5 (id : (H,L) — dis.hi o hl.dts(H, L) is universal). For any Hoare lan-
guage (H,L), any deterministic transition system DT, and any morphism A : (H. L) —
dis.il(DT), there exists a unique k in dTS such that dis.hi(k) = A

(H.1) i dis.hie bkl dis(H, L)

des.hl (k)

dis.hi (DT)

Proof. Observe that since DT is deterministic, given a string s € Act(DT), there
is exactly one state in Spr reachable from sh,; with a path labelled by s. We shall
use state(s) to denote such a state. Then, define &k =- (o,2) : Aldts(H,L) — DT,
where o(s) = state(i(s)). Since DT is deterministic and)I(s) is in Aet{DT), (o,1) is
well-defined and the rest of the proof follows casily. 1]

Theorem 2.6 (il.dis 4 dishly. The map hldis extends to a functor from HL to dTS
which is left adjoint 1o dis.hl. Since the unit of the adjunction is an isomorphism, the
adjunction is a coreflection.

Observe that the construction of the deterministic transition system associated to a
language coincides exactly with the construction of the cerresponding synchronisation
tree. However, due 1o the different objects in the categorics, the type of universality
of the construction changes. In other words, the same construction shows that HL is
reflective in ST — a full subcategory of TS — and coreflective in dTS - another full
subcategory of TS.

Thus, we enriched the diagram at the end of the previous section and we have a
square.

Theorem 2.7 (The interleaving surface).

dTSc . 4TS

HLC—— ST

306 V. Sassone et al. [Theoretical Computer Science 170 (1996) 297348
3. Noninterleaving vs. interleaving models

Event structures [10,21] abstract away from the cyclic structure of the process and
consider only events (strictly speaking event occurrences), assumed to be the aromic
computational steps, and the cause/effect relationships between them. Thus, we can
classify event structures as behavioural, branching and roninterleaving models. Here,
we are interested in labelled event structures.

Definition 3.1 (Labelled event structures). A labelled event structure is a structure
ES = (E.#, €,¢,L) consisting of a set of events £ partially ordered by <; a symmetric,
irreflexive relation # C E x E, the conflict relation, such that

{e' € E|e'<e} is finite for each e € E;
e# e <e” implies e # ¢” for each e,’,¢” € E;

a set of labels L and a labelling function ¢ : E — L. For an event ¢ € E, define
le] = {¢ € E | € <e}. Morcover, we write W for #U {(e,¢) | ¢ € £}. These data
define a relation of concurrency on events: co = E x E\(< U <~ U #).

A labelled event structure morphism from ESy to ES is a pair of partial functions
(n,4), where n: Egs, — Egs, and A : Lgs, — Lgs, are such that

(i) [#(e)] Tn(le]), if nle;
(i) n(e) W w(e') implies e W &', if nle, nle;
(iii) Ao fgs, = /g5, 0N, Le., the following diagram commutes:

G
EESO = LES(]
nJ Ja
EESI s, LBS‘I

This defines the category LES of labelled event structures,

The computational intuition behind event structures is simple: an event e is en-
abled and can occur when all its causes, viz. [e|\{e}, have occurred and no event
which it is in conflict with has already occurred. This is formalised by the following
notions of configuration and enabling. Notice that conditions (i) and (ii) above en-
sure precisely that morphisms of event structures preserve the computationally relevant
structure, namely configurations and enabling.

Definition 3.2 (Configurations). Given a labelled event structure ES, define the con-
figurations of ES to be those subsets ¢ C Egg which are

Conflict Free: Vej,e; € ¢, not g) # e3;

Left Closed: Ve & Ve'<e, & € ¢

V. Sassone et al. Theoretical Computer Science 170 (1996) 297-348 307

Let #(ES) denote the set of configurations of ES.

We say that ¢ is enabled at a configuration ¢, in symbols ¢ | e, if (i) e & c;
(ii) le|\{e} Ce; (iil) € € Egs and &’ # e implies ¢’ £ c.

The occurrence of e at ¢ transforms ¢ in the configuration ¢’ = ¢ U {e}.

Given a finite subset ¢ of Egs, we say that a total ordering of the elements of c,

say {e| < e; < -+ < g}, is a securing for ¢ if and only if {e},...,¢;_1} F ¢;, for
i =1,...,n Clearly, ¢ is a finite configuration if and only if there exists a securing
for it. We shall write a securing for ¢ as a string eje; - - - ¢,, Where ¢ = {ey,e3,...,€,}

and e; # e; for i # j, and, by abuse of notation, we shall consider such strings also
configurations. Let Sec(£S) denote the set of the securings of £S.

Definition 3.3 (Deterministic event structures). A labelled event structure ES is de-
terministic if and only if for any ¢ € Z(ES), and for any pair of events ¢,¢’ € Egsg,
whenever c ke, cF € and £(e) = £(€'), then e = &',

This defines the category dLES as a full subcategory of LES.

In [19], it is shown that synchronisation trees and labelled cvent structures are related
by a coreflection from ST to LES. As will be clear later, this gives us a way to see
synchronisation trees as an interleaving version of labelled event structures or, vice
versa, to consider labelled event structures as a generalisation of synchronisation trees
to the noninterleaving case. In the following subsection, we give a brief account of
this coreflection.

3.1. Synchrounisation trees and labelled event structures

Given a tree S, define stles(S) = (Trans, <,4,£,Lg), where
s < i the least partial order on Trang such that (s,a,5")<(s'",b,s");
» # is the least hereditary, symmetric, irreflexive relation on Trang such that (s,a,5') #
(5,b,5s"Y if s # 5;
s £{{s,a,5")) = a.
It is clear that st.Jes(S) is a labelled event structure. Now, by defining st.fes((s,4)) =
(#¢,4), where

(a(s), A(a). o(s")) if 2la,

T otherwise,

Ns((5.a,5")) = {

we extend siJes to a functor from ST to LES.

On the contrary, for a labelled event structure ES, define les.st(ES) 10 be the struc-
ture (Sec(ES),¢,Lgs, Tran), where (s,a,se) € Tran if and enly if s, se € Sec(ES)
and ¢ps(e) = a. Since the existence of a transition (s,a,5') implies that 5 is a string
strictly shorter than s, the transition system we obtain is certainly acyclic. Moreover,
by definition of securing, it is reachable. Finally, if (s,a,se), {s',a,5'¢’) € Tran and
se = 5'¢’, then obviously s = 5’ and e = ¢/, Therefore, lesst{ES)} is a synchronisation
tree.

308 V. Sassone et al | Theoretical Compuier Science 170 (1996) 297-348

Concerning morphisms, for (1,1) : ESy — ES), define les.si((y,4)) to be (#,4).
This makes les.st be a functor from LES to ST.
Consider now les.st o st.des(§). Observe that there is a transition

]
((‘SS’al:'S])' v (Sn*'l';al’h‘s'n): a, (séaaligl) tt (Sﬂflsa?hsﬂ)(SH,H,S))

in Tranje srostiests) if and only if (st,@1,81) (Sye1, @84)(Su- @, 5) is @ path in S. From
this, and since § and les.s? o st.Jes(S) are trees, it follows that there is an isomorphism
between the states of § and the states of les.stostJes(.S), and that such an isomorphism
is indeed a morphism of synchronisation trees.

Theorem 3.4 (st.les 1 les.st). For any synchronisation tree S, the map (n,id) : § —
les.st o st.0es(S), where n(sk) = ¢ and n(s} = (sk,a1,51) - (sn,a,5), the unique path
leading to s in S, is a synchronisation tree isomorphism.

Moreover, (stles, les.sty . ST — LES is an adjunction whose unit is given by the
Jamily of isomorphisms (n,id). Thus, we have a coreflection of ST into LES.

Consider now a synchronisation tree § in dST, i.e., a deterministic tree. From the
definition of st.fes, it follows casily that st./es(.S) is a deterministic event structure; on
the other hand, les.st(ES) is a deterministic tree when ES is deterministic. Thus, by
general reason, the coreflection ST <+ LES restricts to a coreflection dST <& dLES,
whence we have the following corollary.

Theorem 3.5 (HL —> dLES). The caregory HL of Hoare languages is coreflective in
the category ALES of deterministic labeiled event structures.

Proof. It is enough to recall that dST and HL are egquivalent. O

To conclude this subsection, we make precise our claim of labelled event structures
being a generalisation of synchronigation trees to the noninterleaving case. Once the
counits of the above coreflections have been calculated, it is not difficult to prove the
following results.

Corollary 3.6 (Labelled event structures = Synchronisation trees - concurrency). The
Jull subcategory of LES consisting of the labelled event structures ES such that
cogs = O is equivalent to ST.

The full subcategory of dLES consisting of the deterministic labelled event struc-
tures ES such that cogs = O is equivalent to HL.

3.2. Transition systems with independence

Now, on the system level we look for a way of equipping transition systems with a
notion of ‘*concurrency’ or ‘independence’, in the same way as LES may be seen as
adding ‘concurrency’ to ST. Moreover, such enriched transition systems should also
represent the ‘system model’ version of event structures. Several such models have
appeared in the literature [17, 1, 18,3]. However, the asynchronous automata of [17]

V. Sassone et al.{ Theoretical Compurer Science 170 (1996) 297-348 309

are not suited to our programme, since they are inherently dererministic. Also the
transition systems introduced in [1, 18,3] do not fit directly the frame, as they are
uniabelled. Nevertheless, we could use them profitably provided a layer of labels is
added on top of the events which decorate their transitions. However, since such a
double ‘decoration’ of transitions would not be mathematically very pleasant, here we
choose a variation of these notions, the transition systems with independence [22].

Transition systems with independence are labelled transition systems with an inde-
pendence relation carried by the transitions. The novelty resides in the fact that the
notion of event becomes a derived notion. However, four axioms are imposed in order
to guarantee the consistency of this with the intuitive meaning of event.

Definition 3.7 (Transition systems with independence). A transition sysiem with in-
dependence is a structure (5,57, L. Tran, 1), where (5,5, L, Tran) is a transition system
and I C Tran* is an irreflexive, symmetric relation, such that, using < to denote the
following relation on transitions:

(5,a,5') < (" a,4) < Tb. (s,a,5') 1 (s,b,5") and l& .
(s5,a,5)1 (s, b,u) and ¥ ! }
(s,6,5)1 (s",a,u), TN

and ~ for least equivalence containing —, we have
(i) (s,a,8) ~ (s,a,5") = s ="
(i) (s,a,5')I (,b,5") = Fu. (s,0,5) 1 (¢',b,u) and {s,b.5"Y1 (5", a,u);

5 5
y-;-y /1{
ie, s sto= 4 I

(i) (s,a,8) I (5", b,u) = Ts” (5,a,8") 1 (5,6,5") and (5,b,5") I (5", a,u);

*]
a ays IoNg
BN N
” u
(v) (5,a,8") ~(s",a,) I (w,b,w') = (5.a,5)7 (w,b,w).

Marphisms of trausition systems with independence are morphisms of the undertying
transition systems which preserve independence, i.e., such that

(s,a.5)1 (5,b,5') and Ala, A|b = (a(5),A(a),0(s")) I (a(5), A(b),a(5")).
These data define the category TS| of transition systems with independence. Moreover,

let dTSI denote the full subcategory of TS| consisting of transition systems with
independence whose underlying transition system is deterministic.

310 V. Sassone et al. ! Theoretical Computer Science 170 [1996) 297 348

Thus, transition systems with independence are precisely standard transition systems
but with an additional relation expressing when one transition is independent of another.
The relation ~, defined as the reflexive, symmetric and transitive closure of a relation <
which simply identifies local ‘diamonds’ of concurrency, expresses when two transitions
represent occurrences of the same event. Thus, the equivalence classes [(s,a,5')]~ of
transitions (s,a,s’) are the events of the transition system with independence. In order
to shorten notations, we shall indicate that transitions (s,a.s'), (s,5,5"), (s',b,u) and
(s",a,u) form a diamond by writing Diam,p(s,5’,5", u).

Concerning the axioms, property (i) states that the occurrence of an event at a
state yields a unique state; praperty (iv) asserts that the independence relation respects
events. Finally, conditions (ii) and (iii} describe intuitive properties of independence:
two independent events which can occur at the same state, can do it in any order
without affecting the reached state.

Transition systems with independence admit TS as a coreflective subcategory. In this
case, the adjunction is easy. The left adjoint associates to any transition system T the
transition system with independence whose underlying transition system is T itself and
whose independence relation is empty. The right adjoint simply forgets about the inde-
pendence, mapping any transition system with independence to its underlying transition
system. From the definition of morphisms of transition systems with independence, it
follows easily that these mappings extend to functors which form a coreflection TS
TSI, Moreover, such a coreflection trivially restricts to a coreflection dTS <+ dTSI.

So, we are led to the following diagram.

Theorem 3.8 (Moving along the ‘interleaving/noninterleaving’ axis).

