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Abstract 

The concatenable processes of a Petri net N can be characterized abstractly as the arrows of 
a symmetric monoidal category ~(N).  However, this is only a partial axiomatization, since it is 
based on a concrete, ad hoe chosen, category of symmetries Sym N. 

In this paper we give a completely abstract characterization of the category of concatenable 
processes of N, thus yielding an axiomatic theory of the noninterleaving behaviour of Petri nets. 

O. Introduction 

Concatenable processes of  Petri nets have been introduced in [3] to account, as 

their name indicates, for the issue of  process concatenation. Let us briefly reconsider 

the ideas which led to their definition. 

The development o f  theory Petri nets, focusing on the noninterleaving aspects of  

concurrency, brought to the foreground various notions of  process, e.g. [14, 5, 2, 12, 3]. 

General ly speaking, Petri net processes - whose standard version is given by  the Go l t z -  

Reisig nonsequential processes [5] - are structures needed to account for the causal 

relationships which rule the occurrence of  events in computations. Thus, ideally, pro- 

cesses are simply computations in which explicit  information about such causal con- 

nections is added. More precisely, since it is a well-established idea that, as far as the 

theory o f  computation is concerned, causality can be faithfully described by means of  

partial orderings - though interesting 'heret ic '  ideas appear sometimes - abstractly, the 

processes of  a net N are ordered sets whose elements are labelled by  transitions o f  N.  

Concretely, in order to describe exactly which multisets of  transitions are processes, 
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one defines a process of  N to be a map z~: O ~ N which maps transitions to transi- 
tions and places to places respecting the 'bipartite graph structure' of nets. Here O is a 
finite deterministic occurrence net, i.e., roughly speaking, a finite, conflict-free, 1-safe, 
acyclic net. The role of  n is to ' label'  the places and the (partially ordered) transitions 
of  @ with places and transitions of  N in a way compatible with the structure of  N. 

Given this definition, one can assign the correct source and target states to a process 
: O ~ N by considering the multisets of  places of  N which are the image via n of  the 

places of  69 with, respectively, empty preset and empty postset (henceforth referred to 
as minimal and maximal places of O). Now, the simple minded attempt to concatenate 
a process nl : O1 ~ N with source u to a process n0: 69o ~ N with target u by merging 
the maximal places of  6)o with the minimal places of  O1 in a way which preserves the 
labellings fails immediately. In fact, if more than one place of u is labelled by a single 
place of N, there are many ways to put in one-to-one correspondence the maximal 
places of  @0 and the minimal places of  6)1 respecting the labels, i.e., there are many 
possible concatenations of  n0 and rq, each of which gives a possibly different process 
of  N. In other words, as the above argument shows, process concatenation has to do 
with merging tokens, i.e., instances of  places, rather than merging places. 

Therefore, any attempt to deal with process concatenation must disambiguate the 
identity of each token in a process. This is exactly the idea of concatenable processes, 
which are simply Goltz-Reisig processes in which the minimal and maximal places 
carrying the same label are linearly ordered. This yields immediately an operation of 
concatenation, since the ambiguity about the identity of tokens is resolved using the 
additional information given by the orderings. Moreover, the existence of concatenation 
leads easily to the definition of the category of concatenable processes of  N. It turns 
out that such a category is a symmetric monoidal category whose tensor product is 
provided by the parallel composition of processes [3]. The relevance of this result is 
that it describes Petri net behaviours as algebras in a remarkably smooth way. 

Naturally linked to the fact that they are algebraic structures, concatenable processes 

are amenable to abstract descriptions. In [3] the authors deal with this issue by associ- 
ating to each net N a symmetric monoidal category ~ ( N )  isomorphic to the category 
of concatenable processes of  N; such a characterization, however, is not completely 
abstract and it provides only a partial axiomatization of the algebra of  concatenable 
processes of N, since in the cited work ~ ( N )  is built on a concrete, ad hoc constructed, 

category Sym N. 
In this paper we show that gym u can be characterized axiomatically, thus yielding 

a purely algebraic and completely abstract axiomatization of the category of con- 
catenable processes of  N. In particular, we shall describe ~ ( N )  in terms of  universal 
constructions. Namely, we shall prove that it is the free symmetric strict monoidal cat- 
egory on the net N modulo two simple additional axioms. 1 This result complements 
the investigation of [3] on the structure of  net computations by showing that they can 
be described by an essentially algebraic theory (whose models are symmetric monoidal 

1 We remark that the existence of a similar axiomatization was conjectured also in [6]. 
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categories), which, in our opinion, is a remarkable fact. In addition, our axiomatization 
of t~(N) naturally provides a term algebra and an equational theory of concatenable 
processes of  N, by means of which one can 'compute'  with and 'reason' about them. 
The relevance of this is evident when one thinks of  N as modelling a complex system 

whose behaviour is to be analysed. 
Concerning the organization of the paper, Section 1 recalls the needed definitions; the 

reader acquainted with [12, 3] and with monoidal categories can safely skip it. In Sec- 
tion 2 we prove our result. An extended abstract version of this paper appears as [16]. 

1. Monoidal categories and concatenable processes 

The notion of monoidal category dates back to [1] (see [11] for an easy thorough 
introduction and [4] for advanced topics). In this paper we shall be concerned only 
with a particular kind of symmetric monoidal categories, namely those which are strict 

monoidal and whose objects form a free  commutative monoid. Remarkably, a very sim- 
ilar kind of categories have appeared as distinguished algebraic structures also in [10], 
where they are called PROP's  (for Product and Permutation categories), and in [8]. The 
difference between the categories we use and PROP's  is that the monoid of objects of  
the latter have a single generator, i.e., it is the monoid of natural numbers with addition. 

A symmetric strict monoidal category (SSMC in the following) is a structure 
(C,®,e,7),  where C is a category, e is an object of C, called the unit object, ® : C  x 
C ---+ C is a functor, called the tensor product, subject to the following equations 

® o (® x lc_) = ® o (lc_ × ®}, (1)  

® o (e_, l c )  = lc_, (2)  

® o <lc_,e> = lc_, (3)  

where e: C --~ C__ is the constant functor which associate e and ide, respectively, to 
each object and each morphism of C C_, {-,-) is the pairing of functors induced by the 
cartesian product, and 2 7:-1 @ -2 _Z~ -2 ® -l is a natural isomorphism, called the 
symmetry  of C_, subject to the following Kelly-MacLane coherence axioms [9, 7]: 

(Tx,z ® idy) o (idx @ 7y, z) = Yx®y,z, (4) 

7y, x o 7x, y = idx®y. (5) 

Clearly, Eq. (1) states that the tensor is associative on both objects and arrows, 
while (2) and (3) state that e and ide are, respectively, the unit object and the unit 
arrow for ®. Concerning the coherence axioms, axiom (5) says that 7y, x is the inverse 
of  7x, y, while (4), the real key  of symmetric monoidal categories, links the symmetry 
at composed objects to the symmetry at the components. 

