
Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 170 (1996) 297-348

Models for concurrency: Towards a classification

V l a d i m i r o Sas sone .,1, M o g e n s Nie l sen , G l y n n W i n s k e l

BRICS 2, Computer Science Department, University of Aarhus, Ny Munkegade, Bldng 540,
DK-8000 Aarhus, Denmark

Received November 1994
Communicated by G. Rozenberg

Abstract

Models for concurrency can be classified with respect to three relevant parameters: behaviour/
system, interleaving/noninterleaving, linear/branching time. When modelling a process, a choice
concerning such parameters corresponds to choosing the level of abstraction of the resulting
semantics.

In this paper, we move a step towards a classification of models for concurrency based on the
parameters above. Formally, we choose a representative of any of the eight classes of models
obtained by varying the three parameters, and we study the formal relationships between them
using the language of category theory.

O. Introduction

Much effort in the development of the theory o f concurrency has been devoted to

the study of suitable models for concurrent and distributed processes, and to the formal

understanding of their semantics.

As a result, in addition to standard models like languages, automata and transition

systems [6, 13], models like Petri nets [1211 process algebras [9,4], Hoare traces [5],

Mazurkiewicz traces [8], synchronisation trees [20] and event structures [10,21] have

been introduced.

The idea common to the models above is that they are based on atomic units of

change - transitions, actions, events or symbols from an alphabet - which are indivisible

and constitute the steps out o f which computations are built.

The difference between the models may be expressed in terms of the parameters ac-

cording to which models are often classified. For instance, a distinction made explicit ly

in the theory o f Petri nets, but sensible in a wider context, is that between so-called

* Corresponding author.
1 Supported by EU Human Capital and Mobility grant ERBCHBGCT920005.
2 Basic Research in Computer Science, Centre of the Danish National Research Foundation.

0304-3975/96/$15.00 (~) 1996--Elsevier Science B.V. All rights reserved
PH S0304-3975(96)0001 1-4

298 V. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348

'system' models allowing an explicit representation of the (possibly repeating) states
in a system, and 'behaviour' models abstracting away from such information, which
focus instead on the behaviour in terms of patterns of occurrences of actions over
time. Prime examples of the first type are transition systems and Petri nets, and of
the second type, trees, event structures and traces. Thus, we can distinguish among

models according to whether they are system models or behaviour models, in this
sense. Further distinctions are whether they can faithfully take into account the differ-
ence between concurrency and nondeterminism and, finally, whether they can represent
the branching structure of processes, i.e., the points in which choices are taken, or
not. So, relevant parameters when looking at models for concurrency are: behaviour
or system model, interleaving or noninterleaving model, and linear or branching time
model.

These parameters correspond to choices of the level of abstraction at which we
examine processes and which are not necessarily fixed for a process once and for all.
It is the actual application one has in mind for the formal semantics which guides the
choice of the abstraction level. It can therefore be of value to be able to move back
and forth between the representation of a process in one model and its representation in
another, if possible in a way which respects its structure. In other words, it is relevant to
study translations between models, and particularly with respect to the three parameters
above.

This work presents a first step towards a classification of models for concurrency
based on the three parameters, which also represent a further step towards the iden-
tification of systematic connections between transition based models. More precisely,
we study a representative for each of the eight classes of models obtained by varying
the parameters behaviour/system, interleaving/noninterleaving and linear~branching in
all the possible ways. Intuitively, the situation can be graphically represented, as in
the picture below, by a three-dimensional frame of reference whose coordinate axes
represent the three parameters:

/ / Lin/Bran
Int/Nonlnt V

Our choices of models are summarised in Table 1. It is worth noticing that, with
the exception of the new model of transition systems with independence, each model
is well-known.

The formal relationships between models are studied in a categorical setting, using
the standard categorical tool of adjunctions. The 'translations' between models we
shall consider are coreflections or reflections. These are particular kinds of adjunctions

V.. Sassone et aL I Theoretical Computer Science 170 (1996) 297-348

Table 1
The models

299

Beh/Int/Li n
Beh/Int/Bran
Beh/Nonlnt/Lin
Beh/Nonlnt/Bran
Sys/Int/Lin
Sys/Int/Bran
Sys/Nonlnt/Lin
Sys/Nonlnt/Bran

Hoare languages HI.
synchronisation trees ST
deterministic labelled event structures dLES
labelled event structures LES
deterministic transition systems clTS
transition systems T__SS
deterministic transition systems with independence dTSl
transition systems with independence TSl

between two categories which imply that one category is embedded, fully and faithfully,
in another. 3

Here we draw on the experience in recasting models for concurrency as categories,
detailed, e.g., in [22]. Briefly the idea is that each model (transition systems are one
such model) will be equipped with a notion of morphism, making it into a category
in which the operations of process calculi are universal constructions. The morphisms
will preserve behaviour, at the same time respecting a choice of granularity of the
atomic changes in the description of processes - they are forms of simulations. One
of their roles is to relate the behaviour of a construction on processes to that of
its components. The reflections and coreflections provide a way to express that one
model is embedded in (is more abstract than) another, even when the two models are
expressed in very different mathematical terms. One adjoint will say how to embed the
more abstract model in the other, the other will abstract away from some aspect of
the representation. The preservation properties of adjoints can be used to show how a
semantics in one model translates to a semantics in another.

The diagram below, in which arrows represent coreflections and the 'backward'
arrows reflections, shows the 'cube' of relationships summarizing the results of this
paper.

TSI,~ ~ T_SS

LES~

J
dLES ~ ~ HL

3 Here a coreflection is an adjunction in which the unit is a natural isomorphism, and a reflection an adjunction
where the counit is a natural isomorphism.

300 v. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348

Although our main concern here is conceptual, on abstract relationships between
models, of course all the 'abstraction' adjoints have clear computational meanings and,
therefore, possible applications. In particular, moving along Nonlnt ~ Int enforces
the reduction of concurrency to nondeterminism, whilst moving along Sgs ~ Beh
is essentially moving from 'machines' to their 'behaviours'. The translations Bran H
kin purge the models from nondeterministic branching, enforcing a linear time setting.

The usefulness, e.g., in specification, verification, and semantics, of these reductions is
largely proved in literature.

Establishing the coreflection LES ~ TSI, the new notion of occurrence transition
systems with independence arises naturally. These prove to be rather interesting struc-
tures. In particular, by means of them we shall identify yet another characterisation

of coherent, finitary, prime al�ebraic domains, one expressible simply in terms of the
structure of transition systems.

Although most of the chosen models are well known, among the adjunctions in
the cube only HI_ ~ s-r, ST ~ T_SS and ST ~ LES have already appeared in
literature. Some related results are presented in [2], in which the authors focus on
the interleaving/noninterleaving and linear/branching axes studying the relationships
between four chosen models of concurrency different from ours.

This paper is a full and extended version of [15]; some of the results presented here
appear also in [11, 14]. In order to keep the size of the paper in reasonable bounds,
some of the most technical proofs are only sketched.

I. Preliminaries

In this section, we study the interleaving models. We start by briefly recalling some
well-known relationships between languages, trees and transition systems [22], and
then, we study how they relate to deterministic transition systems.

Definition 1.1 (Labelled transition systems). A labelled transition system is a struc-
ture T = (S, sI,L, Tran) where S is a set of states, s 1 E S is the initial state, L is a
set of labels, and Tran c_ S x L x S is the transition relation.

The fact that (s ,a,s I) E Tranr - also denoted by s a ~ s/, when no ambiguity is
possible - indicates that the system can evolve from state s to state s ~ performing an
action a. The structure of transition systems immediately suggests a notion of simulation
morphisms: initial states must be mapped to initial states, and for every action the
first system can perform in a given state, it must be possible for the second system
to perform the corresponding action - if any - from the corresponding state. This
guarantees that morphisms are simulations.

Definition 1.2 (Labelled transition system morphisms). Given the labelled transition
systems To and T1, a morphism h" T --~ T ~ is a pair (a, 2), where ~ : STo ~ St1 is a

V. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348 301

function and 2 : Lro ~ Lr, a partial function, such that 4

(i) a(4o) = 41;
(ii) (s ,a,s ') E Tranro implies

(a (s) , 2 (a) , a (s ')) E Tranr, if 2+a,
a(s) = a(s t) otherwise.

It is immediate to see that labelled transition systems and labelled transition system
morphisms, when the obvious componentwise composition of morphisms is considered,

give a category, which will be referred to as "I'S.

A particularly interesting class o f transition systems is that of synchronisation trees,
i.e., the tree-shaped transition systems.

Definition 1.3 (Synchronisation trees). A synchronisation tree is an acyclic, reach-
able transition system S such that

(st, a,s), (s" ,b ,s) E Trans implies s' = s" and a = b.

We shall write ST to denote the full subcategory o f T$ consisting of synchronisation

trees.

In a synchronisation tree part o f the information about the internal structure o f sys-

tems is lost, whilst the information about their behaviour is maintained. In particular,
it is not anymore possible to discriminate between a system which reaches again and

again the same state, and a system which passes through a sequence of states, as far as

they are able to perform the same actions. However, observe that the nondeterminism

present in a state can still be expressed in full generality. In this sense, synchronisation

trees are branching time and interleaving models of behaviours.
A natural way of studying the behaviour of a system consists of considering its

computations as a synchronisation tree, or, in other words, o f 'unfolding' the transition

system by decorating each state with the history of the computation which reached it.

Definition 1.4 (Unfoldings o f transition systems). Let T be a transition system. A
path rc of T is e, the empty path, or a sequence t l . . . 6, n >~ 1, where

(i) ti E Tranr, for i = 1 n;

(ii) tl = (Jr, a l , s l) and ti = (S i - l , a i , s i) , for i = 2 n.
We shall write Path(T) to indicate the set of paths o f T and ns to denote a generic

path leading to state s.
Define ts .s t (T) to be the synchronisation tree (Path(T),e, Lr, Tran), where

((h " " tn),a,(tl " " tntn+l)) E Tran

¢:> tn = (Sn-l,an,Sn) and 6+1 = (Sn,a, Sn+l).

4 We use f$ x to mean that a partial function f is defined on argument x. Dually, T stands for undefined.

302 V. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348

This procedure amounts to abstracting away from the internal structure of a tran-

sition system and looking at its behaviour. It is very interesting to notice that this
simple construction is functorial and, moreover, that if forms the right adjoint to the
inclusion functor of S_ff in 1-S. In other words, the category of synchronisation trees
is coreflective in the category of transition systems. The counit of such adjunction is
the morphism (~b, idLT): ts.st(T) ~ T, where ~b :Path(T) ~ ST is given by ~(~) = Jr,

and q~((t l ." t,)) = s if tn = (s',a,s).
While looking at the behaviour of a system, a further step of abstraction can be

achieved forgetting also the branching structure of a tree. This leads to another well-
know model of behaviour: Hoare languages.

Definition 1.5 (Hoare languages). A Hoare language is a pair (H,L), where 0 ¢
HC_L*, and sa E H =~ s E H. A partial map 2 : Lo ~ L1 is a morphism of Hoare
languages from (Ho,Lo) to (H1,L1) if for each s E Ho it is 2(s) E H1, where 2 : L~ --*

L T is defined by

2 (¢) = e and ,~(sa)= [! (s
),~() if 2 ~a; a

[, 2(s) otherwise.

These data give the category H I of Hoare languages.

Observe that any language (H,L) can be seen as a synchronisation tree just by
considering the strings of the language as states, the empty string being the initial

a St S t . state, and defining a transition relation where s > if and only if sa = Let
hl.st((H, L)) denote such a synchronisation tree.

On the contrary, given a synchronisation tree S, it is immediate to see that the strings
of labels on the paths of S form a Hoare language. More formally, for any transition

system T and any path rc = (~, al, sl)"" (Sn--1, a,, s,) in Path(T), define Act(n) to be
the string al .- . an E L~. Moreover, let Act(T) denote the set of strings

{Act(~) [zc E Path(T)}.

Then, the language associated to S is st.hl(S) = Act(S), and simply by defining
st.hl((a,2)) = 2, we obtain a functor st.hl : S_fiT ~ HI_. Again, this constitutes the left
adjoint to hl.st : HL ~ ST given above. The situation is illustrated below, where
represents a coreflection and ~ a reflection.

Theorem 1.6.

Hr., ,~ S T , --~ TS.

The existence of a (co)reflection from category A to 13 tells us that there is a full
subcategory of 13 which is equivalent to A (in the formal sense of equivalences of
categories). Once a (co)reflection is established, it is often interesting to identify such
a subcategory. In the case of H I and ST the question is answered below.

v. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348 303

Proposition 1.7 (Languages are deterministic trees). The full subcategory of ST con-
sistin9 of those synchronisation trees which are deterministic, say dST, is equivalent
to the category o f Hoare languages.

2. Deterministic transition systems

Speaking informally behaviour/system and linear/branching are independent parame-
ters, and we expect to be able to forget the branching structure of a transition system
without necessarily losing all the internal structure of the system. This leads us to
identify a class of models able to represent the internal struc~re of processes without
keeping track of their branching, i.e., the points at which the choices are actually taken.
A suitable model is given by deterministic transition systems.

Definition 2.1 (Determinbtic transition systems). A transition system T is determin-
istic if

(s,a,s'), (s ,a,s") E Tranr implies s' = s ' .

Let dT$ be the full subcategory of T$ consisting of those transition systems which
are deterministic.

Consider the binary relation ~ on the state of a transition system T defined as the
least equivalence which is forward closed, i.e.,

s ~- s' and (s,a,u), (s ' ,a,u') E Trans. ~ u ~-- u',

and define ts.dts(T) = (Sly_, [~]_~,LT, Tran~), where Sly- are the equivalence classes
of -~ and

([s]~_,a,[s']~_) E Tran~_ ¢~ 3(g,a,g') E Tranr with g~_s and g' ~ s '.

It is easy to see that the transition system ts.dts(TS) is deterministic. Actually, this
construction defines a functor which is left adjoint to the inclusion dT$ ~ T$. In the
following we briefly prove this fact. Since confusion is never possible, we shall not
use different notations for different -~'s.

Given a transition system morphism (~,2) : To ~ T1, define ts.dts((a,2)) to be

(if, 2), where 6 : Sro/~----~ S r l / r~ is such that ff([s]~_) = [a(s)]_~.

Proposition 2.2 (ts.dts : T $ ~ dT$ is a functor). The pair (~,2) : ts.dts(To) ---,
ts.dts(T1) is a transition system morphism.

Proof. We show that 6 is well-defined. For (s,a, sl), (s ,a , s ') E Tranro, if 2Ta,
then a(s ') = a(s) --- a(s"); otherwise, (a(s) ,2(a),a(s ')) , (a (s) ,2 (a) ,a(s ')) E Tranr~.
Therefore, in both cases, a(s ~) "~ G(s'). Now, since (s,a,s ') E TranTo implies

304 v. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348

(a(s) ,2(a) ,a(s ')) E Tranr, or a(s) = a(s'), it follows that a(-~)___- ~. It is now easy

to show that (6,2) is a morphism. []

It follows easily from the previous proposition that ts.dts is a functor.
Clearly, for a deterministic transition system, say DT, there are no pairs (s,a, st),

(s ,a,s") E TranDT with s t ¢ s". Thus, -~ is the identity, and we can choose a candidate
for the counit by considering, for any deterministic transition system DT, the morphism
(e, id) : ts.dts(DT) ~ DT, where e([s]_~) = s.