—
1y

Sle———

e

(_____bl

dTSle———— dTS
LE__S<—J——-’§I
dLES «————HL

4. Transition systems with independence and labelled event structures

In this section, we show that transition systems with independence are an extension of
labelled event structures to a system model, by showing that there exists a coreflection
from LES to TSI. To simplify our task, we split such a coreflection in two parts.

V. Sassone et al. | Theoretical Computer Science 170 (1996) 297-348 311

First, we define the unfolding of transition systems with independence. To this aim,
we introduce the category oTSI of occurrence transition systems with independence,
obtained from TSI via conditions reminiscent of those which yield trees from transition
systems. Later, we shall show that labelled event structures are coreflective in 0TS,
thus obtaining

LES ——— oTS| — TSI

In addition, we shall identify a subcategory of 0TSI equivalent to LES, so yielding an
account of coherent, finitary, prime algebraic domains in terms of transition systems.

Definition 4.1 (Occurrence transition systems with independence). An occurrence
transition system with independence is a transition system with independence OTI =
(S,s', L, Tran,1) which is reachable, acyclic and such that

(s',a,u) # (s",b,u) € Tran implies
Js. (5,0,5Y I (5,a,5") and (5,0,5)1 (5',a,u)
and (s,a,8") 1 (5", b,u),

ie.,

s, S" = I :
N A N
14 U

or, in other words, (s,a,u) and (s”,b,u4) form the bottom of a concurrency diamond
Diam, (s, s", s ,u).

Let oTSI denote the full subcategory of TSI whose objects are occurrence transition
systems with independence.

Given a transition system with independence T7, define ~ C Parh(TI)* to be the
least equivalence relation such that

(s, @, 8)Ws', b,u)m, =~ mg(s, b, s 5", a,u)m, if Diamgp(s,s',s",u).

The following are some key, easy to prove, properties of occurrence transition sys-
tems with independence.

Lemma 4.2. Given an occurrence transition system with independence OTI, let u be
a state and m,,n), paths leading to it. Then n, = 7).

Proof. By induction on the minimum length among those of m, and =n). If |m,| =
|z,| =0, then n, = & = =,

Suppose that w, = ny(s',a,u), 7, = m(s”,b,u) and suppose that || < || Then,
necessarily, it must be Diam, (s, s”,5',u), for some s € Sgyy. Since OTT is reachable,
there exists a path mg = m,(s.b,5'). Since the length of my is n — 1, we have that

312 V. Sassone et al. | Theoretical Computer Science 170 (1996) 297-348

min{|swg|, [y |} €1 — 1. So, we can apply the induction hypothesis and conclude that
e == 7p. From the definition of =, it follows that my has length n — 1. Thus, m =
7.(s,2,8") has length » — 1 and, by induction, m = me. So, m, ~ (s, 5,5)s, a,u) =
(s, a,8" " bou)y ~ . O

Corollary 4.3. Any pair of sequences leading from state § to state §' of OTI contain
the same number of representatives of any ~-equivalence class.

Proof. First suppose that § is the initial state s,,;,. Then the sequences are two paths
leading to the same state and therefore, by Lemma 4.2, they are ~~-equivalent. In
the case (s, a8)s',b,u)ng ~ 7o(s, b, 8" Ws", a,u)n;:, the result is immediate, since
(s,a,8") ~ (s",a,u) and (5,b,5") ~ (s, b,u). Tn the general case, the result follows by
applying transitively the previous argument.

Now, consider two sequences from a generic § to §/, say ¢z and o} If there

F—igte
’

were a ~-¢lass whose elements occur a different number of times in g;.s and ¢

§—5'>

then the same would happen for the paths me5 .5 and 7,05 ., and that would con-

—5

tradict what we have just shown in the first part of this proof. [
Corollary 4.4. If (s,a.5') and (s,b,5') are transitions of OTI, then a = b.

Proof. By reachability and by Lemma 4.2, we have n,(s5,a,5") ~ n.(s,6,5'). It follows
then from Lemma 4.3 that (s,q4,8') ~ (5,5,5'), and so ¢ = b. [

Summing up, occurrence transition systems with independence are very well struc-
tured and regular. Tn particular, the last result implies that in an occurrence transition
system with independence each diamond of concurrency is not degenerate, i.e., it con-
sists of four distinct states.

The next step is to show that in a path of an occurrence transition system with
independence at maost one representative of a ~-class may appear. Given a path # and
an equivalence class [(s,a,5)])-., let A”(ﬂ:, [(s,a,5)]N) be the number of representa-
tives of [(s,a,5')]. occurring in m. Since we know from Corollary 4.3 that such a
number depends on 7 only by means of the state it reaches, we shall write simply
A (x[(5.a.5")]~). for x € Sory. Moreover, let s <= s’ stand for s % 5" or s <“- 5",
Then we have the following result.

Lemma 4.5. Consider a sequence of states 6 = 5, s gy s, Then
A8y, [(5, 0,5)]) = A (50, [(5,2,5)].)
+ HGnait,5i41) | (80 @41, 5001) ~ (5,a,5)}|
— (St @ip1,85) | (i1, dig,80) ~ (5,a,5)}.

Proof. By induction on #, the length of ¢. For n = 0, ¢ is empty and the thesis is
trivially true. Suppose then that the thesis holds for sequences of length # — 1. There

V. Sassone et al. | Theoretical Computer Science 170 (1990) 297-348 313

o, a
are twWo Cases: S,_1 — 5, OF 5, — S,_1.
a,
Case $,_1 — Sy

V

$a
If (Su—1, a5, Su) # (5,a,5") then A (s, [(5,a,5)]~) = A (5p—1.,[(5,a,5")]~), and since
nothing is added to or subtracted from the right-hand term, the equality holds. If
otherwise (s,_1,a,,5,) ~ (s,a,5'), then

N (s [(5,0,5)]0) = A (sa-r, (5,08) + 1,

and the equality stays since 1 is added also to the right hand term. So, the induction
hypothesis is maintained.
Case s, — Sp_1:

:V

SO
Again, if (5,-1,@4,5:) % (5,a,5") the terms on both the sides of the equation are
unchanged considering the ath transition, and the result helds by induction. Otherwise
if (Sy—1,an,8n) ~ (5,a,5"), then A (sn[(5.2,5)]~) = A (sn—1,[(5,a,5"}].) — L. This
time 1 is subtracted from the right-hand term, and therefore the induction hypothesis
is maintained. O

Then, we have the following important corollary.

Corollary 4.6. Given a path = € Path(OTI), at mosi one representative of any ~-
equivalence class can occur in .

Proof. Suppose that (s,a,s’) ~ (§,4,5') oceur both in =, By definition of ~, there
must exist a sequence o = (s = §p —— .- =4 5, = &), as shown by the following
diagram:

Ry
. \Sl S ’f\s,,ﬂ_._“w
- la bi—l\S'/S,ﬁ la N la - la -.Sn_1\§
A \.“ al la ./.\. al

314 V. Sassone et al. ! Theoretical Computer Science 170 (1996) 297-348

Without loss of generality, we can assume © = n'(s,q,5')0’ (5, 2,5)5, i.e., that (s,4,5)
occurs before (5,a,5"). Now, since (s,a,5') appears in = after state s, we
have

N s, [(s,a,50].) < A(51(s,a,5)]-).

By the previous lemma, we have that in & at least a representative of [(s,a,5")]
must occur ‘positively’, say (sp,@xi1,5k11) ~ (5.a,8). Therefore, we have a diamond
Diamy, ., o(Sk,Sk+15 5k, 5¢+1) where, from the property shown earlier, s; # §. This is
absurd, because (Sg,ary1,8¢1+1) ~ (5, a, 5) breaks axiom (i) of transition systems with

independence. [J

4.1. Unfolding transition systems with independence

Given a transition system with independence TI = (S,5/,1,Tran,]), we define
tsi.otsi(T1) = (2, [8)~, L, Tran.., I..), where
e [I. is the quotient of Path(T1) modulo =;
¢ ([n]~a [7]~) € Tran~ < As,a,s’) € Tran such that z’ ~ n(s,a,s');
o ([nlx,a,[7']) I ([Rlx, b, [7'])
& d(s,a,5) I (5,6,5") € Tran such that
' =~ n(s,a,s"), and T = (S, b,5").

Proposition 4.7. The transition system tsi.otsi(T1) is an occurrence lransition system
with independence.

Proof. We show only the condition in Definition 4.1 of occurrence transition systems
with independence. Suppose that ([7']~,b,[7]~) # ([#"]~.a,[w]~). Then, we have
7o (&, b)) = n(s”,a,u) with ' & n”. By definition of ~, there must exist @ such
that n'(s",b,u) = 7(s,a,5)&, bu) and 7'(s”,aq,u) ~ a(s,b,s" Ns",a,u). Moreover,
fi(s,a,5') ~ 7’ and 7(s,b,5") ~n".

Then, ([%]~, a, [7(s,a,5'))~) and ([A]a, b, [7(s, b, 5")]~} close the diamond. O

Fig. 1 shows a simple example of unfolding of a transition system with independence.
Next, we show that fsi.ofsi extends to a functor for TS| to oTS| which is right
adjoint to the inclusion functor 0TS] «— TSI, As a candidate for the counit of such an
adjunction, consider the mapping (g., id) : tsi.otsi(TI) — TI, where

(e} = sITI and o ([n;]~) =+

By definition of =, we know that o, is well-defined. Then, it is not difficult to see that
(6., id) is a morphism of transition systems with independence.

Proposition 4.8 ((o,,id) : tsi.otsi(TT) — TT is couniversal). For ary occurrence tran-
sition system with independence OTI, transition system with independence T1, and

V. Sassone et al. [Theoretical Computer Science 170 [(1996) 297-348 315

e \
\ Al N
lc
/ & tsiotsi ,7{‘
NN NN
N 5
N
\ / \

J

Fig. 1. A transition system with independence T and tsiotsi(TT).

morphism {a, 1) : OTI — TI, there exists a unigue &k : OTI — tsi.otsi(TI) in oTSI
such that (g,,id)ok = (0,.):

tsi.otsi(TT) (0, 1)

Ti
k

an

(m.4)

Proof. Clearly, in order for the diagram to commute, £ must be of the form (&, 4).
Consider the map &(s) = [o;3(7n;)]~, where g, : Path(OTI) — Path(TT1) is given by

6,(ns)(0(s), Aa),0(s")) if Ala,
@)(7s) otherwise.

me) =6 oin(sas)) = {

This definition is well-given. In fact, if n; and =] are two paths leading to s, since
OTT is an occurrence transition systemn with independence, it is 7, ~ n}, and since
(6,4) is a morphism, it is ¢;(m;) ~ 6,(n}). In order to show this last statement, it is
enough to prove that

ny(s,a, 5 W', byuym, =~ my(s, b,s" Ys",a,u)x,

= JA(TE;)U}_ ((Svar S,)(Slr b! u)) O'l(nv) ~ 0',:_(71:5)0'1((5', bs S”)(Sﬂi a, u)) O'A(nu)-

316 V. Sassone et al.| Theoretical Computer Science 170 (1996) 297-348

There are four cases:

(i) ATa, ATh: then 6,((s,a,5')s',b,u)) = & = 63((5,5,5”)(s”,a,u)), and the thesis
follows easily.

(ii) Ala, J1b: then

aul(s,a,5')", b,u)) = (a(s), Ma),(s"))
= (a(s"), Ma),0(w)) = 61((5,5,5")5",a,u))

and again the thesis follows.

(iii) A7a, A)b: follows as in (ii).

(iv) Ala, A|b: then the thesis follows directly from the definition of morphism, since
it is Diamg p(s,5’,5",u) and in this case diamonds are preserved.

Let us show that (&,4) is indeed a morphism of occurrence transition systems with
independence.

(D) #(shry) = [Flae

(ii) Let (s,a,5") € Tranory, and suppose 1)a. Since OTT is reachable, we have
n(s,.a,5) € Path(OTI), and o;(m; X o(s), AMla),o(s)) in Path(TI). Thus, ([o;(7:)]~,
Ma), [ox(msls, a,5'))]x) = (6(s), Aa), 6(s")) € Tran-.

(i) If (s,a,5) forr (5.5,5"), then (a(s), A(a), o(s")) f77 ((5), A(b),a(s")), and rea-
soning as before, we get (6(s), A(a), 6(s")) L- (5(5), A(b), 6(3")).

