
Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 170 (1996) 277-296

An axiomatization of the algebra of
Petri net concatenable processes

V l a d i m i r o Sas sone

BRICS 1, Computer Science Department, University of Aarhus, Ny Munkegade, Bldng 540,
DK-8000, Aarhus, Denmark

Received August 1994; revised July 1995
Communicated by G. Rozenberg

Abstract

The concatenable processes of a Petri net N can be characterized abstractly as the arrows of
a symmetric monoidal category ~(N). However, this is only a partial axiomatization, since it is
based on a concrete, ad hoe chosen, category of symmetries Sym N.

In this paper we give a completely abstract characterization of the category of concatenable
processes of N, thus yielding an axiomatic theory of the noninterleaving behaviour of Petri nets.

O. Introduction

Concatenable processes of Petri nets have been introduced in [3] to account, as

their name indicates, for the issue of process concatenation. Let us briefly reconsider

the ideas which led to their definition.

The development o f theory Petri nets, focusing on the noninterleaving aspects of

concurrency, brought to the foreground various notions of process, e.g. [14, 5, 2, 12, 3].

General ly speaking, Petri net processes - whose standard version is given by the Go l t z -

Reisig nonsequential processes [5] - are structures needed to account for the causal

relationships which rule the occurrence of events in computations. Thus, ideally, pro-

cesses are simply computations in which explicit information about such causal con-

nections is added. More precisely, since it is a well-established idea that, as far as the

theory o f computation is concerned, causality can be faithfully described by means of

partial orderings - though interesting 'heret ic ' ideas appear sometimes - abstractly, the

processes of a net N are ordered sets whose elements are labelled by transitions o f N.

Concretely, in order to describe exactly which multisets of transitions are processes,

1 Basic Research in Computer Science, Centre of the Danish National Research Foundation. The author was
supported by EU Human Capital and Mobility grant ERBCHBGCT920005. Work partly carried out during
the author's doctorate at Universith di Pisa, Italy.

0304-3975/96/$15.00 ~) 1996--Elsevier Science B.V. All rights reserved
PII S0304-3975(96)00009-6

278 V. Sassone / Theoretical Computer Science 170 (1996) 277-296

one defines a process of N to be a map z~: O ~ N which maps transitions to transi-
tions and places to places respecting the 'bipartite graph structure' of nets. Here O is a
finite deterministic occurrence net, i.e., roughly speaking, a finite, conflict-free, 1-safe,
acyclic net. The role of n is to ' label' the places and the (partially ordered) transitions
of @ with places and transitions of N in a way compatible with the structure of N.

Given this definition, one can assign the correct source and target states to a process
: O ~ N by considering the multisets of places of N which are the image via n of the

places of 69 with, respectively, empty preset and empty postset (henceforth referred to
as minimal and maximal places of O). Now, the simple minded attempt to concatenate
a process nl : O1 ~ N with source u to a process n0: 69o ~ N with target u by merging
the maximal places of 6)o with the minimal places of O1 in a way which preserves the
labellings fails immediately. In fact, if more than one place of u is labelled by a single
place of N, there are many ways to put in one-to-one correspondence the maximal
places of @0 and the minimal places of 6)1 respecting the labels, i.e., there are many
possible concatenations of n0 and rq, each of which gives a possibly different process
of N. In other words, as the above argument shows, process concatenation has to do
with merging tokens, i.e., instances of places, rather than merging places.

Therefore, any attempt to deal with process concatenation must disambiguate the
identity of each token in a process. This is exactly the idea of concatenable processes,
which are simply Goltz-Reisig processes in which the minimal and maximal places
carrying the same label are linearly ordered. This yields immediately an operation of
concatenation, since the ambiguity about the identity of tokens is resolved using the
additional information given by the orderings. Moreover, the existence of concatenation
leads easily to the definition of the category of concatenable processes of N. It turns
out that such a category is a symmetric monoidal category whose tensor product is
provided by the parallel composition of processes [3]. The relevance of this result is
that it describes Petri net behaviours as algebras in a remarkably smooth way.

Naturally linked to the fact that they are algebraic structures, concatenable processes

are amenable to abstract descriptions. In [3] the authors deal with this issue by associ-
ating to each net N a symmetric monoidal category ~ (N) isomorphic to the category
of concatenable processes of N; such a characterization, however, is not completely
abstract and it provides only a partial axiomatization of the algebra of concatenable
processes of N, since in the cited work ~ (N) is built on a concrete, ad hoc constructed,

category Sym N.
In this paper we show that gym u can be characterized axiomatically, thus yielding

a purely algebraic and completely abstract axiomatization of the category of con-
catenable processes of N. In particular, we shall describe ~ (N) in terms of universal
constructions. Namely, we shall prove that it is the free symmetric strict monoidal cat-
egory on the net N modulo two simple additional axioms. 1 This result complements
the investigation of [3] on the structure of net computations by showing that they can
be described by an essentially algebraic theory (whose models are symmetric monoidal

1 We remark that the existence of a similar axiomatization was conjectured also in [6].

V. Sassone l Theoretical Computer Science 170 (1996) 277-296 279

categories), which, in our opinion, is a remarkable fact. In addition, our axiomatization
of t~(N) naturally provides a term algebra and an equational theory of concatenable
processes of N, by means of which one can 'compute' with and 'reason' about them.
The relevance of this is evident when one thinks of N as modelling a complex system

whose behaviour is to be analysed.
Concerning the organization of the paper, Section 1 recalls the needed definitions; the

reader acquainted with [12, 3] and with monoidal categories can safely skip it. In Sec-
tion 2 we prove our result. An extended abstract version of this paper appears as [16].

1. Monoidal categories and concatenable processes

The notion of monoidal category dates back to [1] (see [11] for an easy thorough
introduction and [4] for advanced topics). In this paper we shall be concerned only
with a particular kind of symmetric monoidal categories, namely those which are strict

monoidal and whose objects form a free commutative monoid. Remarkably, a very sim-
ilar kind of categories have appeared as distinguished algebraic structures also in [10],
where they are called PROP's (for Product and Permutation categories), and in [8]. The
difference between the categories we use and PROP's is that the monoid of objects of
the latter have a single generator, i.e., it is the monoid of natural numbers with addition.