Proposition 2.3 ((e, id) • ts.dts(DT) ~ D T is couniversal). For any deterministic
transition system DT, any transition system T, and any morphism (rl, 2) : ts.dts(T)
DT, there exists a unique k in T__SS such that (e, id)o ts.dts(k) = (r/,2)."

ts.dts(DT) (~,id) " DT

ts ats(~) l , , , ~ . ~) / /

ts.dts(T)"

Proof. The morphism k must be of the form (tr,2), for some a. We choose a such that
a(s) -- t/([s]~_). This clearly makes k be a transition system morphism. Moreover, the
diagram commutes: (e, id) o ts.dts((a, 2)) = (e o~, 2), and e(6([s]_~)) = e([a(s)]_~) =
a(s) --- r/([s]_~). To show uniqueness of k, suppose that there is U which makes the
diagram commute. Necessarily, k' must be of the kind (# ,2) . Now, since #([s]_~) =
[#(s)]_~, in order for the diagram to commute, it must be at(s) -- t/([s]~_). Therefore,

a t = a and t h e n U = k . []

Theorem 2.4 (ts.dts q +--~). The functor ts.dts is left adjoint to the inclusion functor
dT$ ~ T$. Therefore, the adjunction is a reflection.

Proof. By standard results of Category Theory (see [7, Ch. IV, p. 81]). []

Remark. It is worth noticing that ts.dts does not coincide with the classical 'subset
construction' of automata theory, which is not even functorial on T__SS. Our construction,
as implied by the kind of simulations the morphisms of T SS are, preserves behaviours
'weakly': ts.dts(T) simulates T, i.e., the behaviours of T are behaviours of ts.dts(T),
but not necessarily the converse, i.e., ts.dts(T) may exhibit more behaviours (see, e.g.,
Example 5.1).

Next, we present a universal construction from Hoare languages to deterministic
transition system, namely a coreflection H.__LL ~ dTS. Let (H,L) be a language. Define
hl.dts(H,L) = (H,e,L, Tran), where (s,a, sa) E Tran for any sa E H, which is trivially
a deterministic transition system.

On the contrary, given a deterministic transition system DT, define the language
dts.hl(DT) = (Act (DT) ,Lm-) . Concerning morphisms, it is immediate that if

V. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348 305

(a ,2) : DTo ~ DT1 is a transition system morphism, then 2 - Act(DTo) --+ Act(DT1)
is a morphism of Hoare languages. Of course then, defining dts.hl((a, 2)) = 2, we have
a functor from dTS to HI_.

Now, consider the language dts.hl o hl.dts(H, L). It contains a string al • .. an if and

only if the sequence (e, a l , a l) (a l , a 2 , a l a 2) ' " (a l " ' a n - l , a n , a l " ' a n) is in
Path(hl.dts(T)) i f and only if a l ' . "an is in H. It follows immediately that id :
(H, L) --+ dts.hl o hl.dts(H, L) is a morphism of languages. We will show that id
is actually the unit o f the coreflection.

Proposit ion 2.5 (/d " (H , L) ~ dts.hl o hl.dts(H, L) is universal). For any Hoare lan-
guage (H,L), any deterministic transition system DT, and any morphism). : (H,L)
dts.hl(DT), there exists a unique k in dTS such that dts.hl(k) = 2:

Proof . Observe that since DT is deterministic, given a string s E Act(DT), there
is exactly one state in SoT- reachable from JD:r with a path labelled by s. We shall
use state(s) to denote such a state. Then, define k =- (a ,2) " hl.dts(H,L) --~ DT,
where tr(s) = state(2(s)). Since DT is deterministic and ,~(s) is in Act(DT), (tr, 2) is
well-defined and the rest o f the proof follows easily. D

Theorem 2.6 (hl.dts-~ dts.hl). The map hl.dts extends to a functor from HL to dTS
which is left adjoint to dts.hl. Since the unit of the adjunction is an isomorphism, the
adjunction is a coreflection.

Observe that the construction of the deterministic transition system associated to a
language coincides exactly with the construction of the corresponding synchronisation
tree. However, due to the different objects in the categories, the type of universality
of the construction changes. In other words, the same construction shows that H_LL is

reflective in ST - a full subcategory of T__SS - and coreflective in dTS - another full
subcategory of T_SS.

Thus, we enriched the diagram at the end of the previous section and we have a
square.

Theorem 2.7 (The interleaving surface).

d T S ~ ~ T S

HI_ ~ ,~ ST

306 V. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348

3. Noninterleaving vs. interleaving models

Event structures [10, 21] abstract away from the cyclic structure of the process and
consider only events (strictly speaking event occurrences), assumed to be the atomic

computational steps, and the cause/effect relationships between them. Thus, we can
classify event structures as behavioural, branching and noninterleavin9 models. Here,
we are interested in labelled event structures.

Definition 3.1 (Labelled event structures). A labelled event structure is a structure
E S = (E,#, ~<,E,L) consisting of a set of events E partially ordered by ~<; a symmetric,
irreflexive relation # C_ E × E, the conflict relation, such that

{e ~ E E I e ~ < e } is finite for e a c h e E E ;

e # e ' ~< e ' ' implies e # e '~ for each e, e ~, e ~t E E;

a set of labels L and a labelling function f : E ~ L. For an event e E E, define
Le] = {e ' E E [e '~<e}. Moreover, we write W for # U { (e , e)] e E E}. These data
define a relation of concurrency on events: co = E x E \ (<<. U <~-1U #).

A labelled event structure morphism from ESo to ES1 is a pair o f partial functions

(q, 2), where r/: EEso ~ EEsl and 2 : Leso ~ Les, are such that
(i) [q(e)] _C r/([e]), if r/+e;

(ii) r/(e) W r/(e') implies e W e ', if r/J.e, r/lel;

(iii) 2 o ~Es0 = YEs, o r/, i.e., the following diagram commutes:

EEs ° ~° , LEso

EEXl [Esl '- LESI

This defines the category I.I:S of labelled event structures.

The computational intuition behind event structures is simple: an event e is en-

abled and can occur when all its causes, viz.]eJ \{e}, have occurred and no event
which it is in conflict with has already occurred. This is formalised by the following
notions of configuration and enabling. Notice that conditions (i) and (ii) above en-
sure precisely that morphisms of event structures preserve the computationally relevant
structure, namely configurations and enabling.

Definition 3.2 (Configurations). Given a labelled event structure ES, define the con-

figurations of E S to be those subsets c C Ees which are

Conflict Free: Vel,e2 E c, not el # e2;

Left Closed: Ve E c Ve~ <~e, e ~ E c.

v. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348 307

Let ~ (E S) denote the set o f configurations of ES.
We say that e is enabled at a configuration c, in symbols c b-e, if (i) e ~ c;

(ii) [eJ \{e} C_ c; (iii) e' E Ees and e' # e implies e' q[c.
The occurrence of e at c transforms c in the configuration c ~ = c U {e}.

Given a finite subset c o f EEs, we say that a total ordering of the elements o f c,

say {el < e2 < - . . < en}, is a securin9 for c if and only if {el ,ei-1} F- el, for
i --- 1 n. Clearly, c is a finite configuration if and only if there exists a securing

for it. We shall write a securing for c as a string e le2 . . . en , where c = {ebe2 en}

and ei ~ ej for i ¢ j , and, by abuse o f notation, we shall consider such strings also

configurations. Let Sec(ES) denote the set of the securings o f ES.

Definition 3.3 (Determin&tic event structures). A labelled event structure ES is de-
terministic if and only if for any c E ~ (E S) , and for any pair o f events e, e' E Ees,
whenever c F- e, c t- e ~ and f (e) = t~(e'), then e = e'.

This defines the category d I E S as a full subcategory of I_E$.

In [19], it is shown that synchronisation trees and labelled event structures are related

by a coreflection from ST to I_ES. As will be clear later, this gives us a way to see

synchronisation trees as an interleaving version o f labelled event structures or, vice

versa, to consider labelled event structures as a generalisation of synchronisation trees

to the noninterleaving case. In the following subsection, we give a brief account o f

this coreflection.

3.1. Synchronisation trees and labelled event structures

Given a tree S, define st.les(S) -= (Trans, <~,#,E, Ls), where

• ~< is the least partial order on Trans such that (s,a, sl)<~(s~,b,s');
• # is the least hereditary, symmetric, irreflexive relation on Trans such that (s, a, s ~) #

(s,b,s") if s ' ¢ s";

• ~((s,a,s')) = a.
It is clear that st.les(S) is a labelled event structure. Now, by defining st.les((a, 2)) =

(t/~, 2), where

rlo((s,a,s')) = { (a(s),2(a),a(s')) if 2+a,
T otherwise,

we extend st.les to a functor from ST to / E $.

On the contrary, for a labelled event structure ES, define les.st(ES) to be the struc-

ture (Sec(ES),e, LEs, Tran), where (s,a, se) E Tran if and only if s, se E Sec(ES)
and Ees(e) = a. Since the existence of a transition (s,a,s ~) implies that s is a string
strictly shorter than s' , the transition system we obtain is certainly acyclic. Moreover,
by definition o f securing, it is reachable. Finally, if (s,a, se), (s~,a,s~#) E Tran and

se = s~#, then obviously s = s ~ and e = # . Therefore, les.st(ES) is a synchronisation
tree.

308 V. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348

Concerning morphisms, for (~/,2) : ESo --~ ES1, define les.st((q,2)) to be (~,2).
This makes les.st be a functor from t.E$ to ST.

Consider now les.st o st.les(S). Observe that there is a transition

((sl, al,s1)...(Sn_l,an,Sn), a, (SIs, al,Sl)...(Sn_l,an,Sn)(Sn, a,s))

in Tranles.stost.les(S) if and only if (sls, al,sl) . . . (Sn_l,an,Sn)(Sn,a,s) is a path in S. From
this, and since S and les.st o st.les(S) are trees, it follows that there is an isomorphism
between the states of S and the states of les.stost.les(S), and that such an isomorphism
is indeed a morphism of synchronisation trees.

Theorem 3.4 (st.les q les.st). For any synchronisation tree S, the map (~, id) • S
les.st o st.les(S), where rl(s I) = e and ~/(s) --- (~s, a l , s i) . . . (Sn,a,s), the unique path
leading to s in S, is a synchronisation tree isomorphism.

Moreover, (st.les, les.st) : ST ~ LES is an adjunction whose unit is given by the
family of isomorphisms (7, id). Thus, we have a coreflection of ST into LF$.

Consider now a synchronisation tree S in dST, i.e., a deterministic tree. From the
definition of st.les, it follows easily that st.les(S) is a deterministic event structure; on
the other hand, les.st(ES) is a deterministic tree when ES is deterministic. Thus, by
general reason, the coreflection $-r ~ LES restricts to a coreflection dST ' -~ d IES ,
whence we have the following corollary.

Theorem 3.5 (HL ~ dLES). The category HI_ of Hoare languages is coreflective in
the category d I E S of deterministic labelled event structures.

Proof. It is enough to recall that dST and HI_ are equivalent. []

To conclude this subsection, we make precise our claim of labelled event structures
being a generalisation of synchronisation trees to the noninterleaving case. Once the
counits of the above coreflections have been calculated, it is not difficult to prove the

following results.

Corollary 3.6 (Labelled event structures = Synchronisation trees + concurrency). The
full subcategory of LI=$ consisting of the labelled event structures ES such that
coEs = 0 is equivalent to ST.

The full subcategory of dLE$ consisting of the deterministic labelled event struc-
tures ES such that coEs= 0 is equivalent to HI..

3.2. Transition systems with independence

Now, on the system level we look for a way of equipping transition systems with a
notion of 'concurrency' or 'independence', in the same way as I_ES may be seen as
adding 'concurrency' to ST. Moreover, such enriched transition systems should also
represent the 'system model' version of event structures. Several such models have
appeared in the literature [17, 1, 18,3]. However, the asynchronous automata of [17]

V. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348 309

are not suited to our programme, since they are inherently determin&tic. Also the
transition systems introduced in [1, 18,3] do not fit directly the frame, as they are
unlabelled. Nevertheless, we could use them profitably provided a layer of labels is
added on top of the events which decorate their transitions. However, since such a
double 'decoration' of transitions would not be mathematically very pleasant, here we
choose a variation of these notions, the transition systems with independence [22].

Transition systems with independence are labelled transition systems with an inde-
pendence relation carried by the transitions. The novelty resides in the fact that the
notion of event becomes a derived notion. However, four axioms are imposed in order
to guarantee the consistency of this with the intuitive meaning of event.

Definition 3.7 (Transition systems with independence). A transition system with in-
dependence is a structure (S, fl, L, Tran, I), where (S, f l ,L, Tran) is a transition system
and I C Tran 2 is an irreflexive, symmetric relation, such that, using -< to denote the
following relation on transitions:

(s,a,s') -< (s",a,u) ¢~ Ib. (s,a,s') I (s,b,s") and ~ . r . ~ ,,
(s ,a , s ') I (s ' ,b ,u) and I"L < ""la
(s,b,s") I (s",a,u), s " b ~ ~

1,1

and ~ for least equivalence containing -% we have
(i) (s,a,s') ~ (s,a,s") ~ s' -- s";

(ii) (s,a,s') I (s,b,s") ~ 3u. (s,a,s') I (s',b,u) and (s,b,s") I (s",a,u);

S J"X
i.e., s' s"

S

Z
S ~ 1 1 S "

(iii) (s,a,s') I (s',b,u) ~ 3s" (s,a,s') I (s,b,s") and (s,b,s") I (s",a,u);

S ;/=
i.e., s' I :=> S') 1 S" \ \ Z

(iv) (s,a,s') ~ (s" ,a ,u) I (w,b,w') ~ (s ,a , s ') I (w,b,w').

Morphisms of transition systems with independence are morphisms of the underlying
transition systems which preserve independence, i.e., such that

(s,a,s') I (g,b,~') and 2J.a, 2~.b :=> (tr(s),2(a),tr(s'))I (tr(g),2(b),a(~')).

These data define the category T$1 of transition systems with independence. Moreover,
let dT$1 denote the full subcategory of T$1 consisting of transition systems with
independence whose underlying transition system is deterministic.

310 1I,, Sassone et al./ Theoretical Computer Science 170 (1996) 297-348

Thus, transition systems with independence are precisely standard transition systems
but with an additional relation expressing when one transition is independent of another.
The relation -,% defined as the reflexive, symmetric and transitive closure of a relation
which simply identifies local 'diamonds' of concurrency, expresses when two transitions
represent occurrences of the same event. Thus, the equivalence classes [(s,a,s~)]~ of
transitions (s,a,s ~) are the events of the transition system with independence. In order
to shorten notations, we shall indicate that transitions (s, a, s~), (s, b,s'), (J, b, u) and
(s ~r, a, u) form a diamond by writing Diama,b(S,S~,S ", u).

Concerning the axioms, property (i) states that the occurrence of an event at a
state yields a unique state; property (iv) asserts that the independence relation respects
events. Finally, conditions (ii) and (iii) describe intuitive properties of independence:
two independent events which can occur at the same state, can do it in any order
without affecting the reached state.

Transition systems with independence admit TS as a coreflective subcategory. In this
case, the adjunction is easy. The left adjoint associates to any transition system T the
transition system with independence whose underlying transition system is T itself and
whose independence relation is empty. The right adjoint simply forgets about the inde-
pendence, mapping any transition system with independence to its underlying transition
system. From the definition of morphisms of transition systems with independence, it
follows easily that these mappings extend to functors which form a coreflection T_SS
TSI. Moreover, such a coreflection trivially restricts to a coreflection dTS ~ dTSI.

So, we are led to the following diagram.

Theorem 3.8 (Moving along the 'interleaving/noninterleaving' axis).

dTSI,a

dLES ,a

TSI~ ~ T S o s/I
LES~ I t ~ S T

"~ HI..

4. Transition systems with independence and labelled event structures

In this section, we show that transition systems with independence are an extension of
labelled event structures to a system model, by showing that there exists a coreflection
from I_ES to TSl. To simplify our task, we split such a coreflection in two parts.

I~ Sassone et aLI Theoretical Computer Science 170 (1996) 297-348 311

First, we define the unfolding of transition systems with independence. To this aim,
we introduce the category oTSI of occurrence transition systems with independence,
obtained from TSI via conditions reminiscent of those which yield trees from transition
systems. Later, we shall show that labelled event struc~res are coreflective in oTSI,

thus obtaining

LES • ~ o T S l ~ ~ TS l .

