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Abstract 

Models for concurrency can be classified with respect to three relevant parameters: behaviour/ 
system, interleaving/noninterleaving, linear/branching time. When modelling a process, a choice 
concerning such parameters corresponds to choosing the level of abstraction of the resulting 
semantics. 

In this paper, we move a step towards a classification of models for concurrency based on the 
parameters above. Formally, we choose a representative of any of the eight classes of models 
obtained by varying the three parameters, and we study the formal relationships between them 
using the language of category theory. 

O. Introduction 

Much effort in the development of  the theory o f  concurrency has been devoted to 

the study of  suitable models for concurrent and distributed processes, and to the formal 

understanding of  their semantics. 

As a result, in addition to standard models like languages, automata and transition 

systems [6, 13], models  like Petri nets [1211 process algebras [9,4], Hoare traces [5], 

Mazurkiewicz traces [8], synchronisation trees [20] and event structures [10,21] have 

been introduced. 

The idea common to the models  above is that they are based on atomic units of  

change - transitions, actions, events or symbols from an alphabet - which are indivisible 

and constitute the steps out o f  which computations are built. 

The difference between the models may be expressed in terms of  the parameters ac- 

cording to which models  are often classified. For instance, a distinction made explicit ly 

in the theory o f  Petri nets, but sensible in a wider context, is that between so-called 
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'system' models allowing an explicit representation of the (possibly repeating) states 
in a system, and 'behaviour' models abstracting away from such information, which 
focus instead on the behaviour in terms of patterns of  occurrences of  actions over 
time. Prime examples of the first type are transition systems and Petri nets, and of 
the second type, trees, event structures and traces. Thus, we can distinguish among 

models according to whether they are system models or behaviour models, in this 
sense. Further distinctions are whether they can faithfully take into account the differ- 
ence between concurrency and nondeterminism and, finally, whether they can represent 
the branching structure of processes, i.e., the points in which choices are taken, or 
not. So, relevant parameters when looking at models for concurrency are: behaviour 
or system model, interleaving or noninterleaving model, and linear or branching time 
model. 

These parameters correspond to choices of  the level of abstraction at which we 
examine processes and which are not necessarily fixed for a process once and for all. 
It is the actual application one has in mind for the formal semantics which guides the 
choice of  the abstraction level. It can therefore be of  value to be able to move back 
and forth between the representation of a process in one model and its representation in 
another, if  possible in a way which respects its structure. In other words, it is relevant to 
study translations between models, and particularly with respect to the three parameters 
above. 

This work presents a first step towards a classification of models for concurrency 
based on the three parameters, which also represent a further step towards the iden- 
tification of systematic connections between transition based models. More precisely, 
we study a representative for each of the eight classes of  models obtained by varying 
the parameters behaviour/system, interleaving/noninterleaving and linear~branching in 
all the possible ways. Intuitively, the situation can be graphically represented, as in 
the picture below, by a three-dimensional frame of reference whose coordinate axes 
represent the three parameters: 

/ / Lin/Bran 
Int/Nonlnt V 

Our choices of  models are summarised in Table 1. It is worth noticing that, with 
the exception of the new model of  transition systems with independence, each model 
is well-known. 

The formal relationships between models are studied in a categorical setting, using 
the standard categorical tool of  adjunctions. The 'translations' between models we 
shall consider are coreflections or reflections. These are particular kinds of  adjunctions 
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Table 1 
The models 

299 

Beh/Int/Li n 
Beh/Int/Bran 
Beh/Nonlnt/Lin 
Beh/Nonlnt/Bran 
Sys/Int/Lin 
Sys/Int/Bran 
Sys/Nonlnt/Lin 
Sys/Nonlnt/Bran 

Hoare languages HI. 
synchronisation trees ST  
deterministic labelled event structures dLES 
labelled event structures LES 
deterministic transition systems clTS 
transition systems T__SS 
deterministic transition systems with independence dTSl 
transition systems with independence TSl 

between two categories which imply that one category is embedded, fully and faithfully, 
in another. 3 

Here we draw on the experience in recasting models for concurrency as categories, 
detailed, e.g., in [22]. Briefly the idea is that each model (transition systems are one 
such model) will be equipped with a notion of morphism, making it into a category 
in which the operations of  process calculi are universal constructions. The morphisms 
will preserve behaviour, at the same time respecting a choice of granularity of  the 
atomic changes in the description of processes - they are forms of simulations. One 
of their roles is to relate the behaviour of  a construction on processes to that of  
its components. The reflections and coreflections provide a way to express that one 
model is embedded in (is more abstract than) another, even when the two models are 
expressed in very different mathematical terms. One adjoint will say how to embed the 
more abstract model in the other, the other will abstract away from some aspect of  
the representation. The preservation properties of adjoints can be used to show how a 
semantics in one model translates to a semantics in another. 

The diagram below, in which arrows represent coreflections and the 'backward' 
arrows reflections, shows the 'cube' of  relationships summarizing the results of this 
paper. 

TSI,~ ~ T_SS 

LES~ 

J 
dLES ~ ~ HL 

3 Here a coreflection is an adjunction in which the unit is a natural isomorphism, and a reflection an adjunction 
where the counit is a natural isomorphism. 
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Although our main concern here is conceptual, on abstract relationships between 
models, of course all the 'abstraction' adjoints have clear computational meanings and, 
therefore, possible applications. In particular, moving along Nonlnt  ~ Int enforces 
the reduction of concurrency to nondeterminism, whilst moving along Sgs  ~ Beh 
is essentially moving from 'machines' to their 'behaviours'. The translations Bran H 
kin purge the models from nondeterministic branching, enforcing a linear time setting. 

The usefulness, e.g., in specification, verification, and semantics, of  these reductions is 
largely proved in literature. 

Establishing the coreflection LES ~ TSI, the new notion of occurrence transition 
systems with independence arises naturally. These prove to be rather interesting struc- 
tures. In particular, by means of them we shall identify yet another characterisation 

of coherent, finitary, prime al�ebraic domains, one expressible simply in terms of the 
structure of transition systems. 

Although most of  the chosen models are well known, among the adjunctions in 
the cube only HI_ ~ s-r, ST ~ T_SS and ST ~ LES have already appeared in 
literature. Some related results are presented in [2], in which the authors focus on 
the interleaving/noninterleaving and linear/branching axes studying the relationships 
between four chosen models of  concurrency different from ours. 

This paper is a full and extended version of [15]; some of the results presented here 
appear also in [11, 14]. In order to keep the size of the paper in reasonable bounds, 
some of the most technical proofs are only sketched. 

I. Preliminaries 

In this section, we study the interleaving models. We start by briefly recalling some 
well-known relationships between languages, trees and transition systems [22], and 
then, we study how they relate to deterministic transition systems. 

Definition 1.1 (Labelled transition systems). A labelled transition system is a struc- 
ture T = (S, sI,L, Tran) where S is a set of  states, s 1 E S is the initial state, L is a 
set of labels, and Tran c_ S x L x S is the transition relation. 

The fact that (s ,a,s  I) E Tranr - also denoted by s a ~ s/, when no ambiguity is 
possible - indicates that the system can evolve from state s to state s ~ performing an 
action a. The structure of transition systems immediately suggests a notion of simulation 
morphisms: initial states must be mapped to initial states, and for every action the 
first system can perform in a given state, it must be possible for the second system 
to perform the corresponding action - if any - from the corresponding state. This 
guarantees that morphisms are simulations. 

Definition 1.2 (Labelled transition system morphisms). Given the labelled transition 
systems To and T1, a morphism h" T --~ T ~ is a pair (a, 2), where ~ : STo ~ St1 is a 
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function and 2 : Lro ~ Lr, a partial function, such that 4 

(i) a(4o) = 41; 
(ii) (s ,a,s ' )  E Tranro implies 

( a ( s ) , 2 ( a ) , a ( s ' ) )  E Tranr, if 2+a, 
a( s ) = a( s t) otherwise. 

It is immediate to see that labelled transition systems and labelled transition system 
morphisms, when the obvious componentwise composition of  morphisms is considered, 

give a category, which will be referred to as "I'S. 

A particularly interesting class o f  transition systems is that of  synchronisation trees, 
i.e., the tree-shaped transition systems. 

Definition 1.3 (Synchronisation trees). A synchronisation tree is an acyclic, reach- 
able transition system S such that 

(st, a,s), ( s" ,b ,s )  E Trans implies s' = s" and a = b. 

We shall write ST to denote the full subcategory o f  T$  consisting of  synchronisation 

trees. 

In a synchronisation tree part o f  the information about the internal structure o f  sys- 

tems is lost, whilst the information about their behaviour is maintained. In particular, 
it is not anymore possible to discriminate between a system which reaches again and 

again the same state, and a system which passes through a sequence of  states, as far as 

they are able to perform the same actions. However, observe that the nondeterminism 

present in a state can still be expressed in full generality. In this sense, synchronisation 

trees are branching time and interleaving models of  behaviours. 
A natural way of  studying the behaviour of  a system consists of  considering its 

computations as a synchronisation tree, or, in other words, o f  'unfolding' the transition 

system by decorating each state with the history of  the computation which reached it. 

Definition 1.4 (Unfoldings o f  transition systems). Let T be a transition system. A 
path rc of  T is e, the empty path, or a sequence t l . . .  6,  n >~ 1, where 

(i) ti E Tranr, for i = 1 . . . . .  n; 

(ii) tl = (Jr, a l , s l )  and ti = ( S i - l , a i , s i ) ,  for i = 2 . . . . .  n. 
We shall write Path(T)  to indicate the set of  paths o f  T and ns to denote a generic 

path leading to state s. 
Define ts .s t (T)  to be the synchronisation tree (Path(T),e,  Lr,  Tran), where 

((h " "  tn),a,(tl " "  tntn+l)) E Tran 

¢:> tn = (Sn-l,an,Sn) and 6+1 = (Sn,a, Sn+l). 

4 We use f$ x to mean that a partial function f is defined on argument x. Dually, T stands for undefined. 
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This procedure amounts to abstracting away from the internal structure of  a tran- 

sition system and looking at its behaviour. It is very interesting to notice that this 
simple construction is functorial and, moreover, that if  forms the right adjoint to the 
inclusion functor of  S_ff in 1-S. In other words, the category of synchronisation trees 
is coreflective in the category of transition systems. The counit of such adjunction is 
the morphism (~b, idLT): ts.st(T) ~ T, where ~b :Path(T) ~ ST is given by ~(~) = Jr,  

and q~((t l ."  t,)) = s if tn = (s',a,s). 
While looking at the behaviour of  a system, a further step of abstraction can be 

achieved forgetting also the branching structure of  a tree. This leads to another well- 
know model of  behaviour: Hoare languages. 

Definition 1.5 (Hoare languages). A Hoare language is a pair (H,L), where 0 ¢ 
HC_L*, and sa E H =~ s E H. A partial map 2 : Lo ~ L1 is a morphism of Hoare 
languages from (Ho,Lo) to (H1,L1) if for each s E Ho it is 2(s) E H1, where 2 : L~ --* 

L T is defined by 

2 ( ¢ ) = e  and ,~(sa)= [ ! ( s  
),~( ) if  2 ~a; a 

[, 2(s) otherwise. 

These data give the category H I  of Hoare languages. 

Observe that any language (H,L) can be seen as a synchronisation tree just by 
considering the strings of the language as states, the empty string being the initial 

a St  S t  . state, and defining a transition relation where s > if and only if sa = Let 
hl.st((H, L)) denote such a synchronisation tree. 

On the contrary, given a synchronisation tree S, it is immediate to see that the strings 
of  labels on the paths of  S form a Hoare language. More formally, for any transition 

system T and any path rc = (~,  al, sl )"" (Sn--1, a,, s,) in Path(T), define Act(n) to be 
the string al .- .  an E L~. Moreover, let Act(T) denote the set of strings 

{Act(~) [ zc E Path(T)}. 

Then, the language associated to S is st.hl(S) = Act(S), and simply by defining 
st.hl((a,2)) = 2, we obtain a functor st.hl : S_fiT ~ HI_. Again, this constitutes the left 
adjoint to hl.st : HL ~ ST given above. The situation is illustrated below, where 
represents a coreflection and ~ a reflection. 

Theorem 1.6. 

Hr., ,~ S T ,  --~ TS. 

The existence of a (co)reflection from category A to 13 tells us that there is a full 
subcategory of 13 which is equivalent to A (in the formal sense of  equivalences of  
categories). Once a (co)reflection is established, it is often interesting to identify such 
a subcategory. In the case of  H I  and ST the question is answered below. 



v. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348 303 

Proposition 1.7 (Languages are deterministic trees). The full  subcategory of  ST con- 
sistin9 of  those synchronisation trees which are deterministic, say dST, is equivalent 
to the category o f  Hoare languages. 

2. Deterministic transition systems 

Speaking informally behaviour/system and linear/branching are independent parame- 
ters, and we expect to be able to forget the branching structure of a transition system 
without necessarily losing all the internal structure of the system. This leads us to 
identify a class of  models able to represent the internal struc~re of  processes without 
keeping track of their branching, i.e., the points at which the choices are actually taken. 
A suitable model is given by deterministic transition systems. 

Definition 2.1 (Determinbtic transition systems). A transition system T is determin- 
istic if  

(s,a,s'), (s ,a,s")  E Tranr implies s' = s ' .  

Let dT$  be the full subcategory of T$  consisting of those transition systems which 
are deterministic. 

Consider the binary relation ~ on the state of  a transition system T defined as the 
least equivalence which is forward closed, i.e., 

s ~- s' and (s,a,u), (s ' ,a,u') E Trans. ~ u ~-- u', 

and define ts.dts(T) = (Sly_, [~]_~,LT, Tran~), where Sly- are the equivalence classes 
of  -~ and 

([s]~_,a,[s']~_) E Tran~_ ¢~ 3(g,a,g') E Tranr with g~_s and g' ~ s '. 

It is easy to see that the transition system ts.dts(TS) is deterministic. Actually, this 
construction defines a functor which is left adjoint to the inclusion dT$ ~ T$. In the 
following we briefly prove this fact. Since confusion is never possible, we shall not 
use different notations for different -~'s. 

Given a transition system morphism (~,2) : To ~ T1, define ts.dts((a,2)) to be 

(if, 2), where 6 : Sro/~----~ S r l /  r~ is such that ff([s]~_) = [a(s)]_~. 

Proposition 2.2 (ts.dts : T $  ~ dT$  is a functor). The pair (~,2) :  ts.dts(To) ---, 
ts.dts( T1) is a transition system morphism. 

Proof. We show that 6 is well-defined. For (s,a, sl), ( s ,a , s ' )  E Tranro, if  2Ta, 
then a(s ' )  = a(s) --- a(s");  otherwise, (a(s) ,2(a),a(s ')) ,  (a (s ) ,2 (a) ,a(s ' ) )  E Tranr~. 
Therefore, in both cases, a(s ~) "~ G(s').  Now, since (s,a,s ')  E TranTo implies 
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(a(s) ,2(a) ,a(s ' ) )  E Tranr, or a(s) = a(s'), it follows that a(-~)___- ~.  It is now easy 

to show that (6,2) is a morphism. [] 

It follows easily from the previous proposition that ts.dts is a functor. 
Clearly, for a deterministic transition system, say DT,  there are no pairs (s,a, st), 

(s ,a,s")  E TranDT with s t ¢ s". Thus, -~ is the identity, and we can choose a candidate 
for the counit by considering, for any deterministic transition system DT,  the morphism 
(e, id) : ts.dts(DT) ~ DT,  where e([s]_~) = s. 

Proposition 2.3 ((e, id) • ts.dts(DT) ~ D T  is couniversal). For any deterministic 
transition system DT,  any transition system T, and any morphism (rl, 2) : ts.dts( T)  
DT,  there exists a unique k in T__SS such that (e, id)o  ts.dts(k) = (r/,2)." 

ts.dts(DT) (~,id) " DT  

ts ats( ~ ) l , , , ~ .  ~ ) / /  

ts.dts(T)" 

Proof. The morphism k must be of  the form (tr,2), for some a. We choose a such that 
a(s) -- t/([s]~_). This clearly makes k be a transition system morphism. Moreover, the 
diagram commutes: (e, id) o ts.dts((a, 2)) = (e o~,  2), and e(6([s]_~)) = e([a(s)]_~) = 
a(s) --- r/([s]_~). To show uniqueness of k, suppose that there is U which makes the 
diagram commute. Necessarily, k'  must be of  the kind (# ,2 ) .  Now, since #([s]_~) = 
[#(s)]_~, in order for the diagram to commute, it must be at(s) -- t/([s]~_). Therefore, 

a t = a  and t h e n U = k .  [] 

Theorem 2.4 (ts.dts q +--~). The functor ts.dts is left adjoint to the inclusion functor 
dT$ ~ T$. Therefore, the adjunction is a reflection. 