A symmetric strict monoidal category (SSMC in the following) is a structure
(C,®,e,7), where C is a category, e is an object of C, called the unit object, ® : C x
C ---+ C is a functor, called the tensor product, subject to the following equations

® o (® x lc_) = ® o (lc_ × ®}, (1)

® o (e_, l c) = lc_, (2)

® o <lc_,e> = lc_, (3)

where e: C --~ C__ is the constant functor which associate e and ide, respectively, to
each object and each morphism of C C_, {-,-) is the pairing of functors induced by the
cartesian product, and 2 7:-1 @ -2 _Z~ -2 ® -l is a natural isomorphism, called the
symmetry of C_, subject to the following Kelly-MacLane coherence axioms [9, 7]:

(Tx,z ® idy) o (idx @ 7y, z) = Yx®y,z, (4)

7y, x o 7x, y = idx®y. (5)

Clearly, Eq. (1) states that the tensor is associative on both objects and arrows,
while (2) and (3) state that e and ide are, respectively, the unit object and the unit
arrow for ®. Concerning the coherence axioms, axiom (5) says that 7y, x is the inverse
of 7x, y, while (4), the real key of symmetric monoidal categories, links the symmetry
at composed objects to the symmetry at the components.

2We use -n for n C tn as placeholdes and x,y,z,.., as variables for objects.

280 K Sassone / Theoretical Computer Science 170 (1996) 277 296

Remark. Adapting the general definition o f monoidal category to the special case o f

S S M C ' s , one finds that there is a further axiom to state, namely 7e,x = ida. Observe

however that it follows from the others. In fact, by (2) we have that e @ e = e and

thus 7e, x = Y~®e,x, which by (4) is equal to (?e,x ® ida) o (id~ ® 7e,~). Now, by (2)
and (3) we have that 7~,x = 7~,x o 7e, x and thus, multiplying both terms by y~,e and
exploiting (5), we have 7~,~ = id~®x = ida.

A symmetry s in a symmetric monoidal category __C is any arrow obtained as com-

position and tensor o f identities and components of 7. We use Sym c to denote the
subcategory o f the symmetries o f C.

A symmetr ic strict monoidal func tor from (C,®,e ,y) to (D,®~,e~,7'), is a functor

F : C --~ D which preserves the monoidal structure, i.e., such that

F(e) = e', (6)

V(x ® y) = V(x) ®' F(y), (7)

F(Tx,y) -~ 7' Fx,Fy" (8)

Let SSMC be the category o f S S M C ' s and symmetric strict monoidal functors and

let SSMC e be the full subcategory consisting of the monoidal categories whose objects

form f ree commutative monoids.
We recall now the definitions o f Petri nets and their (concatenable) processes.

Notation. We denote by S e the f ree commutative monoid on S, i.e., the monoid o f

finite multisets of S. Recall that a finite multiset is a functions from S to ~o which
yields nonzero values at most on finitely many arguments. We represent u E S e as a

formal sum @iu(ai) • ai where only the ai E S such that u(ai) > 0 appear; the empty

multiset will be denoted by 0.
A Petri net is a structure N = (8° ,8~: TN ---+ SON), where TN is a set o f transitions,

SN is a set o f places, and 8 ° and 8~ are functions which assign to each transition,

respectively, a source and a target multiset of places. For t ~ TN, we write t : u --~ v

to indicate that 8°(t) = u and 8)¢(t) = v. A morphism of nets f : No ~ N1 consists o f

a pair of functions (f t : T:vo ---* TN~, fp" S ¢ ~ S e No N,), where the place component fp is a
monoid homomorphism, which respect source and target, i.e., the two diagrams below

commute.

8°, o 8,~ o
TNo) S ® No TNo > S O No

,,l ,,1 + +
TN, > S 0 TN, , S @ NI Nt

The data above define the category Petri o f Petri nets.

A process net is a finite, acyclic net O such that for all t E To, 8° (t) and 8~(t)
are sets (as opposed to multisets), and for all to ~ h • To, 8io(to) A 8~(tl) = 13, for
i = 0, 1. Given N E Petri, a process of N is a morphism ~ : 6) --* N, where 6) is

V. Sassone I Theoretical Computer Science 170 (1996) 277-296 281

a process net and 7z is a net morphism which maps places to places (as opposed to
morphisms which map places to markings).

A concatenable process of N is a triple (re: 6} ~ N, { <a}a~sN, {<<a}~esN), where rc
is a process, and <~ and ((a are linear orderings of, respectively, the set of minimal
and the set o f maximal places of O contained in n p l (a) (cf. Fig. 1). In order to
abstract from the details concerning the underlying process nets, concatenable processes
are considered up to isomorphisms. Formally, two concatenable processes, say with
underlying processes rt0 : @0 ~ N and nt : 01 ~ N, are identified if there exists an
isomorphism q~ : O0 ~ O1 which preserves all the orderings and such that rq o ~o = ~z0.

Concatenable processes allow the operations of sequential and parallel composition
(see Figs. 2 and 3, and consult [3] for further examples). Let CPo and CP1 be con-
catenable processes of N, and let zt0 : O0 ~ N and nl : O1 ~ N denote their underlying
processes. The parallel composition CPo Par CP1 is the concatenable process of N
whose underlying process is the disjoint union of 7% and nl, i.e., rt0 + ztl : O0 + O1
N, where + denotes the coproduct in Petri, and whose orderings extend those of CPo

t l
C P =

Fig. 1. A net and one of its two concatenable processes CP: a • b ~ 2c

CP

(
----- tO m

)
m Par

)

(,)
,¢

m m t 1

Fig. 2. CP of Fig. 1 as the parallel composition of two simpler processes.

tO m m

()
u m t l Seq

()
t - - , d . . t l

---~' . . - t

Fig. 3. Sequential composition (concatenation) of concatenable processes.

282 K Sassone/ Theoretical Computer Science 170 (1996) 277-296

and CP1 by making all the places o f Oo precede all the places o f Or. The sequential
composition, or concatenation, CP = CPo S e q CP1 is defined if and only if the state

reached by CPo coincide with the source state o f CP~. In this case, CP is obtained

by glueing together ~0 and 7q, identifying injectively each maximal place o f Oo with

a minimal place o f O1 in the unique way compatible with the orderings <<~ on Oo

and < a on O~ for all a E Ss.

Next, we recall the construction o f the symmetric strict monoidal category ~ (N) . We

start by introducing the vectors o f permutat ions (vperms) of N, 3 which will provide

the symmetry isomorphism of ~ (N) .

Remark. A permutat ion of n elements is an automorphism of the segment o f the first

n positive natural numbers. The set H(n) of the n! permutations o f n elements is a

group under the operation o f function composition called the symmetr ic group on n
elements, or o f order n!. The unit o f I I (n) is the identity function on {1 n} and

the inverse o f a E H(n) is its inverse function a -1 . Due to its triviality, the notion o f

permutation o f zero elements is never considered; however, to simplify notation, we
shall assume that the empty function (~: 0 --* 0 is the (unique) permutation o f zero

elements. As a notation, when cr E H(n) , we write lal for n. We use sometime a
graphical representation o f permutations according to which a is depicted by drawing

a line from i to a(i) (see, for example, Figs. 4 and 5).