In addition, we shall identify a subcategory of oTSl equivalent to LES, so yielding an
account of coherent, finitary, prime algebraic domains in terms of transition systems.

Definition 4.1 (Occurrence transition systems with independence). An occurrence
transition system with independence is a transition system with independence OTI =
(S, st,L, Tran, I) which is reachable, acyclic and such that

(s',a,u) ¢ (s",b,u) E Tran implies
3s. (s,b,s') I (s,a,s") and (s,b,s') I (s',a,u)

and (s,a,s") I (s",b,u),

S

i.e., s ' s" :=> S r 1 1 S "

\/ XI
U U

or, in other words, (s~,a,u) and (s",b,u) form the bottom of a concurrency diamond
Diama,b(S, s", s', u).

Let oTSl denote the full subcategory of TSI whose objects are occurrence transition

systems with independence.

Given a transition system with independence TI, define ~-C_Path(TI) 2 to be the
least equivalence relation such that

ns(s, a, s')(s', b, U)nv ~- ns(s, b, s")(s", a, u)~% if Diama,b(S, s', s", u).

The following are some key, easy to prove, properties of occurrence transition sys-
tems with independence.

Lemma 4.2. Given an occurrence transition system with independence OTI, let u be
I P paths leading to it. Then nu ~- n,. a state and nu, n,

Proof. By induction on the minimum length among those of 7z, and n~,. I f Inul =
I IX l = 0, then nu = e = n,.

Suppose that re, = ns,(s', a, u), n~ = ns,, (s", b, u) and suppose that Ins, I ..< Ins,, I. Then,
necessarily, it must be Diamab(S,S",S~,U), for some s E Sori. Since OTI is reachable,
there exists a path no = ns(s,b,s~). Since the length of ns, is n - 1, we have that

312 V. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348

min{l~z0[, I~zs,[}<<.n- 1. So, we can apply the induction hypothesis and conclude that

~ , -~ n0. From the definition o f -~, it follows that ~0 has length n - 1. Thus, zq =

g~(s,a,s") has length n - 1 and, by induction, re1 -~ ~Cs,,. So, 7ru ~- rc~(s,b,s~)(s',a,u) ~-
rc~(s,a,s")(s",b,u) ~- n'~. []

Corollary 4.3. Any pair o f sequences leadiny f rom state g to state gt o f O T I contain
the same number o f representatives o f any ~-equivalence class.

Proof. First suppose that g is the initial state S/or~. Then the sequences are two paths
leading to the same state and therefore, by Lemma 4.2, they are _~-equivalent. In

the case ~s(s,a,s~)(s~,b,u)rce, ~- n~(s,b,s")(s ' ,a ,u)n~, , the result is immediate, since

(s ,a,s ~) ~ (s ' , a , u) and (s , b , s ") ~ (sl, b,u). In the general case, the result follows by

applying transitively the previous argument.

Now, consider two sequences from a generic g to g', say a ~ e , and cr~e,. I f there

were a H-class whose elements occur a different number of times in ae--.e, and a ~ e , ,
then the same would happen for the paths nsae~z, and ~a~__.e,, and that would con-
tradict what we have just shown in the first part of this proof. []

Corollary 4.4. I f (s ,a,s ~) and (s,b,s ~) are transitions o f OTI , then a = b.

Proof. By reachability and by Lemma 4.2, we have rCs(S,a,s') ~ rCs(s,b,s'). It follows

then from Lemma 4.3 that (s ,a,s ~) ~ (s,b,s ') , and so a = b. []

Summing tip, occurrence transition systems with independence are very well struc-
tured and regular. In particular, the last result implies that in an occurrence transition

system with independence each diamond of concurrency is not degenerate, i.e., it con-

sists of four distinct states.
The next step is to show that in a path of an occurrence transition system with

independence at most one representative of a ~-class may appear. Given a path n and

an equivalence class [(s,a,s')]~, let ~U(n,[(s ,a,s ')]~) be the number o f representa-

tives of [(s,a, sl)]~ occurring in n. Since we know from Corollary 4.3 that such a
number depends on n only by means o f the state it reaches, we shall write simply

JIr(x,[(s ,a,s ')]~), for x c So77. Moreover, let s ~ a ~ s' stand for s a> s ' or s ~ a s'.

Then we have the following result.

al a2 an Lemma 4.5. Consider a sequence o f states a = so ~ ~ sl ~ ~ s2 . . .

Jtr(Sn, [(s, a, s ')]~) = JV'(s0, [(s, a, s ')] ~)

+ f{(si, ai+l,si+l)l(si , a i+l ,s i+l)~ (s,a,s ')}l

- I{(si+l,ai+~,si) I(si+a,ai+l,si) ~ (s ,a ,s ')} I.

S n. T h e n

Proof. By induction on n, the length o f a. For n = 0, a is empty and the thesis is
trivially true. Suppose then that the thesis holds for sequences of length n - 1. There

V. S a s s o n e e t al. I T h e o r e t i c a l C o m p u t e r S c i e n c e 170 (1 9 9 6) 2 9 7 - 3 4 8 3 1 3

are two cases: S n _ 1
an

C a s e S n - 1) Sn :

dn an
) S n o r s n) S n - 1 .

O

V
S O

° o ,s .
...... \ / /

. .,."" "....

° Sn -1

I f (s n -- 1, an, Sn) pC (S, a, S') then JV'(Sn, [(s, a, s 1)] ~) = X (s n - - 1 , [(S, a, S')] ~), and since
nothing is added to or subtracted from the fight-hand term, the equality holds. I f

otherwise (s ,_] , a n , S n) ~ (S , a , s t) , then

~A/'(s,, [(s , a , s ')] ~) = JV' (s ,_ l , [(s , a , s ')] ~) + 1,

and the equality stays since 1 is added also to the right hand term. So, the induction

hypothesis is maintained.
an

C a s e s n > S n - l :

° ° s ~ \ / /
° • Sn 1

V
S o

Again, if (Sn_l,an,s=) pC (s ,a , s I) the terms on both the sides o f the equation are

unchanged considering the nth transition, and the result holds by induction. Otherwise

if (S , _ l , a = , s ,) ~ (s ,a , s ') , then J f f (s , , [(s , a , s ')] ~) = J V (S , _ l , [(s , a , s ')] ~) - 1. This
time 1 is subtracted from the fight-hand term, and therefore the induction hypothesis

is maintained. []

Then, we have the following important corollary.

Corollary 4.6. Given a pa th rc E P a t h (O T I) , at mos t one representat ive o f any ~ -

equivalence class can occur in re.

Proof. Suppose that (s , a , s ') ~,, (g, a , g ') occur both in re. By definition o f ,-,, there
ao an must exist a sequence a = (s = s o < > . . . < >s, = g) , as shown by the following

diagram:

S ~ S k
[~ '~"~S 1 Sk_l ~ ' ' " "'-..~Sk+l.."

a/ .~ I s ~ _ l ~ ~ s i + i I ,. la -, I -s,_~
÷ I a I - " ' s ~ " - i I a ~ la I " ~
s ' - . .~ , a/ .< I ,. I a ~ J o ~ al ~ I

• + / a ~ . . . o - . . - - - . , , o , - / a
....... ° 4, • • 4'

o ~,....- ~ ~ g ,

314 v. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348

Without loss of generality, we can assume n = rc'(s, a, s')a'(g, a ,U)a", i.e., that (s, a,s')
occurs before (g,a,U). Now, since (s,a,s t) appears in n after state s, we

have

~#(s,[(s ,a,s ')]~) < JV'(Y,[(s,a,s')]~).

By the previous lemma, we have that in a at least a representative of [(s ,a,J)]~
must occur 'positively', say (sk, ak+l,Sk+l)"~ (s, a,s~). Therefore, we have a diamond
Oiamak+l,a(Sk, Sk+l,Sk, Sk+l) where, from the property shown earlier, sk # gk. This is
absurd, because (sk, ak+l,Sk+l) ~ (sk, a, gk) breaks axiom (i) o f transition systems with

independence. []

4.1. Unfoldin9 transition systems with independence

Given a transition system with independence TI = (S , J ,L , Tran,I), we define
tsi.otsi(TI) = (H~_ , [e]_~,L, Tran~_, I~_) , where
• //_~ is the quotient o f Path(TI) modulo ~-;
• ([~]_~,a,[~']_~) E Tran~_ ¢:> 3(s,a,s ') C Tran such that ~' ~ ~(s,a,s');
• ([~]_~,a,[~']_~) In ([~]_~,b,t~']=)

<=> 3(s,a,s ') I (&b ,g ') E Tran such that
z I ~-- rt(s,a, sl), and if' "~ ~(&b,U).

Proposition 4.7. The transition system tsi.otsi(TI) is an occurrence transition system
with independence.

Proof. We show only the condition in Definition 4.1 of occurrence transition systems

with independence. Suppose that ([n~]_~,b,[n]_~) # ([n"]~_,a,[n]~_). Then, we have
n ~- nr(s ', b, u) ~- n"(s", a, u) with n ' # n". By definition of -~, there must exist ff such
that n'(s ' ,b ,u) ~- ~(s ,a,s ') (s ' ,b ,u) and n"(s" ,a ,u) ~- f f(s ,b,s")(s",a,u). Moreover,

r~(s, a, s ') -~ n' and r~(s, b, s ") -~ n".
Then, ([ff]~_,a,[ff(s,a,s')]~_) and ([~]~_,b,[~(s,b,s")]~_) close the diamond. []

Fig. 1 shows a simple example of unfolding of a transition system with independence.
Next, we show that tsi.otsi extends to a functor for TSI to oTSI which is right
adjoint to the inclusion functor oTSI ¢--* TSI. As a candidate for the counit o f such an

adjunction, consider the mapping (a~,/d) : tsi.otsi(T1) --* TI, where

at(e) = sl:rl and a~([zr~]~) = s.

By definition of ~ , we know that ere is well-defined. Then, it is not difficult to see that
(~r,,/d) is a morphism of transition systems with independence.

Proposition 4.8 ((at, M) : tsi .otsi(TI) --* TI is couniversal). For any occurrence tran-
sition system with independence OTI, transition system with independence TI, and

V. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348 315

81

tsi. otsi
F +

S I

• ~ •

• .-,< •

1°

• ..< •

Fig. 1. A transition system with independence TI and tsi.otsi(T1).

morph i sm (a , 2) : O T I --* TI , there ex is ts a unique k • O T I ~ t s i . o t s i (T l) in oTSI
such that (a~, id) o k = (a, 2) :

tsi .otsi(Tl) (a,,Jd) • T1

OTI

Proof . Clearly, in order for the diagram to commute, k must be of the form (6, 2).
Consider the map 6(s) = [az(ns)]~, where a,~ : P a t h (O T I) ~ P a t h (T I) is given by

= e; a~ (ns (s ,a , s ')) = ~ a ,~ (ns) (a (s) ,2 (a) ,a (s ')) if 2J, a,
O'2(~)

(a ~(ns) otherwise.

I This definition is well-given. In fact, i f ns and n~ are two paths leading to s, since
O T I is an occurrence transition system with independence, it is n~ ~ nP~, and since
(a , 2) is a morphism, it is a~(n~) ~- az(nPs). In order to show this last statement, it is
enough to prove that

n~(s, a, s p)(s p, b, u)n~ ~- ns(s, b, s")(s" , a, u)rcv

o~(~),~ ((s, a, s')(s', b, u)) ,~ (~) ~ ,~ (~),~ ((s, b, s")(s", a, u)) ,~ (~).

316 V. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348

There are four cases:
(i) 2Ta, 2Tb: then aa((s ,a ,s ') (s ' ,b ,u)) = ~ = a~((s ,b , s") (s" ,a ,u)) , and the thesis

follows easily.
(ii) 2~.a, 2Tb: then

a~((s, a,s ')(s ' , b, u)) -= (a(s), 2(a), a(s '))

= (a (s ") , 2 (a) ,a (u)) = a2((s ,b , s") (s" ,a ,u))

and again the thesis follows.
(iii) ATa, 2+b: follows as in (ii).
(iv) 2~a, 2+b: then the thesis follows directly from the definition of morphism, since

it is Diama, b(s , s ' , s" ,u) and in this case diamonds are preserved.

Let us show that (6, 2) is indeed a morphism of occurrence transition systems with
independence.

(i) ~(s lTI) -= [e]_~.
(ii) Let (s ,a ,s ') E TranoT1, and suppose 2+a. Since O T I is reachable, we have

~s(s,a,s ') E Path(OTI) , and a~(rcD(a(s) ,2(a) ,a(s ')) in Path(TI) . Thus, ([aa(rc~)]_~,
2(a), [a).(rcs(s, a, s '))]~) = (6(s), 2(a), 6(s')) E Tran~_.

(iii) If (s ,a ,s ') IOTI (g,b,g'), then (a (s) , 2 (a) ,a (s ')) IT I (a(g) ,2(b) ,a(g ')) , and rea-
soning as before, we get (6(s),2(a), 6 (s ')) I ~ (6(g),2(b), 6(g')) .

In order to show that the diagram commutes, it is enough to observe that each s is
mapped to a _~-class of paths leading to a(s). Therefore, ~r~ o 6(s) = a(s). The unique-
ness of (6, 2) is easily obtained following the same argument. In fact, the behaviour
of 6 is compelled on any s: Stor~ must be mapped to [~]___, while a generic s must
mapped to a ___-equivalence class of paths leading to a(s). But we know that there is
a unique such class. []

Theorem 4.9 (~-* ~ tsi.otsi). The construction tsi.otsi extends to a functor f rom YS[
to oTSI which is right adjoint to the inclusion oTgl ~-~ TSI.

It will be useful later to notice that this coreflection cuts down to a coreflections
doTSI ~ d-I-S], where doTS] is the full subcategory of oTSI consisting of deter-
ministic transition systems. In order to achieve this result, it is clearly enough to show
that tsi.otsi maps objects from dT$1 to do'l-$].

Proposition 4.10 (doTS1 ~> dTS!). If TI is deterministic, then tsi.otsi(TI) is deter-
ministic.

Proof. Suppose that ([nJ_~,a,[n']_~) and ([nJ~,a, [n"]_~) are in Tran~_. Then, it must
be n' -~ ns(s,a,s ') and n" -~ ns(s,a,s"), for (s,a,s ') , (s ,a , s") c Tran. Then we have
s' = s" and so n' --~ n". []

v. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348 317

4.2. Occurrence TSI 's and labelled event structures

In this subsection we complete the construction o f the coreflections I_IzS ~ TSI

and dI .ES ~ dTSI by showing the existence of coreflections LES ~ oTSI and

diES ,---> doTSI , reminiscent o f the connection between event structures and domains

of configurations [10,21].

Consider a labelled event structure E S = (E, <<,,#,d,L). Define les.otsi(ES) to be

the transition system with independence o f the finite configurations of ES, i.e.,

les.otsi(E S) = (~ F(E S), ~J, L, Tran, I) ,

where

• ~ F (E S) is the set of finite configuration of ES;
• (c ,a ,e ') E Tran i f and only i f c = c ' \ {e} and d(e) = a;

• (c ,a ,c ') I (Y,b,E') i f and only i f (c ' \c) co (~ \~) .
By definition, les.otsi(ES) is clearly an acyclic, reachable transition system. More-

over, I C_ Tran 2 is symmetric and irreflexive, since co is such. In order to show that it

is an occurrence transition system with independence, the following characterisation o f

the relation ~ is important.

Lemma 4.11. Given (c ,a ,c ') and (E,a,E I) C Tran, we have (c ,a ,c ') ~ (E,a,E') C Tran
i f and only i f (c ' \c) = (E'\E).

Proof . (0) . It is enough to show that Diama,b(c,c' ,E,U) implies (c ' \ c) = (?~\E).
Since (c ,a , c ')1 (c,b,E), we have {e} = (c ' \c) co (E\c) = {e'}. Let e" be the event

in E'\c' and e '" the one in U\E. We have c tO {e} tA {e"} = E' = c U { e " } tO {e'}.