Proof. By standard results of  Category Theory (see [7, Ch. IV, p. 81]). [] 

Remark. It is worth noticing that ts.dts does not coincide with the classical 'subset 
construction' of automata theory, which is not even functorial on T__SS. Our construction, 
as implied by the kind of simulations the morphisms of T SS are, preserves behaviours 
'weakly': ts.dts(T) simulates T, i.e., the behaviours of T are behaviours of  ts.dts(T), 
but not necessarily the converse, i.e., ts.dts(T) may exhibit more behaviours (see, e.g., 
Example 5.1 ). 

Next, we present a universal construction from Hoare languages to deterministic 
transition system, namely a coreflection H.__LL ~ dTS. Let (H,L) be a language. Define 
hl.dts(H,L) = (H,e,L, Tran), where (s,a, sa) E Tran for any sa E H, which is trivially 
a deterministic transition system. 

On the contrary, given a deterministic transition system DT,  define the language 
dts.hl(DT) = (Act (DT) ,Lm-) .  Concerning morphisms, it is immediate that if  
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( a ,2 )  : DTo ~ DT1 is a transition system morphism, then 2 - Act(DTo) --+ Act(DT1) 
is a morphism of  Hoare languages. Of  course then, defining dts.hl((a, 2)) = 2, we have 
a functor from dTS  to HI_. 

Now, consider the language dts.hl o hl.dts(H, L). It contains a string al • .. an if  and 

only if the sequence (e, a l , a l ) ( a l , a 2 , a l a 2 ) ' " ( a l " ' a n - l , a n , a l " ' a n )  is in 
Path(hl.dts(T)) i f  and only if a l ' .  "an is in H.  It follows immediately that id : 
(H, L)  --+ dts.hl o hl.dts(H, L)  is a morphism of  languages. We will show that id 
is actually the unit o f  the coreflection. 

Proposit ion 2.5 (/d " (H ,  L) ~ dts.hl o hl.dts(H, L)  is universal). For any Hoare lan- 
guage (H,L ), any deterministic transition system DT, and any morphism ). : (H,L)  
dts.hl(DT), there exists a unique k in dTS  such that dts.hl(k) = 2: 

Proof .  Observe that since DT is deterministic, given a string s E Act(DT),  there 
is exactly one state in SoT- reachable from JD:r with a path labelled by s. We shall 
use state(s) to denote such a state. Then, define k =- ( a ,2 )  " hl.dts(H,L) --~ DT, 
where tr(s) = state(2(s)). Since DT is deterministic and ,~(s) is in Act(DT),  (tr, 2) is 
well-defined and the rest o f  the proof  follows easily. D 

Theorem 2.6 (hl.dts-~ dts.hl). The map hl.dts extends to a functor from HL to dTS  
which is left adjoint to dts.hl. Since the unit of  the adjunction is an isomorphism, the 
adjunction is a coreflection. 

Observe that the construction of  the deterministic transition system associated to a 
language coincides exactly with the construction of  the corresponding synchronisation 
tree. However,  due to the different objects in the categories, the type of  universality 
of  the construction changes. In other words, the same construction shows that H_LL is 

reflective in ST - a full subcategory of  T__SS - and coreflective in dTS  - another full 
subcategory of  T_SS. 

Thus, we enriched the diagram at the end of  the previous section and we have a 
square. 

Theorem 2.7 (The interleaving surface). 

d T S  ~ ~ T S 

HI_ ~ ,~ ST  
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3. Noninterleaving vs. interleaving models 

Event structures [10, 21] abstract away from the cyclic structure of  the process and 
consider only events (strictly speaking event occurrences), assumed to be the atomic 

computational steps, and the cause/effect relationships between them. Thus, we can 
classify event structures as behavioural, branching and noninterleavin9 models. Here, 
we are interested in labelled event structures. 

Definition 3.1 (Labelled event structures). A labelled event structure is a structure 
E S  = (E,#, ~<,E,L) consisting of  a set of  events E partially ordered by ~<; a symmetric, 
irreflexive relation # C_ E × E, the conflict relation, such that 

{e  ~ E E I e  ~ < e }  is finite for e a c h e E E ;  

e # e '  ~< e ' '  implies e # e '~ for each e, e ~, e ~t E E; 

a set of  labels L and a labelling function f : E ~ L. For an event e E E, define 
Le] = {e '  E E [ e '~<e}.  Moreover, we write W for # U  { (e , e )  ] e E E}. These data 
define a relation of  concurrency on events: co = E x E \ (  <<. U <~-1U #). 

A labelled event structure morphism from ESo to ES1 is a pair o f  partial functions 

(q, 2), where r/: EEso ~ EEsl and 2 : Leso ~ Les, are such that 
(i) [q(e)] _C r/([e] ), if  r/+e; 

(ii) r/(e) W r/(e') implies e W e ', if  r/J.e, r/lel; 

(iii) 2 o ~Es0 = YEs, o r/, i.e., the following diagram commutes: 

EEs ° ~° , LEso 

EEXl [Esl '- LESI 

This defines the category I.I:S of  labelled event structures. 

The computational intuition behind event structures is simple: an event e is en- 

abled and can occur when all its causes, viz. ]eJ \{e},  have occurred and no event 
which it is in conflict with has already occurred. This is formalised by the following 
notions of  configuration and enabling. Notice that conditions (i) and (ii) above en- 
sure precisely that morphisms of  event structures preserve the computationally relevant 
structure, namely configurations and enabling. 

Definition 3.2 (Configurations). Given a labelled event structure ES,  define the con- 

figurations of  E S  to be those subsets c C Ees  which are 

Conflict Free: Vel,e2 E c, not el # e2; 

Left Closed: Ve E c Ve~ <~e, e ~ E c. 
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Let ~ ( E S )  denote the set o f  configurations of  ES. 
We say that e is enabled at a configuration c, in symbols c b-e, if  (i) e ~ c; 

(ii) [eJ \{e}  C_ c; (iii) e' E Ees and e' # e implies e' q[ c. 
The occurrence of  e at c transforms c in the configuration c ~ = c U {e}. 

Given a finite subset c o f  EEs, we say that a total ordering of  the elements o f  c, 

say {el < e2 < - . .  < en}, is a securin9 for c if and only if {el . . . .  ,ei-1} F- el, for 
i --- 1 . . . . .  n. Clearly, c is a finite configuration if and only if there exists a securing 

for it. We shall write a securing for c as a string e le2 . . . en ,  where c = {ebe2 . . . . .  en} 

and ei ~ ej for i ¢ j ,  and, by abuse o f  notation, we shall consider such strings also 

configurations. Let Sec(ES) denote the set of  the securings o f  ES. 

Definition 3.3 (Determin&tic event structures). A labelled event structure ES is de- 
terministic if and only if  for any c E ~ ( E S ) ,  and for any pair o f  events e, e'  E Ees, 
whenever c F- e, c t- e ~ and f (e )  = t~(e'), then e = e'. 

This defines the category d I E S  as a full subcategory of  I_E$. 

In [19], it is shown that synchronisation trees and labelled event structures are related 

by a coreflection from ST to I_ES. As will be clear later, this gives us a way to see 

synchronisation trees as an interleaving version o f  labelled event structures or, vice 

versa, to consider labelled event structures as a generalisation of  synchronisation trees 

to the noninterleaving case. In the following subsection, we give a brief account o f  

this coreflection. 

3.1. Synchronisation trees and labelled event structures 

Given a tree S, define st.les(S) -= (Trans, <~,#,E, Ls),  where 

• ~< is the least partial order on Trans such that (s,a, sl)<~(s~,b,s'); 
• # is the least hereditary, symmetric, irreflexive relation on Trans such that (s, a, s ~) # 

(s,b,s") if s '  ¢ s"; 

• ~((s,a,s')) = a. 
It is clear that st.les(S) is a labelled event structure. Now, by defining st.les((a, 2)) = 

(t/~, 2), where 

rlo((s,a,s')) = { (a(s),2(a),a(s')) if 2+a, 
T otherwise, 

we extend st.les to a functor from ST to / E $ .  

On the contrary, for a labelled event structure ES, define les.st(ES) to be the struc- 

ture (Sec(ES),e, LEs, Tran), where (s,a, se) E Tran if  and only if  s, se E Sec(ES) 
and Ees(e) = a. Since the existence of  a transition (s,a,s ~) implies that s is a string 
strictly shorter than s' ,  the transition system we obtain is certainly acyclic. Moreover, 
by definition o f  securing, it is reachable. Finally, if  (s,a, se), (s~,a,s~#) E Tran and 

se = s~#, then obviously s = s ~ and e = # .  Therefore, les.st(ES) is a synchronisation 
tree. 
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Concerning morphisms, for (~/,2) : ESo --~ ES1, define les.st((q,2)) to be (~,2). 
This makes les.st be a functor from t.E$ to ST. 

Consider now les.st o st.les(S). Observe that there is a transition 

((sl, al,s1)...(Sn_l,an,Sn), a, (SIs, al,Sl)...(Sn_l,an,Sn)(Sn, a,s)) 

in Tranles.stost.les(S) if and only if (sls, al,sl ) . . .  (Sn_l,an,Sn)(Sn,a,s) is a path in S. From 
this, and since S and les.st o st.les(S) are trees, it follows that there is an isomorphism 
between the states of  S and the states of  les.stost.les(S), and that such an isomorphism 
is indeed a morphism of synchronisation trees. 

Theorem 3.4 (st.les q les.st). For any synchronisation tree S, the map (~, id) • S 
les.st o st.les(S), where rl(s I)  = e and ~/(s) --- (~s, a l , s i ) . . .  (Sn,a,s), the unique path 
leading to s in S, is a synchronisation tree isomorphism. 

Moreover, (st.les, les.st) : ST ~ LES is an adjunction whose unit is given by the 
family of  isomorphisms (7, id). Thus, we have a coreflection of  ST into LF$. 

Consider now a synchronisation tree S in dST, i.e., a deterministic tree. From the 
definition of st.les, it follows easily that st.les(S) is a deterministic event structure; on 
the other hand, les.st(ES) is a deterministic tree when ES is deterministic. Thus, by 
general reason, the coreflection $-r ~ LES restricts to a coreflection dST ' -~ d IES ,  
whence we have the following corollary. 

Theorem 3.5 (HL ~ dLES). The category HI_ of  Hoare languages is coreflective in 
the category d I E S  of  deterministic labelled event structures. 

Proof. It is enough to recall that dST and HI_ are equivalent. [] 

To conclude this subsection, we make precise our claim of labelled event structures 
being a generalisation of synchronisation trees to the noninterleaving case. Once the 
counits of  the above coreflections have been calculated, it is not difficult to prove the 

following results. 

Corollary 3.6 (Labelled event structures = Synchronisation trees + concurrency). The 
full subcategory of LI=$ consisting of  the labelled event structures ES such that 
coEs = 0 is equivalent to ST. 

The full subcategory of dLE$ consisting of  the deterministic labelled event struc- 
tures ES such that coEs= 0 is equivalent to HI.. 

3.2. Transition systems with independence 

Now, on the system level we look for a way of equipping transition systems with a 
notion of 'concurrency' or 'independence', in the same way as I_ES may be seen as 
adding 'concurrency' to ST. Moreover, such enriched transition systems should also 
represent the 'system model' version of event structures. Several such models have 
appeared in the literature [17, 1, 18,3]. However, the asynchronous automata of  [17] 
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are not suited to our programme, since they are inherently determin&tic. Also the 
transition systems introduced in [1, 18,3] do not fit directly the frame, as they are 
unlabelled. Nevertheless, we could use them profitably provided a layer of labels is 
added on top of the events which decorate their transitions. However, since such a 
double 'decoration' of transitions would not be mathematically very pleasant, here we 
choose a variation of these notions, the transition systems with independence [22]. 

Transition systems with independence are labelled transition systems with an inde- 
pendence relation carried by the transitions. The novelty resides in the fact that the 
notion of event becomes a derived notion. However, four axioms are imposed in order 
to guarantee the consistency of  this with the intuitive meaning of event. 

Definition 3.7 (Transition systems with independence). A transition system with in- 
dependence is a structure (S, fl, L, Tran, I), where ( S, f l ,L,  Tran ) is a transition system 
and I C Tran 2 is an irreflexive, symmetric relation, such that, using -< to denote the 
following relation on transitions: 

(s,a,s') -< (s",a,u) ¢~ Ib. (s,a,s') I (s,b,s") and ~ . r . ~  ,, 
( s ,a , s ' ) I ( s ' ,b ,u )  and I"L < ""la 
(s,b,s") I (s",a,u), s " b ~  ~ 

1,1 

and ~ for least equivalence containing -% we have 
(i) (s,a,s') ~ (s,a,s") ~ s' -- s"; 

(ii) (s,a,s') I (s,b,s") ~ 3u. (s,a,s') I (s',b,u) and (s,b,s") I (s",a,u); 

S J"X 
i.e., s' s" 

S 

Z 
S ~ 1 1 S "  

(iii) (s,a,s') I (s',b,u) ~ 3s" (s,a,s') I (s,b,s") and (s,b,s") I (s",a,u); 

S ;/= 
i.e., s' I :=> S' ) 1 S" \ \ Z  

(iv) (s,a,s') ~ ( s" ,a ,u ) I  (w,b,w')  ~ ( s ,a , s ' ) I  (w,b,w').  

Morphisms of transition systems with independence are morphisms of the underlying 
transition systems which preserve independence, i.e., such that 

(s,a,s') I (g,b,~') and 2J.a, 2~.b :=> (tr(s),2(a),tr(s'))I (tr(g),2(b),a(~')). 

These data define the category T$1 of transition systems with independence. Moreover, 
let dT$1 denote the full subcategory of T$1 consisting of transition systems with 
independence whose underlying transition system is deterministic. 
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Thus, transition systems with independence are precisely standard transition systems 
but with an additional relation expressing when one transition is independent of another. 
The relation -,% defined as the reflexive, symmetric and transitive closure of a relation 
which simply identifies local 'diamonds' of concurrency, expresses when two transitions 
represent occurrences of the same event. Thus, the equivalence classes [(s,a,s~)]~ of 
transitions (s,a,s ~) are the events of the transition system with independence. In order 
to shorten notations, we shall indicate that transitions (s, a, s~), (s, b,s'), (J, b, u) and 
(s ~r, a, u) form a diamond by writing Diama,b(S,S~,S ", u). 

Concerning the axioms, property (i) states that the occurrence of an event at a 
state yields a unique state; property (iv) asserts that the independence relation respects 
events. Finally, conditions (ii) and (iii) describe intuitive properties of independence: 
two independent events which can occur at the same state, can do it in any order 
without affecting the reached state. 

Transition systems with independence admit TS as a coreflective subcategory. In this 
case, the adjunction is easy. The left adjoint associates to any transition system T the 
transition system with independence whose underlying transition system is T itself and 
whose independence relation is empty. The right adjoint simply forgets about the inde- 
pendence, mapping any transition system with independence to its underlying transition 
system. From the definition of morphisms of transition systems with independence, it 
follows easily that these mappings extend to functors which form a coreflection T_SS 
TSI. Moreover, such a coreflection trivially restricts to a coreflection dTS ~ dTSI. 

So, we are led to the following diagram. 

Theorem 3.8 (Moving along the 'interleaving/noninterleaving' axis). 

dTSI,a 

dLES ,a 

TSI~ ~ T S o s/I 
LES~ I t ~ S T  

"~ HI.. 