We say that a E H(n) is a transposition if it is a 'swapping' of adjacent elements,
i.e., if there exists i < n such that a(i) = i + 1, a(i + 1) = i, and ~r(k) = k elsewhere.

We shall denote such a a as (i i+1) or as vi. Transpositions are a relevant kind of

permutations, since each permutation can be written as composition o f them.

For u E S e, a vperm s : u ~ u is a function which assigns to each a E S a

permutation s(a) E H(u(a)) . Given u = nl - a~ ® . . . @ nk- ak in SN ~, we shall represent
a vperm s on u as a vector of permutations, (aa~ aak), where s(aj) = aaj, whence

their name. One can define the operations o f sequential and parallel composition o f

vperms, so that they can be organized as the arrows of a SSMC. The details follow
(see also Fig. 4).

Given the vperms s = (rr~, a~k): u --- u and s' = (rr" rr~): u ---* u their

sequential composition s; s' : u --. u is the vperm

(aa, ; Ca,, - - •, °ak; ~ ' ,) ,

where a; a ' is the composition of permutation which we write in the diagrammatic
order from left to right. Given the vperms s = (6al , . . . , f fak):u "-~ U and s ~ =

' ' = 0 for some j) , their parallel composi- (a~ a~k): v --~ v (where possibly ~r~j
tion s ® s' : u • v --+ u ® v is the vperm

/ . . " , 0./ (O'a' @ O ' a , ' O'ak @ ak} '

3 Vperms are called symmetries in [3]. Here, in order to avoid confusion with the general notion of symmetry
in a symmetric monoidal category, we prefer to use another tenn.

V, Sassonel Theoretical Computer Science 170 (1996) 277-296 283

b

(a a a a aAo o 0 3

=

~b b b~

Fig. 4. The monoidal structure of vperms.

Fig. 5. Some instances of the axioms of permutations.

where

(a ® a ') (x) = { a(x) if 0 < x~<la I,
a ' (x - [a l) + l a [if [a I <x<~la[+la' I.

Let 7 be (1 2) E / / (2) and consider ui = n] • al ® " . • n~ "ak, i = 1,2, in S @. The
interchanoe vperm 7(ul,u2) is the vperm (aa~ aak): ul • u2 ~ Ul ~)u2, where

aa,(X)= x - n / ' i f ni' < x < ~ n) + n 2.

It is immediate to verify that _ ;_ is associative. Moreover, for each u E S @, the
vperm u = (ida, ida,): u ---+ u, where idaj is the identity permutation, is an identity
for sequential composition. Finally, writing 0 for the empty multiset on S, the (unique)
vperm s: 0 --+ O, is a unit for parallel composition.

284 v. Sassone/ Theoretical Computer Science 170 (1996) 277-296

Now, for N a net, let gym N be the category whose objects are the elements of SN e
and whose arrows are the vperms s : u ~ u for u E SN e . It is easy to show that gym N is
a S S M C with respect to the given composition and tensor product, with identities and
unit element as explained above, and with the symmetry natural isomorphism given by

the collection 7 = {7(u, V)}u,vesym N of the interchange vperms. Observe that, although
gym N is not strictly symmetric, it is so on the objects. More strongly, the objects form
a free commutative monoid, i.e., Sym u 6 SSMC e.

We can now define ~ (N) as the category which includes gym N a s a subcategory
and has as additional arrows those defined by the following rules:

t: u ~ v in "IN

t :u ~ v in ~ (N)

~ : u ~ v a n d f l : u ' ~ v ' i n ~ (N) ~ : u ~ v a n d f l : v ~ w i n ~ (N)

c~ ®/3: u @ u' ~ v @ v' in ~ (N) ~;/3: u -~ w in ~ (N)

plus axioms expressing the fact that ~ (N) is a S S M C with composition _ ; _, tensor _®_

(extending those already defined on vperms) and symmetry isomorphism 7, and the
following axioms involving transitions and vperms

t; s = t, where t: u --~ v in TN and s: v ~ v in SymN,
(~,)

s; t = t, where t: u ~ v in TN and s: u ~ u in Sym N.

In other words, ~ (N) is built on the category Sym~ by adding the transitions of N
and freely closing with respect to sequential and parallel composition of arrows, so
that ~ (N) is made symmetric strict monoidal and axioms (~) hold.

The relevant fact about ~ (N) is that its arrows represent exactly the concatenable
processes of N, i.e., ~ (N) represents the noninterleaving behaviour of N, including its
algebraic structure. (See [3] for the details.)

Theorem 1.1. (~ (N) vs. concatenable processes [3]). For any net N there exists a

one-to-one correspondence between the arrows o f ~ (N) and the concatenable pro-

cesses o f N such that, for each u, v 6 SeN, the arrows o f type u --* v correspond to
the processes enabled by u and producing v, and such that sequential and parallel

composition (tensor product) o f processes (arrows) are respected.

Vperms play in this correspondence an absolutely fundamental role: Sym N accounts
for the families of orderings { <a}a~SN and {<<a}a~SN, which are the key to concaten-
able processes, guaranteeing a correct treatment of sequential composition. In other
words, Sym N is an algebraic representation of the 'threads of causality' in process
concatenation.

Unfortunately, the concrete definition of vperms weakens considerably the essentially
axiomatic character o f ~ (N) and, therefore, the results o f [3]. Also, it makes ~ (N)
rather uncomfortable an algebra to handle, since the laws which rule it remain partly
concealed in Sym N. An abstract characterization of Sym N, one yielding an entirely

V. Sassone l Theoretical Computer Science 170 (1996) 277-296 285

axiomatic presentation of the concatenable processes of N, is called-for. This is what
we shall do next.

2. Axiomatizing concatenable processes

This section provides a fully axiomatic description of the concatenable processes
of N obtained by proving that ~ (N) is a quotient o f the free S S M C on N. As
already remarked, the key to this result will be an axiomatization of the category

of vperms S y m N. We start by showing that we can associate a free $ 9 M C to each
net N. Although this may not look very surprising, our proof will identify a 'minimal '
description of such categories which will be useful later on.

Proposition 2.1 (f f q ~//). The f o r g e t f u l f u n c t o r og : SSMC • __~ Petri has a lef t ad-

j o in t f f : Petri ~ SSMC ~.