Thus, it must be

(e = e '" and e" = e ') or (e = e ' and e '" = e") .

Now, since e co e', it cannot be e = e ' and we must discard the second hypothesis.

Therefore, e = e " , i.e., (c ' \c) = (EP\Y) (and necessarily (E\c) = (?~\c')).
(~) . First suppose c C E. Since then event e in (c ' \ c) -- (?~\E) is enabled both in

c and ~, it means that for any Y ~ (? \ c) we have Y co e. Moreover, we can order

the events in E\c in a chain e 0 " ' G in a such a way that c to {40 e l - l } t -e l , for

i = 0 , n. To this aim, it is enough to choose at each step i one o f the maximal

events in (E\c)\{Eo ei-~} with respect to the <-GEs order.

Now, since ei co e, for each i = 0 n there exists a diamond

cU{eo e,_,}

c U { G e~}U{e}

318 V. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348

Then, for i = 0 , . . . , n we have

(c U {e0 ei_ l} ,a ,c U {g0,. . . ,Yi-1} U {e})

-< (cU {eo Yi},a, cU {e0 el} U {e}),

i.e., (c,a,c ') ~ (?,a,?l).

To complete the proof, consider ~ M c. Necessarily, it enables e. So, we have that
((~ f-1 c), a, (? N c) U {e}) E Tran. Since (~ M c) ___ ? and (? fl c) C_ c, from the previous
part of the proof we have, (c,a,c ') ~ ((~A c) , a , (Yn c) U {e}) ~ (Y,a,?~). []

Exploiting Lemma 4.11, it is easy to show the following proposition.

Proposition 4.12. The transition system les.otsi(ES) is an occurrence transition sys-
tem with independence.

Proof. We verify only the property of occurrence transition systems with independence.
Suppose that (cl, b,c) ~ (c" ,a ,c) E Tran. Then, we have c = c' U {e'} -- c" U {e"}.
Since c ~ ¢ c", it must be e ~ ~ e". Moreover, e '# e", since both events appear in c.
It cannot be e' < e" n o r ett < e t, because otherwise either c I or c" would not be a

configuration. So, e I co e". It follows that ~ = c ' \ {e ' } = c " \ { e " } is a configuration
such that Diama,b((, c 1, c", c). []

Let us define the opposite transformation from oT$1 to LES. For OTI = (S, sI,L,
Tran, I) an occurrence transition system with independence, define otsi.les(OTI) to
be the structure (Tran~, <~,#,f,L) where, writing (s,a,s I) E ~z to mean that (s,a,s 1)
occurs in the path rt,
• Tran~ is the set o f the ,-~-equivalence classes of Tran;
• [(s,a,s')]~ < [(g,b,g')]~ if and only if

Vzffs_-,b,s_-') E Path(OTI) with (~_,b,~') ~ (g,b,g'),

3(s,a,s ') N (s,a,s ') such that (s , a , s ') E ~,

and ~< is the reflexive closure of < ;
• [(s,a,s')]~ # [(g,b,U)]~ i f and only if

W c Path(OTI),

V(s_-,b,s_-') ~ (g,b,g') and V(s,a,s_') ~, (s ,a,s ')

(s , a , s ') E n implies (s_-,a,s_-') !E re;

• f ([(s ,a ,s ')]~) = a.
It is easy to see that otsi.les(OTI) is a labelled event structure. Fig. 2 shows an

example of the labelled event structure associated to an occurrence transition system

with independence.

V. Sassone et al. ITheoretical Computer Science 170 (1996) 297-348 319

0 b

Fig. 2. An occurrence transition system OTZ and otsi.les(OTZ).

Next, we need to extend otsi.les to a fhnctor. Given (a, A) : OTIo + OTI,, define
otsi.les((a, 1)) = (q,, A), where

In the proof of Proposition 4.8, it has been shown that @,a,~‘) -X (S, a,.?‘) and Ala

if A&,
otherwise.

implies (o(s), A(a), c(s’)) N (o(s?, A.(a), a(?)). Then qa is well-defined.

Proposition 4.13. Given a transition system with independence morphism (o,A) :

OTIo -+ OTI,, otsi.les((o,A.)) : otsi.les(OTZo) -+ otsi.les(OTI1) is a labelled event
structure morphism.

Proof. We show the properties of labelled event structure morphisms.

(i) Lqa(e)l C MLel). Consider KS; W)L < v d e in otsi.les(OTZI). For each path ()
xJ(s,a,s’) in OTIO with (s,a,s’) E e, since its image via (o,A) ends with (o(s),l(a),
o(s’)) E q,(e), there must be a transition (x,c, y) E xS such that (+),1(c),
o(y)) - ($b,s’), i.e., q,([(x,c, y)],) = [(S,b,f’)],. We need to prove that [(x,c, y)]_

< [(v,s’L which reduces to prove that, for rcS(s, a,~‘) and ~(s”, a, s”‘) generic
paths as above, letting (x, c, y) and (x’,d, y’) denote respectively the transitions of xS
and X~II mapped to transitions --equivalent to (5, b, f’), we have

(~7 c, Y) - (x’, 4 Y').

First observe that, since (o(2), A(d), a(~‘)) N (a(x), I(c),o(y)), no more than one
element of [(x’, d, y’)]_ U [(x, c, y)]+_ can appear on the same path, for otherwise, taking
the image of such a path via (c,A), we would find a path of OTZl with more than
one occurrence of elements from [(a(x), A(c), a(y))]_ .

3 2 0 V. Sassone et at / Theoretical Computer Science 170 (1996) 2 9 7 3 4 8

Now suppose (x ~ , d , y) 76 (x , c , y) . Then we are in the situation illustrated by the
diagram:

..... s 1.
X "~"" '~" X r

cl ?
y y '

!

S. . S" • .. ~ ' - ~

al " " 1 °
S F S m

Necessarily, it must exist (£,c,35) ~ (x , c , y) which occurs ' backward ' in the se-

quence s ~ sl ~ • • • sn +-~ s". This is because the path from JOTlo to s" cannot contain

any representative of [(x, c, y)]~ . So suppose that Si+l = £ ~ i ~ = si.

Now take any path r~i+~, and consider ~Si+l(Si+l,a,s), with (Si+l,a,~) ~'~ (s,a, sP). The

situation is illustrated by the diagram:

X "* ~" X p

cl
Y Ic' Y'

y

'~"..... ,~jeSi+I",.. "'S~¢

°1, 'lo, c

S... ~ c S.. S'"

Since rCs,+l(Si+l,a,s) is a path whose image via (tr,2) ends with an element of
[(a (s) , 2 (a) , a (s '))]~ , namely, (~r(Si+l) ,2(a),a(s)) , it follows that ~s,+, must contain

x c ' 3~ such that (~r(x),2(c') ,aO~)) = (s--,b,s--') ~ (g,b,g ') . Now consider the path

7ZSi+l (si+l, c, si) = rCsi+, (£, c, fi). Clearly, its image through (tr, 2) contains (a(£), 2(c ') ,
a(3~)) = (s_ =, b,s_ =') ~ (g, b, g ') and, in addition, also (tr(£), 2(c), trO~)) ~ 0r(x), 2(c), t r(y))

(g_,b,~_') ~ (g ,b ,U) , where (s_--,b,s_--') # (s_-,b,s_-'). This is absurd, because no such path
can exist in OTI1. It follows that (x , c , y) , ,~ (x ' , d , J) .

(ii) q~(e) W ~/~(e') ~ e W d . Observe that i f r/~(e) = q~(e') or qo(e) # q~(e'), then
no more than one element from etA d may occur in the same path. This is because, in
such a case, there would be a path in OTI1 in which more than one representative of
the same class or two representatives of conflicting classes would appear. From such

v. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348 321

considerations, it follows that it can be neither e < e ~ nor e ~ < e nor e co e ~. The
only possible cases are, therefore, e = e ~ or e # d .

(iii) 2(~Orio(e)) = forI~Ol,(e)) . Immediate. []

It is very easy now to prove the following result.

Corol lary 4.14 (otsi.les : oTS l ~ LES). The map otsi.les is a functor f rom oTSI to

LES.

In order to show that otsi.les and les.otsi form a coreflection, we need the following
sequence of lemmas.

L e m m a 4.15. Whenever [(s,a,s ')]~ co [(g ,b ,g ')]~, then (s ,a , s ') I (g,b,g').

Proof. By hypothesis [(s,a, st)]~ # [(g,b,g')]~ and [(s,a, sP)]~ ~ [(g,b,g')]~. From the
first hypothesis, there must exist a path which includes representatives of both classes,
say n~_(s, a, sZ)Tz~(s_-, b,s_-~). Then, from the second condition, there must exist a path
which contains a representative of [(g, b, g~)]~ but no representative of [(s, a, s I)]~, say
~ (s_-, b, s_-'),

Now, since no representative of [(s,a,s~)]~ is in he, by Lemma 4.5, there is a

sequence g_ ~ s~ ~ . . . ~ Sn ~ s_ such that there exists (Si+l ,a , s i) ,x, (s,a, st), as
illustrated in the diagram.

..... S 1
,

s_" " s

o["K,
S t S i + 1 ~ - I

1 : a

8 s,

So, (s ,a ,s ') ,.~ (si+ba, si) I (~,b,~_') ,.~ (g,b,g~), which implies, by the property (iv)
o f transition systems with independence in Definition 3.7, (s, a, s ~) 1 07, b,~l). []

Lemma 4.16. Suppose that there is a path n~(s,a,s ')ny(g,b,g ') C P a t h (O T I) and

that, for each (x , a , y) E n e we have [(x ,a ,y)]~ co [(g,b,g')]~. Then there exists a

transition (s ' ,b , s") ¢ TranoTl such that (s ' ,b , s") ~ (g,b,g').

Proof. By induction on the length of he. I f ne is empty there is nothing to show.
Otherwise, we have ns(s,a, sl)n£(s,c,g)(g,b,g~), where [(s ,c ,g)]~ co [(g, b, g')]~. So,
by the previous lemma, we have (s, c,£) 1 (~, b,£~), that, by the general properties
of transition systems with independence, must be part of a diamond of concurrency.
Therefore, there exists (s,b,s_-) ,-- (g,b,g t) and thus, we have a path ns(s,a,s')n~(s,b,g_),

322 t~ Sassone et al. I Theoretical Computer Science 170 (1996) 297-348

where ns is strictly shorter than he. Then, by induction, there exists (s' ,b,s") such that
(s' ,b,s ") ,,~ (s,b,s_-) ~ (g,b,g'), which is the thesis. []

L e m m a 4.17. Consider a path ~zs E Path(OTI) and a class [t]~ such that for each
t' in ~ , we have [t']~ # [t]~ and [t']~ # [t]~. Then, there exists rc~rc~,(s',a,s") E
Path(OT1) with (s ' , a , s ") ~ t.

Proof . By induction on the depth o f s, i.e., the length o f ns.
If ns = ~, the thesis is trivial, since O T I is reachable. Then, suppose we have ns =

rig(g, b, s). By induction hypothesis, there exists a path ns rig, (U, a, ~"), with (U, a, ~")
t. From the previous lemma, we can assume that he, does not contain any transition
whose class is concurrent with It]~. In fact, such transitions can be pushed after the
representative o f [t]~. It fol lows that 7re, contains only elements t' such that [t']~ ~< [t]~.

Now, if the first transition o f n~, is (~, b,s) , we are done. Otherwise, we have the
situation shown in the fol lowing diagram:

S O ~ S

slUl
. ..'"'" S

.#."
s~_2

a n l /
, /

Sn_I=S r oy
S n~ S ~r

al a2 an--I an ~ fill, i .e . , a chain so ~ s1 - ~ • • • ~ S n - 1 ~ S n , where s 0 ~ s , S n _ 1 = s P , s n an =

a and s = si, for i - - 1 ,n. Of course, since [(s i - l ,a i , s i)]~[t]~ for i = 1 n,
and since [(Y,b,s)]~ # [t]~ and [(Y ,b ,s)]~#[t]~ , we have that, for i = 1 n,
[(s ,b , s)]~#[(S i - l ,a i , s i)]~ , i.e., (g , b , s) I (s i - l ,a i , s i) , f o r / = 1 n. It fol lows that
we can complete the picture as shown in the diagram

S o

.Sl >. ¢
""] # S

s .4 ~-

I A

V. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348 323

and construct a sequence of diamonds of concurrency. So, we have a path

rts(S, al,gl) . . . (Sn--l,an, Sn),

where (gn-l,an,gn) ~ (g ' ,a ,g") ~ t, i.e., a path n~ns,(s ' ,a,s") as required. []

Lemma 4.18. Consider a path rcs E P a t h (O T I) and a class [t]~ such that

(i) f o r each t' in ~ , we have [t']~ # [t]~ and [t']~ ~ [t]~,
(ii) f o r each [t']~ < [t]~, there exists a representative o f [t']~ in rc~.

Then, there exists (s ,a ,s ~) C TranoTl with (s ,a ,s ~) ~ t.

Proof. By the previous lemma, we find n~n~,(U,a,g") with (g ' ,a ,g") ~ t. Now, con-
sider an element t ' E he,. We have [tt]~ ~ It]~, because otherwise another repre-
sentative of [t~]~ would be in ns and, by Corollary 4.3, this is impossible. More-
over, [t],~ ~ [t~]~, because in the path nsne , (U,a ,g") transition t ' occurs before than
(g ' ,a ,g"); and [t ']~#[t]~ because in n~ne,(gr, a,g ' ') both t' and (U ,a ,g") occur. It
follows that It']~ co It]~.

Therefore, by applying Lemma 4.16, we find (s, a, s ~) ~ (U, a, g") ~ t. []

Exploiting the above lemma, we next prove a one-to-one correspondence between
the states of O T I and the finite configurations of ots i . les(OTI) , or, in other words,
states of les.otsi(otsi. les(OT1)).

Consider the map c~ : So77 ~ 5 fF(ots i . les (OTI)) given by the correspondence
s ~ {[t]~ I t E n~, rc~ E Pa th (OTI)} . Of course, since any path leading to s contains
the same equivalence classes, cg is well-defined. Moreover, we have the following easy
lemma.

Lemma 4.19. For s E So77, the set Cg(s) is a finite configuration o f otsi . les(OTI).

Let c be a finite configuration of ots i . les(OTI) and let g = [t0]~[q]~..-[tn]~ be
a securing for c. There is a unique path n(g) --- (so, a l , s x) ' . "(Sn--ban,sn) such that
JOT"l = So, sn = s and [(Si-l,ai,si)]~ z [ti]~, for i = 1 n. It can be obtained as
follows:
• (so, a l , s l) is the unique element in It0]~ whose source state is slorr It exists, by

Lemma 4.18, since [[t0]~J = 0, and it is unique because of property (iv) of Defini-
tion 3.7 of transition systems with independence.

• Inductively, (Si_l,ai,si) is the unique element in [ti]~ whose source state
is si-1. Again, it exists because (so, a l , s l) . . . (Si-2, an,Si-1) and [ti]~ satisfy the
conditions of Lemma 4.18 and it is unique by definition of transition systems
with independence.

It is important to observe that, although the actual path ~(~) strictly depends on ~,
the state reached does not.

324 v. Sassone et al./ Theoretical Computer Science 170 (1996) 297--348

L e m m a 4.20. Let c be a finite configuration o f otsi.les(O T I) and/e t ~ = [t0]~ . . . [tn]~
and ~' = ITS]~... [t~]~ be two securings for c. Then the paths ~(~) and ~(~') obtained
as illustrated above reach the same state.