4. Transition systems with independence and labelled event structures 

In this section, we show that transition systems with independence are an extension of  
labelled event structures to a system model, by showing that there exists a coreflection 
from I_ES to TSl. To simplify our task, we split such a coreflection in two parts. 
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First, we define the unfolding of transition systems with independence. To this aim, 
we introduce the category oTSI of occurrence transition systems with independence, 
obtained from TSI via conditions reminiscent of  those which yield trees from transition 
systems. Later, we shall show that labelled event struc~res are coreflective in oTSI, 

thus obtaining 

LES • ~ o T S l  ~ ~ TS l .  

In addition, we shall identify a subcategory of oTSl equivalent to LES, so yielding an 
account of coherent, finitary, prime algebraic domains in terms of transition systems. 

Definition 4.1 (Occurrence transition systems with independence). An occurrence 
transition system with independence is a transition system with independence OTI = 
(S, st,L, Tran, I)  which is reachable, acyclic and such that 

(s',a,u) ¢ (s",b,u) E Tran implies 
3s. (s,b,s') I (s,a,s") and (s,b,s') I (s',a,u) 

and (s,a,s") I (s",b,u), 

S 

i.e., s '  s" :=> S r 1 1 S "  

\/ XI 
U U 

or, in other words, (s~,a,u) and (s",b,u) form the bottom of a concurrency diamond 
Diama,b( S, s", s', u ). 

Let oTSl denote the full subcategory of TSI whose objects are occurrence transition 

systems with independence. 

Given a transition system with independence TI, define ~-C_Path(TI) 2 to be the 
least equivalence relation such that 

ns(s, a, s')(s', b, U)nv ~- ns(s, b, s")(s", a, u)~% if  Diama,b(S, s', s", u). 

The following are some key, easy to prove, properties of occurrence transition sys- 
tems with independence. 

Lemma 4.2. Given an occurrence transition system with independence OTI, let u be 
I P paths leading to it. Then nu ~- n,. a state and nu, n, 

Proof. By induction on the minimum length among those of 7z, and n~,. I f  Inul = 
I IX l = 0, then nu = e = n,. 

Suppose that re, = ns,(s', a, u), n~ = ns,, (s", b, u) and suppose that Ins, I ..< Ins,, I. Then, 
necessarily, it must be Diamab(S,S",S~,U), for some s E Sori. Since OTI is reachable, 
there exists a path no = ns(s,b,s~). Since the length of ns, is n - 1, we have that 
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min{l~z0[, I~zs,[}<<.n- 1. So, we can apply the induction hypothesis and conclude that 

~ ,  -~ n0. From the definition o f  -~, it follows that ~0 has length n - 1. Thus, zq = 

g~(s,a,s") has length n -  1 and, by induction, re1 -~ ~Cs,,. So, 7ru ~- rc~(s,b,s~)(s',a,u) ~- 
rc~(s,a,s")(s",b,u) ~- n'~. [] 

Corollary 4.3. Any  pair o f  sequences leadiny f rom state g to state gt o f  O T I  contain 
the same number o f  representatives o f  any ~-equivalence class. 

Proof.  First suppose that g is the initial state S/or~. Then the sequences are two paths 
leading to the same state and therefore, by Lemma 4.2, they are _~-equivalent. In 

the case ~s(s,a,s~)(s~,b,u)rce, ~- n~(s,b,s")(s ' ,a ,u)n~, ,  the result is immediate, since 

(s ,a,s  ~) ~ ( s ' , a , u )  and ( s , b , s " ) ~  (sl, b,u). In the general case, the result follows by 

applying transitively the previous argument. 

Now, consider two sequences from a generic g to g', say a ~ e ,  and cr~e,.  I f  there 

were a H-class whose elements occur a different number of  times in ae--.e, and a ~ e , ,  
then the same would happen for the paths nsae~z, and ~a~__.e,, and that would con- 
tradict what we have just shown in the first part of  this proof. [] 

Corollary 4.4. I f  (s ,a,s  ~) and (s,b,s  ~) are transitions o f  OTI ,  then a = b. 

Proof.  By reachability and by Lemma 4.2, we have rCs(S,a,s') ~ rCs(s,b,s'). It follows 

then from Lemma 4.3 that (s ,a,s  ~) ~ (s,b,s ') ,  and so a = b. [] 

Summing tip, occurrence transition systems with independence are very well struc- 
tured and regular. In particular, the last result implies that in an occurrence transition 

system with independence each diamond of  concurrency is not degenerate, i.e., it con- 

sists of  four distinct states. 
The next step is to show that in a path of  an occurrence transition system with 

independence at most one representative of  a ~-class may appear. Given a path n and 

an equivalence class [(s,a,s')]~, let ~U(n,[(s ,a,s ' )]~) be the number o f  representa- 

tives of  [(s,a, sl)]~ occurring in n. Since we know from Corollary 4.3 that such a 
number depends on n only by means o f  the state it reaches, we shall write simply 

JIr(x,[(s ,a,s ')]~),  for x c So77. Moreover, let s ~ a ~ s' stand for s a> s '  or s ~ a s'. 

Then we have the following result. 

al a2 an Lemma 4.5. Consider a sequence o f  states a = so ~ ~ sl ~ ~ s2 . . .  

Jtr(Sn, [(s, a, s ' ) ]~ ) = JV'(s0, [(s, a, s ' )]  ~ ) 

+ f{(si, ai+l,si+l)l(si ,  a i+l ,s i+l)~  (s,a,s ')}l  

- I{(si+l,ai+~,si) I(si+a,ai+l,si) ~ (s ,a ,s ' )}  I. 

S n. T h e n  

Proof.  By induction on n, the length o f  a. For n = 0, a is empty and the thesis is 
trivially true. Suppose then that the thesis holds for sequences of  length n - 1. There 
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are two cases: S n _  1 
an 

C a s e  S n -  1 ) Sn : 

dn an 
) S n o r  s n ) S n - 1 .  

O 

V 
S O 

° o ,s .  
...... \ /  ...... / 

. .,."" ".... 

° Sn -1 

I f  (s n -- 1, an, Sn ) pC (S, a, S' ) then JV'(Sn, [(s, a, s 1)] ~ ) = X ( s  n - - 1 ,  [(S, a, S')] ~ ), and since 
nothing is added to or subtracted from the fight-hand term, the equality holds. I f  

otherwise (s ,_] ,  a n , S n )  ~ (S ,  a ,  s t ) ,  then 

~A/'(s,, [ ( s , a , s ' ) ] ~ )  = JV' (s ,_ l ,  [ ( s , a , s ' ) ] ~ )  + 1, 

and the equality stays since 1 is added also to the right hand term. So, the induction 

hypothesis is maintained. 
an 

C a s e  s n > S n -  l : 

° ° s ~  .............. \ /  .............. / 
° • Sn 1 

V 
S o 

Again, if (Sn_l,an,s=) pC ( s ,a , s  I) the terms on both the sides o f  the equation are 

unchanged considering the nth transition, and the result holds by induction. Otherwise 

if  ( S , _ l , a = , s , )  ~ ( s ,a , s ' ) ,  then J f f ( s , , [ ( s , a , s ' ) ] ~ )  = J V ( S , _ l , [ ( s , a , s ' ) ] ~ ) -  1. This 
time 1 is subtracted from the fight-hand term, and therefore the induction hypothesis 

is maintained. [] 

Then, we have the following important corollary. 

Corollary 4.6. Given a pa th  rc E P a t h ( O T I ) ,  at mos t  one representat ive  o f  any  ~ -  

equivalence class can occur in re. 

Proof.  Suppose that ( s , a , s ' )  ~,, (g, a , g ' )  occur both in re. By definition o f  ,-,, there 
ao an must exist a sequence a = ( s = s o  < > . . .  < >s,  = g ) ,  as shown by the following 

diagram: 

S ~ S k 
[ ~ '~"~S 1 . . . . . . . . . . . .  Sk_l ~ ' ' "  "'-..~Sk+l.." 

a/ .~ I .... s ~ _ l ~  ~ s i + i  ...... I ,. la -, I ........ -s,_~ 
÷ I a I - " ' s ~ " -  i I a ~ la  I " ~  
s ' - . .~ ,  a/ .< I ,. I a ~ J o ~  al ~ I 

• .... + / a ~ . . . o - . . - - - . , , o  , - / a 
....... ° 4, • . . . . . . . . . . . . . . . . . . .  • 4' 

o ~,....- ~ ~ g ,  
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Without loss of  generality, we can assume n = rc'(s, a, s')a'(g, a ,U)a",  i.e., that (s, a,s')  
occurs before (g,a,U). Now, since (s,a,s t) appears in n after state s, we 

have 

~#(s,[(s ,a,s ' )]~) < JV'(Y,[(s,a,s')]~). 

By the previous lemma, we have that in a at least a representative of  [(s ,a,J)]~ 
must occur 'positively', say (sk, ak+l,Sk+l )"~ (s, a,s~). Therefore, we have a diamond 
Oiamak+l,a(Sk, Sk+l,Sk, Sk+l) where, from the property shown earlier, sk # gk. This is 
absurd, because (sk, ak+l,Sk+l ) ~  (sk, a, gk) breaks axiom (i) o f  transition systems with 

independence. [] 

4.1. Unfoldin9 transition systems with independence 

Given a transition system with independence TI  = (S , J ,L ,  Tran,I), we define 
tsi.otsi( TI  ) = ( H~_ , [e]_~,L, Tran~_, I~_ ) , where 
• //_~ is the quotient o f  Path(TI)  modulo ~-; 
• ([~]_~,a,[~']_~) E Tran~_ ¢:> 3(s,a,s ')  C Tran such that ~'  ~ ~(s,a,s'); 
• ([~]_~,a,[~']_~) In ([~]_~,b,t~']=) 

<=> 3(s,a,s ')  I (&b ,g ' )  E Tran such that 
z I ~-- rt(s,a, sl), and if' "~ ~(&b,U). 

Proposition 4.7. The transition system tsi.otsi( TI )  is an occurrence transition system 
with independence. 

Proof.  We show only the condition in Definition 4.1 of  occurrence transition systems 

with independence. Suppose that ([n~]_~,b,[n]_~) # ([n"]~_,a,[n]~_). Then, we have 
n ~- nr(s ', b, u) ~- n"(s", a, u) with n '  # n".  By definition of  -~, there must exist ff such 
that n'(s ' ,b ,u)  ~- ~(s ,a,s ' ) (s ' ,b ,u)  and n"(s" ,a ,u)  ~- f f(s ,b,s")(s",a,u).  Moreover, 

r~(s, a, s ' )  -~ n'  and r~(s, b, s " )  -~ n". 
Then, ([ff]~_,a,[ff(s,a,s')]~_) and ([~]~_,b,[~(s,b,s")]~_) close the diamond. [] 

Fig. 1 shows a simple example of  unfolding of  a transition system with independence. 
Next, we show that tsi.otsi extends to a functor for TSI to oTSI  which is right 
adjoint to the inclusion functor oTSI  ¢--* TSI. As a candidate for the counit o f  such an 

adjunction, consider the mapping (a~,/d) : tsi.otsi(T1) --* TI, where 

at(e)  = sl:rl and a~([zr~]~) = s. 

By definition of  ~ ,  we know that ere is well-defined. Then, it is not difficult to see that 
(~r,,/d) is a morphism of  transition systems with independence. 

Proposition 4.8 ((at,  M) : tsi .otsi(TI) --* TI  is couniversal). For any occurrence tran- 
sition system with independence OTI,  transition system with independence TI, and 
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81 

tsi.  otsi  
F + 

S I 

• ~ • 

• .-,< • 

1° 

• ..< • 

Fig. 1. A transition system with independence TI and tsi.otsi(T1). 

morph i sm  ( a , 2 )  : O T I  --* TI ,  there ex is ts  a unique k • O T I  ~ t s i . o t s i (T l )  in oTSI  
such that (a~, id)  o k = (a,  2) : 

tsi .otsi(Tl) (a,,Jd) • T1 

OTI  

Proof .  Clearly, in order for the diagram to commute, k must be of  the form (6, 2). 
Consider the map 6(s)  = [az(ns)]~,  where a,~ : P a t h ( O T I )  ~ P a t h ( T I )  is given by 

= e; a~ (ns ( s ,a , s ' ) )  = ~ a ,~ (ns ) (a ( s ) ,2 (a ) ,a ( s ' ) )  if  2J, a, 
O'2(~ ) 

( a ~( ns ) otherwise. 

I This definition is well-given. In fact, i f  ns and n~ are two paths leading to s, since 
O T I  is an occurrence transition system with independence, it is n~ ~ nP~, and since 
( a , 2 )  is a morphism, it is a~(n~) ~- az(nPs). In order to show this last statement, it is 
enough to prove that 

n~(s, a, s p )(s p, b, u)n~ ~- ns(s, b, s"  )(s" ,  a, u)rcv 

o~(~ ),~ ((s, a, s' )(s', b, u)) ,~ (~  ) ~ ,~ (~  ),~ ((s, b, s" )(s", a, u)) ,~ (~  ). 
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There are four cases: 
(i) 2Ta, 2Tb: then aa((s ,a ,s ' ) (s ' ,b ,u))  = ~ = a~( (s ,b , s" ) ( s" ,a ,u) ) ,  and the thesis 

follows easily. 
(ii) 2~.a, 2Tb: then 

a~((s, a,s ')(s ' ,  b, u))  -= (a(s),  2(a), a(s ' ) )  

= (a ( s " ) , 2 (a ) ,a (u ) )  = a2( ( s ,b , s" ) ( s" ,a ,u ) )  

and again the thesis follows. 
(iii) ATa, 2+b: follows as in (ii). 
(iv) 2~a, 2+b: then the thesis follows directly from the definition of morphism, since 

it is Diama, b(s , s ' , s" ,u)  and in this case diamonds are preserved. 

Let us show that (6, 2) is indeed a morphism of occurrence transition systems with 
independence. 

(i) ~(s lTI)  -= [e]_~. 
(ii) Let (s ,a ,s ' )  E TranoT1, and suppose 2+a. Since O T I  is reachable, we have 

~s(s,a,s ')  E Path(OTI) ,  and a~(rcD(a(s) ,2(a) ,a(s ' ))  in Path(TI) .  Thus, ([aa(rc~)]_~, 
2(a), [a).(rcs(s, a, s ' ))]~) = (6(s),  2(a), 6(s')) E Tran~_. 

(iii) If (s ,a ,s ' ) IOTI (g,b,g'),  then (a ( s ) , 2 (a ) ,a ( s ' ) ) IT I  (a(g) ,2(b) ,a(g ' ) ) ,  and rea- 
soning as before, we get (6(s),2(a), 6 ( s ' ) ) I ~  (6(g),2(b),  6(g')) .  

In order to show that the diagram commutes, it is enough to observe that each s is 
mapped to a _~-class of paths leading to a(s). Therefore, ~r~ o 6(s)  = a(s). The unique- 
ness of (6, 2) is easily obtained following the same argument. In fact, the behaviour 
of 6 is compelled on any s: Stor~ must be mapped to [~]___, while a generic s must 
mapped to a ___-equivalence class of paths leading to a(s). But we know that there is 
a unique such class. [] 

Theorem 4.9 (~-* ~ tsi.otsi). The construction tsi.otsi extends to a functor f rom YS[ 
to oTSI which is right adjoint to the inclusion oTgl ~-~ TSI. 

It will be useful later to notice that this coreflection cuts down to a coreflections 
doTSI ~ d-I-S], where doTS] is the full subcategory of oTSI consisting of deter- 
ministic transition systems. In order to achieve this result, it is clearly enough to show 
that tsi.otsi maps objects from dT$1 to do'l-$]. 

Proposition 4.10 (doTS1 ~> dTS!). If  TI is deterministic, then tsi.otsi(TI) is deter- 
ministic. 

Proof. Suppose that ([nJ_~,a,[n']_~) and ([nJ~,a, [n"]_~) are in Tran~_. Then, it must 
be n' -~ ns(s,a,s ' )  and n" -~ ns(s,a,s"),  for (s,a,s ') ,  ( s ,a , s" )  c Tran. Then we have 
s' = s" and so n' --~ n". [] 
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4.2. Occurrence TSI 's  and labelled event structures 

In this subsection we complete the construction o f  the coreflections I_IzS ~ TSI 

and dI .ES ~ dTSI  by showing the existence of  coreflections LES ~ oTSI  and 

diES ,---> doTSI ,  reminiscent o f  the connection between event structures and domains 

of  configurations [10,21]. 