In order to show that the diagram commutes, it is enough to observe that each s is
mapped to a ~-class of paths leading to o(s). Therefore, 0,0 5(s} = o(s). The unique-
ness of (5,4) is easily obtained following the same argument, In fact, the behaviour
of 6 is compelled on any s: sh;, must be mapped to [£]., while a generic s must
mapped to a ~-equivalence class of paths leading to ¢(5). But we know that there is
a unique such class. [l

Theorem 4.9 (— - isi.otsi). The construction tsi.otsi extends to a functor from TSI
to oTS| which is right adjoint to the inclusion oTSI| — TSI

It will be useful later to notice that this coreflection cuts down to a coreflections
doTS| —> dTSI, where doTSI is the full subcategory of oTSI consisting of deter-
ministic transition systems. In order to achieve this result, it is clearly enough to show
that rsi.0zsi maps objects from dTSI to doTSH

Proposition 4.10 (doTS| — dTSI). If T1 is deterministic, then tsi.otsi(TT) is deter-
mrinistic,

Proof. Suppose that ([7]~,a,[7']~) and {[#]~,a,[n"]~) are in Tran~. Then, it must
be n' ~ m(s.a,5') and w” =~ (s, as"), for (s,a,s"), (s,a,5"") € Tran. Then we have
s'=s5"and so n' =n". O

V. Sassone et al. | Theoretical Computer Science 170 (1996) 297-348 317

4.2. Occurrence TSIs and labelled event structures

In this subsection we complete the construction of the coreflections LES <> TSI
and dLES <+ dTSI| by showing the existence of coreflections LES < oTSI and
dLES <> doT$SlI, reminiscent of the connection between event structurcs and domains
of configurations [10,21].

Consider a labelled event structure ES = (E, <.,#,£,L). Define les.otsi(ES) to be
the transition system with independence of the finite configurations of ES, i.e.,

les.otsi(ES) = (£ r(ES), 0, L, Tran, 1),

where

* Fp(ES) is the set of finite configuration of ES;

¢ (c,a,¢') € Tran if and only if ¢ = ¢'\{e} and #(e) = q;
e (c,a,c’) I (¢,b,8) if and only if (¢'\¢) co (&'\é).

By definition, Jes.otsi(ES) is clearly an acyclic, reachable transition system. Mare-
over, C Tran? is symmetric and irreflexive, since co is such. In order to show that it
is an occurrence transition system with independence, the following characterisation of
the relation ~ is important,

Lemma 4.11. Given (c,a,c’') and (¢,a,&') € Tran, we have (c,a.c') ~ (€,a,&) € Tran

if and only if (¢\¢) = (F'\é).

Proof. (=). It is enough to show that Diam,(c,c’,, ") implies (¢/\¢) = (&\&).
Since (c,a,¢’) I (c,b,2), we have {e} = (¢"\c) co (¢\c) = {e'}. Let &” be the event

in &'\¢" and ¢” the one in &\¢. We have cU {ejU{e’} =& =cU {"} U {}).
Thus, it must be

(e=¢e"and " =¢') or (e=¢ and ¢ =¢€").

Now, since e co ¢/, it cannot be ¢ = ¢’ and we must discard the second hypothesis.
Therefore, e = ", ie., (¢/\e) = (¢'"\€) (and necessarily (&\c) = (I'\¢)).

(+=). First suppose ¢ C¢&. Since then event e in (¢\c¢) = (&'\&) is enabled both in
¢ and ¢, it means that for any ¢ € (&\c) we have & co e. Moreover, we can order
the events in ¢é\c in a chain &y---€, in a such a way that ¢ U {éo,....€i_1} - &, for
i =0,...,n. To this aim, it is enough to choose at ¢ach step i one of the maximal
events in (¢\c)\{&p,....2_1} with respect to the <gs order.

Now, since &; co e, for each i = 0,...,n there exists a diamond

cUle,,....e_}
a b

cl{g,....e uie}l cUle,...,&}

N4

c\HeE,....g10{e}

318 V. Sassone et al. [Theoretical Computer Science 170 (1996) 297-348

Then, for i = 0,...,n we have

(Cu{é—OQ--':e—ifl}’a»CU {EO:“'séifl} U {e})
< (eU{éo,....& a,cU]é,.... &} U {e}),

ie., (c,a,c’)~ (¢ad).

To complete the proof, consider ¢ N ¢. Necessarily, it enables e¢. So, we have that
((€neda,(cNe)U{e}) € Tran. Since (€Nc)C ¢ and (£ N¢)C e, from the previous
part of the proof we have, (c,a,¢') ~ ((cNe)a(cNc)U{e}) ~(Gac). O

Exploiting Lemma 4.11, it is easy to show the following proposition.

Propeosition 4.12. The transition system les.otsi(ES) is an occurrence transition sys-
tem with independence.

Proof. We verify only the property of occurrence transition systems with independence.
Suppose that (¢/,b,¢) # (¢”,a,¢) € Tran. Then, we have ¢ = ¢’ U {&'} = ¢ U {&"}.
Since ¢’ # ¢”, it must be ¢’ #£ &”. Moreover, ¢ #¢”, since both events appear in c.
It cannot be ¢ < & nor &’ < ¢, because otherwise either ¢’ or ¢” would not be a
configuration. So, ¢ co &”. It follows that ¢ = ¢'\{e'} = ¢"\{e"} is a configuration
such that Diam, 4(C, ¢, ¢",c). O

Let us define the opposite transformation from oTSI to LES. For O77 = (S,¢. L,
Tran,1) an occurrence transition system with independence, define otsiles{OTI) to
be the structure (Tran., <,#,7,L) where, writing (s,4,5') € 7 to mean that (s,2,5)
occurs in the path 7,

e Tran.. is the sct of the ~-equivalence classes of Tran;
e [(s,a,5)]~ < [(5b,5)]~ if and only if

¥n(3, b,5') € Path(OTT) with (§,5,5') ~ (5,b,5"),
(s, a,8") ~ (5,a,5") such that (s,a,8") € 7,
and < is the reflexive closure of <;
e [(s,a,5)]- #[(5,5,5)]~ if and only if
Yr € Path(OTI),
V(5,b,5") ~ (5,b,5") and V(s,a,5") ~ (s,a,5")
(s,a,8'y € n implies (5,a,8') ¢ m;
o /([(s,a.5'))=a.
It is ecasy to see that otsifes(OTT) is a labelled event structure. Fig, 2 shows an

example of the labelled event structure associated to an occurrence tramsition system
with independence.

V. Sassone et al. [Theoretical Computer Science 170 (1996) 297-348 319

N,
P

[] - .
= [+
SN A |
- - [
/ \ / otsi.les
R T o ztcnd s e 5 T & i $o C
L] - []

Fig. 2. An occurrence transition system OT/ and orsiles(OTT).

Next, we need to extend otsi.les to a functor. Given (o,4) : OTIy — OTI,, define
otsiles((a, 1)) = (4q,), where

n - [L(e6).a@),06). if Ala,
’?ﬂ(l:(s’ass)]N) = { T otherwise.
In the proof of Proposition 4.8, it has been shown that (s,a,s’) < (5,a,5') and ila
implies (o(s), A(a),a(s")) ~ (o(5), A(a),0(5")). Then 7, is well-defined.

Proposition 4.13. Given a transition system with independence morphism (o,A) :
OTIly — OTI,, otsiles((o,1)) : otsiles(OTIy) — otsiles(OTI;) is a labelled event
structure morphism.

Proof. We show the properties of labelled event structure morphisms.

(i) [n+(e)] Sno(le]). Consider [(5,5,5')]~ <,(e) in otsiles(OTI;). For each path
n(s,a,s") in OTIy with (s,a,s") € e, since its image via (a,4) ends with (o(s), A(a),
o(s')) € n.(e), there must be a transition (x,c,y) € m, such that (o(x),A(c),
a(¥)) ~ (5,b,5"), ie., 1,([(x,c, ¥)]~) = [(5,5,5')]~. We need to prove that [(x,c, y)]~
< [(s,a,5')]~, which reduces to prove that, for n,(s,a,s’) and . (s”,a,s"") generic
paths as above, letting (x,c, y) and (x',d, y’) denote respectively the transitions of
and m,» mapped to transitions ~-equivalent to (§,5,5'), we have

(x.c,y) ~(x',d,y").

First observe that, since (o(x'),A(d),a(y")) ~ (a(x),i(c),a(¥)), no more than one
element of [(x’,d, y')]~ U[(x,¢,)]~ can appear on the same path, for otherwise, taking
the image of such a path via (0,1), we would find a path of OTI; with more than
one occurrence of elements from [(a(x), A(c),a(¥))]~.

320 V. Sassone et al. | Theoretical Computer Science 170 71956, 297-348

Now suppose (x',d, ") # (x,¢,v). Then we are in the situation illustrated by the
diagram:

-8
X -t . xﬁ
CJ Jd
Y Y
v v
5 . --S"
l ey P .
a a
s’ s

Necessarily, it must exist (¥,c, 7} ~ (x,c, y) which occurs ‘backward’ in the se-
quence s < sy « - -5, « s”. This is because the path from sf,,, to s” cannot contain
any representative of [(x,¢, ¥)]~. So suppose that s;p = ¥ — V=g

Now take any path x,,_,, and consider ns,“(s,“,a,;), with (8,1, @,5) ~ (s,a,5'}. The
situation is illustrated by the diagram:

e 8T

PR P -

X H X
¢ X ld
¢ r

y v

y

v ; ¥
s St s"
a ! a a
' a = e

S. . ‘/c,s 5

Since nsi,ﬂ(si“,a,f) is a path whose image via (o,4) ends with an element of
[(a(s), Aa), a(s')]~ namely, (a(si1), Aa), a(f)), it follows that =, , must contain
i $ such that (o(x),A(c'), 6(F)) = (5,8,5') ~ (5,b,5"). Now consider the path
5, (Si11,6,8) = #,_ (X, ¢, §). Clearly, its image through (o,1) contains (cr(f), FICA)
o(3)) = (£5,5") ~ (5,5,5") and, in addition, also (¢(X), A(c), 5(7)) ~ (6(x), Mc), o(¥))
~ (§,b,5") ~ (5,6,5'), where (5,b,5') # (5,b,5"). This is absurd, because no such path
can exist in O77 . It follows that (x,c, y) ~ (x',d,).

(i) na(e) W #:(e') = e W &’. Observe that if n,(e) = n.(e’) or y.(e) # ("), then
no more than one element from ¢\J¢ may occur in the same path. This is because, in
such a case, there would be a path in 77, in which more than one representative of
the same class or two representatives of conflicting classes would appear. From such

V. Sassone et al. | Theoretical Computer Science 170 (1996) 297-348 321

considerations, it follows that it can be neither ¢ < &' nor ¢ < e nor e co . The
only possible cases are, therefore, e = ¢’ or e # &',
(i) AZor1,(€)) = Zor1,(ns(e)). Immediate. [

It is very easy now to prove the following result.

Corollary 4.14 (ozsides : oTS| — LES). The map otsiles is a functor from oTSlI 1o
LES.

In order to show that otsi.les and les.otsi form a coreflection, we need the following
sequence of lemmas.

Lemma 4.15. Whenever [(s,a,5)]-. co [(5.5,8)].., then (s,a,8') T (3,b,5").

Proof., By hypothesis [(s,a,s")] #[(§, &,5)]~ and [(s,a,5)] & [(5,8,5)]~. From the
first hypothesis, there must exist a path which includes representatives of hoth classes,
say ni(g,a,g’ I (8§, 6,§'). Then, from the second condition, there must exist a path
which contains a representative of [(§, ,5')].. but no representative of [(s,a,s')]., say
'I'C_!‘(g, b, g_l)

“Now, since no representative of [(s,2,5)]~ is in w5 by Lemma 4.5, there is a
sequence § «— §y ¢ - > 5, & g' such that there exists (siv1,a,5) ~ (s,a,5"), as
illustrated in the diagram.

s a T K
1 N
a 7
s’ 8 .
By T i

a}

-
e [e

Fa

So, (s,a,5") ~ (sip1,a,5:) I (§,b,5") ~ (5,b,5"), which implies, by the property (iv)

of transition systems with independence in Definition 3.7, (s,a,5) I (§,54,5°). [

Lemma 4.16. Suppose that there is a path wy(s,a,5)7:(5,b,5') € Path(OTI) and
that, for each (x,a,y) € gy we have [(x,a, V)]~ co [(3,5,5)]~. Then there exists a
fransition (s',b,s") € Tranpr such that (s',b,s") ~ (3,b,5').

Proof. By induction on the length of nz. If 77 is empty there is nothing to show.
Otherwise, we have m,(s,a,s)n:(5,¢,5)5, b,5'), where [(§,¢,5)]. co [(§,b,5)]~. So,
by the previous lemma, we have (5,¢,§) 7 (§b,5"), that, by the general properties
of transition systems with independence, must be part of a diamond of concurrency.
Therefore, there exists (5, b,8) ~ (5,5,5) and thus, we have a path (s, o, s’)n;(.?, b,5),

322 V. Sassone et al. | Theoretical Computer Science 170 (1996 297-348

where 7z is strictly shorter than 7z, Then, by induction, there exists {s’,5,5"') such that
(5',b,5") ~ (5,b,8) ~ (5. b,5"), which is the thesis. O

Lemma 4.17. Consider a path n; € Path(OT1) and a class [f).. such that for each
t"in ny, we have [#[1. and [¢'].. # [fl~. Then, there exists nmo(s',a,s") €
Path{OTT) with (¢,a,s") ~ .