2We use -n for n C tn as placeholdes and x,y,z,.., as variables for objects. 
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Remark.  Adapting the general definition o f  monoidal category to the special case o f  

S S M C ' s ,  one finds that there is a further axiom to state, namely 7e,x = ida. Observe 

however that it follows from the others. In fact, by (2) we have that e @ e = e and 

thus 7e, x = Y~®e,x, which by (4) is equal to (?e,x ® ida) o (id~ ® 7e,~). Now, by (2) 
and (3) we have that 7~,x = 7~,x o 7e, x and thus, multiplying both terms by y~,e and 
exploiting (5), we have 7~,~ = id~®x = ida. 

A symmetry  s in a symmetric monoidal category __C is any arrow obtained as com- 

position and tensor o f  identities and components of  7. We use Sym c to denote the 
subcategory o f  the symmetries o f  C. 

A symmetr ic  strict monoidal func tor  from (C,®,e ,y )  to (D,®~,e~,7'), is a functor 

F : C --~ D which preserves the monoidal structure, i.e., such that 

F(e) = e', (6) 

V(x ® y )  = V(x) ®'  F(y), (7) 

F(Tx,y ) -~ 7' Fx,Fy" (8) 

Let SSMC be the category o f  S S M C ' s  and symmetric strict monoidal functors and 

let SSMC e be the full subcategory consisting of  the monoidal categories whose objects 

form f ree  commutative monoids. 
We recall now the definitions o f  Petri nets and their (concatenable) processes. 

Notation. We denote by S e the f ree  commutative monoid on S, i.e., the monoid o f  

finite multisets of  S. Recall that a finite multiset is a functions from S to ~o which 
yields nonzero values at most on finitely many arguments. We represent u E S e as a 

formal sum @iu(ai) • ai where only the ai E S such that u(ai) > 0 appear; the empty 

multiset will be denoted by 0. 
A Petri  net is a structure N = (8° ,8~:  TN ---+ SON), where TN is a set o f  transitions, 

SN is a set o f  places, and 8 ° and 8~ are functions which assign to each transition, 

respectively, a source and a target multiset of  places. For t ~ TN, we write t : u --~ v 

to indicate that 8°( t )  = u and 8)¢(t) = v. A morphism of  nets f : No ~ N1 consists o f  

a pair of  functions ( f t :  T:vo ---* TN~, fp" S ¢ ~ S e No N, ), where the place component fp is a 
monoid homomorphism, which respect source and target, i.e., the two diagrams below 

commute. 

8°, o 8,~ o 
TNo ) S ® No TNo > S O  No 

,,l ,,1 + + 
TN, > S 0 TN, , S @ NI Nt 

The data above define the category Petri o f  Petri nets. 

A process net is a finite, acyclic net O such that for all t E To, 8° ( t )  and 8~(t)  
are sets (as opposed to multisets), and for all to ~ h • To, 8io(to) A 8~(tl)  = 13, for 
i = 0, 1. Given N E Petri, a process of  N is a morphism ~ : 6) --* N,  where 6) is 
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a process net and 7z is a net morphism which maps places to places (as opposed to 
morphisms which map places to markings). 

A concatenable process of  N is a triple (re: 6} ~ N, { <a}a~sN, {<<a}~esN), where rc 
is a process, and <~ and ( (a  are linear orderings of, respectively, the set of  minimal 
and the set o f  maximal places of  O contained in n p l ( a )  (cf. Fig. 1). In order to 
abstract from the details concerning the underlying process nets, concatenable processes 
are considered up to isomorphisms. Formally, two concatenable processes, say with 
underlying processes rt0 : @0 ~ N and nt : 01 ~ N, are identified if there exists an 
isomorphism q~ : O0 ~ O1 which preserves all the orderings and such that rq o ~o = ~z0. 

Concatenable processes allow the operations of  sequential and parallel composition 
(see Figs. 2 and 3, and consult [3] for further examples).  Let CPo and CP1 be con- 
catenable processes of  N, and let zt0 : O0 ~ N and nl : O1 ~ N denote their underlying 
processes. The parallel composition CPo Par  CP1 is the concatenable process of  N 
whose underlying process is the disjoint union of  7% and nl, i.e., rt0 + ztl : O0 + O1 
N, where + denotes the coproduct in Petri, and whose orderings extend those of  CPo 

t l  
C P =  

Fig. 1. A net and one of its two concatenable processes CP: a • b ~ 2c 

CP 

( 
----- tO m 

) 
m Par  

) 

(,) 
,¢ 

m m  t 1 

Fig. 2. CP of  Fig. 1 as the parallel composition of two simpler processes. 

tO m m 

() 
u m t l  Seq 

() 
t - -  , d . .  t l  

---~' . . -  t 

Fig. 3. Sequential composition (concatenation) of  concatenable processes. 
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and CP1 by making all the places o f  Oo precede all the places o f  Or. The sequential 
composition, or concatenation, CP = CPo S e q  CP1 is defined if  and only if  the state 

reached by CPo coincide with the source state o f  CP~. In this case, CP is obtained 

by glueing together ~0 and 7q, identifying injectively each maximal place o f  Oo with 

a minimal place o f  O1 in the unique way compatible with the orderings <<~ on Oo 

and < a  on O~ for all a E Ss. 

Next, we recall the construction o f  the symmetric strict monoidal category ~ ( N ) .  We 

start by introducing the vectors o f  permutat ions (vperms)  of  N,  3 which will provide 

the symmetry isomorphism of  ~ ( N ) .  

Remark.  A permutat ion of  n elements is an automorphism of  the segment o f  the first 

n positive natural numbers. The set H(n)  of  the n! permutations o f  n elements is a 

group under the operation o f  function composition called the symmetr ic  group on n 
elements, or o f  order n!. The unit o f  I I (n )  is the identity function on {1 . . . . .  n} and 

the inverse o f  a E H(n)  is its inverse function a -1 .  Due to its triviality, the notion o f  

permutation o f  zero elements is never considered; however, to simplify notation, we 
shall assume that the empty function (~: 0 --* 0 is the (unique) permutation o f  zero 

elements. As a notation, when cr E H(n) ,  we write lal for n. We use sometime a 
graphical representation o f  permutations according to which a is depicted by drawing 

a line from i to a(i)  (see, for example, Figs. 4 and 5). 