Consider a labelled event structure E S  = (E, <<,,#,d,L). Define les.otsi(ES) to be 

the transition system with independence o f  the finite configurations of  ES,  i.e., 

les.otsi( E S )  = ( ~ F( E S  ), ~J, L, Tran, I ) ,  

where 

• ~ F ( E S )  is the set of  finite configuration of  ES; 
• (c ,a ,e ' )  E Tran i f  and only i f  c = c ' \ {e}  and d(e)  = a; 

• (c ,a ,c ' )  I (Y,b,E') i f  and only i f  (c ' \c )  co (~ \~) .  
By definition, les.otsi(ES) is clearly an acyclic, reachable transition system. More- 

over, I C_ Tran 2 is symmetric and irreflexive, since co is such. In order to show that it 

is an occurrence transition system with independence, the following characterisation o f  

the relation ~ is important. 

Lemma 4.11. Given (c ,a ,c ' )  and (E,a,E I) C Tran, we have (c ,a ,c ' )  ~ (E,a,E') C Tran 
i f  and only i f  (c ' \c )  = (E'\E). 

Proof .  ( 0 ) .  It is enough to show that Diama,b(c,c' ,E,U) implies ( c ' \ c ) =  (?~\E). 
Since ( c ,a , c ' )1  (c,b,E), we have {e} = (c ' \c )  co (E\c) = {e'}. Let e" be the event 

in E'\c' and e '"  the one in U\E. We have c tO {e} tA {e"} = E' = c U { e " }  tO {e'}. 

Thus, it must be 

(e = e '"  and e" = e ' )  or (e = e '  and e '"  = e") .  

Now, since e co e', it cannot be e = e '  and we must discard the second hypothesis. 

Therefore, e = e " ,  i.e., (c ' \c )  = (EP\Y) (and necessarily (E\c) = (?~\c')). 
( ~ ) .  First suppose c C E. Since then event e in (c ' \ c )  --  (?~\E) is enabled both in 

c and ~, it means that for any Y ~ ( ? \ c )  we have Y co e. Moreover,  we can order 

the events in E\c in a chain e 0 " ' G  in a such a way that c to  {40 . . . . .  e l - l }  t -e l ,  for 

i = 0 . . . .  , n. To this aim, it is enough to choose at each step i one o f  the maximal  

events in (E\c)\{Eo . . . . .  ei-~} with respect to the <-GEs order. 

Now, since ei co e, for each i = 0 . . . . .  n there exists a diamond 

cU{eo . . . . .  e,_,} 

c U { G  . . . . .  e~}U{e} 
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Then, for i = 0 , . . . , n  we have 

(c U {e0 . . . . .  ei_ l} ,a ,c  U {g0,. . . ,Yi-1} U {e}) 

-< ( cU  {eo . . . . .  Yi},a, cU {e0 . . . . .  el} U {e}), 

i.e., (c,a,c ')  ~ (?,a,?l). 

To complete the proof, consider ~ M c. Necessarily, it enables e. So, we have that 
((~ f-1 c), a, (?  N c) U {e}) E Tran. Since (~ M c) ___ ? and (? fl c) C_ c, from the previous 
part of  the proof  we have, (c,a,c ')  ~ ( (~A c ) , a , (Yn  c) U {e}) ~ (Y,a,?~). [] 

Exploiting Lemma 4.11, it is easy to show the following proposition. 

Proposition 4.12. The transition system les.otsi(ES) is an occurrence transition sys- 
tem with independence. 

Proof. We verify only the property of  occurrence transition systems with independence. 
Suppose that (cl, b,c) ~ (c" ,a ,c)  E Tran. Then, we have c = c'  U {e'} -- c" U {e"}. 
Since c ~ ¢ c",  it must be e ~ ~ e". Moreover, e '#  e", since both events appear in c. 
It cannot be e' < e" n o r  ett < e t, because otherwise either c I or c" would not be a 

configuration. So, e I co e". It follows that ~ = c ' \ {e ' }  = c " \ { e " }  is a configuration 
such that Diama,b((, c 1, c", c). [] 

Let us define the opposite transformation from oT$1 to LES. For OTI  = (S, sI,L, 
Tran, I )  an occurrence transition system with independence, define otsi.les(OTI) to 
be the structure (Tran~, <~,#,f,L) where, writing (s,a,s I) E ~z to mean that (s,a,s 1) 
occurs in the path rt, 
• Tran~ is the set o f  the ,-~-equivalence classes of  Tran; 
• [(s,a,s')]~ < [(g,b,g')]~ if  and only if  

Vzffs_-,b,s_-') E Path( OTI )  with (~_,b,~') ~ (g,b,g'), 

3(s,a,s ')  N (s,a,s ')  such that ( s , a , s ' )  E ~, 

and ~< is the reflexive closure of  < ;  
• [(s,a,s')]~ # [(g,b,U)]~ i f  and only if  

W c Path(OTI),  

V(s_-,b,s_-') ~ (g,b,g') and V(s,a,s_') ~, (s ,a,s ')  

( s , a , s ' )  E n implies (s_-,a,s_-') !E re; 

• f ([(s ,a ,s ' )]~)  = a. 
It is easy to see that otsi.les(OTI) is a labelled event structure. Fig. 2 shows an 

example of  the labelled event structure associated to an occurrence transition system 

with independence. 
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0 b 

Fig. 2. An occurrence transition system OTZ and otsi.les(OTZ). 

Next, we need to extend otsi.les to a fhnctor. Given (a, A) : OTIo + OTI,, define 
otsi.les((a, 1)) = (q,, A), where 

In the proof of Proposition 4.8, it has been shown that @,a,~‘) -X (S, a,.?‘) and Ala 

if A&, 
otherwise. 

implies (o(s), A(a), c(s’)) N (o(s?, A.(a), a(?)). Then qa is well-defined. 

Proposition 4.13. Given a transition system with independence morphism (o,A) : 

OTIo -+ OTI,, otsi.les((o,A.)) : otsi.les(OTZo) -+ otsi.les(OTI1) is a labelled event 
structure morphism. 

Proof. We show the properties of labelled event structure morphisms. 

(i) Lqa(e)l C MLel). Consider KS; W)L < v d e in otsi.les(OTZI). For each path ( ) 
xJ(s,a,s’) in OTIO with (s,a,s’) E e, since its image via (o,A) ends with (o(s),l(a), 
o(s’)) E q,(e), there must be a transition (x,c, y) E xS such that (+),1(c), 
o(y)) - ($b,s’), i.e., q,([(x,c, y)],) = [(S,b,f’)],. We need to prove that [(x,c, y)]_ 

< [(v,s’L which reduces to prove that, for rcS(s, a,~‘) and ~(s”, a, s”‘) generic 
paths as above, letting (x, c, y) and (x’,d, y’) denote respectively the transitions of xS 
and X~II mapped to transitions --equivalent to (5, b, f’), we have 

(~7 c, Y) - (x’, 4 Y'). 

First observe that, since (o(2), A(d), a(~‘)) N (a(x), I(c),o(y)), no more than one 
element of [(x’, d, y’)]_ U [(x, c, y)]+_ can appear on the same path, for otherwise, taking 
the image of such a path via (c,A), we would find a path of OTZl with more than 
one occurrence of elements from [(a(x), A(c), a(y))]_ . 
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Now suppose ( x ~ , d , y )  76 ( x , c , y ) .  Then we are in the situation illustrated by the 
diagram: 

..... s 1. .... 
X "~"" '~" X r 

cl ? 
y y '  

! 

S. .  S"  • .. ~ ' - . . . . ~  ....... 

al " ...... " 1 °  
S F S m 

Necessarily, it must exist (£,c,35) ~ ( x , c , y )  which occurs ' backward '  in the se- 

quence s ~ sl ~ • • • sn +-~ s". This is because the path from JOTlo to s"  cannot contain 

any representative of  [(x, c, y) ]~ .  So suppose that Si+l = £ ~ i ~ = si. 

Now take any path r~i+~, and consider ~Si+l(Si+l,a,s), with (Si+l,a,~) ~'~ (s,a, sP). The  

situation is illustrated by the diagram: 

X "* ......... . . . . . . . . . . . . . . . . .  ~" X p 

cl 
Y Ic' Y' 

y 

'~"..... ,~jeSi+I",.. . . . . . . .  ........... "'S~¢ 

°1,  'lo, c 

S... ~ c S.. S'" 

Since rCs,+l(Si+l,a,s ) is a path whose image via (tr,2) ends with an element of  
[ (a ( s ) , 2 (a ) , a ( s ' ) ) ]~ ,  namely, (~r(Si+l) ,2(a),a(s)) ,  it follows that ~s,+, must contain 

x c '  3~ such that (~r(x),2(c') ,aO~)) = (s--,b,s--') ~ (g,b,g ' ) .  Now consider the path 

7ZSi+l (si+l, c, si) = rCsi+, (£, c, fi). Clearly, its image through (tr, 2) contains (a(£),  2(c ') ,  
a(3~)) = (s_ =, b,s_ =') ~ (g, b, g ' )  and, in addition, also (tr(£), 2(c), trO~)) ~ 0r(x), 2(c), t r(y))  

(g_,b,~_') ~ (g ,b ,U) ,  where (s_--,b,s_--') # (s_-,b,s_-'). This is absurd, because no such path 
can exist in OTI1.  It follows that ( x , c , y ) , ,~  ( x ' , d , J ) .  

(ii) q~(e) W ~/~(e') ~ e W d .  Observe that i f  r/~(e) = q~(e') or qo(e) # q~(e'), then 
no more than one element from etA d may occur in the same path. This is because, in 
such a case, there would be a path in OTI1 in which more than one representative of  
the same class or two representatives of  conflicting classes would appear. From such 
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considerations, it follows that it can be neither e < e ~ nor e ~ < e nor e co e ~. The 
only possible cases are, therefore, e = e ~ or e # d .  

(iii) 2(~Orio(e)) = forI~Ol,(e)) .  Immediate. [] 

It is very easy now to prove the following result. 

Corol lary 4.14 (otsi.les : oTS l  ~ LES). The map otsi.les is a functor  f rom oTSI  to 

LES. 

In order to show that otsi.les and les.otsi form a coreflection, we need the following 
sequence of  lemmas. 

L e m m a  4.15. Whenever [(s,a,s ')]~ co [ (g ,b ,g ' ) ]~,  then (s ,a , s ' )  I (g,b,g'). 

Proof.  By hypothesis [(s,a, st)]~ # [(g,b,g')]~ and [(s,a, sP)]~ ~ [(g,b,g')]~. From the 
first hypothesis, there must exist a path which includes representatives of  both classes, 
say n~_(s, a, sZ)Tz~(s_-, b,s_-~). Then, from the second condition, there must exist a path 
which contains a representative of  [(g, b, g~)]~ but no representative of  [(s, a, s I)]~,  say 
~ (s_-, b, s_-'), 

Now, since no representative of  [(s,a,s~)]~ is in he, by Lemma 4.5, there is a 

sequence g_ ~ s~ ~ . . .  ~ Sn ~ s_ such that there exists (Si+l ,a ,  s i )  ,x, (s,a, st), as 
illustrated in the diagram. 

..... S 1 . . . . . .  
, . . . .  . .  . . . . .  

s_" . . . . . .  " s  

o[ "K, 
S t S i +  1 . . . . . . . . . . . . . . .  ~ - I  

1 : a 

8 ................ s, 

So, (s ,a ,s ' )  ,.~ (si+ba, si) I (~,b,~_') ,.~ (g,b,g~), which implies, by the property (iv) 
o f  transition systems with independence in Definition 3.7, (s, a, s ~) 1 07, b,~l). [] 

Lemma 4.16. Suppose that there is a path n~(s,a,s ' )ny(g,b,g ')  C P a t h ( O T I )  and 

that, for  each ( x , a , y )  E n e  we have [ (x ,a ,y)]~  co [(g,b,g')]~. Then there exists a 

transition ( s ' ,b , s" )  ¢ TranoTl such that ( s ' ,b , s" )  ~ (g,b,g'). 

Proof. By induction on the length of  he. I f  ne is empty there is nothing to show. 
Otherwise, we have ns(s,a, sl)n£(s,c,g)(g,b,g~), where [(s ,c ,g)]~ co [(g, b, g'  )]~. So, 
by the previous lemma, we have (s, c,£) 1 (~, b,£~), that, by the general properties 
of  transition systems with independence, must be part of  a diamond of  concurrency. 
Therefore, there exists (s,b,s_-) ,-- (g,b,g t) and thus, we have a path ns(s,a,s')n~(s,b,g_), 
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where ns is strictly shorter than he. Then, by induction, there exists (s' ,b,s") such that 
(s' ,b,s  ") ,,~ (s,b,s_-) ~ (g,b,g'), which is the thesis. []  

L e m m a  4.17. Consider a path ~zs E Path(OTI)  and a class [t]~ such that for  each 
t' in ~ ,  we have [t']~ # [t]~ and [t']~ # [t]~. Then, there exists rc~rc~,(s',a,s") E 
Path(OT1) with ( s ' , a , s " ) ~  t. 

Proof .  By  induction on the depth o f  s, i.e., the length o f  ns. 
If  ns = ~, the thesis is trivial, since O T I  is reachable. Then, suppose we have ns = 

rig(g, b, s). By induction hypothesis, there exists a path ns rig, (U,  a, ~"),  with (U, a, ~") 
t. From the previous lemma, we can assume that he, does not contain any transition 
whose  class is concurrent with It]~. In fact, such transitions can be pushed after the 
representative o f  [t]~. It fol lows that 7re, contains only elements t' such that [t']~ ~< [t]~. 

Now,  if  the first transition o f  n~, is (~, b,s) ,  we  are done. Otherwise, we  have the 
situation shown in the fol lowing diagram: 

S O ~ S  

slUl 
. ..'"'" S 

.#." 
s~_2 

a n l  / 
, /  

Sn_I=S r oy 
S n~ S ~r 

al a2 an--I an ~ fill, i .e . ,  a chain  so ~ s1  - ~ • • • ~ S n -  1 ~ S n ,  where s 0 ~ s ,  S n _  1 = s P ,  s n an = 

a and s = si, for i - -  1 . . . .  ,n. Of  course, since [ ( s i - l ,a i , s i ) ]~[ t ]~  for i = 1 . . . . .  n, 
and since [(Y,b,s)]~ # [t]~ and [ (Y ,b ,s ) ]~#[ t ]~ ,  we have that, for i = 1 . . . . .  n, 
[ ( s ,b , s ) ]~#[ (S i - l ,a i , s i ) ]~ ,  i.e., ( g , b , s ) I  (s i - l ,a i , s i ) ,  f o r / =  1 . . . . .  n. It fol lows that 
we can complete the picture as shown in the diagram 

S o 

.Sl >. ¢ 
"" ] # S  

s .4 ~- 

I A  



V. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348 323 

and construct a sequence of diamonds of concurrency. So, we have a path 

rts(S, al,gl ) .  . . (Sn--l,an, Sn), 

where (gn-l,an,gn) ~ (g ' ,a ,g")  ~ t, i.e., a path n~ns,(s ' ,a,s") as required. [] 

Lemma 4.18. Consider a path rcs E P a t h ( O T I )  and a class [t]~ such that 

(i) f o r  each t' in ~ ,  we have [t']~ # [t]~ and [t']~ ~ [t]~, 
(ii) f o r  each [t']~ < [t]~, there exists a representative o f  [t']~ in rc~. 

Then, there exists (s ,a ,s  ~) C TranoTl with (s ,a ,s  ~) ~ t. 

Proof. By the previous lemma, we find n~n~,(U,a,g") with (g ' ,a ,g" )  ~ t. Now, con- 
sider an element t ' E he,. We have [tt]~ ~ It]~, because otherwise another repre- 
sentative of [t~]~ would be in ns and, by Corollary 4.3, this is impossible. More- 
over, [t],~ ~ [t~]~, because in the path nsne , (U,a ,g")  transition t ' occurs before than 
(g ' ,a ,g");  and [ t ' ]~#[ t ]~  because in n~ne,(gr, a,g ' ')  both t' and (U ,a ,g" )  occur. It 
follows that It']~ co It]~. 