Proof. By induction on the depth of s, i.e., the length of =,.

If @, = ¢, the thesis is trivial, since OTY is reachable. Then, suppose we have 7, =
7s(8, b,5). By induction hypothesis, there exists a path n; mz (57, a,5), with (5, a,5") ~
t. From the previous lemma, we can assume that 7z does not contain any transition
whose class is concurrent with [f]... In fact, such transitions can be pushed after the
representative of [¢]... It follows that nz contains only elements ¢’ such that [¢'].. <[t]...

Now, if the first transition of n;/ is (5, 4,5), we are done. Otherwise, we have the
situation shown in the following diagram:

=5
13
b ar
5y
i §
a2
a"y
_=f
8, =5
an
_ar
5,=5
. . aj az r—1 dy = = i
le, achain sy — 851 —> -+« T 8| — 5, where 59 =5, Sp_1 =5, 5, = § , Gy =

aand s = g5;, for i = 1,...,n. Of course, since [(s;_1,a;,5;)]~ <[t] for i = 1,...,n,
and since [(§,5,5)]~ # [¢]~ and [(5,5,5)]. #{t]~. we have that, for i = 1,...,n,
[(5.5,5)) F(s5:—1, 218, Lo, (5,5,8) 1 (5i—1,a1,8;), for i = 1,...,n. It follows that
we can complete the picture as shown in the diagram

V. Sassone et al. | Theoretical Computer Science 170 (1996) 297-348 323

and construct a sequence of diamonds of concurrency. So, we have a path
TE;(S,a1,§1) ot (En—l,amin)’

where (§y_1,an,5,) ~ (§',a,58") ~ ¢, i.e., a path n,m(s’,a,5") as required. O

Lemma 4.18. Consider a path n, € Path(OTI) and a class [t].. such that
(i) for each t' in m,, we have [t'].#[t]~ and [t']. £ [{]~,
(i) for each [t').. < [t]~, there exists a representative of [t'].. in =,
Then, there exists (s,a,s') € Tranorr with (s,a,s') ~ &,

Proof. By the previous lemma, we find wens (57, 4,5") with (5',4,5") ~ t. Now, con-
sider an element ' € mz.. We have [¢'].. € [f].., because otherwise another repre-
sentative of [#'].. would be in =, and, by Corollary 4.3, this is impossible. More-
over, [£].. & [¢']., because in the path m,m;(5,a,5") transition ' occurs before than
(5,a,5"), and [']~ #[f]~ because in mm:(5,a,5) both ¢ and (5,a,5") occur. It
Tollows that [¢']... co [f]~.

Therefore, by applying Lemma 4.16, we find (s,a,5") ~ (§',a,5") ~¢. O

Exploiting the above lemma, we next prove a one-to-one correspondence between
the states of OF7T and the finite configurations of otsiles(OTT), or, in other words,
states of les.otsi(otsiles(OTT)).

Consider the map % : Sorr — Zr(otsiles(OTI)) given by the correspondence
s — {[fl~ | t € my, ms € Path(OTI)}. Of course, since any path leading to 5 contains
the same equivalence classes, € is well-defined. Moreover, we have the following easy
lemma.

Lemma 4.19. For s € Sgry, the set €(s) is a finite configuration of otsiles(OTI).

Let ¢ be a finite configuration of otsi.les(OTI) and let ¢ = [fy][t1]~ - - [tal~ be

a securing for ¢. There is a unique path n(c) = (so,a1,51) - (Sp—1,dn,5,) such that

shry = S0, Sn = 5 and [(5i_1,45,5:)]~ = [#]~, for i = 1,...,n. Tt can be obtained as

follows:

¢ (50,41,51) 15 the unique element in [#]. whose source state is Slon- It exists, by
Lemma 4.18, since |[fg]~.| =@, and it is unique because of property (iv) of Defini-
tion 3.7 of transition systems with independence.

e Inductively, {5;_1,a;,5;) is the unique element in [,].. whose source state
is si_1. Again, it exists because (sp,a1,851)" - (Si—2,@n,5i—1) and [f]. satisfy the
conditions of Lemma 4.18 and it is unique by definition of transition systems
with independence.

It is important to observe that, although the actual path n(s) strictly depends on ¢,
the state reached does not.

324 V. Sassone er al | Theoretical Computer Science 170 (1996) 297- 348

Lemma 4.20. Let ¢ be a finite configuration of otsiles(OTT) and let ¢ =[]~ - - - [t]~
and ¢ =[] - [#,]~. be two securings for c. Ther the paths n(c) and n(c") obtained
as illustrated above reach the same state.

Proof. Tt is enough to show that n{g) ~ =n(c’'). To this aim, we work by induc-
tion on the minimal number n of ‘swappings’ of adjacent elements in ¢’ needed to
transform it in ¢. Observe that such a number exists since ¢ and ¢’ are securing of
the same configuration, and, as such, they are just different permutations of the same
elements.

If » = 0, then n(¢c) = n(g"), since the paths are uniquely determined by the se-
curing. Supposing that we proved the thesis for the case of # swappings, let ¢ =
lolee - [Jelti o [t 1 ot/ 3) - - - [23]~ be obtained after the first of n + 1 swap-
pings. Observe that [/, ,]. must occur in ¢ before than [#]., otherwise, avoiding the
swapping of [/]. and [#/,,].., we would find a shorter sequence of swappings trans-
forming ¢ in ¢. It follows that [#/].. 4 [t/,]~ i.e, ¢" is a securing of c. Moreover,
[¢]~ co [t/]~. Therefore, we have a(¢"") = n(¢’). Now, ¢” can be transformed in
¢ with » swappings, and therefore, by induction hypothesis, m(¢”) ~ n(g). So, we
conclude n(¢) ~ n(¢’). O

Therefore, we can define a map % : Pr(otsides(OTT)) — Sorr by saying that ¢ — s,
where s is the state reached by a path n(g) for a securing ¢ of ¢. Now, we can see
that ¢ is an isomorphism of sets whose inverse is .

Lemma 4.21. & =% L.

Proof. Consider 4(s) = {[f]. | t € n,} and consider the sequence 5 = [fg]. - -« [£a]~
such that @, = & --#,. This is clearly a securing of %{s), whose associated path
7(g) is =, itself. This is because of the uniqueness of n(g) discussed earlier. So,
we have S (%(s)) = s. Suppose F(c) = 5. Among the path leading to s, consider
7(¢), ¢ = [fo]~ - [#z]~ being a securing of c¢. Then, we may use n{s) to calculate
F(F) ={fl~|ten}={t].|i=0,....,0}=c. O

It is worthwhile to abserve that ¥ and .% give rise to morphisms of transition systems
which are each other’s inverse. First observe that %()) = shr;, since the unique path
associated with the unique securing of the empty configuration, is the empty path.
Moreover, ¥(s};) = 0, since the unique path leading to s, in OT/ is the empty
path. Moreover, we have the following easy lemma.

Lemma 4.22, Let OTI be a transition system with independence. Then

(i) If (s,a.5') is a transition of OTI, then (¥{s),a,¥(s")) is a transition of
les.otsi{otsi les(OTI)).

(i) If (c,a,c") is a transition of les.otsi(otsiles(QTI)), then (F(¢),a, ¥ (")) is a
transition of OTI.

V. Sassone et al { Theoretical Computer Science 170 (1996) 297-348 325

This means that (%,id} from OTI to les.otsi{ofsiles(OT1)) and (&,id) from
les.otsi(otsiles(OTT)) to GTT are morphisms of transition systems. Moreover, (., id)
= (%.id)~!. Recall that (c,a,c’) 1 (¢,b,C') implies, by definition of les.otsi, that
(¢'\¢) = [t~ co [f]~ = (¢'\C). From Lemma 4.22 we have, therefore, that

[t~ = [(Z(c)a, F(N co (L0, FEN =7]

and then, from Lemma 4.15, (#(c),a, #(c’)) I (F(&),b,#(&')). Therefore we have
the following:

Propesition 4.23. (,id) is a transition system with independence morphism.

However, (%, id) is not a morphism in TSI. It follows that (&, id), in general, is not
an isomorphism of transition systems with independence. Consider now the property:

(E) tit = 3s.(s,a,8Y~1t and (s5,b,8"y~"F.

Proposition 4.24. OTT enjoys property (E) if and only if (4.id} iv a morphism of
transition Systems with independence.

Proof. (=). It is enough to show that (%, id) preserves independence. Suppose (s,a,8") T
(5,8,5"). By condition (E), there exists

(s,a,5") ~ (50,5] (5,b,5") ~ (5,b,5"),

and then, we have Diamgp(s.8',s",u). So, we have [(s,a,5)]~ co [(5.6,§)]~. From
Lemma 4.22, we have €(s') = €(s)U {[(s.2,5)]~} and €(F") = (YU {[(5,5,5)]-.}.
Therefore, (%(s),a, E(s") I (¥(3),b,4(s")).

(<). Suppose that (¥,id) preserves independence. Then (s,a,5') I (5,b,5") im-
plies (4(s),a,%4(s')) I (€(5),b,%(5')), that is [(5,@,5')]~ co [(5,6,5)]~. Then, by
repeated applications of Lemma 4.18, we can find a path n(s, a,s" s, b,u) where
(s,a.5))~ (56,8 I (8',b,u) ~ (§,b,5). Then, by property (iii} of transition system
with independence, there exists s” and (s,b,5") ~ (', b,u) ~ {5,5,5"), i.e., OTI enjoys
property (E). [

Finally, we can define, for each labelled event structure ES a morphism (#,id) :
ES — otsiles o les.otsi(£S) as a candidate for the unit of the adjunction. Let us
consider n such that

ne) = [(¢;a,c U {e})]~.

We have already shown in Lemma 4.11 that (¢,a,¢’) ~ (¢,a,&"} if and only if {¢'\¢) =
(F\é). 1t follows immediately that 1 is well-defined and is injective. Moreover, since
any transition of fes.otsi(ES), say (c,a,c'), is associated with an event of ES, namely,
¢’\e, we have that y is also surjective. Finally, it is not difficult to show that (s, id)
is an isomorphism of labelled event structures whose inverse is (7,id), where 7 :

[(e.a, "N~ — (\e).

326 V. Sassone et al | Theoretical Computer Science 170 {1996} 297-348

Proposition 4.25 ((#,id) : ES — otsiles o les.otsi(ES) is universal). For any labelled
event structure ES, any occurrence transition system with independence OTI, and
any morphism (i, A) : ES — otsiles(OTT), there exists a unigue k in 0TS such that
otsides(k) o (n,id) = (1, A):

ES —D __, oteiless les.otsi(ES)

G0 otst les(i)

oisiles(OTT)

Proof. Let us define k : les.otsi(ES) — OTI. Clearly, in order to make the diagram
commute, & must be of the form (o, 1), for some o. Let us consider 4 : ¢ v F(0(c)),
ie.,

(6,0) = (&, id) o (7, A) : les.otsi(ES) — les.otsi(otsiles(OTIY) — OT1,

Then, we immediately have that o is well-defined and that {0,1) is a transition system
with independence morphism.

Now, we must show that the diagram commutes. We need to show that 5, 0n =
N o o = 1]. Consider e € Egs and let @ be £{e). If ATa, then #Ta and #;Ta and,
therefore, both sides of the above equality are undefined. Suppose otherwise that Ala.
We have

e’ [(e,a,c U {eP)] ™ [((e), Aa), fi(e) U {ii(e)})]
= [(F (e, Aa), F((e) U (i)} D]~

= [(o(e), Aa), a(c U {e}))]~.

Observe that (7(c), A(@), 7i(c) U {ii(e)}) belongs to les.otsi(otsiles(OTT)) and is as-
sociated with the event #(e) of otsiles(OTT). Then, from Lemma 4.22, we have
[(F#(7(c)), Xa), F(F(c) U {fi{e)} N} = fj(e). The last step to prove the universal-
ity of (#,id) is to show that k is the unique transition system with independence
morphism from les.otsi(ES) to OT7 which makes the diagram commute. Let us sup-
pose that there is &’ which does so. It must necessarily be &' = (g’, 4). Observe from
the first part of the proof that in order for the diagram to commute, we must have
R ([(e,a,cU{e})]) = [(0Ce), Ma), ' (eU{e} . = fite) = [(alc), ia),o(cUle})],
for any e such that 1|/(e). Exploiting this fact, it is easy to show by induction on the
cardinality of c that ¢’ = 6. O

Therefore, we have the following theorem.

Theorem 4.26 (les.otsi 1 otsides). The map les.otsi extends ro a functor from LES
fo oTSI| which is left adjoint fo otsiles. Since the unit of the adjunction is an iso-
morphism, the adjunction is a coreflection.