Proof. It is enough to show that ~(~) ~_ n(¢'). To this aim, we work by induc-
tion on the minimal number n of 'swappings' of adjacent elements in ~' needed to
transform it in ~. Observe that such a number exists since ~ and ~ are securing of
the same configuration, and, as such, they are just different permutations of the same

elements.
I f n = 0, then n(~) -- ~z(¢~), since the paths are uniquely determined by the se-

curing. Supposing that we proved the thesis for the case of n swappings, let ~" =

[t~]~ . . . [t~_l]~[ffi+l]~[t~]~[ffi+2]~... [t~]~ be obtained after the first o f n + 1 swap-
pings. Observe that [t[+l]~ must occur in ~ before than [t[]~, otherwise, avoiding the
swapping of [t[]~ and [t[+Â]~, we would find a shorter sequence of swappings trans-

forming ¢r in ~. It follows that [t[]~ ~: [t[+l]~, i.e., ~" is a securing of e. Moreover,
[t[]~ co [t[+l]~. Therefore, we have ~r(¢") _~ ~(~'). Now, ~" can be transformed in

with n swappings, and therefore, by induction hypothesis, ~z(¢') _~ zffg). So, we
conclude rc(~) ~_ rc(~'). []

Therefore, we can define a map 5 t : ~F(o t s i . l e s (OTI)) --~ SOT1 by saying that c ~ s,
where s is the state reached by a path n(g) for a securing g of e. Now, we can see
that cg is an isomorphism of sets whose inverse is 5 ~.

L e m m a 4.21. 5 e = cK-l.

Proof. Consider ~ (s) : {[t]~ I t E rCs} and consider the sequence g = [t0]~ . . . [tn]~
such that rc~ : t o ' " tn. This is clearly a securing of Cg(s), whose associated path
n(g) is rCs itself. This is because of the uniqueness of n(g) discussed earlier. So,
we have 5a(Cg(s)) : s. Suppose 5a(c) = s. Among the path leading to s, consider

n(¢), ~ : [t o]~ ' - . [tn]~ being a securing of c. Then, we may use n(¢) to calculate
oK(St(c)) -- {[t]~ i t E n~} = {[ti]~] i = 0 n} : c. []

It is worthwhile to observe that cg and 5 a give rise to morphisms of transition systems
which are each other 's inverse. First observe that 5a(~) - -S /or l , since the unique path
associated with the unique securing of the empty configuration, is the empty path.
Moreover, Cg(SlTl) = 0, since the unique path leading to slTI in O T I is the empty
path. Moreover, we have the following easy lemma.

L e m m a 4.22. Let O T I be a transition system with independence. Then
(i) I f (s ,a,s ') is a transition o f OTI , then (~(s),a,C~(s')) is a transition o f

les.otsi(otsi.les(O T I)).
(ii) I f (c ,a ,c ') is a transition o f les.otsi(otsi.les(OTI)), then (S¢(c),a, SP(c')) is a

transit&n o f OTI.

V. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348 325

This means that (cg, id) from O T I to les.otsi(otsi . les(OTI)) and (Se, id) from
les.otsi(otsi . les(OTI)) to O T I are morphisms of transition systems. Moreover, (5 ~,/d)
= (cg, i d) - l . Recall that (c,a,c t) I (?,b,? ~) implies, by definition of les.otsi, that
(c ' \ c) = [t]~ co [t']~ = (~t\~). From Lemma 4.22 we have, therefore, that

[t]~ = [(Sa(c), a, 5t~(c'))]~ co [(SP(E), b, 5g(['))]~ = [t']~

and then, from Lemma 4.15, (5~(c),a, 6 ¢ (c ')) I (5~(Y),b,6¢~(?~)). Therefore we have
the following:

Proposition 4.23. (5 ~, id) is a transition system with independence morphism.

However, fig, id) is not a morphism in TSI. It follows that (5 a, id), in general, is not
an isomorphism of transition systems with independence. Consider now the property:

(E) t I t' ~ ~s. (s ,a ,s ') ~ t and (s ,b , s") ~ t'.

Proposition 4.24. O T I enjoys property (E) / f and only i f fig, id) is a morphism o f
transition systems with independence.

Proof. (3) . It is enough to show that (cd, id) preserves independence. Suppose (s, a,s ') I
(~,b,g'). By condition (E), there exists

(s ,a ,s ') ~ (s_,a,s_') I (s,b,s_") ~ (g,b,g'),

and then, we have Diama,b(s_,s',s_",u). So, we have [(s,a, sr)]~ co [(g,b,g')]~. From
Lemma 4.22, we have ¢g(s') = C~(s) U { [(s, a, s')] ~ } and ff(5') = if(g) U { [(g, b, ~')] ~ }.
Therefore, (~(s), a, ~(s ')) I (¢g(g), b, cg(g,)).

(,~=). Suppose that (¢g, id) preserves independence. Then (s ,a ,s ') I (5,b,5 ') im-
plies (~(s) ,a , Cg(s')) I (c~(g),b, Cg(g')), that is [(s,a,s')]~ co [(g,b,g')]~. Then, by
repeated applications of Lemma 4.18, we can find a path rc~(s__,a, sP)(sZ, b ,u) where
(s,a,s, ') ~ (s__,a,s') 1 (s__',b,u) ~ (Y,b,5;). Then, by property (iii) of transition system
with independence, there exists s" and (s,b,s__") ~ (s~,b,u) ,,~ (g,b,g'), i.e., O T I enjoys
property (E). []

Finally, we can define, for each labelled event structure ES a morphism (r/,/d) :
E S --~ otsi.les o les.otsi(ES) as a candidate for the unit of the adjunction. Let us
consider r/ such that

rl(e) = [(c,a,c U {e})]~.

We have already shown in Lemma 4.11 that (c, a, e') ~ (~, a, ~r) if and only if (e ' \c) =
(U\[). It follows immediately that r/ is well-defined and is injective. Moreover, since
any transition of les.otsi(ES), say (e,a,e ') , is associated with an event of ES, namely,
e~\e, we have that r/ is also surjective. Finally, it is not difficult to show that (r/, id)
is an isomorphism of labelled event structures whose inverse is (~hid), where r7 :
[(c, a, c')]~ ~ (e ' \e) .

326 V. Sassone et aL I Theoretical Computer Science 170 (1996) 297-348

Proposition 4.25 ((rt, id) : ES ---, otsi.les o les.otsi(ES) is universal). For any labelled
event structure ES, any occurrence transition system with independence OT1, and
any morphism (~,)~) : E S ---* otsi . les(OTl), there exists a unique k in oTSl such that
otsi.les(k) o 01, id) = (if, 2):

ES (q, ia) • otsi.leso les.otsi(ES)

1 otsi.les(k)

otsi.les(OTI)

Proof. Let us define k : les.otsi(ES) ~ OT1. Clearly, in order to make the diagram
commute, k must be of the form (or,2), for some a. Let us consider a : c H 5P(q(c)),
i.e.,

(a ,2) = (Sa, id) o 07,2) : les.otsi(ES) ---+ les.otsi(otsi.les(OTI)) --~ OT1.

Then, we immediately have that cr is well-defined and that (a, 2) is a transition system
with independence morphism.

Now, we must show that the diagram commutes. We need to show that r/~ o r/ --

q~ o qq o I / = £/. Consider e E EF.S and let a be f (e) . I f 2Ta, then £1Ta and qql"a and,
therefore, both sides of the above equality are undefined. Suppose otherwise that 21a.

We have

e ~ [(c,a,c U {e})]~ ~% [(q(c),2(a),q(c) U {q(e)})]~

[(Se(q(c)), 2(a), 5a(q(c) U {q(e)}))]~

= [(o'(c), 2(a), o'(c U {e}))]~.

Observe that (O(c),2(a),q(c)tO {q(e)}) belongs to les.otsi(otsi.les(OTI)) and is as-
sociated with the event q(e) o f otsi.les(OTI). Then, from Lemma 4.22, we have
[(Se(q(c)),2(a),Se(q(c) U {q(e)}))]~ = q(e). The last step to prove the universal-
ity of (q, id) is to show that k is the unique transition system with independence
morphism from les.otsi(ES) to OTI which makes the diagram commute. Let us sup-
pose that there is k I which does so. It must necessarily be U = (a ~, 2). Observe from
the first part o f the proof that in order for the diagram to commute, we must have
t/~, ([(c, a, c U (e })] ~) = [(a ' (e) , 2(a), a ' (cU {e}))]~ = q(e) = [(o(c),).(a), o(cU (e}))]~,
for any e such that 2 V (e) . Exploiting this fact, it is easy to show by induction on the
cardinality of c that ~ ' = cr. []

Therefore, we have the following theorem.

Theorem 4.26 (les.otsi 4 otsi.les). The map les.otsi extends to a functor from kES
to o T S l which is left adjoint to otsi.les. Since the unit o f the adjunction is an iso-
morphism, the adjunction is a coreflection.

V. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348 327

Next, we show that (5~,/d) is the counit of this coreflection. Actually, now

the task is fairly easy: by general results in category theory [7, Ch. IV, p. 81], the
counit of an adjunction can be determined through the unit as the unique mor-
phism e : otsi.les o les .otsi(OTI) ~ O T I which makes the following diagram

commute:

otsi.les(OTI) (n,~d) • otsi.les o les.otsi o otsi.les(OTI)

otsi.les(e)

otsi.les(OTI)

However, in the proof of Proposition 4.25, we have identified a general way to find
e. From it we obtain ~ = (re, id) o (id, id), which is (re, id).

The results we have shown earlier about (5a,/d) make it easy to identify the full
subcategory of oTSI and, therefore, of TSl which is equivalent to LEg, i.e., the
category of those transition systems with independence which are (representations
of) labelled event structure. Such a result gives yet another characterisation of (the
finite elements of) coherent, finitary, prime algebraic domains [10,21]. Moreover,
this axiomatisation is given only in terms of conditions on the structure of transition

systems.
By general results in category theory [7, Ch. IV, p. 91], an equivalence of

categories is an adjunction whose unit and counit are both isomorphisms, i.e.,
which is both a reflection and a coreflection. Then, Proposition 4.24 gives us a can-
didate for the category of occurrence transition system with independence equivalent
to LES: we consider oTSl E the full subcategory of oTSl consisting of those oc-

currence transition systems with independence satisfying condition (E). To obtain the
result, it is enough to verify that les.otsi : LES ---+ oTSl actually lands in oTSl E.
In fact, this guarantees that the adjunction les.otsi q otsi.les : LES ~ oTSl re-
stricts to an adjunction LES ~ oTSI E whose unit and counit are again, resp-
ectively, (t/,/d) and (5e,/d), which are isomorphisms. It follows then, that

oTSI E ~ LES.

Proposition 4.27. The occurrence transition system with independence les.otsi(ES)

satisfies condition (E).

Proof. Suppose (c ,a ,c ') I (E,b,E') and let (# \ c) = {e} and (~'\E) = {E}. Then, we
have e co E. It follows that c = ([e J \{e})U ([EJ\{E}) is a finite configuration of E S
which enables both e and E. Then, (c,a,c') , ,~ (c,a, cU { e }) I (c,b,c U {E}),-~ (E,b,E')
in les.otsi(ES). []

Thus we have the following.

328 II.. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348

Corollary 4.28. The categories LES and oTSl E are equivalent.

We can interpret such a result as a demonstration of the claim that transition systems
with independence are a generalisation of labelled event structures to a system model.
However, the fact that just unfolding transition systems to their occurrence version
does not suffice to get a category equivalent to LES, stresses that the independence
relation on transitions is not exactly a concurrency relation. As an intuitive explanation

of this phenomenon, it is very easy to think of a transition system with independence
in which independent transitions never occur in the same path, i.e., intuitively, they

are in conflict. In the light of such observation, condition (E) can be seen exactly as
the condition which guarantees that independence is concurrency. It is then that the
simple unfolding of transition systems with independence yields the category oTSl E
equivalent to LES.

To conclude this section, we briefly see that the coreflection LE$ ~ oTSI cuts
down to a coreflection dLES ~ dTSl,which composes with the coreflection given
earlier in this section to give a coreflection dLES ~ dTSl. As a consequence, we
have that riLES = doTSl E. These results are shown by the following proposition.

Proposition 4.29. I f ES & deterministic, then les.otsi(ES) is deterministic. I f OTI is
deterministic, then otsi.les(OTI) is deterministic.

Proof. I f (c,a,c U {e}) and (c,b,c U {~}) are transitions of les.otsi(ES), then c k e
and c ~- E, and then a ~ b.

Suppose that c F [(s,a, sl)]~ and c F [(&b, gr)]~. Clearly, we can assume c finite.
Then, (c,a, cU{[(s,a,s')]~}), (c,b, cU{[(g,b,g')]~}) are in les.otsi(otsi.les(OTI)) and,
therefore, (6¢(c),a, 6¢(cU {[(s,a,s')]~})), (6e(c),b, SP(cU {[(Y,b,g')]~})) are in OTI.
Then a ~ b. []

These results are summarised in the following theorem.

Theorem 4.30 (Moving along the 'behaviour/system' axis).

TSI~ ' T_.SS

dTSl~ T ., d T S ~ I

I LJs.
dLES ~ ~ HL

V. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348 329

5. Deterministic transition systems with independence

Now, we consider the relationship between dTSl and TSI, looking for a generali-
sation of the reflection dTS ~ T__SS in order to provide an 'abstraction functor' from
transition systems with independence to a linear time framework. Of course, the ques-
tion to be answered is whether a left adjoint for the inclusion functor dTSl ~ TSl
exists or not. Although the answer is positive, it turns out that this is actually a rather
complicated issue.

At a first sight, one could be tempted to refine the construction given in case of
transition systems by defining a suitable independence relation on the deterministic
transition system obtained in that way. However, this would not work, since, in general,
no independence relation yields a transition system with independence. Let us see what
happens with the following example.

Example 5.1. Consider the transition system T in the following figure together with
its deterministic version ts.dts(T).

[s] _~

a] S 11 c/

s' r- ts.dts ,~ cQ[s']_~

Now, suppose that (s ,a ,s")I (s~,b,u). Observe, that, in order to establish the reflec-
tion at the level of transition systems with independence, since the unit would be a
morphism from the original transition system to the deterministic one, independence
must be preserved. Therefore, whatever the independence relation on the deterministic
transition system is, it must certainly be ([s]~,a, [s ']~) I ([st]~_,b, [u]_). Then, we do
not have a transition system with independence, since axiom (iii) fails.

However, in the rest of this section, we will show that it is always possible to
'complete' the deterministic transition system obtained by ts.dts in order to make it a
transition system with independence. Moreover, such a completion will be 'universal',
so that it will give the reflection we are seeking. In the case of the transition system
above, the resulting transition system is

330 V. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348

Observe that it may also not be possible to define I to be irreflexive. This happens
when in the original transition system with independence there are diamonds of con-
currency whose transitions carry the same label, for these, when 'collapsed' by the
deterministic construction, become autoindependent, i.e., independent of themselves. It
is easy to realise that the only way to cope with such transitions is by eliminating them
from the transition system. In other words, autoconcurrency, i.e., concurrency between
events carrying the same label, add a further level of difficulty to the problem, since
it causes autoindependence in the deterministic transition system.

Definition 5.2 (Pre-transition systems with independence). A pre-transition systems
with independence is a transition system together with a binary and symmetric relation

I on its transitions.
A morphism of pre-transition systems with independence is a transition system mor-

phism which, in addition, preserve the relation I.
Let pTSI denote the category of pre-transition systems with independence.

Given sets S and L, consider triples of the kind (X, ~ , I) , where X C S . L* = {s~ [
s E S and ~ E L*}, and ~ and 1 are binary relations on X. On such triples, the

following closure properties can be considered:

(Cll) x - z and za E X implies xa E X and xa -- za;

(C12) x ~ - z a n d z a l y c implies x a l y c ;

(C13) xab =- xba and xa I xb or xa I xab

implies xa I yc ¢¢, xba I y c .

