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We introduce the notion aftrongly concatenable proceas a refinement of concatenable
processes (Degaret al. 1996) which can be expressed axiomatically viarector Q (-) from the
category of Petri nets to an appropriate category of symawtict monoidal categories, in the
precise sense that, for each hetthe strongly concatenable processebl@re isomorphic to the
arrows ofQ (N). In addition, we identify aoreflectionright adjoint toq (-) and characterize its
replete imagethus yielding an axiomatization of the category of net catapions.

Introduction

Petri nets, introduced by C.A. Petri in (Petri 1962) (see &stri 1973; Reisig 1985), are unani-
mously considered one of the most representativdels for concurrenggince they are a fairly
simple and natural model @bncurrentanddistributedcomputations. However, Petri nets are,
in our opinion, not yet completely understood.

Among the semantics proposed for Petri nets, a relevantsalayed by the various notions
of process(Petri 1977; Goltz and Reisig 1983; Best and Devillers 198Hose merit is to
provide a faithful account of computations involving mariffedent transitions and of theausal
connectiondetween the events occurring in a computation. Howevecga®models, at least
in their standard forms, fail to bring to the foreground #igebraic structureof nets and their
computations. Since such a structure is relevant to therstadeling of nets, they fail, in our
view, to give a comprehensive account of net behaviours.

The idea of looking at nets adgebraic structuregReisig 1985; Nielseet al. 1981; Winskel
1984; Winskel 1987; Brown and Gurr 1990; Brownal. 1991) has been given an original inter-
pretation by considering monoidal categories as a suifadaeework (Meseguer and Montanari
1990). In fact, in (Meseguer and Montanari 1990; Deganal. 1996) the authors have shown
that the semantics of Petri nets can be understood in termgnafetric monoidal categories
— where objects are states, arrows processes, and the famoshrct and the arrow compo-
sition model, respectively, the operations of parallel aaduential composition of processes.
In particular, (Deganet al. 1996) introducedoncatenable processes a simple variation of
Goltz-Reisig processes (Goltz and Reisig 1983) on whichesetipl composition can be defined
— and structured the concatenable processes of a PetN astthe arrows of the symmetric
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strict monoidal category (N). This construction complements the process-oriented iavet
computations by explaining their underlying algebra; nymecisely, it yields an axiomatization
of the causal behaviour of a net asemsentially algebraic theopyand thus providesuanification
of the process and the algebraic view of net behaviours.

However, also this construction is somehow unsatisfactingce it is not functorial. More
strongly, given a morphism between two nets, i.esjraulationbetween them, it may not be
possible to identify a corresponding monoidal functor leswthe respective categories of com-
putations. This fact, besides showing that our understanal the algebraic structure of Petri
nets is still incomplete, prevents us from identifying tategory(of the categories)f net com-
putations i.e., from axiomatizing the behaviour of Petri nets ‘in tagge’.

This paper presents an analysis of this issue and a solwugedon the new notion efrongly
concatenable processédsatroduced in Section 4. These are a slight refinement ofat@mable
processes which are still rather close to the standard mafigrocess: they are Goltz-Reisig
processes whose minimal and maximal places are equippkdwitear ordering. In the paper
we show that, similarly to concatenable processes, alsm#w notion can be axiomatized as an
algebraic construction oN by providing an abstract symmetric strict monoidal catggorfN)
whose arrows are in one-to-one correspondence with thegdyraoncatenable processeshf
The category (N) constitutes our proposed axiomatization of the behavibdtim categorical
terms.

Corresponding directly to the linear ordering of pre- anstgsets which characterizes strongly
concatenable processes, the key feature @f) is that, differently frome (_), it associates to the
netN a monoidal category whose objects form a frem-commutativenonoid. The reason for
renouncing to commutativity when passing fran.) to Q (.), a choice that at first may seem
odd, is explained in Section 2, where the following negatagilt is proved:

under very reasonable assumptiomsmapping from nets to symmetric strict monoidal
categories whose monoids of objects are commutative caiitée io a functor, since
there exists a morphism of nets whicannotbe extended to mmonoidalfunctor between
the appropriate categories.