V. Sassone et al ! Theoretical Compuier Science 170 (1996) 297-348 327

Next, we show that (&,id) is the counit of this coreflection. Actually, now
the task is fairly easy: by general results in category theory [7, Ch. IV, p. 81], the
counit of an adjunction can be determined through the unit as the unique mor-
phism & : otsiles o les.otsi(OTI) — OTI which makes the following diagram
commute:

(g0}

otsiles(OTT) oist.leso les.otsi o otsi les(OTT)

atsi les(e)
(id,id)

otsi.les(OTI)

However, in the proof of Proposition 4.25, we have identified a general way to find
& From it we obtain ¢ = (&, id) o (id, id), which is (&, id).

The results we have shown earlier about (&, id) make it casy to identify the full
subcategory of oTS! and, therefore, of TSI which is equivalent to LES, ie., the
category of those transition systems with independence which are (representations
of) labelled event structure. Such a result gives yet another characterisation of (the
finite elements of) coherent, finitary, prime algebraic domains [10,21]. Moreover,
this axiomatisation is given only in terms of conditions on the structure of transition
systems.

By general results in category theory [7, Ch. IV, p. 91], an equivalence of
categories is an adjunction whose unit and counit are both isemorphisms, ie,
which is both a reflection and a coreflection. Then, Proposition 4.24 gives us a can-
didate for the category of occurrence transition system with independence equivalent
to LES: we consider oTSI the full subcategory of oTSI consisting of those oc-
currence transition systems with independence satisfying condition (E). To obtain the
result, it is enough to verify that les.otsi : LES — 0TSl actually lands in oTSIg.
In fact, this guarantees that the adjunction les.orsi 4 otsiles : LES — oTSI re-
stricts to an adjunction LES — oTSIp whose unit and counit are again, resp-
ectively, (n,id) and (%#,id), which are isomorphisms. It follows then, that
oTSl; = LES.

Proposition 4.27. The occurrence transition system with independence les.otsi(ES)
satisfies condition (E).

Proof. Suppose (c.a,c¢’) I (¢,b,¢") and let (¢\¢) = {e} and (&\¢) = {&}. Then, we
have e co 2. It follows that ¢ = (|e]\{e}) U (|€]\{€}) is a finite configuration of ES
which enables both e and . Then, (c,a,¢’) ~ (c,a,cU {e) I (¢,b,cU{e}) ~ (&,b,C")
in les.otsi(ES). O

Thus we have the following.

328 V. Sussone et al.] Theoretical Computer Science 170 ({996) 297-348
Corollary 4.28. The categories LES and oTSlg are equivalent.

We can interpret such a result as a demounstration of the claim that transition systems
with independence are a generalisation of labelled event structures to a system model.
However, the fact that just unfolding transition systems to their occurrence version
does not suffice to get a category equivalent to LES, stresses that the independence
relation on transitions is not exactly a concurrency relation. As an intuitive explanation
of this phenomenon, it is very easy to think of a transition system with independence
in which independent transitions never occur in the same path, i.¢., intuitively, they
are in conflict. In the light of such observation, condition (E) can be seen exactly as
the condition which guarantees that independence is concurrency. It is then that the
simple unfolding of transition systems with independence yields the category oTSI,
equivalent to LES.

To conclude this section, we briefly see that the coreflection LES <+ oTSI cuts
down to a coreflection dLES o dTSlwhich composes with the coreflection given
earlier in this section to give a coretlection dLES < dTSI. As a consequence, we
have that ALES 22 doTSl;. These results are shown by the following proposition.

Proposition 4.29. If ES is deterministic, then les.otsi(ES) is determunistic. If OTI is
deterministic, then oisiles(OTI) is deterministic.

Proof. If (c,a,c U {e}) and {c,b,c U {&}) are transitions of les.otsi(ES), then ¢ - e
and cF &, and then a # b.

Suppose that ¢ F [(s,a,5)]~ and ¢ & [(5,b,5")].. Clearly, we can assume c¢ finite,
Then, {c,a,cU{[(s,a,5")]-.}), (€. b, e U{[(§,5,5)].}) are in les.otsi(otsiles(OTI)) and,
therefore, (#(c), a, ¥ (c U {[(s,a,5)]- 1)), (F(c), b, F(cU{[(5b,5")]~})) are in OTT.
Then a #£ &b

These results are summarised in the following theorem.

Theorem 4.30 (Moving along the ‘behaviour/system’ axis).

TSI<————’ TS

e

[T

H_

V. Sassone et al. | Theoretical Computer Science 170 (1996) 297-348 329
5. Deterministic transition systems with independence

Now, we consider the relationship between dTS| and TSI, looking for a generali-
sation of the reflection dTS << TS in order to provide an ‘abstraction functor’ from
transition systems with independence to a linear time framework. Of course, the gues-
tion to be answered is whether a left adjoint for the inclusion functor dTSI| — TSI
exists or not. Although the answer is positive, it turns out that this is actually a rather
complicated issue.

At a first sight, one could be tempted to refine the construction given in case of
transition systems by defining a suitable independence relation on the deterministic
transition system obtained in that way. However, this would not work, since, in general,
no independence relation yields a transition system with independence. Let us see what
happens with the following example.

Example 5,1. Consider the transition system 7' in the following figure together with
its deterministic version ts.dis(T).

e
a o
J ‘A t5.dty
' s
bl
u u

Now, suppose that (s,a,s”) I (s',b,u). Observe, that, in order to establish the reflec-
tion at the level of transition systems with independence, since the unit would be a
morphism from the original transition system to the deterministic one, independence
must be preserved. Therefore, whatever the independence relation on the deterministic
transition system is, it must certainly be ([s]~, @, [s']~) 7 ([']~, &, [#]~). Then, we do
not have a transition system with independence, since axiom (iii) fails.

However, in the rest of this section, we will show that it is always possible to
‘complete’ the deterministic transition system obtained by ¢s.dfs in order to make it a
transition system with independence. Moreover, such a completion will be ‘universal’,

so that it will give the reflection we are seeking. In the case of the transition system
above, the resulting transition system is

[s]~

N

X

Is"]~ “
[ORNY

Tul.

330 V. Sassone ei al. | Theoretical Computer Science 170 (1996) 297-348

Observe that it may also not be possible to define [to be irreflexive. This happens
when in the original transition system with independence there are diamonds of con-
currency whose transitions carry the same label, for these, when ‘collapsed’ by the
deterministic construction, become autoindependent, i.e., independent of themselves. It
is ecasy to realise that the only way to cope with such transitions is by eliminating them
from the transition system. In other words, autoconcurrency, i.e., concurrency hetween
events carrying the same label, add a further level of difficulty to the problem, since
it causes autoindependence in the deterministic transition system.

Definition 5.2 (Pre-transition systems with independence). A pre-transition systems
with independence is a transition system together with a binary and symmetric relation
I on its transitions.

A morphism of pre-transition systems with independence is a transition system mor-
phism which, in addition, preserve the relation .

Let pTS| denote the category of pre-transition sysiems with independence.

Given sets § and I, consider triples of the kind (X,=,7), where X C§ - L* = {so |
s € Sand ¢ € L*}, and = and [are binary relations on X. On such triples, the
following closure properties can be considered:

(Cl1) x=zandzee€ X implies xa € X and xa = za;
(C12) x=zandzal yc implies xal yc;
(C13) xab = xba and xa I xb or xa I xab

implies xal yc < xba l yc.

We say that (X,=,7) is suitable if = is an equivalence relation, J is a symmeltric
relation and it enjoys properties (Cl1), {CI2) and (CI3). Suitable triples are meant to
represent deterministic (pre)transition systems with independence, the elements in X
representing both states and transitions. Namely, xa represents the state reached from
(the state corresponding to) x with an a-labelled transition, and that transition itself.
Thus, equivalence = relate paths which lead to the same state and relation / expresses
independence of transitions. With this understanding, (C11) means that from any state
there is at most one a-transition, while (C12) says that / acts on firansitions rather
than on their representation. Finally, {Cl3) — the analogous of axiom (iv} of transition
systems with independence — tells that transitions on the opposite edges of a diamond
behave similarly with respect to 7.

For x £ §-L* and a € L, let x[a denote the pruning of x with respect to a. Formally,

xla if @ =5,
sla=s and (xb)fa = { (xla)p otherwise.
Of course, (x[a)[b = (x[b)]a and thus it is possible to use unambiguously x4 for
ACL. Given X C8-L*, we use X [4 to denote the set {x[4 |x £ X} whilst, for R a
binary relation on X, R[4 stands for {(x[d4, ¥[4) | {x,») € R}.

V. Sassone et al.| Theorerical Computer Science 170 (1996) 297-348 331

For a transition system with independence 77 = (S,s',L, Tran,I), we define the
sequence of triples (5;,=;,1;), for i € o, inductively as follows. For i = 0, (8o, =0,40)
is the least (with respect to componentwise set inclusion) suitable triple such
that

S U {sa | (s,a,u) € Tran} C Sy;
{(sa.u) | (s,a,u) € Tran} C =q;
{(sa,s'B) | (s,a,u) I (s',b,u")} CIp;

and, for i > 0, (5;,=;.1;) is the least suitable triple such that

() Sl CS8; =4 C=5 (Lo \TA; M4 S
(DY xa, xb € 5;—1A;~ and xa ({;_ \TA;-1)14;-1 xb

implies xab, xba € §; and xab =; xba,
(DZ) xa, xab € S.'_l fAj_l and xa (.Ij_] \TAffl)rAiil xab

implies xb, xba € §; and xab =; xba;

where 4; = {a € L |xal;xa} and TA; = {(xa,yb) € L; |a € 4; or b € 4;}.

The inductive step extends a triple towards a transition system with independence by
means of the rules (D1) and (D2), whose intuitive meaning is clearly that of closing
possibly incomplete diamonds. The process could create autoindependent transitions,
namely the transitions with labels in .4;_;, which must be eliminated. This is done by
() which removes them from S;, =;, and I;.

A simple inspection of the rules shows that if @ € 4;, then it will never appear again
in the sequence. Thus, if x is removed from §;, it will not be reintroduced, and the
same applies to the pairs in =; and L. Then, it is easy to identify the limit of the
sequence as

(so=Uns, ==UN=r L=UnNL).

i€w i i€wjzi i€w [2i
Proposition 5.3. The triple (S,,=y,1) Is suitable. Maoreover, 1, is irreflexive.

Proof. Easy. [

The following proposition gives an easy-to-prove altemative characterisation of
(S, =,) which will be useful later on. In the following let 4, denote |, 4;
and let T4, be | J,., TA,.

i€m

PIDPOSiﬁon 54. (Sm, Erm[m) = (Uze;u(Si rAw)a Ufew(zi TAm): Ufem(([i\TAw) rAw))

In the following we shall refer to the sets abtained by applying rules (<), (D1)
and (D2) te Sy, =1 and [;_, as the generators of the suitable triple (S;,=;7).
Similarly, sets S U {sa | (s,a,u) € Tran}, {(sa,u) | (5,a,u) € Tran} and {(sa,5'b) |

332 V. Sassone et al. | Theoretical Computer Science 170 (1996) 297 348

(s,a,u) I (s',b,u")} are the generators of (Sg, =g, 1p). We shall denote the generators
of (8;,=u1) by 48, y=,; and 1.
If 77 is deterministic then there is a neat characterisation of (8, =¢,{).

Lemma 5.5. Let TI he a deterministic transition system with independence. Then
(1) s =q §'B if and only if there is u € § and two sequences of transitions leading
from s to u with labels « and from s’ to u with labels j;
(ii) &' =¢ sa if and only if (s,a,5") € Tran.
(iii) sa fy s'b if and only if there exist (s,a,u) I (s',b,u') in TL

Proof. Observe that point (ii) is an easy corollary of point (i).

Consider X C 5 - L* such that s € X if and only if s € § and there is a sequence
of transitions {s,ap,80) - - - (§p—1,an,8,) in TT, where @y - - - a, is «. Then, consider the
relations =C X x X and 7 CX x X such that sx = & fi if and only if the two corre-
sponding sequences of transitions lead to the same state of 77 and s« 7 s'§ if and only
if the last transitions of such sequences are in the relation / of 71.

In order to show (i) and (iii) it clearly suffices to show that (X, =,1) = (S0, =0, /).
To this purpose, one first shows by induction on the structure of the elements of X
that (,8p. ,=s /o) (X, =1 C(S0, =p,{o). Then, since (So,=p,ln) is the least suitable
triple which contains .S, = and ,fo, the proof is easily concluded by showing that
(X,=.1) is suitable. [

This result admits the following immediate corollary.

Corollary 5.6, If TI is deterministic, for any x € 8y there is exactly one s € § such
that x =g s.

As anticipated before, ($;,=;,/;) encodes a deterministic pre-tramsition system with
independence which contains a deterministic version of the original 7/ we started from
{(apart from the autoindependent transitions). Formally, for each k € U {w}, define

TSys, = (Sx/=w [1=, L, Tran=,,1=.),

where

o ([x]=,.a [x']=,) € Tran=_ if and only if x' =, xa;

o ([x]=,a,[x']=,) I, ([F]=.,b.[¥]=,) if and only if xa I, x&;
o L= L\ Uj<tcAJ"'

Observe that TSys, is well defined. In fact, conceming Tran=_, since xa € §; if and
only if xa € §; for any x =; x, and since x* =; x« if and only if x' =; xa for any x =; x
and x' =; x’, its definition is irrespective of the chosen representative. The same holds
for the definition of /=, since xa /; x'b if and only if xa [; x'b for any x =; x and
x = x

Proposition 5.7. TS8ys, is a deterministic pre-transition system with independence.