We say that a E H(n)  is a transposition if it is a 'swapping' of  adjacent elements, 
i.e., if there exists i < n such that a(i)  = i + 1, a(i + 1) = i, and ~r(k) = k elsewhere. 

We shall denote such a a as (i i+1 )  or as vi. Transpositions are a relevant kind of  

permutations, since each permutation can be written as composition o f  them. 

For u E S e,  a vperm s : u  ~ u is a function which assigns to each a E S a 

permutation s(a)  E H(u(a)) .  Given u = nl - a~ ® . . .  @ nk- ak in SN ~, we shall represent 
a vperm s on u as a vector of  permutations, (aa~ . . . . .  aak), where s(aj )  = aaj, whence 

their name. One can define the operations o f  sequential and parallel composition o f  

vperms, so that they can be organized as the arrows of  a SSMC.  The details follow 
(see also Fig. 4). 

Given the vperms s = (rr~, . . . . .  a~k): u --- u and s' = (rr" . . . . .  rr~): u ---* u their 

sequential composition s; s' : u --. u is the vperm 

(aa, ; Ca,, - - •, °ak; ~ ' , ) ,  

where a; a '  is the composition of  permutation which we write in the diagrammatic 
order from left to right. Given the vperms s = (6al , . . . , f fak):u  "-~ U and s ~ = 

' ' = 0 for some j ) ,  their parallel  composi- (a~ . . . . .  a~k): v --~ v (where possibly ~r~j 
tion s ® s' : u • v --+ u ® v is the vperm 

/ . . " ,  0./ ( O'a' @ O ' a , '  O'ak @ ak} '  

3 Vperms are called symmetries in [3]. Here, in order to avoid confusion with the general notion of symmetry 
in a symmetric monoidal category, we prefer to use another tenn. 
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b 

(a  a a a aAo o 0 3 

= 

~b b b~ 

Fig. 4. The monoidal structure of vperms. 

Fig. 5. Some instances of the axioms of permutations. 

where 

( a ® a ' ) ( x )  = { a(x)  if  0 < x~<la I, 
a ' ( x - [ a l ) + l a  [ if  [a I <x<~la[+la'  I. 

Let 7 be (1 2) E / / ( 2 )  and consider ui = n] • al ® " .  • n~ "ak, i = 1,2, in S @. The 
interchanoe vperm 7(ul,u2) is the vperm (aa~ . . . . .  aak): ul • u2 ~ Ul ~)u2, where 

aa,(X)= x - n / '  i f  ni' < x < ~ n ) + n  2. 

It is immediate to verify that _ ;_ is associative. Moreover, for each u E S @, the 
vperm u = (ida, . . . . .  ida,): u ---+ u, where idaj is the identity permutation, is an identity 
for sequential composition. Finally, writing 0 for the empty multiset on S, the (unique) 
vperm s:  0 --+ O, is a unit for parallel composition. 
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Now, for N a net, let gym N be the category whose objects are the elements of  SN e 
and whose arrows are the vperms s : u ~ u for u E SN e .  It is easy to show that gym N is 
a S S M C  with respect to the given composition and tensor product, with identities and 
unit element as explained above, and with the symmetry natural isomorphism given by 

the collection 7 = {7(u, V)}u,vesym N of  the interchange vperms. Observe that, although 
gym N is not strictly symmetric, it is so on the objects. More strongly, the objects form 
a free commutative monoid, i.e., Sym u 6 SSMC e.  

We can now define ~ ( N )  as the category which includes gym N a s  a subcategory 
and has as additional arrows those defined by the following rules: 

t: u ~ v in "IN 

t :u  ~ v in ~ ( N )  

~ : u ~ v a n d f l : u ' ~ v ' i n ~ ( N )  ~ : u ~ v a n d f l : v ~ w i n ~ ( N )  

c~ ®/3: u @ u' ~ v @ v' in ~ ( N )  ~;/3: u -~ w in ~ ( N )  

plus axioms expressing the fact that ~ ( N )  is a S S M C  with composition _ ; _, tensor _®_ 

(extending those already defined on vperms) and symmetry isomorphism 7, and the 
following axioms involving transitions and vperms 

t; s = t, where t: u --~ v in TN and s: v ~ v in SymN, 
(~,) 

s; t = t, where t: u ~ v in TN and s: u ~ u in Sym N. 

In other words, ~ ( N )  is built on the category Sym~ by adding the transitions of  N 
and freely closing with respect to sequential and parallel composition of  arrows, so 
that ~ ( N )  is made symmetric strict monoidal and axioms ( ~ )  hold. 

The relevant fact about ~ ( N )  is that its arrows represent exactly the concatenable 
processes of  N, i.e., ~ ( N )  represents the noninterleaving behaviour of  N, including its 
algebraic structure. (See [3] for the details.) 

Theorem 1.1. ( ~ ( N )  vs. concatenable processes [3]). For any net N there exists a 

one-to-one correspondence between the arrows o f  ~ ( N )  and the concatenable pro- 

cesses o f  N such that, for  each u, v 6 SeN, the arrows o f  type u --* v correspond to 
the processes enabled by u and producing v, and such that sequential and parallel 

composition (tensor product) o f  processes (arrows) are respected. 

Vperms play in this correspondence an absolutely fundamental role: Sym N accounts 
for the families of  orderings { <a}a~SN and {<<a}a~SN, which are the key to concaten- 
able processes, guaranteeing a correct treatment of  sequential composition. In other 
words, Sym N is an algebraic representation of  the 'threads of  causality'  in process 
concatenation. 

Unfortunately, the concrete definition of  vperms weakens considerably the essentially 
axiomatic character o f  ~ ( N )  and, therefore, the results o f  [3]. Also, it makes ~ ( N )  
rather uncomfortable an algebra to handle, since the laws which rule it remain partly 
concealed in Sym N. An abstract characterization of  Sym N, one yielding an entirely 
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axiomatic presentation of  the concatenable processes of  N, is called-for. This is what 
we shall do next. 

2. Axiomatizing concatenable processes 

This section provides a fully axiomatic description of  the concatenable processes 
of  N obtained by proving that ~ ( N )  is a quotient o f  the free S S M C  on N. As 
already remarked, the key to this result will be an axiomatization of  the category 

of  vperms S y m  N. We start by showing that we can associate a free $ 9 M C  to each 
net N. Although this may not look very surprising, our proof  will identify a 'minimal '  
description of  such categories which will be useful later on. 