Thus, abandoning the commutativity of the monoids of olsjeatd consideringtrings as
explicit representatives of multisets, i.e., considestigngly concatenable processes, seem to be
a choice forced upon us by the aim of a functorial algebraites#ics of nets. As a consequence
of this choice, any transition dfi has many corresponding arrows dn(N), actually one for
each linearization of its pre-set and of its post-set. H@axesuch arrows are ‘related’ to each
other by anaturality condition, in the precise sense that, when collected tegethey form a
natural transformation between appropriate functorss mhturality axiom is the second relevant
feature ofq (-) and it is actually the key for keeping the computationalrptetation of the new
categoryQ (N), i.e., the strongly concatenable processés,afurprisingly close to that af (N),
i.e., the concatenable processeslpfind to the classic notion of net processes.

Concerning our main issueiz. functoriality, in Section 3 we introduce a categ&fetriCat
of symmetric strict monoidal categories with free non-cametive monoids of objects, called
symmetric Petri categoriesvhose arrows are equivalence classes — accounting foriewr v
of strings as representatives of multisets — of those symiengttict monoidal functors which
preserve some further structure related to nets, and we gtatw (_) is a functor fromPetri, a
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rich category of nets introduced in (Meseguer and Montak&80), toSPetriCat. In addition, we
prove thaiQ (_) has acoreflectiorright adjointa (-): SPetriCat — Petri. This implies, by general
reasons, thaPetri is equivalentto an easily identified coreflective subcategorySektriCat,
namely thereplete imageof @ (-). The categorPetriCat, together with the functorg (-)
anda( (), constitutes our proposed axiomatization (‘in the largd’Petri net computations in
categorical terms.

Although this contribution is a first attempt towards the siofi a functorial algebraic seman-
tics for nets and of an axiomatization of net behaviourshia karge’, we think that the results
given here help to deepen the understanding of the subjecteWark that the refinement of
concatenable processes into strongly concatenable pescés similar and comparable to the
one which brought from Goltz-Reisig processes to them, hatlthe result of Section 2 makes
strongly concatenable processes ‘unavoidable’ if a furadtoonstruction is desired. In addition,
from the categorical viewpoint, our approach is quite redfigince it is the one which simply
observes that multisets are equivalence classes of saimjhen takes into account the categor-
ical paradigm, following which one always prefers to addahle isomorphisms between objects
rather than considering explicitly equivalence classebeai. Finally, concerning the use of cat-
egory theory in semantics, and in particular in this papenay be appropriate to observe here
that the categorical framework made it possible to discameramend a significant ‘anomaly’ of
concatenable processes which, although of general releyamould have not been easily noticed
in other frameworks.

This paper is a full and extended version of (Sassone 198®e$reliminary related results
appear also in the author’s thesis (Sassone 1994).

Notation Given a categonyC, we denote the composition of arrows nby the usual symbolo _ and
follow the usual right to left order. The identity ofe C is written asidc. However, we make the following
exception. When dealing with a category in which arrows agamhto represent computations, in order to
stress this, we write arrow composition from left to righe.j in the diagrammatic order, and we denote it
by _; _. Moreover, when no ambiguity arisedg is simply written a<. We shall us&&SMC to indicate the
category of (small) symmetric strict monoidal categoried symmetric strict monoidal functors. Since the
monoidal categories considered in the paper are alsttict monoidaland fion-strictly) symmetric we
may sometimes omit to mention all the attributes withoutstay misunderstandings.

The reader is referred to (MacLane 1971) for the categocdoatepts used in the paper. The basic defini-
tions concerning symmetric strict monoidal categoriessaramarized in Appendix A.

Acknowledgmentsl wish to thank José Meseguer and Ugo Montanari to whom | raaebted for sev-
eral discussions on the subject. Thanks to Mogens Nielskud® Hermida, Jaap van Oosten, and the
anonymous referees for their valuable comments on an earsjon of this paper.

1. Concatenable Processes

In this section we recall the notion of concatenable prof@sgancet al. 1996) and we give the
definitions which will be used in the rest of the paper.

Notation Given a functiorv from a setSto the set of natural numbets, its supportis the subset 08
consisting of those elemergsuch that/(s) > 0. We denote bys” the set offinite multisetof S, i.e., the
set of all functions frons to w with finite support. We shall represent a finite multiset S® as a formal
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sum@i¢ nis where{s | i € 1} is the support of andn; = v(s), i.e., as a sum whose summands are all
nonzero. Recall tha” is acommutative monojcactually thefree commutative monoid o, under the
operation of multiset union with unit element the empty riseit O.