V. Sassone et al. | Theoretical Computer Science 170 (1996) 297 -348 333

Proof. TSys, is certainly a transition system and since (S., =,,{;) is suitable, I—_1is
symmetric. Moreover, since [x]=, — [x']=, if and only if x' =, xa, then if [x]= >
[x"1=,, we have [x"]=_= [x']=,. Therefore, TSys, is deterministic. [J

Lemma 3.5, its Corollary 5.6 and the previous proposition show the similarity of
T'Sys, with the construction of the deterministic version of a transition system as given
in Section 2. Actually, starting from them, it is not difficult to see that, when applied to
a transition system 75, i.e., a transition system with independence whose independence
relation is empty, T.Sys, is a deterministic transition system isomorphic to ts.dts(TS).
This fact supports our claim that the construction we are about to give builds on ts.drs.
However, in Section 2 a simpler construction was enough, because we did not need to
manipulate transitions but only states.

Proposition 5.8. The pair (in,id), where in 1 § — Sy/=q is the function which sends s
to its equivalence class [s]=, and id is the identity of L, is a morphism of pre-transition
systems with independence from TI to TSys,. Moreover, if TI is deterministic, then
(in, id) is an isomorphism.

Proof. Since (s,4,5’) € Tran implies that 5’ =, sa which in turn implies that
([sl=,,a.[5']=,) € Tran=,, we have that (in,id) is a morphism of transition sys-
tems. If T7 is deterministic then from Corollary 5.6 and Lemma 35.5(ii), (s,a,5) €
Tran if and only if ([s]=,,a,[s']z,) € Tran=,. and thus (ir,id) is an isomorphism
of transition systems. Moreover, since (s,a,s') I (5,5,5') implies sa I, §b, which in
turn implies ([s]=,,a[5'1=,) 1=, ([5]=.5,[8"1=,), it follows that (imid) is a mor-
phism of pre-transition systems with independence. Finally, from Lemma 35.5(iii), if
TI is deterministic, then (s,a,5') I (55,5 if and only if ([s]z,,a[s]=,)
I=, ([§)=,,6.181=,), ie., (in,id) is an isomorphism of (pre)transition systems with
independence. [J

For i € w\{0}, consider the pair (in;,id;), where in; : Si—1/=;_1 — Si/=; is the
function such that im,([x]=,_) = [x[4i—;]=, and id; : L;; — L; is given by id:(u) = a
if a A, and id;fa otherwise. Then, we have the following:

Lemma 59. The pair (in;,id;) : TSys,_, — TSys; is a merphism of pre-transition
systems with independence.

Proof. Observe that since x =;_; y implies that x[4;,_ =; v[A4;_1, in; is well-defined.
We check the conditions in Definition 5.2.

(i) n([s"1=,_) = s' 14;)=, = [+)=.-

(ii) Consider a transition [x]=,_, —— [xa)=_, in TSys,_,. Now, if a € 4,_j,

then in([x]=,_) = [x[A4;1]= = [xald;_1]ls, = ind[xalz,_,). Otherwise, xald;_ =

334 V. Sassone et al.| Theoretical Computer Science 170 (1996) 297-348
(x{A4;_1)a, and then

in([xl=,) =[x dimi)s, = [(x4i-1)als, = ind([xal=,,).

(i) If ([x]=,_,.a. [xal=,) Iz, ([¥I=_,. B, [¥bl=,_,) and a,b & A;_;, then we have
xali_y yband (x[4; 1)al; (¥T4;i)b, ie,

(I Mim1)z, =2 [(xM4im)als) 2=, ([Micils, — (71418,
e, (in([x]=_,) — m[xal=,_,)) I=, (ind([¥)=,) — in([pb)=_)). O
It is interesting to notice that 7'Sys,, is a colimit in the category pTSI.

Proposition 5.10. 7'Sys,, is the colimit in pTS| of the w-diagram

9 = TSys, G.id) TSys, bddy) | (moid) TSys;

(mynid)
Proof. The reader is referred to [7, Ch. III, p. 62] for the definition of the categorical
concept involved.

For any i € o, consider the function in} : S;/=; — S./=. such that in’([x]=,) =
[x[A4w]=, and let idy : L; — L, denote the function such that id(a) = a if a & 4,
and id} Ta otherwise. As for Lemma 5.9, it is easy to see that (inf’, id?) is a morphism
of pre-transition systems with independence from T.Sys, to T'Sys,,.

Since for each i € w we have inf; o iy = in{’ and id},; o idin; = idy, TSys,
and the morphisms {(in{",id;’) | { € w} form a cocone in pTSI with base £. Now,
consider any cocone {(o;,4) : TSys; — PT | i € w}, for PT a pre-transition system
with independence. Then, by definition of cocone, it must be ¢; = a;y) oin;; for each
i € w,ie, 6(x]z,) = g41{[x14;]=,,), whence it follows easily that for any x € §;
and y € S; such that x[4, = y[4, it must be 6:{[x]=,) = 0,([y]=,). Moreover, again
by definition of cocene, it must be 4; = A;4) o id;;. This implies that for ¢ € L\A,
we have A;(a) = A4 (@) for any i € w, while for a € 4; it must be 4;Ta for any i</
In fact, if a & A, since id,,;(a) = a, it must be A;,(a) = Ai.i(a). Suppose instead that
a € A;. Then, id;y;Ta and thus 4;Ta. Now, since id,(a) = a if i<, it follows that
A;Ta for any i<j.

Now, define (&,4) : TSys, — PT, where 6([x]=)} = a(|%]=,) for any { and £ € §;
such that 14, = x, and take 1 to be the restriction of 4, to L,,. Exploiting the features
of the morphisms (o;, A;), it is easy to see that (¢;, 4;) = (6,):)o (in?,id?) for each i,
and that (&, /) is the unique morphism which enjoys this property. Observe that, in view
of Proposition 5.4, & could be equivalently defined by saying that #([x]=,) = ¢:i([x]=)
for any x such that x € §;. [J

Besides enjoying a (co)universal property, 7'Sys, has another property which the
reader would have already guessed: it is actually a deterministic transition system with
independence.

V. Sassone et af. | Theoretical Computer Science 170 (1996) 297-348 335
Proposition 5.11. 7Svs,, is a deterministic transition system with independence.

Proof. Proposition 5.7 shows that Tsys,, is a deterministic pre-transition system with
independence, while it follows immediately from Proposition 5.3 that /— is irreflexive.
Let us check the axioms of transition systems with independence.

(1) Vacuous, since TSys,, is deterministic.

(ii) Suppose that ([x]=,,a,[x')=,) I=, ([x]=,.b,[x"]=,). Then, xa I, xb and, there-
fore, there exists an index i such that xa I;_, xb, which, in turn, implies that there
exist xab =; xba € §;. Then, by (CI3), xa I, xb implies xba I; xb and xb I; xa implies
xab I; xa. Since a,b € 4, and x[A4,, = x, then we have xab =, xba, and xa I, xab and
xb I, xba, which implies that there exists [xab]=, = [u]=, = [xbal=, in S,/=, such
that ([x]=,. a4, [¥1=,) L=, (W=, 8. [ul=,), and ()=, b, 18")=,) I, (¥ 1=, @ [4)=,).

(iii) Similar to (ii).

{iv) It is enough to show that

([x]Ema a, [x,]f-_w) (=u=) ([‘x”]Ewyas [“]Ew) IEm ([f]Ew, b, [f’]z,,,)
implies ([x]=,.a,[x'l=,) L=, ((F]=,.6,[F]=).

Suppose that the ‘<’ case holds. Then, there exists i such that X’ =; xa, x” =; xb,
xa I; xb, xab =; u =; xba, and xba I; xb. Then, by (CI3), we have xa I; xb. Then,
xa I, b, whence it follows that ([x]=,,a,[x']=,) I=, ([X]=,.b.[X')=,)-

A similar proof shows the case in which “>~’ holds. O

Thus, TSys,, is the deterministic transition system with independence we will as-
sociate to the transition system with independence TJ/. Formally, define the map dtsi
from the objects of TS| to the objects of dTS| as dtsi(TT) = TSys,,. Fig. 3 exemplifies
the construction in an easy, vet interesting, case.

Consider TT = (S,s', L, Tran,I) and TT' = (§',s",L’, Tran',1") together with a mor-
phism (o,7) : TT — TI' in TSI In the following let (S, =,J) and (S.,=.,1),
k € w U {w}, be the sequences of suitable triples corresponding, respectively, to T7
and TI'. Moreover, we shall write 4, Tdx, Ly, TSps,. AL, TA;. L, and TSys, to
denote the sets and the transition systems determined respectively by (S, =, /.) and
(Sp, =i, 1y). We shall construct a sequence of morphisms (63, 4;) : TSys; — TSysi,
which will determine a morphism (., Aw) : TSys,, — TSys,, i.e., disi ((a, A)).

For i € w, let 6; be the function such that

ogix)=0o(x) forxe S
and

axa)= {

where

= { 1@ T LU 8,

oi(x)si(a) if Aila,
oi(x) otherwise,

T otherwise.

336 V. Sassone et al | Theoretical Computer Science 170 (1996) 297-348

TSys =x Te
1Bl=p [l)=q = {1,0a} Dal=q {z, [Obl=,
[2)2q = (2,06} [Oaf= I=q {202,
Ay | Bl = (32000
k=qQ ~ N [Q]E“
b
[WEN
(2al=, =, [z, = {1,0a} [Qal=, 1=, [0b]=,
, {2q]s, = {2,00} [0a]=, Iz, (Oab]s,
SN 8], = {3,25,000} 08]=, I=, [Obal<,
e=t | pie, - e, [2a]=, = {2a, 1b,Dab,Qba} (18]=, Iz, (2a]=,
[Dalzy 7=y (28],
\ % [Obalz, f=, (Obb)=,
[OJE]
[3a]=, [0]=, = (0} [Dal=, {=, [Ob]=,
. o (L=, = {1,0b} {Da=y 1=, (16]=,
{2l=7 = (2,00} {06}, Zay [2a]=,
Bl=; = {3,24,0g4a} [1b]=, 12, [2a]u,
[2al=, < Bl=a | [28)2, = {10, 25, 05, 0ab} [2a)e, /=, [2b]=,
s a [38]=, = {3,2ab, 2ba, Laa, [2al=y f=, [2bb]=,
k=2 & QOabb, Obaa, Daba} l25]a= ,E: [30152
(=g = [2}=, (2bbl=, 1=, [3a)=,
y\ /
10]=,
ISE}EN
Comments. Suppose that the construction starts
b : from TSys,, where the dotted lines indicate re-
Iation I. TSys, faile to a be transition system
{2a) < 13l= with independence because there is no diamond for
g S| the transitions sticking out [O]w,. In TSys, this
o a problem has been salved by use of {01}, However,
K=w 5 now there i# no diamond for the transitions ieaving
from [2]g, , which are independent because of the
Wew < ey clogure (C13). The problem is fixed in TSys, which
is & transition system with independence and co-
/ incides with TSys,_.
a b
[(VE

Fig. 3. An example of the construction of T.Sys .

V. Sassone et al. [Theoretical Computer Science 170 (1996) 297-348 337

Lemma 5.12. For all i € w, we have that
(Y x€8; implies oi(x)€S];
(iiy x =, ¥y implies oix) =] 0,(¥);
(iii) xa f; yb and A;la, ;L6 implies o{xa) I} 6,(yb).

Proof. The three points are shown simultaneously by induction on i. The base case
for i = 0 follows directly from the definition of &y and from the fact that (¢,4) is a
morphism. Concerning the inductive step, the proof proceeds by first showing that (i),
(i) and (iii) hold for the generators of (8;,=;,1;), and it concludes by checking that
the closure rules preserve them. Both the tasks are fairly easy. O

It follows immediately from Lemma 5.12 that for i € w, &,, defined to be the map
which sends [x]=, to [g:(x)]=/ is a well-defined function from §;/=; to Si/={. Then,
the following lemma follows easily.

Lemma 5.13. For i € o, the map (6;,%;) 1 TSys; — TSys, is a morphism of pre-
transition systems with independence.