Therefore, by applying Lemma 4.16, we find (s, a, s ~) ~ (U, a, g")  ~ t. [] 

Exploiting the above lemma, we next prove a one-to-one correspondence between 
the states of O T I  and the finite configurations of ots i . les(OTI) ,  or, in other words, 
states of les.otsi(otsi. les(OT1)).  

Consider the map c~ : So77 ~ 5 fF(ots i . les (OTI) )  given by the correspondence 
s ~ {[t]~ I t E n~, rc~ E Pa th (OTI )} .  Of course, since any path leading to s contains 
the same equivalence classes, cg is well-defined. Moreover, we have the following easy 
lemma. 

Lemma 4.19. For s E So77, the set Cg(s) is a finite configuration o f  otsi . les(OTI).  

Let c be a finite configuration of ots i . les(OTI)  and let g = [t0]~[q]~..-[ tn]~ be 
a securing for c. There is a unique path n(g) --- (so, a l , s x ) ' .  "(Sn--ban,sn) such that 
JOT"l = So, sn = s and [(Si-l,ai,si)]~ z [ti]~, for i = 1 . . . . .  n. It can be obtained as 
follows: 
• (so, a l , s l )  is the unique element in It0]~ whose source state is slorr It exists, by 

Lemma 4.18, since [[t0]~J = 0, and it is unique because of property (iv) of Defini- 
tion 3.7 of transition systems with independence. 

• Inductively, (Si_l,ai,si) is the unique element in [ti]~ whose source state 
is si-1. Again, it exists because (so, a l , s l ) . . .  (Si-2, an,Si-1) and [ti]~ satisfy the 
conditions of Lemma 4.18 and it is unique by definition of transition systems 
with independence. 

It is important to observe that, although the actual path ~(~) strictly depends on ~, 
the state reached does not. 
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L e m m a  4.20. Let  c be a finite configuration o f  otsi.les( O T I )  and/e t  ~ = [t0]~ . . .  [tn]~ 
and ~' = ITS]~...  [t~]~ be two securings for  c. Then the paths ~(~) and ~(~') obtained 
as illustrated above reach the same state. 

Proof.  It is enough to show that ~(~) ~_ n(¢'). To this aim, we work by induc- 
tion on the minimal number n of  'swappings' of  adjacent elements in ~' needed to 
transform it in ~. Observe that such a number exists since ~ and ~ are securing of  
the same configuration, and, as such, they are just different permutations of  the same 

elements. 
I f  n = 0, then n(~) -- ~z(¢~), since the paths are uniquely determined by the se- 

curing. Supposing that we proved the thesis for the case of  n swappings, let ~" = 

[ t~]~ . . .  [t~_l]~[ffi+l]~[t~]~[ffi+2]~... [t~]~ be obtained after the first o f  n + 1 swap- 
pings. Observe that [t[+l]~ must occur in ~ before than [t[]~, otherwise, avoiding the 
swapping of  [t[]~ and [t[+Â]~, we would find a shorter sequence of  swappings trans- 

forming ¢r in ~. It follows that [t[]~ ~: [t[+l]~, i.e., ~" is a securing of  e. Moreover, 
[t[]~ co [t[+l]~. Therefore, we have ~r(¢") _~ ~(~'). Now, ~" can be transformed in 

with n swappings, and therefore, by induction hypothesis, ~z(¢') _~ zffg). So, we 
conclude rc(~) ~_ rc(~'). [] 

Therefore, we can define a map 5 t : ~F(o t s i . l e s (OTI ) )  --~ SOT1 by saying that c ~ s, 
where s is the state reached by a path n(g) for a securing g of  e. Now, we can see 
that cg is an isomorphism of  sets whose inverse is 5 ~. 

L e m m a  4.21.  5 e = cK-l. 

Proof.  Consider ~ ( s )  : {[t]~ I t E rCs} and consider the sequence g = [ t0 ]~ . . .  [tn]~ 
such that rc~ : t o ' "  tn. This is clearly a securing of  Cg(s), whose associated path 
n(g) is rCs itself. This is because of  the uniqueness of  n(g) discussed earlier. So, 
we have 5a(Cg(s)) : s. Suppose 5a(c) = s. Among the path leading to s, consider 

n(¢), ~ : [ t o ]~ ' - .  [tn]~ being a securing of  c. Then, we may use n(¢) to calculate 
oK(St(c)) -- {[t]~ i t  E n~} = {[ti]~ ] i  = 0 . . . . .  n} : c. [] 

It is worthwhile to observe that cg and 5 a give rise to morphisms of  transition systems 
which are each other 's inverse. First observe that 5a(~) - -S /or l ,  since the unique path 
associated with the unique securing of  the empty configuration, is the empty path. 
Moreover, Cg(SlTl ) = 0, since the unique path leading to slTI  in O T I  is the empty 
path. Moreover, we have the following easy lemma. 

L e m m a  4.22. Let  O T I  be a transition system with independence. Then 
(i) I f  (s ,a,s ' )  is a transition o f  OTI ,  then (~(s),a,C~(s')) is a transition o f  

les.otsi( otsi.les( O T I  ) ). 
(ii) I f  (c ,a ,c ' )  is a transition o f  les.otsi(otsi.les(OTI)), then (S¢(c),a, SP(c')) is a 

transit&n o f  OTI.  
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This means that (cg, id) from O T I  to les.otsi(otsi . les(OTI)) and (Se, id)  from 
les.otsi(otsi . les(OTI)) to O T I  are morphisms of transition systems. Moreover, (5 ~,/d) 
= (cg, i d ) - l .  Recall that (c,a,c t) I (?,b,? ~) implies, by definition of les.otsi, that 
(c ' \ c )  = [t]~ co [t']~ = (~t\~). From Lemma 4.22 we have, therefore, that 

[t]~ = [(Sa(c), a, 5t~(c'))]~ co [(SP(E), b, 5g(['))]~ = [t']~ 

and then, from Lemma 4.15, (5~(c),a, 6 ¢ ( c ' ) ) I  (5~(Y),b,6¢~(?~)). Therefore we have 
the following: 

Proposition 4.23. (5 ~, id) is a transition system with independence morphism. 

However, fig, id) is not a morphism in TSI. It follows that (5 a, id), in general, is not 
an isomorphism of transition systems with independence. Consider now the property: 

(E) t I t' ~ ~s. (s ,a ,s ' )  ~ t and ( s ,b , s" )  ~ t'. 

Proposition 4.24. O T I  enjoys property (E) / f  and only i f  fig, id)  is a morphism o f  
transition systems with independence. 

Proof. ( 3 ) .  It is enough to show that (cd, id) preserves independence. Suppose (s, a,s ' )  I 
(~,b,g'). By condition (E), there exists 

(s ,a ,s ' )  ~ (s_,a,s_') I (s,b,s_") ~ (g,b,g'),  

and then, we have Diama,b(s_,s',s_",u). So, we have [(s,a, sr)]~ co [(g,b,g')]~. From 
Lemma 4.22, we have ¢g(s') = C~(s) U { [(s, a, s')] ~ } and ff(5' ) = if(g) U { [(g, b, ~')] ~ }. 
Therefore, (~(s), a, ~(s '))  I (¢g(g), b, cg(g,)). 

(,~=). Suppose that (¢g, id) preserves independence. Then (s ,a ,s ' )  I (5,b,5 ')  im- 
plies (~(s ) ,a ,  Cg(s')) I (c~(g),b, Cg(g')), that is [(s,a,s')]~ co [(g,b,g')]~. Then, by 
repeated applications of Lemma 4.18, we can find a path rc~(s__,a, sP)(sZ, b ,u)  where 
(s,a,s, '  ) ~ (s__,a,s') 1 (s__',b,u) ~ (Y,b,5; ). Then, by property (iii) of transition system 
with independence, there exists s" and (s,b,s__") ~ (s~,b,u) ,,~ (g,b,g'),  i.e., O T I  enjoys 
property (E). [] 

Finally, we can define, for each labelled event structure ES a morphism (r/,/d) : 
E S  --~ otsi.les o les.otsi(ES) as a candidate for the unit of the adjunction. Let us 
consider r/ such that 

rl(e) = [(c,a,c U {e})]~. 

We have already shown in Lemma 4.11 that (c, a, e') ~ (~, a, ~r) if and only if (e ' \c )  = 
(U\[).  It follows immediately that r/ is well-defined and is injective. Moreover, since 
any transition of les.otsi(ES), say (e,a,e ') ,  is associated with an event of ES,  namely, 
e~\e, we have that r/ is also surjective. Finally, it is not difficult to show that (r/, id) 
is an isomorphism of labelled event structures whose inverse is (~hid), where r7 : 
[(c, a, c')]~ ~ (e ' \e) .  
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Proposition 4.25 ((rt, id) : ES  ---, otsi.les o les.otsi(ES) is universal). For any labelled 
event structure ES, any occurrence transition system with independence OT1, and 
any morphism (~,)~) : E S  ---* otsi . les(OTl),  there exists a unique k in oTSl  such that 
otsi.les( k ) o 01, id ) = (if, 2): 

ES (q, ia) • otsi.leso les.otsi(ES) 

1 otsi.les(k) 

otsi.les(OTI ) 

Proof.  Let us define k : les.otsi(ES) ~ OT1. Clearly, in order to make the diagram 
commute, k must be of  the form (or,2), for some a. Let us consider a : c H 5P(q(c)), 
i.e., 

( a ,2 )  = ( Sa, id) o 07,2) : les.otsi(ES) ---+ les.otsi(otsi.les( OTI )  ) --~ OT1. 

Then, we immediately have that cr is well-defined and that (a, 2) is a transition system 
with independence morphism. 

Now, we must show that the diagram commutes. We need to show that r/~ o r/ -- 

q~ o qq o I / =  £/. Consider e E EF.S and let a be f (e) .  I f  2Ta, then £1Ta and qql"a and, 
therefore, both sides of  the above equality are undefined. Suppose otherwise that 21a. 

We have 

e ~ [(c,a,c U {e})]~ ~% [(q(c),2(a),q(c) U {q(e)})]~ 

[(Se(q(c)), 2(a), 5a(q(c) U {q(e)}))]~ 

= [(o'(c), 2(a), o'(c U {e}))]~. 

Observe that (O(c),2(a),q(c)tO {q(e)}) belongs to les.otsi(otsi.les(OTI)) and is as- 
sociated with the event q(e) o f  otsi.les(OTI). Then, from Lemma 4.22, we have 
[(Se(q(c)),2(a),Se(q(c) U {q(e)}))]~ = q(e). The last step to prove the universal- 
ity of  (q, id) is to show that k is the unique transition system with independence 
morphism from les.otsi(ES) to OTI  which makes the diagram commute. Let us sup- 
pose that there is k I which does so. It must necessarily be U = (a  ~, 2). Observe from 
the first part o f  the proof  that in order for the diagram to commute, we must have 
t/~, ([(c, a, c U ( e } ) ] ~ )  = [(a ' (e) ,  2(a), a ' ( cU {e}))]~ = q(e) = [(o(c),  ).(a), o(cU (e}))]~, 
for any e such that 2 V ( e ) .  Exploiting this fact, it is easy to show by induction on the 
cardinality of  c that ~ '  = cr. [] 

Therefore, we have the following theorem. 

Theorem 4.26 (les.otsi 4 otsi.les). The map les.otsi extends to a functor from kES 
to o T S l  which is left adjoint to otsi.les. Since the unit o f  the adjunction is an iso- 
morphism, the adjunction is a coreflection. 
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Next, we show that (5~,/d) is the counit of  this coreflection. Actually, now 

the task is fairly easy: by general results in category theory [7, Ch. IV, p. 81], the 
counit of  an adjunction can be determined through the unit as the unique mor- 
phism e : otsi.les o les .otsi(OTI) ~ O T I  which makes the following diagram 

commute: 

otsi.les(OTI) (n,~d) • otsi.les o les.otsi o otsi.les(OTI) 

otsi.les( e ) 

otsi.les(OTI ) 

However, in the proof of  Proposition 4.25, we have identified a general way to find 
e. From it we obtain ~ = (re, id) o (id, id), which is (re, id). 

The results we have shown earlier about (5a,/d) make it easy to identify the full 
subcategory of oTSI and, therefore, of  TSl which is equivalent to LEg, i.e., the 
category of those transition systems with independence which are (representations 
of) labelled event structure. Such a result gives yet another characterisation of (the 
finite elements of) coherent, finitary, prime algebraic domains [10,21]. Moreover, 
this axiomatisation is given only in terms of conditions on the structure of  transition 

systems. 
By general results in category theory [7, Ch. IV, p. 91], an equivalence of 

categories is an adjunction whose unit and counit are both isomorphisms, i.e., 
which is both a reflection and a coreflection. Then, Proposition 4.24 gives us a can- 
didate for the category of occurrence transition system with independence equivalent 
to LES: we consider oTSl E the full subcategory of oTSl consisting of those oc- 

currence transition systems with independence satisfying condition (E). To obtain the 
result, it is enough to verify that les.otsi : LES ---+ oTSl actually lands in oTSl  E. 
In fact, this guarantees that the adjunction les.otsi q otsi.les : LES ~ oTSl re- 
stricts to an adjunction LES ~ oTSI E whose unit and counit are again, resp- 
ectively, (t/,/d) and (5e,/d), which are isomorphisms. It follows then, that 

oTSI E ~ LES. 

Proposition 4.27. The occurrence transition system with independence les.otsi(ES) 

satisfies condition (E). 

Proof. Suppose (c ,a ,c ' )  I (E,b,E') and let ( # \ c )  = {e} and (~'\E) = {E}. Then, we 
have e co E. It follows that c = ( [ e J \{e} )U ([EJ\{E}) is a finite configuration of E S  
which enables both e and E. Then, (c,a,c') , ,~ (c,a, cU  { e } ) I  (c,b,c U {E}),-~ (E,b,E') 
in les.otsi(ES). [] 

Thus we have the following. 
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Corollary 4.28. The categories LES and oTSl E are equivalent. 

We can interpret such a result as a demonstration of the claim that transition systems 
with independence are a generalisation of labelled event structures to a system model. 
However, the fact that just unfolding transition systems to their occurrence version 
does not suffice to get a category equivalent to LES, stresses that the independence 
relation on transitions is not exactly a concurrency relation. As an intuitive explanation 

of this phenomenon, it is very easy to think of a transition system with independence 
in which independent transitions never occur in the same path, i.e., intuitively, they 

are in conflict. In the light of  such observation, condition (E) can be seen exactly as 
the condition which guarantees that independence is concurrency. It is then that the 
simple unfolding of transition systems with independence yields the category oTSl E 
equivalent to LES. 

To conclude this section, we briefly see that the coreflection LE$ ~ oTSI cuts 
down to a coreflection dLES ~ dTSl,which composes with the coreflection given 
earlier in this section to give a coreflection dLES ~ dTSl. As a consequence, we 
have that riLES = doTSl E. These results are shown by the following proposition. 

Proposition 4.29. I f  ES & deterministic, then les.otsi(ES) is deterministic. I f  OTI is 
deterministic, then otsi.les(OTI) is deterministic. 

Proof. I f  (c,a,c U {e}) and (c,b,c U {~}) are transitions of les.otsi(ES), then c k e 
and c ~- E, and then a ~ b. 

Suppose that c F [(s,a, sl)]~ and c F [(&b, gr)]~. Clearly, we can assume c finite. 
Then, (c,a, cU{[(s,a,s')]~} ), (c,b, cU{[(g,b,g')]~} ) are in les.otsi(otsi.les( OTI) ) and, 
therefore, (6¢(c),a, 6¢(cU {[(s,a,s')]~} )), (6e(c),b, SP(cU {[(Y,b,g')]~})) are in OTI. 
Then a ~ b. [] 

These results are summarised in the following theorem. 

Theorem 4.30 (Moving along the 'behaviour/system' axis). 

TSI~ ' T_.SS 

dTSl~ T ., d T S ~  I 

I LJs. 
dLES ~ ~ HL 
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5. Deterministic transition systems with independence 

Now, we consider the relationship between dTSl and TSI, looking for a generali- 
sation of the reflection dTS ~ T__SS in order to provide an 'abstraction functor' from 
transition systems with independence to a linear time framework. Of course, the ques- 
tion to be answered is whether a left adjoint for the inclusion functor dTSl ~ TSl 
exists or not. Although the answer is positive, it turns out that this is actually a rather 
complicated issue. 