Definition 1.1. (Petri Nets)A Place/Transition Petri neis a structureN = (09,05 Tn — ),
whereTy is a set oftransitions Sy is a set ofplaces 6% andaﬁ are functions.

A morphismof nets fromNg to Ny is a pairf = (fr, fs), wherefr: Ty, — Ty, is afunctionand
fs:% — ﬁl is amonoid homomorphisnthat respects source and target, i.e., the two squares
obtained by choosing the upper or lower arrows in the pdnadles of the diagram below com-
mute.

This, with the obvious componentwise composition of mospis, defines the categoPgtri of
nets.

Thus, according to Definition 1.1, a Petri net is precisehaagaph whose set of nodes is
a free commutative monoid, i.e., the seffiofite multiseton a given set oplaces The source
and target of an arc, here calledransition, are meant to represent, respectively, terkings
consumed and produced by the firing of the transition.

In the noninterleaving approaches to concurrency, it isrmomto describe computations in
terms of partial orderings representing the causal relatigps between event occurrences. In the
case of nets, this is fruitfully formalized through the &lling notion of process.

Definition 1.2. (Process Nets and Processes)process nefs a finite, acyclic ne® such that

(i) forallt e Ty, a%(t) andaé(t) are sets (as opposed to multisets);
(ii) for all pairsty # t; € To, 9 (to) Nd (t) = &, fori =0, 1.

Given N € Petri, a processof N is a morphisntt © — N, where® is a process net arm is
a net morphism which maps places to places (as opposed tchimmpwhich map places to
markings).

The constraint omtin the definition above means that process morphisms mapgbe siom-
ponent of the process net to a single componeil;aftherwise said, processes are nothing but
labelings of® — which in turn, as implied by the constraints on it, is eswsdliyta partial ordering
of transitions — with appropriate elementsibf

In order to define processes at the right level of abstractiemeed to make some identifica-
tions and consider as identical process nets which are iggriwo Precisely, we shall make no
distinction between processas® — N andm’: @ — N for which there exists an isomorphism
$:© — O of the underlying process nets such that ¢ = 1t

Example 1.3.Figure 1, in which we use the standard graphical representaf nets with cir-
cles for places, boxes for transitions, and directed ancsdarces and targets, shows a Net
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N n ™
Figure 1. A netN and two of its processes

with Sy = {a,b,c,d} andTy = {to:a — c,t;:b — c,t:c — d} and two of its processes. A pro-
cessm of N is represented implicitly by labeling each elemgmf its process net by(x), the
(unique) element oN it corresponds to. The picture also makes clear the distoles of the

two components of processes: the morphisigientifies which elements & are involved in the
computation, whilst the process r@tserves to describe their causal links.

It is worth observing thattandr?, although are based on the same process net, describe compu-
tations which are rather different from the causal pointiefw in rtthe occurrence dfdepends

ontg, whereas it depends anin 1. In particular,;tandTt are not isomorphic.

As already mentioned in the introduction, processes exjlaly the meaning of single com-
putations, and fail to describe the algebraic structurdefspace of behaviours as a whole. On
the contrary, following well-established ideas in semastit would certainly be desirable to
have an algebra of processes that singles out the basidngulidbcks of such a space, their
compositional properties, and the laws they are governe@legarly enough, the bulk of such an
algebra should consist of the operationsefiluentiabndparallel composition. Unfortunately,
due to the inherent ambiguity on the identity of the instarafglaces that occur in processes (the
so-calledtoken3, process concatenationnet a well defined operation. In the example above,
for instance, botht and 1’ are decomposable into a concatenation ofgametwo processes,
namely the one that rurtg andt; in parallel, followed by the one that runsthe difference
between them resides entirely in the choice of one of the w&siple sources fdr This means
that concatenation must handle the flow of causal depenefebetween subprocesses; and since
such a flow is regulated down to the level of tokens, processatenation must be concerned
with merging tokens rather than places. It is therefore s&agy to disambiguate the identity of
all the tokens a process offers as possible ‘concatenationg)

The solution proposed in (Degarbal. 1996) is the following notioconcatenable processes
As a matter of notation, we shall use @) and max®©) denote the‘'minimal’ and ‘maximal’
places of a process né, i.e., the places 0B belonging respectively to the post-set and to the
pre-set of no transition.