We say that (X, = , I) is suitable if = is an equivalence relation, I is a symmetric
relation and it enjoys properties (Cll) , (C12) and (C13). Suitable triples are meant to
represent deterministic (pre)transition systems with independence, the elements in X
representing both states and transitions. Namely, xa represents the state reached from
(the state corresponding to) x with an a-labelled transition, and that transition itself.
Thus, equivalence = relate paths which lead to the same state and relation I expresses
independence of transitions. With this understanding, (Cll) means that from any state
there is at most one a-transition, while (C12) says that I acts on transitions rather
than on their representation. Finally, (C13) - the analogous of axiom (iv) of transition
systems with independence - tells that transitions on the opposite edges of a diamond

behave similarly with respect to I.
For x E S.L* and a E L, let x la denote the pruning o f x with respect to a. Formally,

f ra if b, X a
s l a = s and (xb) I a =

(x ra)b otherwise. [

Of course, (x ra) rb = (x rb) ra and thus it is possible to use unambiguously x rA for
A C_ L. Given X C S . L*, we use X rA to denote the set {x IA] x E X} whilst, for R a

binary relation on X, RrA stands for {(xrA, yrA) [(x ,y) E R}.

V. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348 331

For a transition system with independence TI = (S, sl,L, Tran, I), we define the
sequence of triples (Si ,- i ,I i) , for i E 09, inductively as follows. For i = O, (So,-o,Io)
is the least (with respect to componentwise set inclusion) suitable triple such
that

S U {sa[(s ,a ,u) E Tran} C_S0;

{(sa, u) I (s,a,u) E Tran} C_ -=0;

{(sa, s'b) I (s,a,u) l (s',b,u')} C_Io;

and, for i > O, (Si ,- i , I i) is the least suitable triple such that

(~)
(D1)

(D2)

Si-1 IAi-1 ~ Si; ~ i - 1 IAi-1 c_ =-i; (l i - l \ T A i _ l) I A i _ l c 1 i;

xa, xb E Si-1 [Ai-1 and xa (Ii-1 \TAi-1)IAi-1 xb
implies xab, xba E Si and xab -~i xba;

xa, xab E Si-1 FAi-1 and xa (Ii-1 \TAi-1)IAi-1 xab
implies xb, xba E Si and xab =-i xba;

where Ai = {a E L I xal i xa} and TAi = {(xa, yb) EIi [a E Ai or b E Ai}.
The inductive step extends a triple towards a transition system with independence by

means of the rules (D1) and (D2), whose intuitive meaning is clearly that of closing
possibly incomplete diamonds. The process could create autoindependent transitions,
namely the transitions with labels in Ai-1, which must be eliminated. This is done by
(-.~) which removes them from Si, =i, and Ii.

A simple inspection of the rules shows that if a E Ai, then it will never appear again
in the sequence. Thus, if x is removed from Si, it will not be reintroduced, and the
same applies to the pairs in =i and I~. Then, it is easy to identify the limit of the
sequence as

iEog j >~i iEo~ j>~i iEco j>~i

Proposition 5.3. The triple (So,-=~,Lo) is suitable. Moreover, Io~ is irreflexive.

Proof. Easy. []

The following proposition gives an easy-to-prove alternative characterisation of
(S,o,-o~,Io,) which will be useful later on. In the following let Ao) denote UiE~oAi
and let TAo~ be Uieo) TAi.

Proposition 5.4. (&o, -o~,Lo) = (Ui~o~(si [A~o), U/c~(=i rAo~), Ui~o((IATAo~) IAo~)).

In the following we shall refer to the sets obtained by applying rules (.~), (D1)
and (D2) to Si-1, --i-1 and Ii-i as the generators of the suitable triple (Si,-i ,Ii) .
Similarly, sets S U {sa] (s,a,u) E Tran}, {(sa, u) [(s,a,u) E Tran} and {(sa, s'b) l

332 II.. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348

(s,a,u) I (s~,b, ut)} are the generators of (So, -o , I0) . We shall denote the generators

of (St, - i , l i) by ~St, ~-i and ~1i.
I f TI is deterministic then there is a neat characterisation of (So, -o,lo).

L e m m a 5.5. Let TI be a deterministic transition system with independence. Then
(i) s~ "o s~ fl i f and only i f there is u E S and two sequences of transitions leadin9

from s to u with labels c~ and from s' to u with labels r;

(it) s' "o sa i f and only i f (s,a,s') E Tran.
(iii) sa lo s~b i f and only i f there exist (s,a, u)1 (s',b,u') in TI.

ProoL Observe that point (ii) is an easy corollary of point (i).

Consider X C_ S • L* such that s~ E X if and only if s E S and there is a sequence
of transitions (s, ao,so). . . (Sn--~,an,Sn) in TI, where a o " "an is ~. Then, consider the
relations - _CX × X and [C X × X such that s~ - s'fl if and only if the two corre-
sponding sequences of transitions lead to the same state of TI and s~ [s~fl i f and only
if the last transitions of such sequences are in the relation I o f TI.

In order to show (i) and (iii) it clearly suffices to show that (X, = ,1) = (So, =0,Io).
To this purpose, one first shows by induction on the structure of the elements of X

that (~S0, 7-0, 710) C_(X, , , [) C_(So, "0 , Io) . Then, since (So, =0,Io) is the least suitable
triple which contains ~S0, 7-0 and 7Io, the proof is easily concluded by showing that
(X,----,7) is suitable. []

This result admits the following immediate corollary.

Corollary 5.6. I f TI is deterministic, for any x E So there is exactly one s E S such

that x -o s.

As anticipated before, (S i , ' i , l i) encodes a deterministic pre-transition system with
independence which contains a deterministic version of the original TI we started from
(apart from the autoindependent transitions). Formally, for each ~ E 09 tO {~o}, define

TSys~ = (S~/-~, [sI]=~, L~, Tran_ , I-~),

where
• ([x]=-,a, [x~]_) E T r a n - i f and only i f x ~ - ~ xa;

yl • ([x] - ,a, [x '] -) I - ([x-]- ,b, []=~) if and only if xa I~ Yb;

• Lx = L\ Uj<xAj.
Observe that TSys~ is well defined. In fact, concerning T r a n - , since xa E Si if and

only if x_a E Si for any x =i x, and since x t " i xa if and only if x ~ ~--i xa for any x --i x
and x ' =i x ~, its definition is irrespective of the chosen representative. The same holds
for the definition of I = , since xa Ii x~b if and only if xa Ii x~b for any x " i x and
xt " i Xt.

Proposition 5.7. TSys~ k a determin&tic pre-transition system with independence.

V. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348 333

Proof. TSys~ is certainly a transition system and since (S~,=~,I~) is suitable, I=~ is
symmetric. Moreover, since Ix]_- a > [x~]__ if and only if x t =-~ xa, then if [x]= __L,
[x"]_=~, we have [x"]_~ = [xl]-~. Therefore, TSys~ is deterministic. []

Lemma 5.5, its Corollary 5.6 and the previous proposition show the similarity of
TSys o with the construction of the deterministic version of a transition system as given
in Section 2. Actually, starting from them, it is not difficult to see that, when applied to
a transition system TS, i.e., a transition system with independence whose independence
relation is empty, TSys o is a deterministic transition system isomorphic to ts .dts(TS).
This fact supports our claim that the construction we are about to give builds on ts.dts.
However, in Section 2 a simpler construction was enough, because we did not need to
manipulate transitions but only states.

Proposition 5.8. The pair (/n, id), where in : S --~ So/=-o is the function which sends s
to its equivalence class [s]-o and id is the identity o f L, is a morphism o f pre-transition
systems with independence f rom TI to TSys o. Moreover, i f T I is deterministic, then
(in, id) is an isomorphism.

Proof. Since (s ,a,s I) E Tran implies that s ~ ~o sa which in turn implies that
([s]=_o,a,[s']- o) E Tran-o, we have that (in, M) is a morphism of transition sys-
tems. If 7"1 is deterministic then from Corollary 5.6 and Lemma 5.5(ii), (s ,a,s ~) E
Tran if and only if ([s]-0,a, [s']_=0) E Tran_ o, and thus (in, id) is an isomorphism
of transition systems. Moreover, since (s, a, s ~) I (g, b, g') implies sa lo gb, which in
turn implies ([S]-o,a,[s']-o) I=o ([g]---0,b,[U]-0), it follows that (in, id) is a mor-
phism of pre-transition systems with independence. Finally, from Lemma 5.5(iii), if
TI is deterministic, then (s ,a,s ') 1 (g ,b ,U) if and only if ([s]-o,a,[s']-o)
I-0 ([g]=-o,b,[g~]-o), i.e., (in, id) is an isomorphism of (pre)transition systems with
independence. []

For i E m\{0}, consider the pair (ini , i d i) , where ini : S i -1 /=-- i -1 ~ Si/=--i is the
function such that ini([x]-,_,) = [x IAi_l]=, and idi : Li-1 ~ Li is given by idi(a) = a
if a f[A i - l and idiTa otherwise. Then, we have the following:

Lemma 5.9. The pair (ini , i d i) : TSysi_) -+ TSys i is a morphism o f pre-transition
systems with independence.

Proof. Observe that since x = i - l y implies that x IAi_ l ~i Y I A i - l , ini is well-defined.
We check the conditions in Definition 5.2.

(i) ini([s1]=_i_l) = [S 1 IAi_l]_~i = [sl]=_i .

(ii) Consider a transition [x]_-i_ ~ a ~ [xa]-i_, in TSysi_ 1. Now, if a E A i - l ,

then ini([x]-,_~) = Ix IAi_l]_~i =- [xa I A i _ l] = i = ini([xa]_~i_l). Otherwise, xa IAi-1 =

334 V. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348

(x IAi-1)a, and then

i n i ([x] = i _ ,) : [x I-,'li_l]=i a> [(X ~ A i - 1) a] - i : i n i ([x a] = i _ ,).

(iii) I f ([x]_i_,,a, [xa]_,_,) 1-_,_, ([y]_,_,,b, [yb]=_,_,) and a,b ~ Ai-1, then we have

xa li_l yb and (x~Ai_l)a [i (y IAi -1)b , i.e.,

([xiAi_l]__, a> [(xiAi_l)a]=_~) i=~ ([yiAi_i]=, b> [(yiAi_l)b]=,),

i.e., (ini([x]-~_,) ~ ini([xa]-,_,)) 1~_, (ini([y]=_,_,) b ini([yb]--,_,)). []

It is interesting to notice that TSyso~ is a colimit in the category pTSl.

Proposition 5.10. TSyso~ is the colimit in pTSl of the oo-diagram

• " (in2,id2) (ini,idi) (ini+l,id,+l)
= TSyso (,n~.~) TSys~ > . . . ~ TSys i -----* . . .

Proof. The reader is referred to [7, Ch. III, p. 62] for the definition of the categorical

concept involved.
For any i E o9, consider the function in7 ~ : S i / - i "-+ Soj/-,o such that in.~([x]-_ i) =

[x IA,o]---,o and let ida' • Li ~ Lo~ denote the function such that id7~(a) = a i f a ¢~ A,o
and id~'Ta otherwise. As for Lemma 5.9, it is easy to see that (in~, ida) is a morphism
of pre-transition systems with independence from TSys i to TSys~.

• C O • C O

Since for each i E co we have in~+ 1 o ini+l = inn and ld i+ 1 o i d i+ l -~- td i , TSys~
and the morphisms • o~ • o~ { (i n i , l d i) [i E o9} form a cocone in pTSl with base 9 . Now,
consider any cocone {(ai,,~i) : TSys i ---* P T I i E o9}, for P T a pre-transition system
with independence• Then, by definition of cocone, it must be 6i = 6i+1 o ini+ 1 for each
i E m, i.e., ¢Ti([X]=i) ~- ~Ti+l([xIAi]=_i+)), whence it follows easily that for any x E Si
and y E Sj such that x IA,o -- y IAo~ it must be ai([x]=_~) = aj([y]_-j). Moreover, again
by definition of cocone, it must be J.i = 2i+1 o idi+l. This implies that for a E L\A,o
we have 2i(a) = 2i+l(a) for any i E o9, while for a E Aj it must be 2iTa for any i<~j.
In fact, if a ~ Ao~, since idi+l(a) = a, it must be 2i(a) = 2i+l(a). Suppose instead that
a E Aj. Then, idj+lTa and thus 2jTa. Now, since idi(a) = a if i<~j, it follows that

2 i T a for any i<~j.
Now, define (6, ~.) : TSys,o ~ P T , where 6([x]_-) = oi([x]= i) for any i and ~? E Si

such that Y rA,o = x, and take ,~ to be the restriction of 20 to Lw. Exploiting the features
of the morphisms (ai,2i), it is easy to see that (O'i,)~i)= (6 , ~) o (irt~°,/d~) for each i,
and that (6, 2) is the unique morphism which enjoys this property. Observe that, in view
of Proposition 5.4, 6 could be equivalently defined by saying that 6 ([x] _) = ai([x]=~)
for any x such that x E Si. []

Besides enjoying a (co)universal property, TSys,o has another property which the
reader would have already guessed: it is actually a deterministic transition system with
independence.

V. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348 335

Proposition 5.11. TSys~ is a deterministic transition system with independence.

Proof. Proposition 5.7 shows that Tsys~ is a deterministic pre-transition system with
independence, while it follows immediately from Proposition 5.3 that I=~ is irreflexive.
Let us check the axioms of transition systems with independence.

(i) Vacuous, since TSys,o is deterministic.
(ii) Suppose that ([x]_ ,a, [xP]_=o,) I = ([x] - ,b , [x"]-). Then, xa I~o xb and, there-

fore, there exists an index i such that xa Ii-1 xb, which, in turn, implies that there
exist xab =-i xba E Si. Then, by (C13), xa Ii xb implies xba Ii xb and xb Ii xa implies
xab Ii xa. Since a, b ¢~ A~ and x rA~o = x, then we have xab =~o xba, and xa I~ xab and
xb Lo xba, which implies that there exists [xab]_ = [u]_o~ = [xba]- in So~/=~o such
that ([x]-~, a, [xP]-o) I - ([x']_o,, b, [u]=), and ([x]__-o~, b, [x"]-) I=o~ (Ix"]- , a, [u]_o,).

(iii) Similar to (ii).
(iv) It is enough to show that

([x]_,a,[x ']=) (-< LJ >.-) ([x'P]_,a,[u]=) I - ([£]_~,b,[£ ']_)

implies ([x]= ,a,[x']-_) I=_~ ([,Y]-,~,b,[£~]_).

Suppose that the '-<' case holds. Then, there exists i such that x ~ =-i xa, x" :-i xb,
xa li xb, xab ~i u ::'i xba, and xba Ii £b. Then, by (C13), we have xa Ii £b. Then,
xa Io~ £b, whence it follows that ([x]_~,a, [x']-) I_= ([x-']_-o~,b, [~?r]=_~).

A similar proof shows the case in which '>-' holds. []

Thus, TSys~ is the deterministic transition system with independence we will as-
sociate to the transition system with independence TI. Formally, define the map dtsi
from the objects of TSI to the objects of dT$1 as dts i (TI) = TSys~. Fig. 3 exemplifies
the construction in an easy, yet interesting, case.

Consider TI = (S, J , L, Tran, I) and TI p = (S', spI,U , Tran~, I ') together with a mor-
phism (~,2) : TI ---* TI' in TSI. In the following let (S~,=_~,I~) and (S~,P =~,I~),-' P
x E co U {co}, be the sequences of suitable triples corresponding, respectively, to TI
and TI'. Moreover, we shall write A~, TAx, L~, TSys~, A~, TA'x, L~ and TSysP~ to
denote the sets and the transition systems determined respectively by (S~,-x,I~) and

P - - I / . i @ (Sx,=x,I~). We shall construct a sequence of morphisms (6i,2i) : TSys i T S y J i,
which will determine a morphism (ti~o,2o~) : TSyso, 7" P --~ Syso, i.e., dtsi((a,2)).