Proposition 2.1 ( f f  q ~//). The f o r g e t f u l  f u n c t o r  og : SSMC • __~ Petri has a lef t  ad- 

j o in t  f f  : Petri ~ SSMC ~. 

Proof.  Consider the category ~ ( N )  whose objects are the elements of  S~ and whose 
arrows are generated by the inference rules 

U E S N  e a a n d b  inSN t : u ~ v i n  TN 

i d ~ : u ~ u i n ~ ( N )  C a , b : a ® b ~ b ® a i n ~ ( N )  t : u ~ v i n ~ - ( N )  

c ~ : u ~ v  and fl :u '---+v ~ i n ~ ( N )  e : u ~ v  a n d f i : v - - ~ w i n ~ - ( N )  

® fl: u ® u ~ --~ v ® v / in ~ ( N )  ~; fl: u --* w in o~(N) 

modulo the axioms expressing that i f ( N )  is a strict monoidal category, namely, 

~; idv = ~ = idu; 

(~ ®13) ® ~ = ~ ® (13 ® ,:) 

idu ® idv = idue~, 

and (ct; fl);y = ~;(fl; 7), 

and ido ® ~ = c~ =- c~ ® ido, 

and ( ~ @ ~ ' ) ; ( f l ® f l ' )  = ( ~ ; f l ) ® ( ~ ' ; f l ' ) ,  

(9) 

the latter whenever the right-hand term is defined, and the following axioms: 

Ca,b; eb, a = ida~b, (10) 

eu, u , ; ( f l ® e ) = ( o ~ @ f i ) ; c ~ , v ,  for a : u - - ~ v ,  f l : u ' - - - ~ v ' ,  (11) 

where cu,~ for u, v E SN e denote any term obtained from ca,b for a, b E SN by applying 
recursively the following rules (compare with axiom (4)): 

co,u = co,u = idu, 

ca~.,o = (ida ® e.,v); (ea,~ ® ida), (12) 

eu,~ea = ( c.,v ® ida); ( idv ® e.,a ). 

Observe that Eq. (11), in particular, equalizes all the terms obtained from (12) for 

' be two such terms and take ~ and fl to be, fixed u and v. In fact, let cu,~ and e~,~ 
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respectively, the identities of  u and v. Now, since id~ @/dr = /du~v = idv ® ida, 
from (11) we have that Cu,v = c~u,v in ~ ( N ) .  Then, we claim that the collection 
{Cu,~}u,v~s~ is a symmetry natural isomorphism which makes ~ ( N )  into a SSMC and 

that, in addition, ~ ( N )  is the free 9 8 M C  on N. 
In order to show the first claim, observe that the naturality of  c is expressed directly 

from axiom (11). We need to check that for any u and v we have Cu,~;cv,u = iduev, 
which follows easily from (10) by induction on the sum of the sizes of  u and v. 

Base cases: I f  u = 0 or v = 0, the thesis follows from the first of  (12). I f  lu{ -- 
Ivl = 1, then the required equation is (10). 

Inductive step: Without loss of  generality, assume u -- a®u ~, u ~ ~ O. Then, by (12), 

Cu,v; Cv,u = ( id  a ® CuZ,v ); ( Ca,v ~ idu, ); ( Cv,a ® idut ); (ida ® Cv,u' ) 

= (ida @ Cu',v); ((Ca,v; Cv,a) ~ idu, ); (ida @ Cv,u, ) 

=(ida @cu,,v);(ida ®Cv,u,) 

= ida ® (cu,,v; cv,u, ) = ida ® id,,ev = idu~v. 

For C in SSMC ~, the net °Z/(C) is obtained by forgetting the categorical structure 
of  C. The markings and the transitions of  q/(C) are, respectively, the objects and the 
arrows of C with the given sources and targets. Similarly, for F a symmetric strict 
monoidal functor in SSMC e,  ~//(F) is the net morphism whose components are the 
restrictions of  F to, respectively, arrows and objects. Consider the net q / ~ ( N )  and the 
net morphism r/: N ~ q / ~ ( N ) ,  where ~/p is the identity homomorphism and qt is the 
obvious injection of TN in T ~ N ) .  We show that q is universal, i.e., that for any C in 
SSMC e and for any net morphism f :  N ~ q/(C), there is a unique symmetric strict 
monoidal functor F : ~ ( N )  ~ C which makes the following diagram commute: 

Let __C = (C, ®, 0, 7) and f : N  --+ q/(C) be as in the hypothesis above. In order 
for the diagram to commute and for F to be a symmetric strict monoidal functor, its 
definition on the generators of  ~-(N)  is compelled: 

F(u) = fp(u), F(t) = ft(t) ,  F(idu) : idfAu ), F(Ca,b) = 7fp(a) , fp(b) .  

Clearly, the extension of F to composition and tensor is also uniquely determined, 
namely, F(c~; r )  = F(fl) o F(~) and F(~ ® r )  = F(~) ® F(fl). Therefore, to conclude the 
proof we only need to show that F is a well-defined symmetric strict monoidal functor, 
since, then, it is necessarily the unique one such that q/(F) o r/-= f .  

To establish that F is well-defined, it is enough to prove that it preserves the ax- 
ioms which generate ~ ( N ) .  Since C is a strict monoidal category and F(idu) = idF(u), 



V. Sassone/ Theoretical Computer Science 170 (1996) 277-296 287 

axioms (9) are clearly preserved. Moreover, since C is symmetric with symmetry iso- 
morphism 7, we have that 

F(Ca,b; Cba) = ]:F(b),F(a) o ~F(a),F(b) = idF(a)@F(b) = idF(a@b) = F(ida~b), 

i.e., F respects axiom (10). Showing that F preserves axiom (11 ) and it is a symmetric 
strict monoidal functor reduces to showing that, for each u,v E S~N and for each 
term cu,~ obtained from (12), we have F(cu,~) = 7F(u),F(~). In fact, this proves directly 
the latter claim, functoriality and axioms (6) and (7) holding by definition of F, and 
since 7 is a natural transformation, it also proves that F preserves (11). We proceed 
by induction on the structure of Cu,~. 

Base cases. If cu,~ is a generator, i.e., [u I = Iv[ -- 1, the claim is proved by appealing 
directly to the definition of F. If it comes from (12) with u -- 0, then F(c~,o) =/dF(v). 
However, since 7e, x = idx holds in any $SMC, as shown in a previous remark, and 
since F(u)=0, we have F(cu,~) = 7F(u),F(~) as required. A symmetric argument applies 
if Cu,~ is obtained from (12) for v = 0. 