Definition 1.4. (Concatenable Processes) concatenable process N is a tripleCP = (1,4, L)
where

— TtO® — Nis aprocess of;
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— (is a family of total orderingg, of g (b) Nmin(®), for b € Sy.
— Lis a family of total ordering&y, of it (b) N max©), forb € Sy.

Two concatenable processes are isomorphic, and thusfiddnif their underlying processes are
isomorphic via an isomorphism that respects all the ordstin

It is now easy to define an operation of concatenation of denedble processes, whence their
name. We can associate a source and a targg ito any concatenable proce€®, namely
by taking the image through of, respectively, mif®) and max®©), where® is the underlying
process net ofEP. Then, the concatenation of concatenable proceésge®y — N, o, Lg):u— Vv
and(my:©; — N, /1,L;):v— wis realized by merging the maximal placesfand the minimal
places of®; using g, T, and the orderingky and/; to match those places one-to-one (cf.
Figure 2). Under this operation of sequential compositiba,concatenable processed\oform
a categoryc 2 (N) with identities those processes consisting only of plasich therefore are
both minimal and maximal, and such that L.

Concatenable processes admit also a tensor operatishich can be represented as putting
two processes side by side and extending their orderingscima way that the places of the pro-
cess on the left precede those of the one on the right (cfr&®)u The algebra of (concatenable)
processes so obtained enjoys some interesting propdréiesuggest a connection to symmet-
ric monoidal categories, as for instance the facts thatllphcmmposition is essentially but not
strictly commutative, and that wheneV@P, ; CP,) @ (CP; ; CP}) is defined it coincides with
CPy® CP; ; CPy® CP;. In fact, it easy to prove that the concatenable processesstimg only
of places form the category symmetriesvhich makec #(N) into a symmetric strict monoidal
category. Then, in order to find an axiomatization of the latgei.e., to understand in abstract
terms both processes and the laws that rule their compositiee can proceed trying to capture
¢ ?(N) by means of (categorical) universal constructions. Thitiéspurpose of the following
improved definition of the categomy(N), whose equivalence with the original one in (Degano
et al. 1996) has been proved in (Sassone 1996).

Definition 1.5. (The Category®(N)) The categoryr (N) is the monoidal quotient (see Ap-
pendix A) of 7 (N), the free symmetric strict monoidal category generated\pgbtained by
imposing the axioms

Cap = Idagp ifa,be Sy anda#b,
s;t;d =t if t € Ty ands, s’ are symmetries
wherec, id, ®, and_; _ are, respectively, the symmetry isomorphism, the idegjtihe tensor
product, and the composition gf(N).

The main result of (Deganet al. 1996) is thatr (N) offers a precise, abstract description of
the algebra of concatenable processes.of

Proposition 1.6. (Concatenable Processes ws(-)) ¢ # (N) and® (N) are isomorphic isSMC.

Example 1.7.Figure 2 shows a concatenable proces$ the netN of Figure 1 that corresponds
to the arrowto ®1; ; t ® ide of #(N). The ordering? andL, omitted whenever irrelevant, are
represented in the obvious way by labeling places with ahtwmbers. To exemplify the algebra
of processes df, Ttis expressed as parallels ) and sequential.{_) composition of simpler
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Figure 2. The concatenable process=to ®t; ; t ®idc of the netN of Figure 1

processes. Such operations are matched precisely by igpsrand axioms of (N), and this is
the essence of Proposition 1.6 above.

The symmetries of (N), of course, correspond one-to-one to those ®#fN) which, as already
mentioned, are the processes consisting only of places$§tancec: ¢.:c® ¢ — cd crepresents
the (unique up to isomorphism) process that inverts in itdpat’ the order of the two ‘input’
tokens. This simple example illustrates that the role offmametries in process terms is that
of regulating the flow of causalitetween subprocesses by permuting tokens appropriately. |
fact, such permutations yield exactly the ‘exchanges’ aisea needed to gain control over the
operation of process concatenation. It is a rather inteigesbservation, in our opinion, that the
axioms of symmetries in monoidal categories, together thitise ofp (N), capture this precisely
enough. With this understanding of symmetries, we can readakioms of Definition 1.5 as
follows: (1) tokens that are instances of different placa&snot be permuted, since they differ
structurally, not just for their causal histories; and (2ymuting tokens in the pre- and in the
post-set of a single transitianhas no effect whatsoever on causality, since it does notgehan
causes or effects of

Concerning the generators®fN), i.e., the transitions dfl, under the correspondence of Propo-
sition 1.6 the arrowt:u — v for t € Ty represents the unique concatenable proG#3s — v
consisting of the single transitianObserve that there is a unique such process since therlgbeli
of places inCP are irrelevant in this case: they all yield isomorphic pasess. This fact is directly
reflected by the second axiom in the definitionzgN) .