At a first sight, one could be tempted to refine the construction given in case of 
transition systems by defining a suitable independence relation on the deterministic 
transition system obtained in that way. However, this would not work, since, in general, 
no independence relation yields a transition system with independence. Let us see what 
happens with the following example. 

Example 5.1. Consider the transition system T in the following figure together with 
its deterministic version ts.dts(T). 

[s] _~ 

a] S 11 c/ 

s' r- ts.dts ,~ cQ[s']_~ 

Now, suppose that (s ,a ,s")I  (s~,b,u). Observe, that, in order to establish the reflec- 
tion at the level of transition systems with independence, since the unit would be a 
morphism from the original transition system to the deterministic one, independence 
must be preserved. Therefore, whatever the independence relation on the deterministic 
transition system is, it must certainly be ([s]~,a, [ s ' ]~ ) I  ([st]~_,b, [u]_). Then, we do 
not have a transition system with independence, since axiom (iii) fails. 

However, in the rest of this section, we will show that it is always possible to 
'complete' the deterministic transition system obtained by ts.dts in order to make it a 
transition system with independence. Moreover, such a completion will be 'universal', 
so that it will give the reflection we are seeking. In the case of the transition system 
above, the resulting transition system is 
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Observe that it may also not be possible to define I to be irreflexive. This happens 
when in the original transition system with independence there are diamonds of con- 
currency whose transitions carry the same label, for these, when 'collapsed' by the 
deterministic construction, become autoindependent, i.e., independent of  themselves. It 
is easy to realise that the only way to cope with such transitions is by eliminating them 
from the transition system. In other words, autoconcurrency, i.e., concurrency between 
events carrying the same label, add a further level of difficulty to the problem, since 
it causes autoindependence in the deterministic transition system. 

Definition 5.2 (Pre-transition systems with independence). A pre-transition systems 
with independence is a transition system together with a binary and symmetric relation 

I on its transitions. 
A morphism of pre-transition systems with independence is a transition system mor- 

phism which, in addition, preserve the relation I.  
Let pTSI denote the category of pre-transition systems with independence. 

Given sets S and L, consider triples of  the kind (X, ~ , I ) ,  where X C S .  L* = {s~ [ 
s E S and ~ E L*}, and ~ and 1 are binary relations on X. On such triples, the 

following closure properties can be considered: 

(Cll)  x - z and za E X implies xa E X and xa -- za; 

(C12) x ~ - z  a n d z a l y c  implies x a l y c ;  

(C13) xab =- xba and xa I xb or xa I xab 

implies xa I yc ¢¢, xba I y c .  

We say that (X, = , I )  is suitable if = is an equivalence relation, I is a symmetric 
relation and it enjoys properties (Cll) ,  (C12) and (C13). Suitable triples are meant to 
represent deterministic (pre)transition systems with independence, the elements in X 
representing both states and transitions. Namely, xa represents the state reached from 
(the state corresponding to) x with an a-labelled transition, and that transition itself. 
Thus, equivalence = relate paths which lead to the same state and relation I expresses 
independence of transitions. With this understanding, (Cll)  means that from any state 
there is at most one a-transition, while (C12) says that I acts on transitions rather 
than on their representation. Finally, (C13) - the analogous of axiom (iv) of transition 
systems with independence - tells that transitions on the opposite edges of  a diamond 

behave similarly with respect to I.  
For x E S.L* and a E L, let x la  denote the pruning o f x  with respect to a. Formally, 

f ra if b, X a 
s l a = s  and (xb) I a =  

(x ra)b otherwise. [ 

Of  course, (x ra) rb = (x rb) ra and thus it is possible to use unambiguously x rA for 
A C_ L. Given X C S .  L*, we use X rA to denote the set {x IA ] x E X} whilst, for R a 

binary relation on X,  RrA stands for {(xrA, yrA)  [ (x ,y )  E R}. 
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For a transition system with independence TI = (S, sl,L, Tran, I), we define the 
sequence of triples (Si ,- i ,I i) ,  for i E 09, inductively as follows. For i = O, (So,-o,Io) 
is the least (with respect to componentwise set inclusion) suitable triple such 
that 

S U {sa[(s ,a ,u)  E Tran} C_S0; 

{(sa, u) I (s,a,u) E Tran} C_ -=0; 

{(sa, s'b) I (s,a,u) l (s',b,u')} C_Io; 

and, for i > O, (Si ,- i , I i )  is the least suitable triple such that 

(~) 
(D1) 

(D2) 

Si-1 IAi-1 ~ Si; ~ i - 1  IAi-1 c_ =-i; ( l i - l \ T A i _ l ) I A i _ l  c 1 i; 

xa, xb E Si-1 [Ai-1 and xa (Ii-1 \TAi-1)IAi-1 xb 
implies xab, xba E Si and xab -~i xba; 

xa, xab E Si-1 FAi-1 and xa (Ii-1 \TAi-1)IAi-1 xab 
implies xb, xba E Si and xab =-i xba; 

where Ai = {a E L I xal i  xa} and TAi = {(xa, yb) EIi  [ a E Ai or b E Ai}. 
The inductive step extends a triple towards a transition system with independence by 

means of the rules (D1) and (D2), whose intuitive meaning is clearly that of closing 
possibly incomplete diamonds. The process could create autoindependent transitions, 
namely the transitions with labels in Ai-1, which must be eliminated. This is done by 
(-.~) which removes them from Si, =i, and Ii. 

A simple inspection of the rules shows that if a E Ai, then it will never appear again 
in the sequence. Thus, if x is removed from Si, it will not be reintroduced, and the 
same applies to the pairs in =i and I~. Then, it is easy to identify the limit of the 
sequence as 

iEog j >~i iEo~ j>~i iEco j>~i 

Proposition 5.3. The triple (So,-=~,Lo) is suitable. Moreover, Io~ is irreflexive. 

Proof. Easy. [] 

The following proposition gives an easy-to-prove alternative characterisation of 
(S,o,-o~,Io,) which will be useful later on. In the following let Ao) denote UiE~oAi 
and let TAo~ be Uieo) TAi. 

Proposition 5.4. ( &o, -o~,Lo) = ( Ui~o~(si [A~o), U/c~(=i rAo~), Ui~o((IATAo~) IAo~) ). 

In the following we shall refer to the sets obtained by applying rules (.~), (D1) 
and (D2) to Si-1, --i-1 and Ii-i as the generators of the suitable triple (Si,-i ,Ii) .  
Similarly, sets S U {sa ] (s,a,u) E Tran}, {(sa, u) [ (s,a,u) E Tran} and {(sa, s'b) l 
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(s,a,u) I (s~,b, ut)} are the generators of  (So, -o , I0) .  We shall denote the generators 

of  (St, - i , l i )  by ~St, ~-i and ~1i. 
I f  TI is deterministic then there is a neat characterisation of  (So, -o,lo).  

L e m m a  5.5. Let TI  be a deterministic transition system with independence. Then 
(i) s~ "o s~ fl i f  and only i f  there is u E S and two sequences of  transitions leadin9 

from s to u with labels c~ and from s' to u with labels r; 

(it) s' "o  sa i f  and only i f  (s,a,s') E Tran. 
(iii) sa lo s~b i f  and only i f  there exist (s,a, u)1  (s',b,u') in TI. 

ProoL Observe that point (ii) is an easy corollary of  point (i). 

Consider X C_ S • L* such that s~ E X if  and only if s E S and there is a sequence 
of  transitions (s, ao,so). . .  (Sn--~,an,Sn) in TI, where a o "  "an is ~. Then, consider the 
relations - _CX × X and [ C X  × X such that s~ - s'fl if  and only if the two corre- 
sponding sequences of  transitions lead to the same state of  TI  and s~ [ s~fl i f  and only 
if  the last transitions of  such sequences are in the relation I o f  TI. 

In order to show (i) and (iii) it clearly suffices to show that (X, = ,1 )  = (So, =0,Io).  
To this purpose, one first shows by induction on the structure of  the elements of  X 

that (~S0, 7-0,  710) C_(X, , , [ )  C_(So, "0 , Io) .  Then, since (So, =0,Io)  is the least suitable 
triple which contains ~S0, 7-0 and 7Io, the proof  is easily concluded by showing that 
(X,----,7) is suitable. [] 

This result admits the following immediate corollary. 

Corollary 5.6. I f  TI  is deterministic, for any x E So there is exactly one s E S such 

that x -o  s. 

As anticipated before, ( S i , ' i , l i )  encodes a deterministic pre-transition system with 
independence which contains a deterministic version of  the original TI  we started from 
(apart from the autoindependent transitions). Formally, for each ~ E 09 tO {~o}, define 

TSys~ = ( S~/-~,  [sI]=~, L~, Tran_ , I-~), 

where 
• ([x]=-,a,  [x~]_ ) E T r a n -  i f  and only i f x  ~ - ~  xa; 

yl • ( [x] -  ,a,  [ x ' ] -  ) I -  ([x-]- ,b, [ ]=~) if  and only if  xa I~ Yb; 

• Lx = L\  Uj<xAj. 
Observe that TSys~ is well defined. In fact, concerning T r a n - ,  since xa E Si if  and 

only if x_a E Si for any x =i x, and since x t " i  xa if  and only if x ~ ~--i xa for any x --i x 
and x '  =i x ~, its definition is irrespective of  the chosen representative. The same holds 
for the definition of  I = ,  since xa Ii x~b if  and only if  xa Ii x~b for any x " i  x and 
xt " i  Xt. 

Proposition 5.7. TSys~ k a determin&tic pre-transition system with independence. 
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Proof. TSys~ is certainly a transition system and since (S~,=~,I~) is suitable, I=~ is 
symmetric. Moreover, since Ix]_- a > [x~]__ if and only if x t =-~ xa, then if [x]= __L, 
[x"]_=~, we have [x"]_~ = [xl]-~. Therefore, TSys~ is deterministic. [] 

Lemma 5.5, its Corollary 5.6 and the previous proposition show the similarity of 
TSys  o with the construction of the deterministic version of a transition system as given 
in Section 2. Actually, starting from them, it is not difficult to see that, when applied to 
a transition system TS, i.e., a transition system with independence whose independence 
relation is empty, TSys  o is a deterministic transition system isomorphic to ts .dts(TS).  
This fact supports our claim that the construction we are about to give builds on ts.dts. 
However, in Section 2 a simpler construction was enough, because we did not need to 
manipulate transitions but only states. 

Proposition 5.8. The pair (/n, id), where in : S --~ So/=-o is the function which sends s 
to its equivalence class [s]-o and id is the identity o f  L, is a morphism o f  pre-transition 
systems with independence f rom TI  to TSys o. Moreover, i f  T I  is deterministic, then 
(in, id) is an isomorphism. 

Proof. Since (s ,a,s  I) E Tran implies that s ~ ~o sa which in turn implies that 
([s]=_o,a,[s']- o) E Tran-o, we have that (in, M) is a morphism of transition sys- 
tems. If 7"1 is deterministic then from Corollary 5.6 and Lemma 5.5(ii), (s ,a,s  ~) E 
Tran if  and only if ([s]-0,a, [s']_=0) E Tran_ o, and thus (in, id) is an isomorphism 
of transition systems. Moreover, since (s, a, s ~) I (g, b, g') implies sa lo gb, which in 
turn implies ([S]-o,a,[s']-o) I=o ([g]---0,b,[U]-0), it follows that (in, id) is a mor- 
phism of pre-transition systems with independence. Finally, from Lemma 5.5(iii), if 
TI  is deterministic, then (s ,a,s ' )  1 (g ,b ,U) if and only if ([s]-o,a,[s']-o) 
I-0 ([g]=-o,b,[g~]-o), i.e., (in, id) is an isomorphism of (pre)transition systems with 
independence. [] 

For i E m\{0}, consider the pair ( ini ,  i d i )  , where ini : S i -1 /=-- i -1  ~ Si/=--i is the 
function such that ini([x]-,_, ) = [x IAi_l]=, and idi : Li-1 ~ Li is given by idi(a) = a 
if  a f[ A i - l  and idiTa otherwise. Then, we have the following: 

Lemma 5.9. The pair ( ini ,  i d i )  : TSysi_ ) -+ TSys i is a morphism o f  pre-transition 
systems with independence. 

Proof. Observe that since x = i - l  y implies that x IAi_ l  ~i Y I A i - l ,  ini is well-defined. 
We check the conditions in Definition 5.2. 

(i) ini([s1]=_i_l ) = [S 1 IAi_l]_~i = [sl]=_i . 

(ii) Consider a transition [x]_-i_ ~ a ~ [xa]-i_, in TSysi_ 1. Now, if a E A i - l ,  

then ini([x]-,_~) = Ix IAi_l]_~i =- [xa  I A i _ l ] = i  = ini([xa]_~i_l ). Otherwise, xa IAi-1 = 
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(x IAi-1)a, and then 

i n i ( [ x ] = i _  , ) : [x I-,'li_l]=i a> [(X ~ A i -  1 ) a ] -  i : i n i ( [ x a ] = i _  , ). 

(iii) I f  ([x]_i_,,a, [xa]_,_, ) 1-_,_, ([y]_,_,,b, [yb]=_,_, ) and a,b ~ Ai-1, then we have 

xa li_l yb and (x~Ai_l)a [i (y IAi -1)b ,  i.e., 

([xiAi_l]__, a> [(xiAi_l)a]=_~) i=~ ([yiAi_i]=, b> [(yiAi_l)b]=,),  

i.e., (ini([x]-~_,) ~ ini([xa]-,_, )) 1~_, (ini([y]=_,_,) b ini([yb]--,_, )). [] 

It is interesting to notice that TSyso~ is a colimit in the category pTSl.  

Proposition 5.10. TSyso~ is the colimit in pTSl of the oo-diagram 

• " (in2,id2) (ini,idi) (ini+l,id,+l) 
= TSyso (,n~.~) TSys~ > . . .  ~ TSys  i -----* . . .  

Proof.  The reader is referred to [7, Ch. III, p. 62] for the definition of  the categorical 

concept involved. 
For any i E o9, consider the function in7 ~ : S i / - i  "-+ Soj/-,o such that in.~([x]-_ i) = 

[x IA,o]---,o and let ida' • Li ~ Lo~ denote the function such that id7~(a) = a i f  a ¢~ A,o 
and id~'Ta otherwise. As for Lemma 5.9, it is easy to see that (in~, ida) is a morphism 
of  pre-transition systems with independence from TSys  i to TSys~. 

• C O  • C O  

Since for each i E co we have in~+ 1 o ini+l  = inn and ld i+ 1 o i d i+ l  -~- td i , TSys~ 
and the morphisms • o~ • o~ { ( i n  i , l d  i ) [ i E o9} form a cocone in pTSl  with base 9 .  Now, 
consider any cocone {(ai,,~i) : TSys  i ---* P T  I i E o9}, for P T  a pre-transition system 
with independence• Then, by definition of  cocone, it must be 6i = 6i+1 o ini+ 1 for each 
i E m, i.e., ¢Ti([X]=i) ~- ~Ti+l([xIAi]=_i+)), whence it follows easily that for any x E Si 
and y E Sj such that x IA,o -- y IAo~ it must be ai([x]=_~) = aj([y]_-j). Moreover, again 
by definition of  cocone, it must be J.i = 2i+1 o idi+l. This implies that for a E L\A,o 
we have 2i(a) = 2i+l(a) for any i E o9, while for a E Aj it must be 2iTa for any i<~j. 
In fact, if  a ~ Ao~, since idi+l(a) = a, it must be 2i(a) = 2i+l(a). Suppose instead that 
a E Aj. Then, idj+lTa and thus 2jTa. Now, since idi(a) = a if  i<~j, it follows that 

2 i T a  for any i<~j. 
Now, define (6, ~.) : TSys,o ~ P T ,  where 6( [x]_- )  = oi([x]= i ) for any i and ~? E Si 

such that Y rA,o = x, and take ,~ to be the restriction of  20 to Lw. Exploiting the features 
of  the morphisms (ai,2i), it is easy to see that (O'i,)~i)= ( 6 , ~ ) o  (irt~°,/d~) for each i, 
and that (6, 2) is the unique morphism which enjoys this property. Observe that, in view 
of  Proposition 5.4, 6 could be equivalently defined by saying that 6 ( [ x ] _  ) = ai([x]=~) 
for any x such that x E Si. [] 

Besides enjoying a (co)universal property, TSys,o has another property which the 
reader would have already guessed: it is actually a deterministic transition system with 
independence. 
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Proposition 5.11. TSys~ is a deterministic transition system with independence. 