Proof. Consider the category ~ (N) whose objects are the elements of S~ and whose
arrows are generated by the inference rules

U E S N e a a n d b inSN t : u ~ v i n TN

i d ~ : u ~ u i n ~ (N) C a , b : a ® b ~ b ® a i n ~ (N) t : u ~ v i n ~ - (N)

c ~ : u ~ v and fl :u '---+v ~ i n ~ (N) e : u ~ v a n d f i : v - - ~ w i n ~ - (N)

® fl: u ® u ~ --~ v ® v / in ~ (N) ~; fl: u --* w in o~(N)

modulo the axioms expressing that i f (N) is a strict monoidal category, namely,

~; idv = ~ = idu;

(~ ®13) ® ~ = ~ ® (13 ® ,:)

idu ® idv = idue~,

and (ct; fl);y = ~;(fl; 7),

and ido ® ~ = c~ =- c~ ® ido,

and (~ @ ~ ') ; (f l ® f l ') = (~ ; f l) ® (~ ' ; f l ') ,

(9)

the latter whenever the right-hand term is defined, and the following axioms:

Ca,b; eb, a = ida~b, (10)

eu, u , ; (f l ® e) = (o ~ @ f i) ; c ~ , v , for a : u - - ~ v , f l : u ' - - - ~ v ' , (11)

where cu,~ for u, v E SN e denote any term obtained from ca,b for a, b E SN by applying
recursively the following rules (compare with axiom (4)):

co,u = co,u = idu,

ca~.,o = (ida ® e.,v); (ea,~ ® ida), (12)

eu,~ea = (c.,v ® ida); (idv ® e.,a).

Observe that Eq. (11), in particular, equalizes all the terms obtained from (12) for

' be two such terms and take ~ and fl to be, fixed u and v. In fact, let cu,~ and e~,~

286 V. Sassone / Theoretical Computer Science 170 (1996) 277-296

respectively, the identities of u and v. Now, since id~ @/dr = /du~v = idv ® ida,
from (11) we have that Cu,v = c~u,v in ~ (N) . Then, we claim that the collection
{Cu,~}u,v~s~ is a symmetry natural isomorphism which makes ~ (N) into a SSMC and

that, in addition, ~ (N) is the free 9 8 M C on N.
In order to show the first claim, observe that the naturality of c is expressed directly

from axiom (11). We need to check that for any u and v we have Cu,~;cv,u = iduev,
which follows easily from (10) by induction on the sum of the sizes of u and v.

Base cases: I f u = 0 or v = 0, the thesis follows from the first of (12). I f lu{ --
Ivl = 1, then the required equation is (10).

Inductive step: Without loss of generality, assume u -- a®u ~, u ~ ~ O. Then, by (12),

Cu,v; Cv,u = (id a ® CuZ,v); (Ca,v ~ idu,); (Cv,a ® idut); (ida ® Cv,u')

= (ida @ Cu',v); ((Ca,v; Cv,a) ~ idu,); (ida @ Cv,u,)

=(ida @cu,,v);(ida ®Cv,u,)

= ida ® (cu,,v; cv,u,) = ida ® id,,ev = idu~v.

For C in SSMC ~, the net °Z/(C) is obtained by forgetting the categorical structure
of C. The markings and the transitions of q/(C) are, respectively, the objects and the
arrows of C with the given sources and targets. Similarly, for F a symmetric strict
monoidal functor in SSMC e, ~//(F) is the net morphism whose components are the
restrictions of F to, respectively, arrows and objects. Consider the net q / ~ (N) and the
net morphism r/: N ~ q / ~ (N) , where ~/p is the identity homomorphism and qt is the
obvious injection of TN in T ~ N) . We show that q is universal, i.e., that for any C in
SSMC e and for any net morphism f : N ~ q/(C), there is a unique symmetric strict
monoidal functor F : ~ (N) ~ C which makes the following diagram commute:

Let __C = (C, ®, 0, 7) and f : N --+ q/(C) be as in the hypothesis above. In order
for the diagram to commute and for F to be a symmetric strict monoidal functor, its
definition on the generators of ~-(N) is compelled:

F(u) = fp(u), F(t) = ft(t) , F(idu) : idfAu), F(Ca,b) = 7fp(a) , fp(b) .

Clearly, the extension of F to composition and tensor is also uniquely determined,
namely, F(c~; r) = F(fl) o F(~) and F(~ ® r) = F(~) ® F(fl). Therefore, to conclude the
proof we only need to show that F is a well-defined symmetric strict monoidal functor,
since, then, it is necessarily the unique one such that q/(F) o r/-= f .

To establish that F is well-defined, it is enough to prove that it preserves the ax-
ioms which generate ~ (N) . Since C is a strict monoidal category and F(idu) = idF(u),

V. Sassone/ Theoretical Computer Science 170 (1996) 277-296 287

axioms (9) are clearly preserved. Moreover, since C is symmetric with symmetry iso-
morphism 7, we have that

F(Ca,b; Cba) =]:F(b),F(a) o ~F(a),F(b) = idF(a)@F(b) = idF(a@b) = F(ida~b),

i.e., F respects axiom (10). Showing that F preserves axiom (11) and it is a symmetric
strict monoidal functor reduces to showing that, for each u,v E S~N and for each
term cu,~ obtained from (12), we have F(cu,~) = 7F(u),F(~). In fact, this proves directly
the latter claim, functoriality and axioms (6) and (7) holding by definition of F, and
since 7 is a natural transformation, it also proves that F preserves (11). We proceed
by induction on the structure of Cu,~.

Base cases. If cu,~ is a generator, i.e., [u I = Iv[-- 1, the claim is proved by appealing
directly to the definition of F. If it comes from (12) with u -- 0, then F(c~,o) =/dF(v).
However, since 7e, x = idx holds in any $SMC, as shown in a previous remark, and
since F(u)=0, we have F(cu,~) = 7F(u),F(~) as required. A symmetric argument applies
if Cu,~ is obtained from (12) for v = 0.

Inductive step. If c,,o is obtained from the second of (12) with u = a ® u', then,
exploiting the induction hypothesis, F(cu,r) = (TF(a),F(v) @ /dF(u')) o (idF(a) ® YF(u'),F(v))
and thus, by the coherence axiom (4) of $S[V1C's, we have F(e,,~) = 7F(a)~F(~')y(~)

which is YF(a@u'),F(v), i.e., 7F(~),F(~). If instead v = v'@ a and e,,v is obtained from
the last of (12), then the claim is proved similarly by using the inverse of (4), i.e.,
7x,y®z = (id y ® 7x,z) o (7x,y ® idz), which, of course, holds in any $$MC. []

Thus, establishing the adjunction ~- q q/: Petri ~ SSMC e, we have identified
~ (N) , the f ree SSMC on N, as a category generated, modulo appropriate equations,
from the net N viewed as a graph enriched with formal arrows /du, which play the
role of the identities, and Ca,b for a, b E SN, which generate all the needed symmetries.