For any i € w, consider the morphism of pre-transition systems with independence
(i, id?Yo(61, 44) : TSys; — TSys!,. Recall that for x € §;, we have that o, (x[4,) =
oi(x[4))[A] = o:(x} 4], from which it follows that o;.1(x14;)}4,, = g:(x)[4),. Then

in” o Gi([x]z,) = in(los(x)] =) = [o:(x) 4},)=,
=[a (et [4,)=;, = g (o (x[4))=,)
=in3; o Gup[x1dil=) = %) 0 Gipy 0 ini([x]=,),

ie, n®od = inf; ¢ &iyy o ingy; for any i € w. Moreover, since a € 4; implies
Aa) € 4}, it is easy to see that id;” o d; = id}; o Aiyj 0 id;.; for any i € . Thus, we
have that

{(in*,id{"Y o (61, &) : TSys; — TSys), | i € w}

is a cocone for the w-diagram 2 given in Proposition 5.10. Then, there exists a unique
(Gun Aw) : TSys,, — TSys., induced by the colimit construction, which is the morphism
of transition systems with independence we associate to (a,1), i.e., dtsi((o,/'L)) =
(6w, Aw). From Proposition 5.10, it is immediate to see that d,([x]=,) = [a:(X) TAL,]EL
for £ € §; such that x{A4, = x, or, equivalently, 6,([x]=) = [cr,-(x)[Aiu]E; for any i
such that x € S;, and that ‘

\ A if A -
i) = { (@) if Aa) ¢ 4,

1 otherwise.

The following proposition follows directly from the universal properties of colimits.

338 V. Sassone et al. | Theoretical Computer Science 170 (1996) 297-348

Proposition 5.14 (disi : TS| — dTSI is a functor). The map disi is a functor from
TSI 20 dTSI.

The question we address next concerns what we get when we apply dtsi to a de-
terministic transition system with independence D71. We shall see that in this case
the inductive construction of T'Sys, gives a transition system which is ispmorphic
to DTI. More precisely, each =, -equivalence class of (Sprr), contains exactly ore
state of the original transition system, and the transition system with independence
morphism (in} o in,idy) : DTI — disi(DTI) — whose transition component sends
s € Sprr to [s]=, — is actually an isomorphism. Moreover, we shall see that its inverse
(e,id), where &([x]=_) is the unique & € Spgr such that 5§ =, x, is the counit of the
adjunction.

Lemma 5.15. Ler DTI = (S,s',L,Tran,I) be a deterministic transition system with
independence. Then, (5,=1,01) coincides with (Sp,=y,1y). Therefore, (ing oin,idy) is
an isomorphism whose inverse is (e,id).

Proof. We already know from Proposition 5.8 that (in,id) is an isomorphism if DT/
is deterministic. Thus, (in§ o im,idy) is an isomorphism if and only if (inf,idy) :
TSys, — TSys, is so, which, in tum, is a consequence of the first part of the
claim.

Observe that A4g = 9 and, therefore, T4y = B. In fact, since D77 and TSys,
are isomorphic, if there were xa Iy xa, then Ipyy would not be irreflexive. Then,
in order to show that ($),=1,01) = (Su,=p,lp), it is enough to sec that no new
clements are introduced by (D1) and (D2). In fact, in this case, (5,=)./;) would
be the least suitable triple which contains (Sy, =0, k) which is clearly (Sy.=0.0)
itself.

(D1) Suppose xa Iy xb. Then, by Corollary 5.6, there exist s, s', 5" € § such that
5§ =px, ¥ =g xa and 57 =g xb. Therefore, by Lemma 5.5, we have (5,a,5') I (5,5,5”)
in Tran. Since DT is a transition system with independence, there exists # such that
Diamg p(s,5",5",u), and then we have sab =5 u =p sba and, therefore, by (Cll), we
already have xab =¢ xha in (Sp, S0,).

(D2) Analogous to the previous case. L[]

Thus, we have proved the following corollary.

Corollary 5.16. (g,id) : disi(DIT) — DTI is a transition system with independence
isomorphism.

Before showing that (z,id) is the counit of the reflection of dTSI in TSI, we nced
the following lemma which characterises the behaviour of transition system with inde-
pendence morphisms whose target is deterministic.

V. Sassone et al ! Theoretical Computer Science 170 (1996) 297-348 319

Lemma 5.17. Let DTT be a deterministic transition system with independence and
consider a morphism (6,A) : TI — DTI in TSL Let TSys,, k € wU {w} be the
sequence of pre-transition systems with independence associated to TI. Consider a &
Ly and suppose that a € A;. Then Ala.

Proof. Consider the sequence of pre-transition systems with independence TSys. as-
sociated to DT and the morphisms (&, 4;) : TSys;, — TSys;. Since, as it follows from
Lemma 5.15, TSys; = TSys, for any i € w, the morphisms (&;, ;) : TSys; — TSys),
form a cocone for the w-diagram which defines T'Sys,,. Moreover, we have that any
A coincides with A, because A) = {. Then, if @ € 4;, reasoning as in the proof of

Proposition 5.10, we have that 4,Ta for any j<i, i.e., ATa. O
We are ready now to show that (g,id) is couniversal.

Proposition 5.18 ((¢,id) : disi(DT1) — DTT is couniversal). For any transition sys-
tem with independence TI, deterministic transition system with independence DTI,
and morphism (@,) : ditsi{TI) — DTI, there exists a unigue k : TI — DTT such
that (&,id) o disi(k) = (@, p):

dsiDTH—=2 v ppy
disi(k)]
(w12}
dtsi(TT)

Proof. Let us consider & = (o, 4), where a(s) = ¢([s]=,) and A is the function which
coincides with y on (L), and is undefined elsewhere. Observe that this is the only
possible choice for k. In fact, any &’ : 7/ — DT! which has to make the diagram
commute must be of the kind (¢',1") with A(a) = p(a) = Aa) for a € (L)
Moreover, by Lemma 5.17, if a € 4,,, it must be 1'7a, i.e., A’ = 1. Furthermore, ¢'(s)
must be an § in Spyy such that &([f]=,) = § coincides with ¢([s]=,), i.e., ¢’ is the o
we have chosen.

In order to show that (s,4) is a morphism of pre-transition systems with indepen-
dence, it is enough to observe that (o, 1) can be expressed as the composition of the
morphisms of transition systems with independence (¢, p) o (i} o in,idy) : TI —
dtsi(TT) — DTI. This makes easy to conclude the proof. [

Theorem 5.19 (disi H). Functor dtsi is left adjoint to the inclusion functor d181 —
TSl Therefore, the adjunction {dtsi,«) : dTS| — TSI is a reflection.

The adjunction dTSI <« TSI that we have so established closes another face of
the cube. In particular, we have obtained the following square, which matches the one

340 V. Sassone ¢t al | Thearetical Computer Science 170 (1996) 297-348

presented in Section 2:
TSl «——— T8
dTSl¢———dTS

6. Deterministic 1abelled event structures

In this section we prove that there exists a reflection from the category of deter-
ministic labelled event structures to labelled event structures. A reflection dLES —
LES does exist, for it follows from the reflections we have presented in the previ-
ous sections. In fact, the results in Sections 4 and 5 show that there exist adjunc-
tions

dLES =+ dTS] << TS! «<— LES.
Now, in order to show that there is a coreflection from dLES to LES, since dLES =

doTSlg and LES = oTSlg, it is enough to show that dTS[< TSI cuts down to a
reflection doTSlg <« 0TSlg. In this case, we have an adjunction

dLES = doTSlg —a 0TSl = LES,

whose right adjoint is isomorphic to the inclusion functor dLES — LES. Intuitively,
the left adjoint dles : LES — dLES is obtained by considering the occurrence transition
system with independence /es.otsi(ES) of the finite configurations of ES, construct-
ing its deterministic version by applying dts:, and then considering the labelled event
structure associated with such a deterministic transition system with independence, by
means of ofsi.les.

As usual, to establish that dTSI — TSI restricts to doTSlg —a 0TSlg, it is enough
to show that if 077 is an occurrence transition system with independence, then so is
dtsi(QTT), and that disi(OTT) satisfies (E) whenever QT7 does. Of course, this also
proves that 0TSI TS restricts to doTSI < oTSI.

In the following, Iet Q77 be an occurrence transition system with independence
and let (S, =.. /) and TSys,, k € @ U {w}, be the sequences of suitable triples and
pre-transition systems with independence which define disi(OTI).

Proposition 6.1 (doTS| <« oTS). If OIT is an occurrence transition system with
independence, so is disi(OTT).

V. Sassone et al | Theoretical Computer Science 170 (1996} 297-348 341

Proof. Recall from Section 4 that the states of OTY are equipped with a ‘depth’,
namely the length of the paths leading to them. Morcover, there is a transition s — s’
only if depth(s") = depth(s) + 1.

Observe now that TSys, is reachable and acyclic. To this purpose, recall that (the
transition system underlying) T'Sys, is obtained from (the transition system underlying)
OTI modulo the least equivalence which identifies states reachable from a common
state by two equally-labelled sequences of transitions. Since OTT is reachable, this
reduces to say that 5 = §° if and only if there are paths n, and ny in OTI such
that Aci(r;) = AcH(me), which implies that depth(s) = depth(s') whenever s =¢ 5'.
This makes our claims cbvious, showing also that all the paths in T.Sys, leading to
the same state have the same length, i.e., that depth extends smoothly to the states of
TSys.

A direct inspection of the closure properties (Cl1)}H{Cl3), of the rules (%), (D1)
and (D2), and of the definition of T'Svs,, shows that all the T'Sys,, and in particular
dtsi(OTI) = TSys,, are reachable, acyclic and have a notion of ‘depth’ defined by
the length of their paths.

Conceming the property of occurrence transition systems with independence, we
prove by induction on depth([z]z,) that, if ([¥']=,.b.[z]=,) and ([¥')=,.a,[2]=,)
are distinct transitions of T'Sys,,, then there exists a state [x]=, in TSys, such that
Diamgp([x]=,.[V']=., "=, [21=.)

(depth < 1). Vacuous, since drsi((OTT) is reachable and acyclic,

{depth > 1). It is enough to show that if ([y']=,.h.[z)=,) and (["']=,a[z]=)
belong to T'Sys;, i.e., ¥'b =; z =; y"a, then the required diamond exists in T'Sys,,. We
proceed by induction on i,

(i = 0). Since both transitions belong to T'Sys,, there are (s',b,u) and (s”,a,u’) in
OTT such that s* =, 3/, s" =, ¥, u =, z =, o/, and u = ¢/, Observe that, due
to the possible collapsing of autoindependent transitions, there can be more that one
pair of such transitions. Without loss of generality, we can assume # and #’ chosen at
minimal depth in QT1.

By definition, since u = z’ there exist paths m, and =, in OTT such that Aci(m,) =
ac = Act(m,). Let (v,c,u) and (/,c,u") be the last transitions on these paths. Since
v and v are reachable via a-labelled paths, we have v =y ¢’. Observe that ¢ ¢ A,,.
In fact, if ¢ € 4, since a,b € A, it would be (v,c,u) # (5',b,u) and (v',c,u’) #
(s",a,u"). Then, by the property of occurrence transition systems with independence,
there would be w and w' in OTT such that Diam,y(w, s, v,u) and Diam, (w',s" v, u")
and, therefore, (w,b,v) and (W, a,v') with w =, ¥y, w' =, "', v =, z =, ', and
depth(v) < depth(u), contradicting our assumption.

Since ([v]=,.c. [ul=,) = ([t']=p ¢, [4']<,), it follows that, if (v,c,u} = (&', b,u) and
(v',e,u'y = (5",a,u"), then ([s']=,.b.[1)=,) = ([s"]=,.a.[']=,), and there is noth-
ing to show. Therefore, without loss of generality, assume (v,c,u) % (s°,b,u). Then
there exists w in OT7 such that Diamp(w,s',0,u). In case, (v',c,u') = (s",a,u),
we have (["]=,,a.'l=,) = ([v]=,.¢ [¥]=,) and, therefore, the required diamond
Diamgp([w)=,.[s'1=,,[5"]=,, [#]=,). Finally, if instead (v/,c,u’) # (5",a,u’), there

342 V. Sassone et al | Theoretical Computer Science 170 (1996) 297-348

exists W in OTT such that Diam.,(w',s”,¢',u’). The situation is illustrated by the
following picture:

SN N
SNA) (NS

Su’

Since v = v/, the transitions ([w]=,,b.[¢]=,) and ([w']=,,a,[v]=,) belong ta TSys,.
We can assume that these are distinct, since [wl=, = W]z, and @ = & implies
again that ([s'|=,, b, [u]l=,) = ([s"]=,,4,{u]l=,). Then, since ¢ ¢ 4, and, therefore,
depth([vl=,) < depth([z]=,) in TSys,, by induction hypothesis, there exists [W]=,
such that Diam, ;([W]=,,[W]=,.[W')=,.[V]=,). Therefore, we have the following situ-
ation in T.Sys,:

Then, since T'Sys,, is a transition system with independence, by properties (i), (ifi)
and (iv) in Definition 3.7, there exists [x]z, completing the diagram to a cube as in
the following picture:

[u].

21N

1, vk, B,

1 Kl

wi, [xL, [,

NIEA

[W]Em

Clearly, it is Diam, ;([x]=,,[5']=,.{3")=, [#]=,). concluding this part of the proof.