Proof. Proposition 5.7 shows that Tsys~ is a deterministic pre-transition system with 
independence, while it follows immediately from Proposition 5.3 that I=~ is irreflexive. 
Let us check the axioms of transition systems with independence. 

(i) Vacuous, since TSys,o is deterministic. 
(ii) Suppose that ([x]_ ,a, [xP]_=o,) I =  ( [x ] - ,b ,  [x"]- ). Then, xa I~o xb and, there- 

fore, there exists an index i such that xa Ii-1 xb, which, in turn, implies that there 
exist xab =-i xba E Si. Then, by (C13), xa Ii xb implies xba Ii xb and xb Ii xa implies 
xab Ii xa. Since a, b ¢~ A~ and x rA~o = x, then we have xab =~o xba, and xa I~ xab and 
xb Lo xba, which implies that there exists [xab]_ = [u]_o~ = [xba]-  in So~/=~o such 
that ([x]-~, a, [xP]-o ) I -  ([x']_o,, b, [u]= ), and ([x]__-o~, b, [x"]-  ) I=o~ ( Ix"]- ,  a, [u]_o, ). 

(iii) Similar to (ii). 
(iv) It is enough to show that 

([x]_,a,[x ']= ) (-< LJ >.-) ([x'P]_,a,[u]= ) I -  ([£]_~,b,[£ ' ]_)  

implies ([x]= ,a,[x']-_ ) I=_~ ([,Y]-,~,b,[£~]_ ). 

Suppose that the '-<' case holds. Then, there exists i such that x ~ =-i xa, x" :-i xb, 
xa li xb, xab ~i u ::'i  xba, and xba Ii £b. Then, by (C13), we have xa Ii £b. Then, 
xa Io~ £b, whence it follows that ([x]_~,a, [x']- ) I_= ([x-']_-o~,b, [~?r]=_~). 

A similar proof shows the case in which '>-' holds. [] 

Thus, TSys~ is the deterministic transition system with independence we will as- 
sociate to the transition system with independence TI. Formally, define the map dtsi 
from the objects of TSI to the objects of dT$1 as dts i (TI)  = TSys~. Fig. 3 exemplifies 
the construction in an easy, yet interesting, case. 

Consider TI = ( S, J , L, Tran, I ) and TI p = ( S', spI,U , Tran~, I ' ) together with a mor- 
phism (~,2) : TI ---* TI'  in TSI. In the following let (S~,=_~,I~) and (S~,P =~,I~),-' P 
x E co U {co}, be the sequences of suitable triples corresponding, respectively, to TI 
and TI'.  Moreover, we shall write A~, TAx, L~, TSys~, A~, TA'x, L~ and TSysP~ to 
denote the sets and the transition systems determined respectively by (S~,-x,I~) and 

P - - I  / . i @  (Sx,=x,I~). We shall construct a sequence of morphisms (6i,2i) : TSys i T S y J  i, 
which will determine a morphism (ti~o,2o~) : TSyso, 7" P --~ Syso, i.e., dtsi((a,2)).  

For i E co, let ai be the function such that 

o'i(x) = or(x) for x E S 

and 
S ~i(x)2i(a) if 2ila, 

•i(xa) 
I ~ri(x ) otherwise, 

where 

2i(a) = { ,~(a)T ifotherwise.2(a) ff Uj<iA~, 
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~ = 0  

~ = 1  

~----2 

{3]=_0 

.,+ . " ' S  
[tl--=_o r [21---o \+;.../ 

[Ol=_o 

[2a]=_. t 

/ 
Pl=_~ -< [21=_~ 

[O]=_t 

[3a]=_ 2 

[2a1=_2 -< 

{11=_2 -< [2]~. 2 

\ /  
[Ol=_, 

[3]=- 

[1}=- 0 = { 1 , 0 a }  
[21---o = {2,  Oh} 
[31-:o = {3 ,2b ,  Obb) 

[31=-~, 

[3,~]_-_. 

[2hi=-. "< 13]_--. 

[11---. -< [21. .  

\ /  
[o ] . .  

[11=_, = { 1 , O a }  
[21=_~ = {2,OH 
[3]=_ t = {3,2b, Obb} 

[2a]=_t = {2a, lb,  Oab, Oba} 

[o1=_2 = {o}  
[11=_ 2 = { 1 , O h }  

[21---2 = {2,  Oa} 
[31-= 2 = {3, 2a.,Oaa} 

[2b]=_.~ = { la ,  2b, Oba, Oab} 
[3b]--_ 2 = {3b, 2ab, 2ba, laa, 

Oabb, Obaa, Oaba} 

[Oa]-_-o 1=_o [Obl=_o 

[Oal=_o t=_o [2b]-=o 

[Oal=_i 1=_t {Obl=_ a 
[Oal=_t 1=_t [Oab]=. t 
[Obl=_i I=_1 [Obal-:l 
[1hi=_, l=_, {2al_- t 
[oal=_~ t=_~ [2bl=_t 

[Obal=_ t I=_ t {Obb]=_ t 

[Oal=_2 l=_2 [OH=-2 
[Oal=_2 t-=2 {lb1=_2 
[OH=_2 1=_2 12a1=_2 
[tH=_2 1=_2 Pal=_2 
[2a1_--2 /=_2 [2b]=_2 
[2a1-=2 1=_2 [2bH=_2 
[2H=_2 1-=2 Pal=_2 

[Z~'l=_2 I=_2 [3~1=_2 

~ m ~ l t S .  Suppose tha t  the construction s ta r t s  
from TSYso, where the  dotted lines indicate re- 
lation I .  TSys 0 fails to a be traJBsition system 
with  independence because there is no diamond for 
the transit ions stickin K out  [0]Eo- In TSys I this 
problem has been solved by use of (DI). However, 
now there is no diamond for the transit ions leaving 
from [2]Et, which are independent because of the 
.closure (CL~). The problem is fixed in TSys 2 which 
m a transit ion system with independence and co- 
incides with TSys~. 

Fig. 3. An example of  the construction of  TSys,o. 
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Lemma 5.12. For all i E co, we have that 
(i) x E Si implies ai(x) E S~; 

(ii) x - i  Y implies tri(x) =-I ai(y); 
(iii) xa Ii yb and ,~iJ.a, J.i.Lb implies tri(xa) 1[ ¢7i(yb). 

Proof.  The three points are shown simultaneously by induction on i. The base case 
for i = 0 follows directly from the definition of  a0 and from the fact that (a, 2) is a 
morphism. Concerning the inductive step, the proof proceeds by first showing that (i), 
(ii) and (iii) hold for the generators of  (S i , - i , I i ) ,  and it concludes by checking that 
the closure rules preserve them. Both the tasks are fairly easy. [] 

It follows immediately from Lemma 5.12 that for i E co, 6i, defined to be the map 
which sends [x]-_, to [ai(x)]_=; is a well-defined function from Si/=_i to S[/= I. Then, 
the following lemma follows easily• 

Lemma 5.13. For i E co, the map (6i,2i) : TSys  i ~ TSys  I is a morphism o f  pre- 
transition systems with independence. 

For any i E co, consider the morphism of  pre-transition systems with independence 
(inl ~°, id~°~)o(6i, 2 i ) '  TSys  i --~ TSys~. Recall that for x E Si, we have that ai+l(X [Ai) = 
o-i(x IAi) IA~ = ai(x) IA~, from which it follows that a;+l(x IAi) IA" = ai(x) IA~. Then 

• I o )  I = = [ , r~(x)  b 4 ~ ] ~ _ ,  m i o ¢f/([x]_=~) inl°~([~ri(x)]-;) 

= [ai+l(X rAi) [A~]-;o = ini~_l([ai+l(x [Ai)]_;+~ ) 

• I (D  • 169 
= lni+ 1 0 tTi+l([X Iai]=_i+1 ) = lni+ 1 0 tTi+ 1 0 i n i+ l ( [X]_  i ), 

i.e., . /~o • i~o in i o ¢7i : lni+l o t~i+l o ini+l for any i E co. Moreover, since a E Ai  implies 
2(a) E A~, it is easy to see that idl ~ o 2i " '~ = ldi+ 1 o ),i+1 o idi+l for any i E co. Thus, we 
have that 

• H ,O  • 160  {(m i , td i ) o(t~i,2i) : TSys  i ~ TSys"  J i E co} 

is a cocone for the m-diagram ~ given in Proposition 5.10. Then, there exists a unique 
(6~o, 2,o) : TSyso~ ~ TSys'~ induced by the colimit construction, which is the morphism 
of  transition systems with independence we associate to (tr,2), i.e., dtsi((a, 2)) = 
(d~o,2o~). From Proposition 5.10, it is immediate to see that 6o~([x]-~) = [ai(2)IA~]=%,j 
for 2 E Si such that 2IA~ = x, or, equivalently, 6~([x]_o~) = [ai(x) rA~]=_; for any i 
such that x E Si, and that 

2~o(a) = { 2(a) if  2(a) ~ A~, 
T otherwise. 

The following proposition follows directly from the universal properties of  colimits. 
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Proposition 5.14 (dtsi : TSI ~ dT$1 is a functor). The map dtsi is a functor  f rom 
T$1 to dT$1. 

The question we address next concerns what we get when we apply dtsi to a de- 
terministic transition system with independence D T I .  We shall see that in this case 
the inductive construction of TSyso, gives a transition system which is isomorphic 
to D T I .  More precisely, each --,o-equivalence class of (SDrI)o) contains exactly one 

state of the original transition system, and the transition system with independence 
morphism (in~ o in, ida) • D T !  --~ d ts i (DT1)  - whose transition component sends 
s C SDTI to I s ] -  - is actually an isomorphism. Moreover, we shall see that its inverse 
(e, id), where e ( [ x ] - )  is the unique s E SDrl such that s -,o x, is the counit of the 
adjunction. 

Lemma 5.15. Let  D T I  = ( S , J , L ,  Tran, I )  be a deterministic transition sys tem with 

independence. Then, ($1, =-1,11 ) coincides with (So, =o, Io). Therefore, ( in~ o in, id~) is 

an isomorphism whose inverse is (e, id). 

Proof. We already know from Proposition 5.8 that (/n,/d) is an isomorphism if DT1 

is deterministic. Thus, (in~ o in, ida) is an isomorphism if and only if ( in~, id~)  : 

TSys  o --~ TSys~o is so, which, in turn, is a consequence of the first part of the 
claim. 

Observe that A0 = 0 and, therefore, TAo = 0. In fact, since D T I  and TSys  o 
are isomorphic, if there were xa Io xa, then IDTI would not be irreflexive. Then, 
in order to show that ( S l , = l , h )  = (So, -o ,  Io), it is enough to see that no new 
elements are introduced by (DI) and (D2). In fact, in this case, ($1,---1,I1) would 
be the least suitable triple which contains (So,-=o,Io) which is clearly (So , -o , Io)  

itself. 
(D1) Suppose xa lo xb. Then, by Corollary 5.6, there exist s, s t, s"  C S such that 

s =-o x, s ~ =o xa and s" - o  xb. Therefore, by Lemma 5.5, we have (s ,a ,s  ~) I ( s , b , s ' )  
in Tran. Since D T I  is a transition system with independence, there exists u such that 
Diama, b(S,S',S",u), and then we have sab =-o u =-o sba and, therefore, by (Cll),  we 
already have xab - o  xba in (So, --o, I0). 

(D2) Analogous to the previous case. [] 

Thus, we have proved the following corollary. 

Corollary 5.16. (e,/d) : d t s i (DTI )  --* D T I  & a transition sys tem with independence 

isomorphism. 

Before showing that (e,/d) is the counit of the reflection of dTSI in TSI, we need 
the following lemma which characterises the behaviour of transition system with inde- 
pendence morphisms whose target is deterministic. 
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L e m m a  5.17. Let DTI  be a deterministic transition system with independence and 
consider a morphism (a,2) : TI ~ DTI  in TSI. Let TSysr, x E 09 U {o~} be the 
sequence of pre-transition systems with independence associated to TI. Consider a E 
Ll'l and suppose that a E Ai. Then 2~a. 

Proof .  Consider the sequence of  pre-transition systems with independence TSys'~ as- 
sociated to DTI and the morphisms ( ~ i , 2 i )  : T S y s  i ~ TSys~. Since, as it follows from 

" T ! Lemma 5.15, TSys I TSys~ for any i E 09, the morphisms (~i,2i) TSys i --~ Syse~ 
form a cocone for the og-diagram which defines TSyso~. Moreover, we have that any 

2i coincides with 2, because A I ---- 0. Then, if  a E Ai, reasoning as in the proof  of  
Proposition 5.10, we have that 2jTa for any j<~i, i.e., 2Ta. [] 

We are ready now to show that (e, id) is couniversal. 

Proposition 5.18 ((~, id) : dtsi(DTI) ~ DTI  is couniversal). For any transition sys- 
tem with independence TI, deterministic transition system with independence DTI, 
and morphism (~p,#) : dtsi(TI) --~ DTI, there exists a unique k : TI --~ DTI  such 
that (e, id) o dtsi(k ) --- (¢p,#): 

(e, id) 
dtsi(DTI) " DTI 

dtsi(k ) l 

dtsi(TI) 

Proof .  Let us consider k = (a ,2) ,  where a(s)  = ~p([s]_=o,) and 2 is the function which 
coincides with # on (Lri)o~ and is undefined elsewhere. Observe that this is the only 
possible choice for k. In fact, any k ~ : TI --~ DTI  which has to make the diagram 
commute must be of  the kind ( a ' , Z )  with 2~(a) -- p (a )  = 2(a) for a E (Lrt)~o. 
Moreover, by Lemma 5.17, if  a E A~o, it must be 2tl"a, i.e., 2' = 2. Furthermore, a t(s)  
must be an g in SD77 such that e([s-]- ) = g coincides with ~p([s]- ), i.e., a '  is the a 
we have chosen. 

In order to show that (a, 2) is a morphism of  pre-transition systems with indepen- 
dence, it is enough to observe that (a, 2) can be expressed as the composition of  the 
morphisms of  transition systems with independence (~p,#)o (in~ o in, id°~) : TI 
dtsi(TI) --~ DTI. This makes easy to conclude the proof. [] 

Theorem 5.19 (dtsi q ~-~). Functor dtsi is left adjoint to the inclusion functor dTSl 
TSl. Therefore, the adjunction (dtsi, ~--,) : dTSl  ~ TSl is a reflection. 

The adjunction dTSl  ~ TSI that we have so established closes another face of  
the cube. In particular, we have obtained the following square, which matches the one 
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presented in Section 2: 

TS__! ~ ) T_SS 

dTSI,a ~ dTS 
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6. Deterministic labelled event structures 

In this section we prove that there exists a reflection from the category of deter- 
ministic labelled event structures to labelled event structures. A reflection d i E S  ~-~ 
LES does exist, for it follows from the reflections we have presented in the previ- 
ous sections. In fact, the results in Sections 4 and 5 show that there exist adjunc- 

tions 

dLES ~> dTSI ~ TSI ~ LES. 

Now, in order to show that there is a coreflection from dLES to LES, since dLES 

doTSI  E and LES ~ oTSl  E, it is enough to show that dTSl  ~-~ TSI cuts down to a 

reflection doTSI  E ~ oTSI E. In this case, we have an adjunction 

dLES ~ d TSI TSI ~" LES = 0 E ¢ - ~ 1 0  E =  , 

whose right adjoint is isomorphic to the inclusion functor dLES ~ LES. Intuitively, 
the left adjoint dles : LE$ ~ dkES is obtained by considering the occurrence transition 

system with independence les.otsi(ES) of the finite configurations of  ES, construct- 
ing its deterministic version by applying dtsi, and then considering the labelled event 
structure associated with such a deterministic transition system with independence, by 

means of otsi.les. 
As usual, to establish that dTSl ~ TSI restricts to doTSlE ~ oTSI E, it is enough 

to show that if  OTI  is an occurrence transition system with independence, then so is 
dtsi(OT1), and that dts i (OTI)  satisfies (E) whenever OTI  does. Of  course, this also 
proves that oTSI ~ T.__SS restricts to doTSl ~ oTSI. 