For i E co, let ai be the function such that

o'i(x) = or(x) for x E S

and
S ~i(x)2i(a) if 2ila,

•i(xa)
I ~ri(x) otherwise,

where

2i(a) = { ,~(a)T ifotherwise.2(a) ff Uj<iA~,

336 V. Sassone et aLI Theoretical Computer Science 170 (1996) 297-348

~ = 0

~ = 1

~----2

{3]=_0

.,+ . " ' S
[tl--=_o r [21---o \+;.../

[Ol=_o

[2a]=_. t

/
Pl=_~ -< [21=_~

[O]=_t

[3a]=_ 2

[2a1=_2 -<

{11=_2 -< [2]~. 2

\ /
[Ol=_,

[3]=-

[1}=- 0 = { 1 , 0 a }
[21---o = {2, Oh}
[31-:o = {3 ,2b , Obb)

[31=-~,

[3,~]_-_.

[2hi=-. "< 13]_--.

[11---. -< [21. .

\ /
[o] . .

[11=_, = { 1 , O a }
[21=_~ = {2,OH
[3]=_ t = {3,2b, Obb}

[2a]=_t = {2a, lb, Oab, Oba}

[o1=_2 = {o}
[11=_ 2 = { 1 , O h }

[21---2 = {2, Oa}
[31-= 2 = {3, 2a.,Oaa}

[2b]=_.~ = { la , 2b, Oba, Oab}
[3b]--_ 2 = {3b, 2ab, 2ba, laa,

Oabb, Obaa, Oaba}

[Oa]-_-o 1=_o [Obl=_o

[Oal=_o t=_o [2b]-=o

[Oal=_i 1=_t {Obl=_ a
[Oal=_t 1=_t [Oab]=. t
[Obl=_i I=_1 [Obal-:l
[1hi=_, l=_, {2al_- t
[oal=_~ t=_~ [2bl=_t

[Obal=_ t I=_ t {Obb]=_ t

[Oal=_2 l=_2 [OH=-2
[Oal=_2 t-=2 {lb1=_2
[OH=_2 1=_2 12a1=_2
[tH=_2 1=_2 Pal=_2
[2a1_--2 /=_2 [2b]=_2
[2a1-=2 1=_2 [2bH=_2
[2H=_2 1-=2 Pal=_2

[Z~'l=_2 I=_2 [3~1=_2

~ m ~ l t S . Suppose tha t the construction s ta r t s
from TSYso, where the dotted lines indicate re-
lation I . TSys 0 fails to a be traJBsition system
with independence because there is no diamond for
the transit ions stickin K out [0]Eo- In TSys I this
problem has been solved by use of (DI). However,
now there is no diamond for the transit ions leaving
from [2]Et, which are independent because of the
.closure (CL~). The problem is fixed in TSys 2 which
m a transit ion system with independence and co-
incides with TSys~.

Fig. 3. An example of the construction of TSys,o.

V. Sassone et aLI Theoretical Computer Science 170 (1996) 297-348 337

Lemma 5.12. For all i E co, we have that
(i) x E Si implies ai(x) E S~;

(ii) x - i Y implies tri(x) =-I ai(y);
(iii) xa Ii yb and ,~iJ.a, J.i.Lb implies tri(xa) 1[¢7i(yb).

Proof. The three points are shown simultaneously by induction on i. The base case
for i = 0 follows directly from the definition of a0 and from the fact that (a, 2) is a
morphism. Concerning the inductive step, the proof proceeds by first showing that (i),
(ii) and (iii) hold for the generators of (S i , - i , I i) , and it concludes by checking that
the closure rules preserve them. Both the tasks are fairly easy. []

It follows immediately from Lemma 5.12 that for i E co, 6i, defined to be the map
which sends [x]-_, to [ai(x)]_=; is a well-defined function from Si/=_i to S[/= I. Then,
the following lemma follows easily•

Lemma 5.13. For i E co, the map (6i,2i) : TSys i ~ TSys I is a morphism o f pre-
transition systems with independence.

For any i E co, consider the morphism of pre-transition systems with independence
(inl ~°, id~°~)o(6i, 2 i) ' TSys i --~ TSys~. Recall that for x E Si, we have that ai+l(X [Ai) =
o-i(x IAi) IA~ = ai(x) IA~, from which it follows that a;+l(x IAi) IA" = ai(x) IA~. Then

• I o) I = = [, r~(x) b 4 ~] ~ _ , m i o ¢f/([x]_=~) inl°~([~ri(x)]-;)

= [ai+l(X rAi) [A~]-;o = ini~_l([ai+l(x [Ai)]_;+~)

• I (D • 169
= lni+ 1 0 tTi+l([X Iai]=_i+1) = lni+ 1 0 tTi+ 1 0 i n i+ l ([X]_ i),

i.e., . /~o • i~o in i o ¢7i : lni+l o t~i+l o ini+l for any i E co. Moreover, since a E Ai implies
2(a) E A~, it is easy to see that idl ~ o 2i " '~ = ldi+ 1 o),i+1 o idi+l for any i E co. Thus, we
have that

• H ,O • 160 {(m i , td i) o(t~i,2i) : TSys i ~ TSys" J i E co}

is a cocone for the m-diagram ~ given in Proposition 5.10. Then, there exists a unique
(6~o, 2,o) : TSyso~ ~ TSys'~ induced by the colimit construction, which is the morphism
of transition systems with independence we associate to (tr,2), i.e., dtsi((a, 2)) =
(d~o,2o~). From Proposition 5.10, it is immediate to see that 6o~([x]-~) = [ai(2)IA~]=%,j
for 2 E Si such that 2IA~ = x, or, equivalently, 6~([x]_o~) = [ai(x) rA~]=_; for any i
such that x E Si, and that

2~o(a) = { 2(a) if 2(a) ~ A~,
T otherwise.

The following proposition follows directly from the universal properties of colimits.

338 I~ Sassone et al. / Theoretical Computer Science 170 (1996) 297-348

Proposition 5.14 (dtsi : TSI ~ dT$1 is a functor). The map dtsi is a functor f rom
T$1 to dT$1.

The question we address next concerns what we get when we apply dtsi to a de-
terministic transition system with independence D T I . We shall see that in this case
the inductive construction of TSyso, gives a transition system which is isomorphic
to D T I . More precisely, each --,o-equivalence class of (SDrI)o) contains exactly one

state of the original transition system, and the transition system with independence
morphism (in~ o in, ida) • D T ! --~ d ts i (DT1) - whose transition component sends
s C SDTI to I s] - - is actually an isomorphism. Moreover, we shall see that its inverse
(e, id), where e ([x] -) is the unique s E SDrl such that s -,o x, is the counit of the
adjunction.

Lemma 5.15. Let D T I = (S , J , L , Tran, I) be a deterministic transition sys tem with

independence. Then, ($1, =-1,11) coincides with (So, =o, Io). Therefore, (in~ o in, id~) is

an isomorphism whose inverse is (e, id).

Proof. We already know from Proposition 5.8 that (/n,/d) is an isomorphism if DT1

is deterministic. Thus, (in~ o in, ida) is an isomorphism if and only if (in~, id~) :

TSys o --~ TSys~o is so, which, in turn, is a consequence of the first part of the
claim.

Observe that A0 = 0 and, therefore, TAo = 0. In fact, since D T I and TSys o
are isomorphic, if there were xa Io xa, then IDTI would not be irreflexive. Then,
in order to show that (S l , = l , h) = (So, -o , Io), it is enough to see that no new
elements are introduced by (DI) and (D2). In fact, in this case, ($1,---1,I1) would
be the least suitable triple which contains (So,-=o,Io) which is clearly (So , -o , Io)

itself.
(D1) Suppose xa lo xb. Then, by Corollary 5.6, there exist s, s t, s" C S such that

s =-o x, s ~ =o xa and s" - o xb. Therefore, by Lemma 5.5, we have (s ,a ,s ~) I (s , b , s ')
in Tran. Since D T I is a transition system with independence, there exists u such that
Diama, b(S,S',S",u), and then we have sab =-o u =-o sba and, therefore, by (Cll), we
already have xab - o xba in (So, --o, I0).

(D2) Analogous to the previous case. []

Thus, we have proved the following corollary.

Corollary 5.16. (e,/d) : d t s i (DTI) --* D T I & a transition sys tem with independence

isomorphism.

Before showing that (e,/d) is the counit of the reflection of dTSI in TSI, we need
the following lemma which characterises the behaviour of transition system with inde-
pendence morphisms whose target is deterministic.

v.. Sassone et aLI Theoretical Computer Science 170 (1996) 297-348 339

L e m m a 5.17. Let DTI be a deterministic transition system with independence and
consider a morphism (a,2) : TI ~ DTI in TSI. Let TSysr, x E 09 U {o~} be the
sequence of pre-transition systems with independence associated to TI. Consider a E
Ll'l and suppose that a E Ai. Then 2~a.

Proof . Consider the sequence of pre-transition systems with independence TSys'~ as-
sociated to DTI and the morphisms (~ i , 2 i) : T S y s i ~ TSys~. Since, as it follows from

" T ! Lemma 5.15, TSys I TSys~ for any i E 09, the morphisms (~i,2i) TSys i --~ Syse~
form a cocone for the og-diagram which defines TSyso~. Moreover, we have that any

2i coincides with 2, because A I ---- 0. Then, if a E Ai, reasoning as in the proof of
Proposition 5.10, we have that 2jTa for any j<~i, i.e., 2Ta. []

We are ready now to show that (e, id) is couniversal.

Proposition 5.18 ((~, id) : dtsi(DTI) ~ DTI is couniversal). For any transition sys-
tem with independence TI, deterministic transition system with independence DTI,
and morphism (~p,#) : dtsi(TI) --~ DTI, there exists a unique k : TI --~ DTI such
that (e, id) o dtsi(k) --- (¢p,#):

(e, id)
dtsi(DTI) " DTI

dtsi(k) l

dtsi(TI)

Proof . Let us consider k = (a ,2) , where a(s) = ~p([s]_=o,) and 2 is the function which
coincides with # on (Lri)o~ and is undefined elsewhere. Observe that this is the only
possible choice for k. In fact, any k ~ : TI --~ DTI which has to make the diagram
commute must be of the kind (a ' , Z) with 2~(a) -- p (a) = 2(a) for a E (Lrt)~o.
Moreover, by Lemma 5.17, if a E A~o, it must be 2tl"a, i.e., 2' = 2. Furthermore, a t(s)
must be an g in SD77 such that e([s-]-) = g coincides with ~p([s]-), i.e., a ' is the a
we have chosen.

In order to show that (a, 2) is a morphism of pre-transition systems with indepen-
dence, it is enough to observe that (a, 2) can be expressed as the composition of the
morphisms of transition systems with independence (~p,#)o (in~ o in, id°~) : TI
dtsi(TI) --~ DTI. This makes easy to conclude the proof. []

Theorem 5.19 (dtsi q ~-~). Functor dtsi is left adjoint to the inclusion functor dTSl
TSl. Therefore, the adjunction (dtsi, ~--,) : dTSl ~ TSl is a reflection.

The adjunction dTSl ~ TSI that we have so established closes another face of
the cube. In particular, we have obtained the following square, which matches the one

340

presented in Section 2:

TS__! ~) T_SS

dTSI,a ~ dTS

F. Sassone et aL / Theoretical Computer Science 170 (1996) 297-348

6. Deterministic labelled event structures

In this section we prove that there exists a reflection from the category of deter-
ministic labelled event structures to labelled event structures. A reflection d i E S ~-~
LES does exist, for it follows from the reflections we have presented in the previ-
ous sections. In fact, the results in Sections 4 and 5 show that there exist adjunc-

tions

dLES ~> dTSI ~ TSI ~ LES.

Now, in order to show that there is a coreflection from dLES to LES, since dLES

doTSI E and LES ~ oTSl E, it is enough to show that dTSl ~-~ TSI cuts down to a

reflection doTSI E ~ oTSI E. In this case, we have an adjunction

dLES ~ d TSI TSI ~" LES = 0 E ¢ - ~ 1 0 E = ,

whose right adjoint is isomorphic to the inclusion functor dLES ~ LES. Intuitively,
the left adjoint dles : LE$ ~ dkES is obtained by considering the occurrence transition

system with independence les.otsi(ES) of the finite configurations of ES, construct-
ing its deterministic version by applying dtsi, and then considering the labelled event
structure associated with such a deterministic transition system with independence, by

means of otsi.les.
As usual, to establish that dTSl ~ TSI restricts to doTSlE ~ oTSI E, it is enough

to show that if OTI is an occurrence transition system with independence, then so is
dtsi(OT1), and that dts i (OTI) satisfies (E) whenever OTI does. Of course, this also
proves that oTSI ~ T.__SS restricts to doTSl ~ oTSI.

In the following, let O T ! be an occurrence transition system with independence
and let (SK,~ , I~) and TSys~, ~ c o9 U {co}, be the sequences of suitable triples and
pre-transition systems with independence which define dtsi(OTI).

Proposition 6.1 (doTSl ~-~ oTS!). I f OT! is an occurrence transition system with

independence, so is dtsi(OTl).

V. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348 341

Proof . Recall from Section 4 that the states of OTI are equipped with a 'depth ' ,
namely the length of the paths leading to them. Moreover, there is a transition s - ~ s '
only if depth(s') = depth(s) + 1.

Observe now that TSys o is reachable and acyclic. To this purpose, recall that (the
transition system underlying) TSys o is obtained from (the transition system underlying)
OTI modulo the least equivalence which identifies states reachable from a common
state by two equally-labelled sequences of transitions. Since OTI is reachable, this
reduces to say that s ----o s t if and only if there are paths rcs and 7rs, in OTI such
that Act(~Zs) = Act(ns,), which implies that depth(s) =- depth(s') whenever s ---o s'.
This makes our claims obvious, showing also that all the paths in TSys o leading to
the same state have the same length, i.e., that depth extends smoothly to the states of

TSys o •
A direct inspection of the closure properties (Cll)-(C13), of the rules (-.~), (D1)

and (D2), and of the definition of TSys~o shows that all the TSys~, and in particular
dtsi(OTI) ~ TSys~o, are reachable, acyclic and have a notion of 'depth ' defined by
the length of their paths.

Concerning the property of occurrence transition systems with independence, we

prove by induction on depth([z]-_o~) that, if ([y ']_ , b, [Z]-o~) and ([y"]-o,, a, [z] -)
are distinct transitions of TSys,o, then there exists a state [x]-o in TSys~o such that

Oiama,b([X]=~., [Y]-~, [y"]=~, [z]_=)
(depth<<. 1). Vacuous, since dtsi(OTI) is reachable and acyclic.
(depth > 1). It is enough to show that if ([y']=~,b,[z]_~) and ([y"]=~,a,[z]=,)

belong to TSysi, i.e., y~b =-i z =-i y 'a , then the required diamond exists in TSys~o. We
proceed by induction on i.

(i = 0). Since both transitions belong to TSys o, there are (s~,b,u) and (s",a,u ~) in

OTI such that s ~ ---(o yl, s" - ~ y" , u - ,o z --~o u ~, and u - 0 u ~. Observe that, due
to the possible collapsing of autoindependent transitions, there can be more that one
pair o f such transitions. Without loss of generality, we can assume u and u ~ chosen at
minimal depth in OTI.

By definition, since u - o u' there exist paths 7ru and 7zu, in OT! such that Act(zr,) =
~c = Act(~,) . Let (v,c,u) and (v',c,u ~) be the last transitions on these paths. Since
v and v ~ are reachable via or-labelled paths, we have v - 0 v '. Observe that c ~ A~o.
In fact, i f c E A~o, since a,b f[Ao~, it would be (v,c,u) ~ (s~,b,u) and (v',c,u')
(s", a, u'). Then, by the property of occurrence transition systems with independence,
there would be w and w ~ in OTI such that Diam~,b(W,S', v, u) and Diarn~,~(w~,s ", v ~, u')
and, therefore, (w,b,v) and (w',a,v ~) with w --o~ J , w t --co y" , v ~ o z -~o v t, and
depth(v) < depth(u), contradicting our assumption.