V. Sassone et al. | Theoretical Computer Science 170 (1996) 297-348 343

(i > 0). We proceed by case analysis inspecting the rules that generated y'b =, y"a.
We start by proving the thesis for the generators ,S;, ,=,, and I, of (§;,=:,).

(3). Then we have b =;_, ¥"a, for some 7' and 3" such that 3'[4;_ = ' and
#'14,_1 = y", and the thesis follows by (inner) induction.

(D1) and (D2). Then y'b =; y"a arises from completing either xa I, xb, with
xa =i—1 ¥ and xb =,y V", or xa §;_ xab, with xa =,_; ¥’ and xb =;)", or,
symmetrically, xb {;,_, xba, with xb =,_| y" and xa =; y'. In all cases, we have
Diamg j{[x]=,, V1= [V"]=: [2]=,) in TSys; and therefore, since a,b ¢ 4,,, the required
diamond in TSys,,.

Concerning the closure properties, observe that (Cl2) and (Cl3) do not alter =;. If
instead v'b =; y"a follows from (Cl1), we have ¥’ =; y" and @ = b, which means
that ({y']=..b5,[z]=.) = ([’]=,,a.[z]=,). Therefore, in order to conclude the proof,
we only need to analyse the case in which ¥'b =; y”a is induced by closing transitively
s=p Le, when y'b .= yic1)=, - y=; yucn y=; ¥"'a. We proceed by induction on n,
the base case being already proved.

(Induction step). The situation in TSys, is illustrated by the following figure:

l2).,

e, Dk, oo de, [9"s,

By the previous part of this proof, there exists [w]=, such that, in TSys , we have
Diany (W)=, V1=, ¥1]=,[z]=,), and, by induction on n, there is [w']=, such that
Diam, o([W'ls,, Vil=» [V')=. [2]s,). Since depth([y;)=,) < depth([zl=,) in TSys,,
we are in the condition of exploiting the (outer) induction hypothesis and concluding
the proof as for the case (i =0). O

%3

Proposition 6.2 {doTSI; —< oTSly). If OTI satisfies (E), then dtsi(OTI) satisfies (E).

Proof. Observe that T.Sys, clearly enjoys (E), and that (E) is preserved by the rules
(¥), (D1) and (D2) and by the closures (CI11)(C13). O

Therefore, defining dles : LES — dLES as otsiles o disi o les.otsi we have the
following result.

Theorem 6.3 (dles 1). The mapping dles extends to a functor which is left adjoint
af the inclusion of ALES in LES. Then, (dles,—) is a reflection.

An example of the construction is given in Fig. 4.
The coreflection dLES <« LES closes the last two faces of the cube. So, our results
may be summed up in the following cube of relationships among models.

344 V. Sassone et al. | Theoretical Compuier Science 170 (1996) 297-348

I
!
!
I
I
(
f
f
!
+
O—0——G—— 0

les.oist

NAZZS L

Fig. 4. An event structure ES and dles(ES)

Theorem 6.4 (The cube).

T

|

V. Sassone et ol | Theoretical Computer Science 170 (1996) 297-348 345

6.1. An alternative construction for dles

It may be interesting to notice that, since TSys; is not a transition system with
independence, the sequence {T'Sys,}ie, which defines drsi(les.otsi(£S)) does not cor-
respond to a sequence of labelled event structures, Nevertheless, a sequence {Fu;}icyw
which characterises dles(ES) as a colimit in LES exists. In the following, we shall re-
port only the relevant definitions, omitting all the proofs, which can be found in [11, 14].

As in Section 35, we shall proceed by defining a sequence of triples (~;, <;,#;), each
representing a guotien! of the original labelled event structure in which — informally
speaking — the ‘degree’ of nondeterminism has decreased. The colimit of such a se-
quence will represent a deterministic event structure isomorphic to dles(ES). Also in
this case, the only way to cope with autoconcurrency is by eliminating it. However,
the reader will notice that the task is now much easier than in the case of transition
systems with independence.

Let ES = (E,%, <,£,L) be a labelled event structure, A(ES) denote the ‘autecancur-
rency’ set {a € L | Je,e’ € E,ecoe’ and £(e) = a = #(e)} and NA(ES) = {e € E |
£(e) & A(ES)} the associated set of ‘nonautoconcurrent’ events. Consider the sequence
of relations (~y, <, #), for k € w U {w}, where
s ~g={(ee)lec NA(ES)}; <o=<; #H=#

for i > 0,
e ~; is the least equivalence on NA(ES) such that
(1) ~j1 Sy

(i) e i1 €, ¢ £y e, £(e) =4()
lel o, #imlef, \{e'} and
lel g, #im1l€] o \€'}
implies e ~; &,

where |e| stands for {¢' € NA(ES) | &' <;e} and, for x, y C NA(ES), x#;y is a
shorthand for Ve € x, Ve' € y, e e,
e ¢’ if and only if V& ~; ¢ Jé ~ye é<;18;
e e#; ¢ ifand only if V&' ~; e’ Vé ~;e. et) &
and finally, for x = w,

o=Ur~ Sa=UN<n Ho=(H

1] i€ j>i i€w
Then, for & € o U {w}, define
Eve = (NA(ES)/rer, o ss b, INACES)),

where

& NA(ES)/~ is the set of ~-classes of NA(ES),
e fe]. <.~ [¢]., if and only if e<y &,

e [¢], #.. [¢']., if and only if e #, ¢/,

o £ ([e]l.,) = Z(e).

346 V. Sassone et al. f Theoretical Computer Science 170 (1996) 297-348

a # c # cC
./
G # c# ¢
./
G #C#C
a #CE #) 8.
E‘vu
a # c # c
|
/) #rc{c:'/
1 7/
‘__:"C
'e_f c
Evg E'v,,
(e~
|
[
...................... |
([~
|
LISV € %
Eﬂu

Fig. 5. The alternative construction of dles(ES) for ES in Fig. 4.

1t is proved in [11,14] that the mapping ES — Ez, is (the object component of)
a left adjoint to the inclusion dLES — LES. It follows that Ep, is isomorphic to
dles(ES).

Fig. 5 shows the sequence {Evy}, for the labelled event structure of Fig. 4. The
dotted avals in Fv; represent the events collapsed by ~; ;. In £, the classes [a].

V. Sassone et al | Theoretical Computer Science 170 (1996) 297-348 347

and [¢]~.,, at level i contain, respectively, all the g-labelled events and the two c-labelled
events at level i of the original event structure,

7. Conclusion

We have established a complete ‘cube’ of formal relationships between well-known
models for concurrency (and a new one). Thus, we have a complete picture of how to
translate between these models via adjunctions along the axes of ‘interleaving/noninter-
leaving’, ‘linear/branching’ and ‘behaviour/system’. Notice also the pleasant confor-
mity in the picture, with coreflections along the ‘interleaving/noninterleaving’ and ‘be-
haviour/system” axes, and reflections along 'linear/branching’.

A relevant role in this paper is played by the occurrence transition systems with
independence, which turn out to be a slight generalisation of labelled event struc-
tures and, therefore, to allow an easy, interesting characterisation of coherent, finitary,
prime algebraic domains. Conceming transition systems with independence, it is worth
remarking that TS| embeds fully and faithfully in the category of asynchronous tran-
sition systems via an easy construction: given T7, considering its underlying transition
system, label each transition with its ~-equivalence class, and take the independence
inherited by T7. Unfortunately, about the relationships between asynchronous transition
systems and transition systems with independence currently it does not seem possible
to give more than this embedding, since it, together with other natural ones, fails to
enjoy any universal property.

Axiom (i} of transition systems with independence, depending nontrivially on ~,
represents a ‘global’ constraint, as opposed to the others, which involve only local
information. This may be considered a slightly unpleasant feature of our definition. It
is an open question whether there exists alternative axiomatics for tramsition systems
with independence. However, one can identify weaker sets of axioms and yield kinds
of ‘generalised’ transition systems with independence which still enjoy important prop-
erties. For instance, removing axiom (i), replacing ‘there exists...” by ‘there exists a
unique...” in (ii) and (iii), and adding the following axiom:

SN SN
ZAN B

NN P

one obtains a calegory strictly larger than TSI which can replace it in the cube. It
may be interesting to remark that the axioms above, together with the conditions of
Definition 4.1, define exactly occurrence transition systems with independence.

It is worth remarking here that all the adjunctions in this paper would still hold
if we modified uniformly the morphisms of the involved categories by allowing label

348 V. Sassone et al. | Theoretical Computer Science 170 (1996) 297-348

components which, where defined, act identically. However, if we considered only total
morphisms, the reflections dTSI << TSI and dLES =< LES would not exist.

Although the choice of deterministic labelled event structures for behavioural, lin-
ear and noninterleaving models is sensible, it is not the unique possible choice. For
instance, in [16] the authors introduce a category of pomset languages and a category
of generalised trace languages which can replace dLES in the cube.

Finally, we mention that not all squares (surfaces) of the ‘cube’ commute. Of course,
they do with directions along those of the embeddings.

References

[1] M.A. Bednarczyk, Categories of asynchronous rransition systems, Ph.D. Thesis, University of Sussex,
Sussex, 1988,

[2] P. Degano, R. Gomicri, and 8. Vigna, On rclating somc models for concurrency, in: Proc.
TAPSOFT *93, Lecture Notes in Computer Science, Vol. 668 (Springer, Berlin, 1993} 15-30.

[3] M Droste, Concurrent automata and domains, Internat. J. Found Compur. Sci. 3 (1992) 389418,

[4] M. Hennessy, Algebraic Theory of Pracesses (Cambridge, MA, 1988).

[5] C.A.R. Hoare, Commmunicating Sequential Processes (Prentice-Hall, Englewood Cliffs, 1985).

[6] R.M. Keller, Formal verification of parallel programs, Comm. ACM T (19) (1976} 371-384,

[7] S. Maclane, Categories for the Working Mathematician, Graduate Text in Mathematics (Springer, New
York, 1971).

[8] A. Mazurkiewicz, Basic notions of trace theory, in: Lecture Notes for the REX Swmmerschool in
Temporal Logic, Lecture Notes in Computer Science, Vol. 354 (Springer, Berlin, 1988) 285-363.

[9] R. Milner, Communication and Concurrency (Prentice-Hall, Englewood Cliffs, 1989).

[10] M. Nielsen, G. Plotkin and G. Winskel, Petri nets, cvent structures and domains, Part 1, Theorer.
Comput. Sci 13 (1981) 85-108.

[11] M. Nielsen, V. Sassone and G. Winskel, Relationships between models of concurrency, in: Proc. REX
School “93. A Decade of Concurrency: Reflections and Perspectives, Lecture Notes in Computer
Science, Vol. 803 (Springer, Berlin, 1994) 425-476; appears also as Technical Report DAIMI PB 456,
University of Aarhus, Aarhus, 1994.

[12] C.A. Peiri, Kommunikation mit automaten, Ph.DD. Thesis, Institut fir Instrummentelle Mathcmatik, 1962.

[13] G. Plotkin, A structural approach to operational semantics, Technical Rport DAIMI FN-19, Computer
Science Department, University of Aarhus, Aarhus, 1981,

[14] V. Sassonc, On the semantics of petrd nets: processes, Unfoldings and Infinite Computations, Ph.D.
Thesis, TD 6/94 Universita di Pisa, March 1994,

[15] V. Sassone, M. Nielsen and G. Winskel, A Classification of Models for Concurrency, in: Proc. 4th
Internat, Conf. Concurrency Theory, CONCUR ‘93, Lecture Notes in Computer Science, Vol. 715
(Springer, Berlin, 1993) 82-96,

[16] V. Sassone, M. Nielsen and G. Winskel, Deterministic behavioural models for concurrency, in: Proc.
18th Internar. Symp. on the Mathematical Foundations of Computer Science, MFCS '93, Lecture
Notes in Computer Science, Vol. 711 (Springer, Berlin, 1993) 682-692.

[17] M.W. Shields, Concurrent machines, Comput. J. 28 (1985) 449-465.

[18] E.W. Stark, Concurrent transition systems, Theorer. Comput. Sci. 64 (1989) 221-269.

[19] G. Winskel, Event Structure Semantics of CCS and Related Languages, In: Proc. of ICALP ‘82, Lecture
Notes in Computer Science, Vol. 140 (Springer, Berlin, 1982) 561-567; expanded version available as
Technical Report DAIMI PB-159, Computer Science Department, University of Aarhus.

[20] G. Winskel, Synchronisation trees, Thearet. Comput. Sci. 34 (1985) 33-82.

[21] G. Winskel, Event structures, in: ddpances in Petri nets, Lecture Notes in Computer Science, Vol. 255
{Springet, Berlin, 1987) 325-392.

[22] G. Winskel and M. Nielsen, Models for concurrency, in: S, Abramsky et al., eds, Handbock of Logic
in Computer Science, Vol. 4, Semantic Modelling (Oxford University Press, Oxford, 1995).