In the following, let O T !  be an occurrence transition system with independence 
and let (SK,~ , I~ )  and TSys~, ~ c o9 U {co}, be the sequences of  suitable triples and 
pre-transition systems with independence which define dtsi(OTI).  

Proposition 6.1 (doTSl  ~-~ oTS!). I f  OT! is an occurrence transition system with 

independence, so is dtsi(OTl).  
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Proof .  Recall from Section 4 that the states of  OTI are equipped with a 'depth ' ,  
namely the length of  the paths leading to them. Moreover, there is a transition s - ~  s '  
only if  depth(s') = depth(s) + 1. 

Observe now that TSys o is reachable and acyclic. To this purpose, recall that (the 
transition system underlying) TSys o is obtained from (the transition system underlying) 
OTI modulo the least equivalence which identifies states reachable from a common 
state by two equally-labelled sequences of  transitions. Since OTI is reachable, this 
reduces to say that s ----o s t if  and only if there are paths rcs and 7rs, in OTI such 
that Act(~Zs) = Act(ns,), which implies that depth(s) =- depth(s') whenever s ---o s'.  
This makes our claims obvious, showing also that all the paths in TSys o leading to 
the same state have the same length, i.e., that depth extends smoothly to the states of  

TSys o • 
A direct inspection of  the closure properties (Cll)-(C13),  of  the rules (-.~), (D1) 

and (D2), and of  the definition of  TSys~o shows that all the TSys~, and in particular 
dtsi(OTI) ~ TSys~o, are reachable, acyclic and have a notion of  'depth '  defined by 
the length of  their paths. 

Concerning the property of  occurrence transition systems with independence, we 

prove by induction on depth([z]-_o~) that, if  ( [y ' ]_  , b, [Z]-o~) and ([y"]-o,,  a, [ z ] -  ) 
are distinct transitions of  TSys,o, then there exists a state [x]-o in TSys~o such that 

Oiama,b([X]=~., [Y]-~,  [y"]=~, [z]_= ) 
(depth<<. 1). Vacuous, since dtsi(OTI) is reachable and acyclic. 
(depth > 1). It is enough to show that if  ([y']=~,b,[z]_~) and ([y"]=~,a,[z]=,) 

belong to TSysi, i.e., y~b =-i z =-i y 'a ,  then the required diamond exists in TSys~o. We 
proceed by induction on i. 

(i = 0). Since both transitions belong to TSys o, there are (s~,b,u) and (s",a,u ~) in 

OTI such that s ~ ---(o yl, s" - ~  y" ,  u - ,o  z --~o u ~, and u - 0  u ~. Observe that, due 
to the possible collapsing of  autoindependent transitions, there can be more that one 
pair o f  such transitions. Without loss of  generality, we can assume u and u ~ chosen at 
minimal depth in OTI. 

By definition, since u - o  u' there exist paths 7ru and 7zu, in OT! such that Act(zr,) = 
~c = Act(~, ) .  Let (v,c,u) and (v',c,u ~) be the last transitions on these paths. Since 
v and v ~ are reachable via or-labelled paths, we have v - 0  v '. Observe that c ~ A~o. 
In fact, i f  c E A~o, since a,b f[ Ao~, it would be (v,c,u) ~ (s~,b,u) and (v',c,u') 
(s", a, u'). Then, by the property of  occurrence transition systems with independence, 
there would be w and w ~ in OTI such that Diam~,b(W,S', v, u) and Diarn~,~(w~,s ", v ~, u') 
and, therefore, (w,b,v) and (w',a,v ~) with w --o~ J ,  w t --co y" ,  v ~ o  z -~o v t, and 
depth(v) < depth(u), contradicting our assumption. 

Since ([V]_o,C,[U]-o) =- ([v']-o,C,[U']=_o), it follows that, i f  (v,c,u) = (s',b,u) and 
(v', c, u ' )  -- (s", a, u'),  then ([s']-o~, b, [u]=_,~) = ( Is"]_  , a, [ u ' ] -  ), and there is noth- 
ing to show. Therefore, without loss of  generality, assume (v,c,u) ~ (st,b,u). Then 
there exists w in OTI such that Diamc,b(W, Sr, V,U). In case, (v',c,u ~) = (s",a,u~), 
we have ([s"]=o~,a,[u']-~) = ([v]-,c,[u]_o) and, therefore, the required diamond 
Diam~,b([W]=o~,[s']_o~,[s"]= , [u] -~) .  Finally, i f  instead (v',c,u ~) ~ (s",a,u'), there 
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exists w ~ in OTI such that Diamc,a(W~,St~,v~,ul). The situation is illustrated by the 
following picture: 

U 

J \  
S ~ .< 

\ /  
W 

U p 

Since v =o v', the transitions ([w]_=o,b, [v]-o) and ([w']_o,a, [V]-o) belong to TSys o. 
We can assume that these are distinct, since [w]- o = [w']- o and a = b implies 
again that ([s']-o, b, [u]_ 0) = ([s"]_ 0,a, [u]-_ o). Then, since c ~ A~ and, therefore, 
depth([v]_o~) < depth([z]=_~) in TSyso~, by induction hypothesis, there exists [ ~ ] -  
such that Diama,b([ff~]=o~, [w]=, [w']=,o, [v]=~). Therefore, we have the following situ- 
ation in TSyso; 

[U]=~ 
b~" t "- < 

Is %~ d [s"l___~ 
t' < I >- f 

c/ [~]~ / ~ 

[w]~% . . . .  ~, [w']___ 
a " _  ""'" b 

[W ] ___,,, 

Then, since TSyso~ is a transition system with independence, by properties (i), (iii) 
and (iv) in Definition 3.7, there exists [x]_- completing the diagram to a cube as in 
the following picture: 

[s']_--,o/[v]---e. " [s"].,o 

[w]_ Ix]___ [w']_ 

[~]_--~ 

Clearly, it is Diama b([X]:~, [s']=~, rs"l . . . . .  - ,  [u]- ), concluding this part of the proof. 
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(i > 0). We proceed by case analysis inspecting the rules that generated yrb - i  y'la. 
We start by proving the thesis for the generators rSi, r - i ,  and rI; of (Si, =-i,Ii). 

(3). Then we have ~'b - i -1  ~"a, for some )51 and 37" such that fir rAi-1 = y' and 
fit1 iAi_ 1 = y11, and the thesis follows by (inner) induction. 

(D1) and (D2). Then y b  - i  y"a arises from completing either xa Ii-1 xb, with 
xa ~i-1 Y~ and xb - i -1  Y ' ,  or xa Ii-i xab, with xa ~i-1 Y' and xb - i  Y", or, 
symmetrically, xb Ii-1 xba, with xb - i -1  Y" and xa =i Y~. In all cases, we have 

• t I t  Z Dtama,b([X]-,, [3' ]-~, [y ]_=,, [ ]- ,)  in TSys i and therefore, since a, b ~ A~o, the required 
diamond in TSyso,. 

Concerning the closure properties, observe that (C12) and (C13) do not alter =i. If  
instead f ib  =-i y"a follows from (Cll), we have y~ - i  Y" and a = b, which means 

' b i/ that ([y ]=_~, ,[z]- ) = ([y ]_ ,a,[z]-  ). Therefore, in order to conclude the proof, 
we only need to analyse the case in which y'b ~i y"a is induced by closing transitively 
= - - . . .  y 'a .  We proceed by induction on n, r - i ,  i.e., when f ib  ~-=-i ylCl r=i r~i  Y ncn r--:i 

the base case being already proved. 
(Induction step). The situation in TSyso, is illustrated by the following figure: 

c [z]___ c a 

[Y']-~o~ [Y~L~o ................ [Y.]---~ [Y"]-~ 

By the previous part of this proof, there exists [w]_  such that, in TSys~o, we have 
Diarnb.cl([w]=-,, [Y~]-,,[Yl]--i, [z]_-,), and, by induction on n, there is [w']-~ such that 
Diamcl,a([W']=i, [Yl]-~i, [Ytt]=_i, [2]~i). Since depth([y]]- ) < depth([z]- ) in TSys~, 
we are in the condition of exploiting the (outer) induction hypothesis and concluding 
the proof as for the case (i = 0). [] 

Proposition 6.2 (doTSl E ~ oTSlE). I f O T I  satisfies (E), then dtsi(OTI)  satisfies (E). 

Proof. Observe that TSys o clearly enjoys (E), and that (E) is preserved by the rules 
(.~), (D1) and (D2) and by the closures (Cll)-(C13). [] 

Therefore, defining dies : LES ~ dLES as otsi.les o dtsi o les.otsi we have the 
following result. 

Theorem 6.3 (dies q *--~). The mapping dies extends to a functor which is left adjoint 
o f  the inclusion of  dLES in LES. Then, (dies, ~--~) is a reflection• 

An example of the construction is given in Fig. 4. 
The coreflection d L E S  ' -~  LES closes the last two faces of the cube. So, our results 

may be summed up in the following cube of relationships among models. 
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a # 

a # c # e  

I / /  
a # c # c  

I / /  
a # e # c  

I / /  
e # ¢  

dles + 

les. otsi 

..." 
O' 

+ / , ~  
• . / "  

~Z/// 
s~---~ • --~ .--~. ............ 

dtsi 

4- 

otsi. les 

../'" 

/ " ~ /  
",~" 

81 

. , ."" 

Fig. 4. An event structure ES and dles(ES) 

Theorem 6.4 (The cube). 

TSI4 /T 
dTS I 

J LES4 

dLES 

~TS 

~HL 
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6.1. An alternative construction fo r  dies 

It may be interesting to notice that, since TSys  i is not a transition system with 

independence, the sequence {TSysi}iEo~ which defines dtsi( les .otsi(ES))  does not cor- 

respond to a sequence o f  labelled event structures. Nevertheless, a sequence {Evi}iE~ 
which characterises dles(ES)  as a colimit in I_ES exists. In the following, we shall re- 

port only the relevant definitions, omitting all the proofs, which can be found in [11, 14]. 

As in Section 5, we shall proceed by defining a sequence o f  triples (~i,  ~< i, #i), each 

representing a quotient of  the original labelled event structure in which - informally 

speaking - the 'degree' of  nondeterminism has decreased. The colimit of  such a se- 

quence will represent a deterministic event strucatre isomorphic to dles(ES).  Also in 
this case, the only way to cope with autoconcurrency is by eliminating it. However, 

the reader will notice that the task is now much easier than in the case of  transition 

systems with independence. 

Let E S  = (E, #, <<,, ~,L) be a labelled event structure, A ( E S )  denote the 'autoconcur- 

rency'  set {a E L [ 3e, e' E E,e  co e' and f (e )  = a = E(e')} and N A ( E S )  = {e E E I 
[ (e)  f[ A ( E S ) }  the associated set o f  'nonautoconcurrent'  events. Consider the sequence 

o f  relations ( ~ ,  <~,#~),  for x E coU {co}, where 

• N o = { ( e , e )  I e E N A ( E S ) } ;  ~<0= ~<; # 0 = # ;  
for i > 0, 
• Hi is the least equivalence on N A ( E S )  such that 

(i) "wi_ 1 C ~ i ,  

( i i )  e ~ i - 1  e', e' g i - 1  e, E(e)  = E(e')  
[eJ ~<,_~ # i--1Le'J <~,_l\{e'} and 

LeJ ~<,_, # i--1 Le'J ~<,_t\{e'} 
implies e ~i  e ~, 

where [e]~<~ stands for {e' E N A ( E S )  le'<~ie } and, for x, y C _ N A ( E S ) ,  x # i y  is a 

shorthand for V e E x, V e ~ E y, e ~t i el. 
• e<~ie' if and only if  V6 ~ Hi e' q 6  Hi e. e<<.i-le'; 

• e #i e ~ if and only if  V~ ~ Hi e' V~ Hi e. e #i-1 e'; 

and finally, for x = co, 

"~':~ = U ~-'i, ~.~o = U N ~ "  #" = N #'" 
iEo~ iC~9 j > i  iE~o 

Then, for k E co U {co}, define 

Ev~ = ( N A ( E S ) / H x ,  <~ ~~, #~~, ~~~, L \ A ( E S ) ) ,  

where 

• N A ( E S ) / , ~  is the set o f  H~-classes of  N A ( E S ) ,  
• [e]~~ ~< N~ [el]~~ if  and only if e ~< ~ e I, 

• [e]~~ #~~ [e']~~ if and only if e #~ e', 

• E ~ ~ ( [ e ] ~ )  = t~(e). 
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a # c # c  a # c # c  

1 / /  I / /  
a # c # c  a # c # c  
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[c] ~~, 

I 

J 

I 

Fig. 5. The alternative construction of  dles(ES) for ES  in Fig. 4. 

It is proved in [11, 14] that the mapping E S  ~-~ Ev~ is (the object component of) 
a left adjoint to the inclusion dLES ~ LES. It follows that Ev,o is isomorphic to 
dles( E S  ). 

Fig. 5 shows the sequence {Ev~}~ for the labelled event structure of Fig. 4. The 
dotted ovals in Evi represent the events collapsed by ~i+1. In Evo~, the classes [a]~,o 
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and [c ]~  at level i contain, respectively, all the a-labelled events and the two c-labelled 
events at level i of the original event structure. 

7 .  C o n c l u s i o n  

We have established a complete 'cube' of formal relationships between well-known 
models for concurrency (and a new one). Thus, we have a complete picture of how to 
translate between these models via adjunctions along the axes of 'interleaving/noninter- 
leaving', 'linear/branching' and 'behaviour/system'. Notice also the pleasant confor- 
mity in the picture, with coreflections along the 'interleaving/noninterleaving' and 'be- 
haviour/system' axes, and reflections along 'linear/branching'. 

A relevant role in this paper is played by the occurrence transition systems with 

independence, which turn out to be a slight generalisation of labelled event struc- 
tures and, therefore, to allow an easy, interesting characterisation of coherent, finitary, 
prime algebraic domains. Concerning transition systems with independence, it is worth 
remarking that TSI embeds fully and faithfully in the category of asynchronous tran- 
sition systems via an easy construction: given TI,  considering its underlying transition 
system, label each transition with its ,-,-equivalence class, and take the independence 
inherited by TI. Unfortunately, about the relationships between asynchronous transition 
systems and transition systems with independence currently it does not seem possible 
to give more than this embedding, since it, together with other natural ones, fails to 
enjoy any universal property. 

Axiom (i) of transition systems with independence, depending nontrivially on ~, 
represents a 'global' constraint, as opposed to the others, which involve only local 
information. This may be considered a slightly unpleasant feature of our definition. It 
is an open question whether there exists alternative axiomatics for transition systems 
with independence. However, one can identify weaker sets of axioms and yield kinds 
of 'generalised' transition systems with independence which still enjoy important prop- 
erties. For instance, removing axiom (i), replacing 'there exists...' by 'there exists a 
unique...' in (ii) and (iii), and adding the following axiom: 

,,,'ix ,,'ix 
• >- • -< • • • Q 

t /  ",,T " "  ..... ":'\T 
• "< • = ~  3 ! u .  • u • 

",, / 'x,t/ 

one obtains a category strictly larger than TSI which can replace it in the cube. It 
may be interesting to remark that the axioms above, together with the conditions of 
Definition 4.1, define exactly occurrence transition systems with independence. 

It is worth remarking here that all the adjunctions in this paper would still hold 
if we modified uniformly the morphisms of the involved categories by allowing label 
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components which, where defined, act identically. However, if we considered only total 
morphisms, the reflections dTSI ~-~ TSI and dkES ~ IES would not exist. 

Although the choice of deterministic labelled event structures for behavioural, lin- 
ear and noninterleaving models is sensible, it is not the unique possible choice. For 
instance, in [16] the authors introduce a category ofpomset languages and a category 
of generalised trace languages which can replace d IES  in the cube. 

Finally, we mention that not all squares (surfaces) of the 'cube' commute. Of course, 
they do with directions along those of the embeddings. 
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