Inductive step. If c,,o is obtained from the second of (12) with u = a ® u', then, 
exploiting the induction hypothesis, F(cu,r) = (TF(a),F(v) @ /dF(u')) o (idF(a) ® YF(u'),F(v)) 
and thus, by the coherence axiom (4) of $S[V1C's, we have F(e,,~) = 7F(a)~F(~')y(~) 

which is YF(a@u'),F(v), i.e., 7F(~),F(~). If  instead v = v'@ a and e,,v is obtained from 
the last of (12), then the claim is proved similarly by using the inverse of (4), i.e., 
7x,y®z = ( id y ® 7x,z ) o (7x,y ® idz ), which, of course, holds in any $$MC. [] 

Thus, establishing the adjunction ~- q q/: Petri ~ SSMC e,  we have identified 
~ ( N ) ,  the f ree  SSMC on N, as a category generated, modulo appropriate equations, 
from the net N viewed as a graph enriched with formal arrows /du, which play the 
role of the identities, and Ca,b for a, b E SN, which generate all the needed symmetries. 

Our aim is to relate ~ ( N )  and ~(N) .  As a matter of fact, ~-(N) is positively more 
concrete than ~ ( N )  and far from being isomorphic (or equivalent) to it. For example, 
for a # b in aN, w e  have Ca,b # ida®b in ~ ( N ) ,  whilst 7(a,b) = ida~b in ~(N) .  
Therefore, no symmetric monoidal functor Q: ~ ( N )  ~ ~ ( N )  can be mono. Also, 
~ ( N )  possesses no counterpart of axioms (~).  We shall prove that these are precisely 
the differences between ~ ( N )  and ~(N) .  Namely, we shall obtain ~ ( N )  as a quotient 
of ~ ( N )  by enforcing the axioms outlined above. The next proposition, which is the 
adaptation to SSMC's  of the usual notion of quotient algebras, provides the tool we 
shall use for this purpose. 

Proposition 2.2 (Monoidal quotient categories). For C a SSMC, let ~ be a function 

which assigns to each pair o f  objects a and b o f  C a binary relation ~a,b on the 
homset  C(a,b). Then, there exist a SSMC C_C_C_~ and a symmetr ic  strict monoidal 
functor  Q~: C ~ C_J~ such that 

(i) I f  f ~a ,b f '  then Q s ( f )  = Q ~ ( f ' ) ;  
(ii) For each symmetr ic  strict monoidal H : C ~ D such that H ( f )  = H ( f ' )  when- 

ever f ~a,bf ' ,  there exists a unique K: C / ~  ~ D, which is necessarily symmetr ic  
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strict monoidal such that the following diagram commutes: 

ProoL Say that :~ is a congruence if  ~a,b is an equivalence for each a and b and if 
respects composition, i.e., whenever fJ ta,bf  ~ then, for all h : a ~ ~ a and k : b --* b', 

we have (k o f o h)~a',b,(k o f '  o h). Clearly, if  ~, is a congruence, the following 
definition is well-given: C_./~ is the category whose objects are those of  C, whose 
homset C_j~(a,b) is C(a,b)/~a,b, i.e., the quotient o f  the corresponding homset o f  C 
modulo the appropriate component of  :~, and whose composition of  arrows is given by 
[g]ce o [f]~e = [g o f ] e .  In fact, since ~a,b is an equivalence C_j~(a, b) is well-defined, 
and since N preserves the composition, so is the composition in C_/~. 

Let C = (C,®,e ,  7). Call ~ a ®-congruence i f  it is a congruence in the above sense 
and it respects tensor, i.e., if  fNa ,b f  ~ then, for all h : a ~ ~ b ~ and k : a"  ~ b ' ,  we 

have (h ® f ® k)~a,®a®a,,.b,®b®b.(h ® f~ ® k). It is easy to check that, i f  ~ is a Q- 
congruence, then the definition [ f ] ~ ®  [g]ce = [fQg]e makes the quotient category C / N  
into a S S M C  with symmetry isomorphism given by the natural transformation whose 
component at (u, v) is [Tu,~]e and unit object e. 

Observe now that, given N as in the hypothesis, it is always possible to find the 
least ®-congruence ~ which includes (componentwise) ~ .  Then, take C_C_C_~N to be C_CJN ~ 
and Q~ to be the obvious projection of  C into C_C_CJN. Clearly, Q e  is a symmetric strict 

monoidal functor. 
Now, let H :  C__ ~ D_ be a monoidal functor as in the hypothesis and consider the 

mapping of  objects and arrows of  C_/N to, respectively, objects and arrows of  D given 
by K(a )  = H(a)  and K ( [ f ] ~ )  = H ( f ) .  It follows from definition of  functor that the 

family {~a,b}a,b~C, where SPa,b is the relation { ( f , g )  ] H ( f )  = H(g)} on C(a,b), is 
a congruence. Moreover, since H ( f  ® g) = H ( f )  ® H(g),  we have that {SP~,b}~,beC_ is 
a ®-congruence. Then, if  H satisfies the condition in the hypothesis, i.e., if  ~ C_ 5P, 
since ~ is the least ®-congruence which contains ~ ,  we have that f ~ , b  g implies 
H ( f )  = H(g),  i.e., K is well-defined. Moreover, since H is a functor, it follows that 
K([ida]~) = idH(a) = idK(a) and K([g]~ o [ f ] ~ )  = H(g)  o H ( f )  = K([g]~)  o K([f]~¢), 
i.e., K is a functor. One shows similarly that K ( [ f ] e  ® [g]~) = K([ f ]se)  ® K([g]e) .  

Then, since K([vu~]e) = H(7~,~) = ~ where 7 ~ , ?K(u),K(v), is the symmetry isomorphism 
of  D, one concludes that K is in SSMC. 

Clearly, K renders commutative the diagram above and it is indeed the unique fimctor 
which enjoys such a property for the given H. 

In order to show that ~ ( N )  is a monoidal quotient o f  i f ( N ) ,  we need a more 
abstract understanding of  the structure of  the vperms of  ~ ( N ) .  To this aim, we shall 
make use of  the following lemma, originally proved in [13]. 
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Lemma 2.3 (Axiomatizing /7(n)) .  The symmetr ic  group I I (n)  is (isomorphic to) the 

group G f ree ly  generated f r o m  the set {zi [ 1 <~ i < n}, modulo the equations (see 

also Fig. 5) 

"Ci'Ci+l Z i ~ "~i+lgi'Ci+l, 

T i T j : T j T i  i f l i - - j l > ~ l ,  

TiTi -~- e, 

where e is the unit element o f  G. 