Our aim is to relate ~ (N) and ~(N) . As a matter of fact, ~-(N) is positively more
concrete than ~ (N) and far from being isomorphic (or equivalent) to it. For example,
for a # b in aN, w e have Ca,b # ida®b in ~ (N) , whilst 7(a,b) = ida~b in ~(N) .
Therefore, no symmetric monoidal functor Q: ~ (N) ~ ~ (N) can be mono. Also,
~ (N) possesses no counterpart of axioms (~). We shall prove that these are precisely
the differences between ~ (N) and ~(N) . Namely, we shall obtain ~ (N) as a quotient
of ~ (N) by enforcing the axioms outlined above. The next proposition, which is the
adaptation to SSMC's of the usual notion of quotient algebras, provides the tool we
shall use for this purpose.

Proposition 2.2 (Monoidal quotient categories). For C a SSMC, let ~ be a function

which assigns to each pair o f objects a and b o f C a binary relation ~a,b on the
homset C(a,b). Then, there exist a SSMC C_C_C_~ and a symmetr ic strict monoidal
functor Q~: C ~ C_J~ such that

(i) I f f ~a ,b f ' then Q s (f) = Q ~ (f ') ;
(ii) For each symmetr ic strict monoidal H : C ~ D such that H (f) = H (f ') when-

ever f ~a,bf ' , there exists a unique K: C / ~ ~ D, which is necessarily symmetr ic

288 V. SassoneI Theoretical Computer Science 170 (1996) 277-296

strict monoidal such that the following diagram commutes:

ProoL Say that :~ is a congruence if ~a,b is an equivalence for each a and b and if
respects composition, i.e., whenever fJ ta,bf ~ then, for all h : a ~ ~ a and k : b --* b',

we have (k o f o h)~a',b,(k o f ' o h). Clearly, if ~, is a congruence, the following
definition is well-given: C_./~ is the category whose objects are those of C, whose
homset C_j~(a,b) is C(a,b)/~a,b, i.e., the quotient o f the corresponding homset o f C
modulo the appropriate component of :~, and whose composition of arrows is given by
[g]ce o [f]~e = [g o f] e . In fact, since ~a,b is an equivalence C_j~(a, b) is well-defined,
and since N preserves the composition, so is the composition in C_/~.

Let C = (C,®,e , 7). Call ~ a ®-congruence i f it is a congruence in the above sense
and it respects tensor, i.e., if fNa ,b f ~ then, for all h : a ~ ~ b ~ and k : a" ~ b ' , we

have (h ® f ® k)~a,®a®a,,.b,®b®b.(h ® f~ ® k). It is easy to check that, i f ~ is a Q-
congruence, then the definition [f] ~ ® [g]ce = [fQg]e makes the quotient category C / N
into a S S M C with symmetry isomorphism given by the natural transformation whose
component at (u, v) is [Tu,~]e and unit object e.

Observe now that, given N as in the hypothesis, it is always possible to find the
least ®-congruence ~ which includes (componentwise) ~ . Then, take C_C_C_~N to be C_CJN ~
and Q~ to be the obvious projection of C into C_C_CJN. Clearly, Q e is a symmetric strict

monoidal functor.
Now, let H : C__ ~ D_ be a monoidal functor as in the hypothesis and consider the

mapping of objects and arrows of C_/N to, respectively, objects and arrows of D given
by K(a) = H(a) and K ([f] ~) = H (f) . It follows from definition of functor that the

family {~a,b}a,b~C, where SPa,b is the relation { (f , g)] H (f) = H(g)} on C(a,b), is
a congruence. Moreover, since H (f ® g) = H (f) ® H(g), we have that {SP~,b}~,beC_ is
a ®-congruence. Then, if H satisfies the condition in the hypothesis, i.e., if ~ C_ 5P,
since ~ is the least ®-congruence which contains ~ , we have that f ~ , b g implies
H (f) = H(g), i.e., K is well-defined. Moreover, since H is a functor, it follows that
K([ida]~) = idH(a) = idK(a) and K([g]~ o [f] ~) = H(g) o H (f) = K([g]~) o K([f]~¢),
i.e., K is a functor. One shows similarly that K ([f] e ® [g]~) = K([f]se) ® K([g]e) .

Then, since K([vu~]e) = H(7~,~) = ~ where 7 ~ , ?K(u),K(v), is the symmetry isomorphism
of D, one concludes that K is in SSMC.

Clearly, K renders commutative the diagram above and it is indeed the unique fimctor
which enjoys such a property for the given H.

In order to show that ~ (N) is a monoidal quotient o f i f (N) , we need a more
abstract understanding of the structure of the vperms of ~ (N) . To this aim, we shall
make use of the following lemma, originally proved in [13].

V. S a s s o n e l Theore t i ca l C o m p u t e r Sc i ence 170 (1 9 9 6) 2 7 7 - 2 9 6 289

Lemma 2.3 (Axiomatizing /7(n)) . The symmetr ic group I I (n) is (isomorphic to) the

group G f ree ly generated f r o m the set {zi [1 <~ i < n}, modulo the equations (see

also Fig. 5)

"Ci'Ci+l Z i ~ "~i+lgi'Ci+l,

T i T j : T j T i i f l i - - j l > ~ l ,

TiTi -~- e,

where e is the unit element o f G.

(13)

Proof. The proof is by induction on n. First of all, observe that for n = 0 and n = 1 the
set of generators is empty and the equations are vacuous. Hence, G is the free group
on the empty set of generators, i.e., the group consisting only of the unit element,
which is (isomorphic to) H(0) and/7(1).

Suppose now that the thesis holds for n ~> 1 and let us prove it for n + 1. It is
immediately evident that the permutations of n + 1 elements are generated by the n
transpositions. Moreover, the transpositions satisfy axioms (13), as a quick look to

Fig. 5 shows. It follows that the order of G must be not smaller than the order of
H(n + 1), i.e., [G[~>(n + 1)!. Moreover, there is a group homomorphism h: G --+
I I (n + 1) which sends zi to the transposition (i i + 1), and since the transpositions
generate/7(n + 1), we have that h is surjective. Thus, in order to conclude the proof,
we only need to show that h injective, which clearly follows if we show that [GI =
(n + 1)!.