2. A Negative Result about Functoriality

Among the primary requirements usually imposed on constms like 2 (-) there is that of
functoriality. One of the reasons supporting a categorical treatmentrofusécs is the need
for specifying further the structure of the systems undeyasis by considering morphisms be-
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tween them which determine, e.g., how the given systemslaimeach other. This, in turn,
means choosing precisely what the relevant (behaviourabtsire of the systems is. It is there-
fore clear that such morphisms should be preserved at thergerevel. In the case af(_), this
means that whenevétl can be mapped th’ via a morphismf, which by the very definition of
net morphisms implies that can be simulated bly’, there must be a way, namefy f), to map
the concatenable processeddh those of\’, respecting their algebraic structure. However, this
is not the case: there are net morphisms which cannot bededegn symmetric monoidal func-
tors between the respective categories of processes. dhkepr, as illustrated by the following
example, is due to the particular shape of the symmetrieg ) which, on the other hand, is
exactly what makes (N) capture quite precisely the notion of processel of

Example 2.1. (¢(_) cannot be a functor) Consider the netdl andN in the picture below. We
haveSy = {ap,a1,bp, b1} andTy consisting of the transitiorts: ag — b andt;:a; — by, while
Sy = {& bp, b1} andTg containdy:a — bg andt;:a — by.

g4

Consider now the net morphisiwherefr (t) =, fs(a) = aandfs(b;) = by, fori = 0,1. We
claim thatf cannot be extended to a monoidal funcedif ) from 2 (N) to 2 (N). Suppose in fact
thatF is such an extension. Then, we must h&ye ®t;) = F(tp) ® F(t;) = to ® t;. Moreover,
sincety ®t; =t @1, we must also have

to®t; = F(t ®tg) = t1 ® 1o,

which is impossible, since the leftmost and the rightmoshgeabove arelifferentprocesses
in 2(N), as follows from Definition 1.5.

Formally speaking, the problem is that the category of sytmesitting inside? (N), say
Symy, is not freeon N. Clearly, this is due to first axiom of Definition 1.5, a comalital axiom
with a negativepremise. To make things worse, the theory illustrated esttely in (Deganaet
al. 1996; Sassone 1994) makes it clear that, in orderfdt) to maintain its interesting com-
putational meaning, such an axiom is strictly needed. Maggdt is easy to verify that as soon
as one imposes further axioms @iN) which guarantee to get a functor, one annihilates all the
symmetries and, therefore, destroys the ability0N) to deal with causality. It is also impor-
tant to observe that it would be definitetyeaninglesso try to overcome the problem simply by
removing fromPetri the morphisms which ‘behave badly’: the morphi$rof Example 2.1, for
instance, is clearly aimulationand, as such, it should definitely be allowed by any serious at
tempt to formulate a definition of net morphisms. Finallgaathe natural idea of looking foron
strict monoidal functors (Eilenberg and Kelly 1966) as semantimterparts of net morphisms
does not lead anywhere, as implicitly shown again by Exardgle
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In other words, there does not seem to be an easy and satigfaotution to the functoriality
problem fore (_). The following proposition shows that the problem illustcin Example 2.1
is serious, actually deep enough to prevent any naive matidicof# () to be functorial.

Proposition 2.2. (No simple variation of?(_) can be a functor)Let x (-) be a function which
assigns to each n&t a symmetric strict monoidal category whose monoid of olsjéstom-
mutativeand containgy, the places oN. Suppose further that the group of symmetries at any
object ofx (N) is finite. Finally, suppose that there exists a Newith a placea € Sy such that,

for eachn > 1, we have that the component(ag, na) of the symmetry isomorphism af(N) is

not an identity.

Then, there exists a Petri net morphigmNy — N; which cannot be extended to a symmetric
strict monoidal functor fromx (Np) to x (Ny).

Proof. The key of the proof is the following observation about maiaicategories. Let be
a symmetric strict monoidal category with symmetry isonmismc. Then, for alla € C and for
alln>1,we have(ca’(n,l)a)” =id, where, in order to simplify the notation, throughout theqir
we writenaandcg, to denote, respectively, the tensor produat ebpies ofa, with 0a= e, and
the sequential composition nfcopies ofcyy. To show that the above identity holds, consider for
i =1,...,nthe functorF; from C", the cartesian product afcopies ofC, to C defined as follows.