Since ([V]_o,C,[U]-o) =- ([v']-o,C,[U']=_o), it follows that, i f (v,c,u) = (s',b,u) and
(v', c, u ') -- (s", a, u'), then ([s']-o~, b, [u]=_,~) = (Is"]_ , a, [u '] -), and there is noth-
ing to show. Therefore, without loss of generality, assume (v,c,u) ~ (st,b,u). Then
there exists w in OTI such that Diamc,b(W, Sr, V,U). In case, (v',c,u ~) = (s",a,u~),
we have ([s"]=o~,a,[u']-~) = ([v]-,c,[u]_o) and, therefore, the required diamond
Diam~,b([W]=o~,[s']_o~,[s"]= , [u] -~) . Finally, i f instead (v',c,u ~) ~ (s",a,u'), there

342 V. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348

exists w ~ in OTI such that Diamc,a(W~,St~,v~,ul). The situation is illustrated by the
following picture:

U

J \
S ~ .<

\ /
W

U p

Since v =o v', the transitions ([w]_=o,b, [v]-o) and ([w']_o,a, [V]-o) belong to TSys o.
We can assume that these are distinct, since [w]- o = [w']- o and a = b implies
again that ([s']-o, b, [u]_ 0) = ([s"]_ 0,a, [u]-_ o). Then, since c ~ A~ and, therefore,
depth([v]_o~) < depth([z]=_~) in TSyso~, by induction hypothesis, there exists [~] -
such that Diama,b([ff~]=o~, [w]=, [w']=,o, [v]=~). Therefore, we have the following situ-
ation in TSyso;

[U]=~
b~" t "- <

Is %~ d [s"l___~
t' < I >- f

c/ [~]~ / ~

[w]~% ~, [w']___
a " _ ""'" b

[W] ___,,,

Then, since TSyso~ is a transition system with independence, by properties (i), (iii)
and (iv) in Definition 3.7, there exists [x]_- completing the diagram to a cube as in
the following picture:

[s']_--,o/[v]---e. " [s"].,o

[w]_ Ix]___ [w']_

[~]_--~

Clearly, it is Diama b([X]:~, [s']=~, rs"l - , [u]-), concluding this part of the proof.

V. Sassone et aL I Theoretical Computer Science 170 (1996) 297-348 343

(i > 0). We proceed by case analysis inspecting the rules that generated yrb - i y'la.
We start by proving the thesis for the generators rSi, r - i , and rI; of (Si, =-i,Ii).

(3). Then we have ~'b - i -1 ~"a, for some)51 and 37" such that fir rAi-1 = y' and
fit1 iAi_ 1 = y11, and the thesis follows by (inner) induction.

(D1) and (D2). Then y b - i y"a arises from completing either xa Ii-1 xb, with
xa ~i-1 Y~ and xb - i -1 Y ' , or xa Ii-i xab, with xa ~i-1 Y' and xb - i Y", or,
symmetrically, xb Ii-1 xba, with xb - i -1 Y" and xa =i Y~. In all cases, we have

• t I t Z Dtama,b([X]-,, [3']-~, [y]_=,, []- ,) in TSys i and therefore, since a, b ~ A~o, the required
diamond in TSyso,.

Concerning the closure properties, observe that (C12) and (C13) do not alter =i. If
instead f ib =-i y"a follows from (Cll), we have y~ - i Y" and a = b, which means

' b i/ that ([y]=_~, ,[z]-) = ([y]_ ,a,[z]-). Therefore, in order to conclude the proof,
we only need to analyse the case in which y'b ~i y"a is induced by closing transitively
= - - . . . y 'a . We proceed by induction on n, r - i , i.e., when f ib ~-=-i ylCl r=i r~i Y ncn r--:i

the base case being already proved.
(Induction step). The situation in TSyso, is illustrated by the following figure:

c [z]___ c a

[Y']-~o~ [Y~L~o [Y.]---~ [Y"]-~

By the previous part of this proof, there exists [w]_ such that, in TSys~o, we have
Diarnb.cl([w]=-,, [Y~]-,,[Yl]--i, [z]_-,), and, by induction on n, there is [w']-~ such that
Diamcl,a([W']=i, [Yl]-~i, [Ytt]=_i, [2]~i). Since depth([y]]-) < depth([z]-) in TSys~,
we are in the condition of exploiting the (outer) induction hypothesis and concluding
the proof as for the case (i = 0). []

Proposition 6.2 (doTSl E ~ oTSlE). I f O T I satisfies (E), then dtsi(OTI) satisfies (E).

Proof. Observe that TSys o clearly enjoys (E), and that (E) is preserved by the rules
(.~), (D1) and (D2) and by the closures (Cll)-(C13). []

Therefore, defining dies : LES ~ dLES as otsi.les o dtsi o les.otsi we have the
following result.

Theorem 6.3 (dies q *--~). The mapping dies extends to a functor which is left adjoint
o f the inclusion of dLES in LES. Then, (dies, ~--~) is a reflection•

An example of the construction is given in Fig. 4.
The coreflection d L E S ' -~ LES closes the last two faces of the cube. So, our results

may be summed up in the following cube of relationships among models.

344 V. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348

a #

a # c # e

I / /
a # c # c

I / /
a # e # c

I / /
e # ¢

dles +

les. otsi

..."
O'

+ / , ~
• . / "

~Z///
s~---~ • --~ .--~.

dtsi

4-

otsi. les

../'"

/ " ~ /
",~"

81

. , .""

Fig. 4. An event structure ES and dles(ES)

Theorem 6.4 (The cube).

TSI4 /T
dTS I

J LES4

dLES

~TS

~HL

II.. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348 345

6.1. An alternative construction fo r dies

It may be interesting to notice that, since TSys i is not a transition system with

independence, the sequence {TSysi}iEo~ which defines dtsi(les .otsi(ES)) does not cor-

respond to a sequence o f labelled event structures. Nevertheless, a sequence {Evi}iE~
which characterises dles(ES) as a colimit in I_ES exists. In the following, we shall re-

port only the relevant definitions, omitting all the proofs, which can be found in [11, 14].

As in Section 5, we shall proceed by defining a sequence o f triples (~i, ~< i, #i), each

representing a quotient of the original labelled event structure in which - informally

speaking - the 'degree' of nondeterminism has decreased. The colimit of such a se-

quence will represent a deterministic event strucatre isomorphic to dles(ES). Also in
this case, the only way to cope with autoconcurrency is by eliminating it. However,

the reader will notice that the task is now much easier than in the case of transition

systems with independence.

Let E S = (E, #, <<,, ~,L) be a labelled event structure, A (E S) denote the 'autoconcur-

rency' set {a E L [3e, e' E E,e co e' and f (e) = a = E(e')} and N A (E S) = {e E E I
[(e) f[A (E S) } the associated set o f 'nonautoconcurrent' events. Consider the sequence

o f relations (~ , <~,#~), for x E coU {co}, where

• N o = { (e , e) I e E N A (E S) } ; ~<0= ~<; # 0 = # ;
for i > 0,
• Hi is the least equivalence on N A (E S) such that

(i) "wi_ 1 C ~ i ,

(i i) e ~ i - 1 e', e' g i - 1 e, E(e) = E(e')
[eJ ~<,_~ # i--1Le'J <~,_l\{e'} and

LeJ ~<,_, # i--1 Le'J ~<,_t\{e'}
implies e ~i e ~,

where [e]~<~ stands for {e' E N A (E S) le'<~ie } and, for x, y C _ N A (E S) , x # i y is a

shorthand for V e E x, V e ~ E y, e ~t i el.
• e<~ie' if and only if V6 ~ Hi e' q 6 Hi e. e<<.i-le';

• e #i e ~ if and only if V~ ~ Hi e' V~ Hi e. e #i-1 e';

and finally, for x = co,

"~':~ = U ~-'i, ~.~o = U N ~ " #" = N #'"
iEo~ iC~9 j > i iE~o

Then, for k E co U {co}, define

Ev~ = (N A (E S) / H x , <~ ~~, #~~, ~~~, L \ A (E S)) ,

where

• N A (E S) / , ~ is the set o f H~-classes of N A (E S) ,
• [e]~~ ~< N~ [el]~~ if and only if e ~< ~ e I,

• [e]~~ #~~ [e']~~ if and only if e #~ e',

• E ~ ~ ([e] ~) = t~(e).

346 V. Sassone et aLI Theoretical Computer Science 170 (1996) 297-348

a # c # c a # c # c

1 / / I / /
a # c # c a # c # c

I / / 1 / /
a # e # c a , # ~ # . ~)

(. ~ . . . / C a # c # c 5 •

~ o Ev l

a # c # c

/ / / ' ~ ~ g)

/" C

Ev2

a # c # c

_ yi! #(..q.....# ...c..)

Ev,~

{1] Nw

Ev,~

[c] ~~,

I

J

I

Fig. 5. The alternative construction of dles(ES) for ES in Fig. 4.

It is proved in [11, 14] that the mapping E S ~-~ Ev~ is (the object component of)
a left adjoint to the inclusion dLES ~ LES. It follows that Ev,o is isomorphic to
dles(E S).

Fig. 5 shows the sequence {Ev~}~ for the labelled event structure of Fig. 4. The
dotted ovals in Evi represent the events collapsed by ~i+1. In Evo~, the classes [a]~,o

14. Sassone et al. I Theoretical Computer Science 170 (1996) 297-348 347

and [c]~ at level i contain, respectively, all the a-labelled events and the two c-labelled
events at level i of the original event structure.

7 . C o n c l u s i o n

We have established a complete 'cube' of formal relationships between well-known
models for concurrency (and a new one). Thus, we have a complete picture of how to
translate between these models via adjunctions along the axes of 'interleaving/noninter-
leaving', 'linear/branching' and 'behaviour/system'. Notice also the pleasant confor-
mity in the picture, with coreflections along the 'interleaving/noninterleaving' and 'be-
haviour/system' axes, and reflections along 'linear/branching'.

A relevant role in this paper is played by the occurrence transition systems with

independence, which turn out to be a slight generalisation of labelled event struc-
tures and, therefore, to allow an easy, interesting characterisation of coherent, finitary,
prime algebraic domains. Concerning transition systems with independence, it is worth
remarking that TSI embeds fully and faithfully in the category of asynchronous tran-
sition systems via an easy construction: given TI, considering its underlying transition
system, label each transition with its ,-,-equivalence class, and take the independence
inherited by TI. Unfortunately, about the relationships between asynchronous transition
systems and transition systems with independence currently it does not seem possible
to give more than this embedding, since it, together with other natural ones, fails to
enjoy any universal property.

Axiom (i) of transition systems with independence, depending nontrivially on ~,
represents a 'global' constraint, as opposed to the others, which involve only local
information. This may be considered a slightly unpleasant feature of our definition. It
is an open question whether there exists alternative axiomatics for transition systems
with independence. However, one can identify weaker sets of axioms and yield kinds
of 'generalised' transition systems with independence which still enjoy important prop-
erties. For instance, removing axiom (i), replacing 'there exists...' by 'there exists a
unique...' in (ii) and (iii), and adding the following axiom:

,,,'ix ,,'ix
• >- • -< • • • Q

t / ",,T " " ":'\T
• "< • = ~ 3 ! u . • u •

",, / 'x,t/

one obtains a category strictly larger than TSI which can replace it in the cube. It
may be interesting to remark that the axioms above, together with the conditions of
Definition 4.1, define exactly occurrence transition systems with independence.

It is worth remarking here that all the adjunctions in this paper would still hold
if we modified uniformly the morphisms of the involved categories by allowing label

348 V. Sassone et al./ Theoretical Computer Science 170 (1996) 297-348

components which, where defined, act identically. However, if we considered only total
morphisms, the reflections dTSI ~-~ TSI and dkES ~ IES would not exist.

Although the choice of deterministic labelled event structures for behavioural, lin-
ear and noninterleaving models is sensible, it is not the unique possible choice. For
instance, in [16] the authors introduce a category ofpomset languages and a category
of generalised trace languages which can replace d IES in the cube.

Finally, we mention that not all squares (surfaces) of the 'cube' commute. Of course,
they do with directions along those of the embeddings.

References

[1] M.A. Bednarczyk, Categories of asynchronous transition systems, Ph.D. Thesis, University of Sussex,
Sussex, 1988.

[2] P. Degano, R. Gorrieri, and S. Vigna, On relating some models for concurrency, in: Proc.
TAPSOFT '93, Lecture Notes in Computer Science, Vol. 668 (Springer, Berlin, 1993) 15-30.

[3] M Droste, Concurrent automata and domains, Internat. J. Found Comput. Sci. 3 (1992) 389-418.
[4] M. Hennessy, Algebraic Theory of Processes (Cambridge, MA, 1988).
[5] C.A.R. Hoare, Communicatin 9 Sequential Processes (Prentice-Hall, Englewood Cliffs, 1985).
[6] R.M. Keller, Formal verification of parallel programs, Comm. A C M 7 (19) (1976) 371-384.
[7] S. Maclane, Categories for the Working Mathematician, Graduate Text in Mathematics (Springer, New

York, 1971).
[8] A. Mazurkiewicz, Basic notions of trace theory, in: Lecture Notes for the REX Summerschool in

Temporal Logic, Lecture Notes in Computer Science, Vol. 354 (Springer, Berlin, 1988) 285-363.
[9] R. Milner, Communication and Concurrency (Prentice-Hall, Englewood Cliffs, 1989).

[10] M. Nielsen, G. Plotkin and G. Winskel, Petri nets, event structures and domains, Part 1, Theoret.
Comput. Sci. 13 (1981) 85-108.

[11] M. Nielsen, V. Sassone and G. Winskel, Relationships between models of concurrency, in: Proc. REX
School '93. A Decade of Concurrency: Reflections and Perspectives, Lecture Notes in Computer
Science, Vol. 803 (Springer, Berlin, 1994) 425-476; appears also as Technical Report DAIMI PB 456,
University of Aarhus, Aarhus, 1994.

[12] C.A. Petri, Kommunikation mit automaten, Ph.D. Thesis, Institut fiir Instrumentelle Mathematik, 1962.
[13] G. Plotkin, A structural approach to operational semantics, Technical Rport DAIMI FN-19, Computer

Science Department, University of Aarhus, Aarhus, 1981.
[14] V. Sassone, On the semantics of petri nets: processes, Unfoldings and Infinite Computations, Ph.D.

Thesis, TD 6/94 Universith di Pisa, March 1994.
[15] V. Sassone, M. Nielsen and G. Winskel, A Classification of Models for Concurrency, in: Proc. 4th

lnternat. Conf. Concurrency Theory, CONCUR '93, Lecture Notes in Computer Science, Vol. 715
(Springer, Berlin, 1993) 82-96.

[16] V. Sassone, M. Nielsen and G. Winskel, Deterministic behavioural models for concurrency, in: Proc.
18th lnternat. Symp. on the Mathematical Foundations of Computer Science, MFCS '93, Lecture
Notes in Computer Science, Vol. 711 (Springer, Berlin, 1993) 682-692.

[17] M.W. Shields, Concurrent machines, Comput. J. 28 (1985) 449~65.
[18] E.W. Stark, Concurrent transition systems, Theoret. Comput. ScL 64 (1989) 221-269.
[19] G. Winskel, Event Structure Semantics of CCS and Related Languages, In: Proc. o f lCALP "82, Lecture

Notes in Computer Science, Vol. 140 (Springer, Berlin, 1982) 561-567; expanded version available as
Technical Report DAIMI PB-159, Computer Science Department, University of Aarhus.

[20] G. Winskel, Synchronisation trees, Theoret. Comput. Sci. 34 (1985) 33-82.
[21] G. Winskel, Event structures, in: Advances in Petri nets, Lecture Notes in Computer Science, Vol. 255

(Springer, Berlin, 1987) 325-392.
[22] G. Winskel and M. Nielsen, Models for concurrency, in: S. Abramsky et al., eds, Handbook o f Logic

in Computer Science, Vol. 4, Semantic Modelling (Oxford University Press, Oxford, 1995).