Let H be the subgroup of G generated by {Zl,Z2 Zn-l} and consider the n + 1
cosets H1 Hn+I, where Hi = H z n ' " z i = { X Z n ' " Z i [X C H}, l<<.i<<.n, and
Hn+l = H. Then, for 1 <~i<<.n+ 1 and 1 <~j~n, consider Hizj. The following cases are
possible.

i > j + 1. By the second of axioms (13), zj is permutable with each of zi z ,

and, therefore,

H,.zj = Hzn " " zi'cj

.~_ Sg j"Cn • . . 7: i

= Hzn " • • zi = Hi.

i < j . Again by the second of (13), zj is permutable with each of zi z j -2 and,
therefore,

n i ' ~ j : H ' cn " " "C i'~ j

: H ' C n . . . T j + I T j Z j _ l Z j . . . ' C i

= H z n ' " z j + l z j - l v j z j - 1 " " z i

= H z j - l Z n " " z j+lr jz j -1 " " z i

= H z n " " z i = H i .

by the first of (13)

by the second of (13)

290 v. Sassone / Theoretical Computer Science 170 (1996) 277-296

i = j . Then Hfi j = H z n . . . z j z j , i.e., by the third of (13), Hzn . . . z j+ l = Hj+l.
i = j + 1. Then Hj+lZj = Hzn ' "Z j+ lZ j = Hj.
In other words, for 1 ~j<~n, the sets H1 ... Hn+l remain all unchanged by post-

multiplication by zj, except Hj and Hj+I which are exchanged with each other. Now,

since each element of G is a product Til " " • "Cik , it belongs to H'Cil " " "c&, i.e., to one of
the Hi's. Hence, G is contained in the union of the/-/ i 's . It follows immediately that,
if H is finite, we have that IG[~<(n + 1) . [HI. However, by induction hypothesis, H
is (isomorphic to) H(n), and thus H is finite and In[= n!. Therefore, IG[~<(n + 1)!,
which concludes the proof. []

The previous lemma is easily adapted to vperms as follows.

L e m m a 2.4 (Axiomatizing Symu). The arrows of Sym N are freely generated by com-
position and tensor f rom the vperms 7(a, a) : 2 • a ~ 2 . a, for a E SN, modulo the
axioms (9) o f strict monoidal categories and the following additional axioms:

((ida ® 7(a ,a)) ; (~(a,a) ® ida)) 3 = id3.a,

~(a, a) 2 = id2.a, (14)

(idb @ 7(a , a)) ; (7(a ,a) ® idb) = id2.aeb i f a ¢ b E Su,

where f n indicates the composition o f f with itself n times.

Proofi A vperm p = (aa, , f fan) coincides with aa, ® " " ® a~° which, exploiting
the functoriality of @, can be written as (aa, @ "'" ® i d u ,) ; ' " ; (idul ® "'" @ aa,).
Since aaj, as a permutation, is a composition of transpositions, and the transposition

zi: n. a --~ n. a in Sym N can he written as id(i-1).a @ 7(a, a) ® id(n-i-1).a, we have that
aaj = (idu, ® ~(aj, aj) ® idv,); . . . ; (idu~ ® 7(aj, aj) @ idv~). Therefore, the vperms 7(a ,a)
generate via composition and tensor all the vperms of Sym N.

Concerning the axioms, since Sym N is strict monoidal, it clearly validates Eqs. (9).
It is easy to verify that the same happens for (14). On the other hand, suppose that
two terms p and q generated from the ~(a, a) ' s evaluate to the same vperm ac, ® . - . ®
ac k. We have to prove that Eqs. (9) and (14) induce p = q. Up to applications of
axioms (9), we can assume that

p = (idut ® 7(al,al) ® idv,) ; . . . ; (idu, ® ~)(an, an) ® idv,),

q = (idu, ® v(bl, bl) ® idv,) ; . . . ; (ida; ® V(bm, bin) ® idv) ,

where every ai appearing in p and every bi appearing in q is one of the ci's. Observe
that, by repeated applications of the third of (14) and of the functoriality of ®, viz., the
last two of (9), we can reorganize p and q in such a way that all the terms involving Cl
- i f any - are grouped together and immediately followed by all the terms involving e2
- if any - and so on. Let us denote by p~ and q~ the terms so obtained and let us
focus on the sequences p~ and q~ of terms involving ei in, respectively, p~ and q~. The
following cases are possible.

V. Sassone l Theoretical Computer Science 170 (1996) 277-296 291

(i) p~ and q~ are both empty. Then, there is nothing to show.
(ii) Either p~ or q~ - without loss of generality say p~ - is empty. Then, ~rc, is the

identity and since ql evaluates to it, by Lemma 2.3, q~ can be proved equal to the
identity permutation using axioms (13). Now notice that axioms (13) can be derived
by appropriately tensoring with identities the first two of (14) instantiated to ci and
the following direct consequence of (9)

((~(Ci, Ci) ~ idn.c,)'~ (idn.c i ~ ~(ci, c i))) 2 = id(n+2).c, if n > 1.

Therefore, the proof that q~ is the identity permutation can be mimicked to prove using
instances of axioms (9) and (14) that q~ is an identity in Sym N. Then we can drop q~
from qP.

(iii) Both p~ and q~ are nonempty. Then, since they both evaluate to ace, they can
be proved equal using axioms (13). Therefore, reasoning as in the previous case, the
equality of p~ and ql follows from axioms (9) and (14).

This shows that p = q is induced by (9) and (14), which concludes the proof. []

We are now ready to give the promised characterization of ~(N).

Proposition 2.5 (Axiomatizing ~(N)) . ~ (N) /s the monoidal quotient o f the free
SSMC on N modulo the axioms

Ca,b=idaeb if a, bESlv and a C b , (15)

s; t ; s '= t i f t E TIv and s,s' are symmetries. (16)

Proof. We prove that ~ (N) is isomorphic to ~ (N) / ~ , where ~ is the Q-congruence
generated from eqs. (15) and (16).

Since ~ (N) belongs to SSMC e, it follows from Proposition 2.1 that, correspond-
ing to the net inclusion morphism N ---* ~//~(N), there is a unique symmetric strict
monoidal functor Q: o~(N) ~ ~ (N) which is the identity on the places and on the
transitions of N. In particular, Q is such that

Q(Ca,b) = 7(a,b) for a,b E SN.

For a ¢ b E SN, since 7(a,b) ---- ida~b, we have that Q(Ca,b) = Q(/da~b). Moreover,
since symmetric monoidal functors map symmetries to symmetries, and since (16)
holds in ~(N) , we have that Q(s;t;s') = Q(s);t;Q(s') = t = Q(t) for s and s' in
Sym~(u) and t E TN. In other words, Q equalizes the pairs (Ca, b, idaeb) with a ¢
b E SN and the pairs (s; t;s ~, t) with s and s' symmetries and t E TN. Then, in force
of Proposition 2.2 applied to Q, there is a (unique) symmetric strict monoidal functor
H: ~ (N) / ~ t ~ ~ (N) which is the identity on the objects and is such that

H([t]e) = t for tETN.