(13) 

Proof. The proof is by induction on n. First of all, observe that for n = 0 and n = 1 the 
set of generators is empty and the equations are vacuous. Hence, G is the free group 
on the empty set of generators, i.e., the group consisting only of the unit element, 
which is (isomorphic to) H(0)  and/7(1).  

Suppose now that the thesis holds for n ~> 1 and let us prove it for n + 1. It is 
immediately evident that the permutations of n + 1 elements are generated by the n 
transpositions. Moreover, the transpositions satisfy axioms (13), as a quick look to 

Fig. 5 shows. It follows that the order of G must be not smaller than the order of  
H(n  + 1), i.e., [G[~>(n + 1)!. Moreover, there is a group homomorphism h: G --+ 
I I (n  + 1) which sends zi to the transposition (i i + 1), and since the transpositions 
generate/7(n + 1), we have that h is surjective. Thus, in order to conclude the proof, 
we only need to show that h injective, which clearly follows if we show that [GI = 
(n + 1)!. 

Let H be the subgroup of G generated by {Zl,Z2 . . . . .  Zn-l}  and consider the n + 1 
cosets H1 . . . . .  Hn+I, where Hi = H z n ' " z i  = { X Z n ' " Z i  [ X C H}, l<<.i<<.n, and 
Hn+l = H.  Then, for 1 <~i<<.n+ 1 and 1 <~j~n,  consider Hizj.  The following cases are 
possible. 

i > j + 1. By the second of axioms (13), zj is permutable with each of zi . . . . .  z ,  

and, therefore, 

H,.zj = Hzn " " zi'cj 

.~_ Sg j"Cn  • . . 7: i 

= Hzn " • • zi = Hi. 

i < j .  Again by the second of (13), zj is permutable with each of zi . . . . .  z j -2  and, 
therefore, 

n i ' ~  j : H ' cn  " " "C i'~ j 

: H ' C n . . . T j + I T j Z j _ l Z j . . . ' C  i 

= H z n ' " z j + l z j - l v j z j - 1  " " z i  

= H z j - l Z n " "  z j+lr jz j -1  " " z i  

= H z n  " " z i  = H i .  

by the first of (13) 

by the second of (13) 
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i = j .  Then Hfi j  = H z n . . . z j z j ,  i.e., by the third of  (13), Hzn . . . z j+ l  = Hj+l. 
i = j  + 1. Then Hj+lZj = Hzn ' "Z j+ lZ j  = Hj. 
In other words, for 1 ~j<~n, the sets H1 ... Hn+l remain all unchanged by post- 

multiplication by zj, except Hj and Hj+I which are exchanged with each other. Now, 

since each element of  G is a product Til " "  • "Cik , it belongs to H'Cil " "  "c&, i.e., to one of  
the Hi's. Hence, G is contained in the union of  the/-/ i 's .  It follows immediately that, 
if  H is finite, we have that IG[ ~<(n + 1) .  [HI. However, by induction hypothesis, H 
is (isomorphic to) H(n),  and thus H is finite and In[ = n!. Therefore, IG[ ~<(n + 1)!, 
which concludes the proof. [] 

The previous lemma is easily adapted to vperms as follows. 

L e m m a  2.4 (Axiomatizing Symu ). The arrows of  Sym N are freely generated by com- 
position and tensor f rom the vperms 7(a, a) : 2 • a ~ 2 .  a, for  a E SN, modulo the 
axioms (9) o f  strict monoidal categories and the following additional axioms: 

((ida ® 7(a ,a ) )  ; (~(a,a) ® ida)) 3 = id3.a, 

~(a, a)  2 = id2.a, (14) 

(idb @ 7(a , a ) ) ;  (7(a ,a)  ® idb) = id2.aeb i f  a ¢ b E Su, 

where f n indicates the composition o f  f with itself n times. 

Proofi  A vperm p = (aa, . . . .  , f fan)  coincides with aa, ® " "  ® a~° which, exploiting 
the functoriality of  @, can be written as (aa, @ "'" ® i d u , ) ; ' " ;  (idul ® "'" @ aa,). 
Since aaj, as a permutation, is a composition of  transpositions, and the transposition 

zi: n.  a --~ n.  a in Sym N can he written as id(i-1).a @ 7(a, a)  ® id(n-i-1).a, we have that 
aaj = ( idu, ® ~( aj, aj ) ® idv, ); . . . ; ( idu~ ® 7( aj, aj ) @ idv~ ). Therefore, the vperms 7(a ,a)  
generate via composition and tensor all the vperms of  Sym N. 

Concerning the axioms, since Sym N is strict monoidal, it clearly validates Eqs. (9). 
It is easy to verify that the same happens for (14). On the other hand, suppose that 
two terms p and q generated from the ~(a, a ) ' s  evaluate to the same vperm ac, ® . - .  ® 
ac k. We have to prove that Eqs. (9) and (14) induce p = q. Up to applications of  
axioms (9), we can assume that 

p = (idut ® 7(al,al ) ® idv, ) ; . . .  ; (idu, ® ~)(an, an) ® idv,), 

q = (idu, ® v(bl, bl ) ® idv, ) ; . . .  ; (ida; ® V(bm, bin) ® idv ) ,  

where every ai appearing in p and every bi appearing in q is one of  the ci's. Observe 
that, by repeated applications of  the third of  (14) and of  the functoriality of  ®, viz., the 
last two of  (9), we can reorganize p and q in such a way that all the terms involving Cl 
- i f  any - are grouped together and immediately followed by all the terms involving e2 
- if  any - and so on. Let us denote by p~ and q~ the terms so obtained and let us 
focus on the sequences p~ and q~ of  terms involving ei in, respectively, p~ and q~. The 
following cases are possible. 
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(i) p~ and q~ are both empty. Then, there is nothing to show. 
(ii) Either p~ or q~ - without loss of generality say p~ - is empty. Then, ~rc, is the 

identity and since ql evaluates to it, by Lemma 2.3, q~ can be proved equal to the 
identity permutation using axioms (13). Now notice that axioms (13) can be derived 
by appropriately tensoring with identities the first two of (14) instantiated to ci and 
the following direct consequence of (9) 

((~(Ci, Ci) ~ idn.c,)'~ (idn.c i ~ ~(ci, c i ) ) )  2 = id(n+2).c, if n > 1. 

Therefore, the proof that q~ is the identity permutation can be mimicked to prove using 
instances of axioms (9) and (14) that q~ is an identity in Sym N. Then we can drop q~ 
from qP. 

(iii) Both p~ and q~ are nonempty. Then, since they both evaluate to ace, they can 
be proved equal using axioms (13). Therefore, reasoning as in the previous case, the 
equality of p~ and ql follows from axioms (9) and (14). 

This shows that p = q is induced by (9) and (14), which concludes the proof. [] 

We are now ready to give the promised characterization of ~(N).  

Proposition 2.5 (Axiomatizing ~(N)) .  ~ (N)  /s the monoidal quotient o f  the free 
SSMC on N modulo the axioms 

Ca,b=idaeb if  a, bESlv  and a C b ,  (15) 

s; t ; s '=  t i f  t E TIv and s,s' are symmetries. (16) 

Proof. We prove that ~ (N)  is isomorphic to ~ ( N ) / ~ ,  where ~ is the Q-congruence 
generated from eqs. (15) and (16). 

Since ~ (N)  belongs to SSMC e,  it follows from Proposition 2.1 that, correspond- 
ing to the net inclusion morphism N ---* ~//~(N), there is a unique symmetric strict 
monoidal functor Q: o~(N) ~ ~ (N)  which is the identity on the places and on the 
transitions of N. In particular, Q is such that 

Q(Ca,b) = 7(a,b) for a,b E SN. 

For a ¢ b E SN, since 7(a,b) ---- ida~b, we have that Q(Ca,b) = Q(/da~b). Moreover, 
since symmetric monoidal functors map symmetries to symmetries, and since (16) 
holds in ~(N) ,  we have that Q(s;t;s')  = Q(s);t;Q(s')  = t = Q(t) for s and s' in 
Sym~(u) and t E TN. In other words, Q equalizes the pairs (Ca, b, idaeb) with a ¢ 
b E SN and the pairs (s; t;s ~, t) with s and s' symmetries and t E TN. Then, in force 
of Proposition 2.2 applied to Q, there is a (unique) symmetric strict monoidal functor 
H: ~ ( N ) / ~ t  ~ ~ ( N )  which is the identity on the objects and is such that 

H([t]e) = t for tETN.  
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We shall prove that H is an isomorphism by providing its inverse ~ ( N )  ---, ~ ( N ) / Q .  
To this aim, consider the mapping G of ~ ( N )  to ~ ( N ) / Q  which acts identically on 
the objects and is defined on the arrows by 

G(t) = [t]~ if tETN,  

G(7(a, a)) = [Ca,a]~ if a E SN, 

extended to identities, composition and tensor by the usual laws G(/du) = [idu]~, 
G(~; r )  = G(~) ; G(#), and G(~ ® r )  = G(~) ® G(/~). It follows from the definition of 
~ ( N )  and from Lemma 2.4 that the equations above define G uniquely. 

Suppose now for a moment that these equations yield a symmetric strict monoidal 
functor G: ~ ( N )  --+ ~ ( N ) / Q ,  and notice that GH: ~ ( N ) / Q  ~ Y ( N ) / Q  is the identity 
on the objects and that 

GH([t]~) = G(t) = [t]~ for t E Tlv. 

Observe further that for the universal properties of o~(N) and ~-~(N)/Q, stated in 
Propositions 2.1 and 2.2, there exists a unique such symmetric strict monoidal functor. 
Therefore, it must be GH = I~(N)/~e. Similarly, since H G : ~ ( N )  ~ ~ ( N )  is the 
identity on the objects and is such that 

HG(t) = H([t].~) = t for tETN,  

by the universal property of Q, it must be HGQ = Q. Then, since as an immediate 
corollary of Lemma 2.4 we have that Q is epi, we can conclude that HG = I~(N). In 
other words, if G is in SSMC, then G = H -1. 

Thus, to conclude the proof we only need to prove that G is a symmetric strict 
monoidal functor, i.e., that it satisfies (6), (7), and (8). We start by showing that G 
is well-defined, which, inspecting the definition of ~ ( N )  and exploiting Lemma 2.4, 
reduces to showing that it respects axioms (14) and axioms (~).  The other axioms, in 
fact, hold for any $$MC and are, therefore, clearly unproblematic. 

(i) From (12) we have that (ida ® ea,a);(ea,a ® ida)  = Ca@a,a and then from (11) 
we have tara,a; (ida ® Ca,a) = (Ca,a ® ida);eaea,a, which, again by (12), yields 
(ida ® Ca,a ); (Ca,a ® ida ); (ida ® Ca,a) = (Ca,a ® ida); (ida ® Ca,a ); (ea,a ® ida ), which is 
((ida ® Ca,a); (Ca,a ®/da)) 3 --- id3.a. Then, considering the corresponding Q-classes, 

we have the required [((ida ® Ca,a); (ea,a ® ida))3]~ = [id3.a]~. 
(ii) [Ca,a]~; [Ca,a]~ = [idz.a]~ follows immediately from (10). 

(iii) From (12) we have that Caea,b = (ida ® Ca,b);(ea,b ® ida). If a ¢ b E SN, 
since [Ca,b]~ = [idaeb]~, we have that [Ca®a,b]~ = [id2.aeb]~. It follows in 
the symmetric way that [cb,a~a]ge = [id2.aeb]~. Then, applying (11), we have 
that eb,a@a; (idb ® Ca,a) ~-- (ea,a ® idb); Ca@a,b which, considering the correspond- 
ing Q-classes yields [(idb ® ea,a)]~ = [(Ca,a ® idb)]#t, i.e., the required [(idb ® 
Ca,a)]~; [(Ca,a ® idb )]~ = [id2.a@b]~. 

(iv) Since G sends vperms to symmetries, for s,s ~ in Sym N and t E TN, we have 
[G(s); t; id]~ = [t]~ = lid; t; G(s')]~, i.e., G(s; t) = G(t) = G(t; s'). 
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Thus G is well-defined. It follows then from its own definition that it is a strict 
monoidal functor, i.e., a functor satisfying (6) and (7). Last, we need to prove G 
symmetric, i.e., that G(y(u, v)) = [cu,~]~. We proceed by induction on the sum of  the 
sizes of  u and v. 

then G(;~(u,v)) = G(id~) = [id~]~ = [c0,v]~. I f  v = 

applies. I f  lu[ = Iv I = 1, we have the following two 

Base cases: I f  u = 0, 
0, a symmetric argument 

cases: 
(u = v.) Then G(~(u, v)) = 
(u ¢ v.) Then G(y(u,v))  = 

[Cu,v]ce follows from the definition of  G. 