292 K Sassone / Theoretical Computer Science 170 (1996) 277-296

We shall prove that H is an isomorphism by providing its inverse ~ (N) ---, ~ (N) / Q .
To this aim, consider the mapping G of ~ (N) to ~ (N) / Q which acts identically on
the objects and is defined on the arrows by

G(t) = [t]~ if tETN,

G(7(a, a)) = [Ca,a]~ if a E SN,

extended to identities, composition and tensor by the usual laws G(/du) = [idu]~,
G(~; r) = G(~) ; G(#), and G(~ ® r) = G(~) ® G(/~). It follows from the definition of
~ (N) and from Lemma 2.4 that the equations above define G uniquely.

Suppose now for a moment that these equations yield a symmetric strict monoidal
functor G: ~ (N) --+ ~ (N) / Q , and notice that GH: ~ (N) / Q ~ Y (N) / Q is the identity
on the objects and that

GH([t]~) = G(t) = [t]~ for t E Tlv.

Observe further that for the universal properties of o~(N) and ~-~(N)/Q, stated in
Propositions 2.1 and 2.2, there exists a unique such symmetric strict monoidal functor.
Therefore, it must be GH = I~(N)/~e. Similarly, since H G : ~ (N) ~ ~ (N) is the
identity on the objects and is such that

HG(t) = H([t].~) = t for tETN,

by the universal property of Q, it must be HGQ = Q. Then, since as an immediate
corollary of Lemma 2.4 we have that Q is epi, we can conclude that HG = I~(N). In
other words, if G is in SSMC, then G = H -1.

Thus, to conclude the proof we only need to prove that G is a symmetric strict
monoidal functor, i.e., that it satisfies (6), (7), and (8). We start by showing that G
is well-defined, which, inspecting the definition of ~ (N) and exploiting Lemma 2.4,
reduces to showing that it respects axioms (14) and axioms (~). The other axioms, in
fact, hold for any $$MC and are, therefore, clearly unproblematic.

(i) From (12) we have that (ida ® ea,a);(ea,a ® ida) = Ca@a,a and then from (11)
we have tara,a; (ida ® Ca,a) = (Ca,a ® ida);eaea,a, which, again by (12), yields
(ida ® Ca,a); (Ca,a ® ida); (ida ® Ca,a) = (Ca,a ® ida); (ida ® Ca,a); (ea,a ® ida), which is
((ida ® Ca,a); (Ca,a ®/da)) 3 --- id3.a. Then, considering the corresponding Q-classes,

we have the required [((ida ® Ca,a); (ea,a ® ida))3]~ = [id3.a]~.
(ii) [Ca,a]~; [Ca,a]~ = [idz.a]~ follows immediately from (10).

(iii) From (12) we have that Caea,b = (ida ® Ca,b);(ea,b ® ida). If a ¢ b E SN,
since [Ca,b]~ = [idaeb]~, we have that [Ca®a,b]~ = [id2.aeb]~. It follows in
the symmetric way that [cb,a~a]ge = [id2.aeb]~. Then, applying (11), we have
that eb,a@a; (idb ® Ca,a) ~-- (ea,a ® idb); Ca@a,b which, considering the correspond-
ing Q-classes yields [(idb ® ea,a)]~ = [(Ca,a ® idb)]#t, i.e., the required [(idb ®
Ca,a)]~; [(Ca,a ® idb)]~ = [id2.a@b]~.

(iv) Since G sends vperms to symmetries, for s,s ~ in Sym N and t E TN, we have
[G(s); t; id]~ = [t]~ = lid; t; G(s')]~, i.e., G(s; t) = G(t) = G(t; s').

Id Sassone l Theoretical Computer Science 170 (1996) 277-296 293

Thus G is well-defined. It follows then from its own definition that it is a strict
monoidal functor, i.e., a functor satisfying (6) and (7). Last, we need to prove G
symmetric, i.e., that G(y(u, v)) = [cu,~]~. We proceed by induction on the sum of the
sizes of u and v.

then G(;~(u,v)) = G(id~) = [id~]~ = [c0,v]~. I f v =

applies. I f lu[= Iv I = 1, we have the following two

Base cases: I f u = 0,
0, a symmetric argument

cases:
(u = v.) Then G(~(u, v)) =
(u ¢ v.) Then G(y(u,v)) =

[Cu,v]ce follows from the definition of G.

G(id~e~) = [i d , e ,] e which, by definition, is [Cu,~]~.
Inductive step: Suppose that u --- a (9 u I, with u I ~ 0. Then, by the coherence

axiom (4), G(y(u, v)) = ([ida]e®G(7(u' ,v))); (G(y(a, v))®[id~,]e) and thus, exploiting

the induction hypothesis, G(y(u ,v)) = ([ida ® Cu',v]~);([Ca,v ® idu']~), which, again
by (4), is [Cae~,,~]~. I f instead we have that v = v' @ a, v t ~ O, the induction is
maintained similarly by using the inverse of (4). []

The merit o f this result is to describe the algebraic structure of ~ (N) , and thus
of the concatenable processes of N, in terms of universal constructions, namely the
construction on the free S S M C on Petri and a quotient construction on SSMC e ,
providing in this way a completely abstract view of ~ (N) . It may be worth notic-
ing in this context that (15) is actually a problematic axiom: because of its nega-
tive premise, viz., a ¢ b, it invalidates the freeness of o~(N) on Petri. Even worse,
o~(-) /N and ~ (-) fail to be functors from Petri to SSMC. On the other hand, ax-
iom (15) plays a very relevant role in capturing algebraically the essence of concaten-
able process, and it cannot be dispensed with easily. A detailed study of this issue
and a possible solution is provided by this author in [16]. In particular, in loc. cit.,
a functorial and universal construction for net computations is devised, based on a
refinement of the notion of concatenable processes called strongly concatenable pro-

cesses.
Resuming our work, we give an alternative form of axiom (16).

Corollary 2.6 (Axiom (16) revisited). Axiom (16) /n Proposition 2.5 can be replaced

by the axioms

t; (idu ® ca,a ® idv) = t i f t E TN and a E Su,

(idu ® ca,a ® idv); t = t i f t E TN and a E SN. (17)

Proof . Since (idu@Ta,a@idv) and all the identities are symmetries, axiom (16) implies
the present ones. It is easy to see that, on the other hand, the axioms above, together
with axiom (15), imply (16).

Let s: u ~ u by a symmetry of ~ (N) and suppose s ~ idu. By repeated applications
of (12), together the functoriality of ®, we obtain the following equality:

s = (idu, ® Ca,b, ® idv,) ; . . . ; (iduh @ Cah,bh ® idvh)

294 V. Sassone / Theoretical Computer Science 170 (1996) 277-296

for some h E co. Moreover, by exploiting axiom (15), we can drop every term in which

ai 7 L bi. Thus, we have

s = (idu, ® Ca,,al ® idv,) '~'" "~ (iduk @ Cak,ak ® idvk)

for some k<~h. Then, by this equation and by repeated applications of axioms (17),
one can prove s; t; s ' = t. []

Finally, the next corollary sums up the purely algebraic characterization of the cate-
gory of concatenable processes that we proved in this paper. In particular, it identifies
in algebraic terms the essential components of concatenable processes and the laws
which rule their sequential and parallel composition.

Corollary 2.7 (Axiomatizing concatenable processes). The category ~ (N) o f con-

catenable processes o f N is the category whose objects are the elements o f SeN and

whose arrows are generated by the inference rules

u E S~N a in SN t: u ~ v in T N

i d ~ : u ~ u i n ~ (N) C a ~ : a @ a ~ a ® a in ~ (N) t : u - - * v in ~ (N)

. : u ~ v a n d [3 : u ' - - * v ' i n ~ (N) a : u ~ v a n d [3 : v ~ w i n ~ (N)

c~ ® [3:u ® u' ~ v@ v' in ~ (N) ~;[3: u ---+ w in ~ (N)

modulo the axioms expressing that ~ (N) is a strict monoidal category, namely,

~;/do = c¢ = / d ~ ; c~

(~ ® [3) ® 7 = ~ ® ([3 ® 7)

idu @ ido = idueo

and (~; [3); 7 = ~; ([3; 7),

and ido ® c~ = a = c~ ® ido,

and (~®c~ ') ; ([3®[3 ') = (~; [3)®(~ ' ; /~ ') ,

the latter whenever the right-hand term is defined and the following axioms:

Ca,a; Ca,a = idaq~a ,

t; (idu @ Ca, a ® ido) = t

(idu ® Ca,a ® ido); t = t

e~,u,;([3 ®~)=(~ ® [3);c~,~,

i f t E T u ,

if tE~'u,

f o r c¢: u --+ v, [3: u t --* v t,

where Cu,v, f o r u, v E S~N, is obtained f r o m ca,a by applying recursively the rules:

ca,b=ida~b i f a = O or b = O or (a, b c S u a n d a C b) ,

CaOu,v = (ida @ Cu,v); (Ca,v ® idu),

cu,~eo = (cu,o ® ida); (ido ® C,,a).

Proof. Observe that the terms and the axioms above are obtained normalizing those
of ~ (N) with respect to Ca,b = idaob , for a # b E SN, and then adding axioms (15)

V. Sassone I Theoretical Computer Science 170 (1996) 277-296 295

and (17). The claim then follows immediately from Propositions 2.1, 2.5 and Corollary
2.6. []

3. Conclusions

The paper described the concatenable processes of a Petri net N in terms of universal
constructions, providing in such a way an abstract, fully axiomatic presentation of
their algebraic structure. In particular, Corollary 2.7 provides a term algebra and an
equational theory of the concatenable processes of N.

Technically, relying on the characterization of the concatenable processes of N as
the arrows of the symmetric strict monoidal category ~(N) , the result is established
by proving in Proposition 2.5 that ~ (N) is the quotient of the free symmetric strict
monoidal category on N modulo two simple axioms. The proof of this fact makes an
essential use of the axiomatization of Syms, the category of symmetries of ~ (N) ,
provided by Lemma 2.4. Such an axiomatization remedies to the one weakness of the
original presentation of ~(N) : although ~ (N) captures net computations in algebraic
terms, and as such it is a very relevant construction, its essentially axiomatic character
and its manageability are spoiled by the concrete, ad hoc definition of Sym N on which
it is built.

Acknowledgements

I wish to thank Jos6 Meseguer and Ugo Montanari, who introduced me to this
subject. Many thanks to Mogens Nielsen for his encouragement.

References

[1] J. Brnabou, Categories with multiplication, Comptes Rendus Acadbmie Sci. Paris 256 (1963) 1887-
1890.

[2] E. Best and R. Devillers, Sequential and concurrent behaviour in Petri net theory, Theoret. Comput.
ScL 55 (1987) 87-136.

[3] P. Degano, J. Meseguer and U. Montanari, Axiomatizing net computations and processes, in: Proc. 4th
LICS Syrup. (1989) 175-185.

[4] S. Eilenberg, and G.M. Kelly, Closed categories, in: S. Eilenberg et. al., eds., Proc. Conf. on
Categorical Algebra (1966) 421-562.

[5] U. Goltz and W. Reisig, The non-sequential behaviour of Petfi nets, Inform. Comput. 57 (1983) 125-
147.

[6] R. Gorrieri and U. Montanari, Scone: a simple calculus of nets, in: J.C.M. Baeten, J.W. Klop, Eds.,
Proc. 1st Internat. Conf. on Concurrency Theory, CONCUR'90, Lecture Notes in Computer Science,
Vol. 458 (Springer, Berlin, 1990) 2-31.

[7] G.M. Kelly, On MacLane's conditions for coherence of natural associativities, Commutativities, etc.,
J. Algebra 1 (1964) 397-402.

[8] W. Lawvere, Functorial Semantics of algebraic theories, Ph.D. Thesis, Columbia University, New York,
1963. An abstract appears in Proc. National Academy of Sci..50 (1963) 869-872.

[9] S. MacLane, Natural Associativity and commutativity, Rice University Studies 49 (1963) 28-46.

296 V. Sassone / Theoretical Computer Science 170 (1996) 277-296

[10] S. MacLane, Categorical Algebra, Bull. Amer. Mathe. Soc. 71 (1965) 40-106,
[11] S. MacLane, Categories for the Working Mathematician (Springer, Berlin, 1971).
[12] J. Meseguer and U. Montanari, Petri nets are monoids, Inform. Comput. 88 (1990) 105-154.
[13] E.H. Moore, Concerning the abstract group of order k! isomorphic with the symmetric substitution

group on k letters, Proc. London Math. Soc. 28 (1897) 357-366.
[14] C.A. Petri, Non-Sequential Processes, Interner Bericht ISF-77-5, GeseUschaft ffir Mathematik und

Datenverarbeittmg, 1977.
[15] V. Sassone, On the Category of Petri Net Computations, In: P. Mosses et. al., eds., Proc. 6th lnternat.

Conf. on Theory and Practice o f Software Development, TAPSOFT'95, Lecture Notes in Computer
Science, Vol. 915 (Springer, Berlin, 1995) 334-348.

[16] V. Sassone, Axiomatizing Petri Net Concatenable Processes, in: H. Reichel, Ed., Proc. lOth Conf.
on Fundamentals of Computation Theory FCT'95, Lecture Notes in Computer Science, Vol. 962
(Springer, Berlin, 1995) 414-423.