G(id~e~ ) = [ i d , e , ] e  which, by definition, is [Cu,~]~. 
Inductive step: Suppose that u --- a (9 u I, with u I ~ 0. Then, by the coherence 

axiom (4), G(y(u, v)) = ([ ida]e®G(7(u' ,v)));  (G(y(a, v))®[id~,]e)  and thus, exploiting 

the induction hypothesis, G(y(u ,v))  = ([ida ® Cu',v]~);([Ca,v ® idu']~), which, again 
by (4), is [Cae~,,~]~. I f  instead we have that v = v' @ a, v t ~ O, the induction is 
maintained similarly by using the inverse of  (4). [] 

The merit o f  this result is to describe the algebraic structure of  ~ ( N ) ,  and thus 
of  the concatenable processes of  N,  in terms of  universal constructions, namely the 
construction on the free S S M C  on Petri and a quotient construction on SSMC e ,  
providing in this way a completely abstract view of  ~ ( N ) .  It may be worth notic- 
ing in this context that (15) is actually a problematic axiom: because of  its nega- 
tive premise, viz., a ¢ b, it invalidates the freeness of  o~(N) on Petri. Even worse, 
o~( - ) /N  and ~ ( - )  fail to be functors from Petri to SSMC. On the other hand, ax- 
iom (15) plays a very relevant role in capturing algebraically the essence of  concaten- 
able process, and it cannot be dispensed with easily. A detailed study of  this issue 
and a possible solution is provided by this author in [16]. In particular, in loc. cit., 
a functorial and universal construction for net computations is devised, based on a 
refinement of  the notion of  concatenable processes called strongly concatenable pro- 

cesses. 
Resuming our work, we give an alternative form of  axiom (16). 

Corollary 2.6 (Axiom (16) revisited). Axiom (16 ) /n  Proposition 2.5 can be replaced 

by the axioms 

t; ( idu ® ca,a ® idv ) = t i f  t E TN and a E Su, 

( idu ® ca,a ® idv ); t = t i f  t E TN and a E SN. (17) 

Proof .  Since (idu@Ta,a@idv) and all the identities are symmetries, axiom (16) implies 
the present ones. It is easy to see that, on the other hand, the axioms above, together 
with axiom (15), imply (16). 

Let s: u ~ u by a symmetry of  ~ ( N )  and suppose s ~ idu. By repeated applications 
of  (12), together the functoriality of  ®, we obtain the following equality: 

s = (idu, ® Ca,b, ® idv, ) ; . . .  ; (iduh @ Cah,bh ® idvh) 
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for some h E co. Moreover, by exploiting axiom (15), we can drop every term in which 

ai 7 L bi. Thus, we have 

s = (idu, ® Ca,,al ® idv, ) '~'" "~ (iduk @ Cak,ak ® idvk ) 

for some k<~h. Then, by this equation and by repeated applications of  axioms (17), 
one can prove s; t; s '  = t. [] 

Finally, the next corollary sums up the purely algebraic characterization of  the cate- 
gory of  concatenable processes that we proved in this paper. In particular, it identifies 
in algebraic terms the essential components of  concatenable processes and the laws 
which rule their sequential and parallel composition. 

Corollary 2.7 (Axiomatizing concatenable processes). The category ~ ( N )  o f  con- 

catenable processes o f  N is the category whose objects are the elements o f  SeN and 

whose arrows are generated by the inference rules 

u E S~N a in SN t: u ~ v in T N 

i d ~ : u ~ u i n  ~ ( N )  C a ~ : a @ a ~ a ® a  in ~ ( N )  t : u - - * v  in ~ ( N )  

. : u ~ v a n d [ 3 : u ' - - * v '  i n ~ ( N )  a : u ~ v a n d [ 3 : v ~ w i n ~ ( N )  

c~ ® [3:u ® u' ~ v@ v' in ~ ( N )  ~;[3: u ---+ w in ~ ( N )  

modulo the axioms expressing that ~ ( N )  is a strict monoidal category, namely, 

~;/do = c¢ = / d ~ ;  c~ 

(~ ® [3) ® 7 = ~ ® ([3 ® 7) 

idu @ ido = idueo 

and (~; [3); 7 = ~; ([3; 7), 

and ido ® c~ = a = c~ ® ido, 

and (~®c~ ' ) ; ( [3®[3 ' )  = (~; [3)®(~ ' ; /~ ' ) ,  

the latter whenever the right-hand term is defined and the following axioms: 

Ca,a; Ca,a = idaq~a , 

t; ( idu @ Ca, a ® ido ) = t 

( idu ® Ca,a ® ido ); t = t 

e~,u,;([3 ®~)=(~ ® [3);c~,~, 

i f  t E T u ,  

if  tE~'u, 

f o r  c¢: u --+ v, [3: u t --* v t, 

where Cu,v, f o r  u, v E S~N, is obtained f r o m  ca,a by applying recursively the rules: 

ca,b=ida~b i f  a = O  or b = O  or (a, b c S u  a n d a C b ) ,  

CaOu,v = (ida @ Cu,v); (Ca,v ® idu), 

cu,~eo = (cu,o ® ida); (ido ® C,,a). 

Proof.  Observe that the terms and the axioms above are obtained normalizing those 
of  ~ ( N )  with respect to Ca,b = idaob ,  for a # b E SN, and then adding axioms (15) 
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and (17). The claim then follows immediately from Propositions 2.1, 2.5 and Corollary 
2.6. [] 

3. Conclusions 

The paper described the concatenable processes of a Petri net N in terms of universal 
constructions, providing in such a way an abstract, fully axiomatic presentation of 
their algebraic structure. In particular, Corollary 2.7 provides a term algebra and an 
equational theory of the concatenable processes of N. 

Technically, relying on the characterization of the concatenable processes of N as 
the arrows of the symmetric strict monoidal category ~(N) ,  the result is established 
by proving in Proposition 2.5 that ~ ( N )  is the quotient of the free symmetric strict 
monoidal category on N modulo two simple axioms. The proof of this fact makes an 
essential use of the axiomatization of Syms, the category of symmetries of ~ (N) ,  
provided by Lemma 2.4. Such an axiomatization remedies to the one weakness of the 
original presentation of ~(N) :  although ~ ( N )  captures net computations in algebraic 
terms, and as such it is a very relevant construction, its essentially axiomatic character 
and its manageability are spoiled by the concrete, ad hoc definition of Sym N on which 
it is built. 
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