Fi
cn C

(X1, -+ e Xn) —————— XiXip1 - XnX1 - X1

(fl,...,fn)l J(fi fipafnfrfig)
(Y1, ¥n) ———— YiYig1 - YnY1- Vi1

Moreover, consider the natural transformatigng; = Fi,1,i=1,...,n—1 and@,:F, — F;
whose components &, ..., X, are, respectivelyi x ;-xx;--x_; aNdCx, x;.-x, - Finally, letobe
the sequential composition @i, ..., @,. Then,@is a natural transformatioxy - - - Xy = X1 - - - Xn
built up only from components of. From the Kelly-MacLane coherence theorem (MacLane
1963; Kelly 1964) (see also Appendix A) we know that theretisnast one natural transfor-
mation consisting only of identities and components,0nd since the identity df; is one
such transformation, we have that= idg,. Then, instantiating each variable wighwe obtain
(Ca(n-1)a)" = idna, as required.

It is now easy to conclude the proof. Lt be a net witha € S such that, for each > 1, we
havecy, n, # id, wherec’ is the symmetry natural isomorphismofN’), letN be a net with two
distinct places andb and withno transitions, and let be the symmetry natural isomorphism
of x(N). Since the group of symmetries ab is finite, there is acyclic subgroup generated
by cap, i.€., there existk > 1, the order of the subgroup, such tl@egyb)" =id and(cyp)" # id
forany 1< n<k.

Let p be anyprimenumber greater than We claim that the net morphisiaN — N’, wherefr is
the (unique) functions — Ty and fs is the monoid homomorphism such thatb) = (p—1)a
and fs(a) = a, cannot be extended to a symmetric strict monoidal fun€tar(N) — x (N').

In fact, from the first part of this proof, we know thélfa’(p,l)a)p = id. Moreover, by general
results of group theory, the order of the cyclic subgroupegated bw’a’(pfl)a must be a factor
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of p and then, in this case, 1 @ In other words, eithe«:’a’(pil}a: id, or (c’a’(pil)a)” # id for
all 1 < n < p. If the second situation occurs, then we have fdt,p)¥) = id and also that
F((Cap)¥) = (C/F(a),F(b))k = (C/a‘(p—l)a)k #id, i.e.,F cannot exists. Thus, in order to conclude the
proof, we only need to show that it follows from our hypothi;etl;iatc’a’(pil)a # id. For this,
it is enough to observe thﬁg’(p,l)a = id implies ¢, h, = id for n = p— 1, which is against
our hypothesis olN’. In fact, by the axioms of symmetries in monoidal categofiis the first
of (6) in Appendix A)c’ka(pil)a = ac’<k71)(,jly(pfl>'Sl ; c’a’<p71)a(k— 1)a, whence it follows directly
thatC’(p,l)a,(p,l)a =id. O
The contents of the previous proposition may be furtheif@arby remarking that in théee
category of symmetries on a commutative mondithere arenfinite homsets. This means that
dropping axiomc, p = idaqp in the definition of? (N) causes an ‘explosion’ in the structure of
the symmetries. More precisely, if we omit that axiom, we fiad some object such that the
group of symmetries on has infinite order. Of course, since symmetries represargadity,
and as such they are integral parts of processes, this ntakeatiegory so obtained completely
useless for the applications we have in mind.

The hypotheses of Proposition 2.2 can be certainly weakiensel/eral ways, at the expense
of complicating the proof. However, we avoided such congtians since the conditions stated
above aralreadyweak enough if one wants to regardN) as a category of processeshfin
fact, since places represent the atomic bricks of whiclestate built, one needs to consider them
in x (N). Since symmetries regulate the ‘flow of causality’, therk bé chana different from the
identity, and since in a computation we can have only finitaBny ‘causality streams’, there
should not be categories of processes with infinite groupsywimetries. Therefore, the given
result means that there is no chance to have a functoriatremtisn along the lines af (N) for
the category of processes of a Petri Nef the objects form a commutative monoid.

3. The CategoryQ (N)

In this section we introduce the symmetric strict monoidetegoryq (N) which is meant to
represent the processes of the Petri Meand which supports a functorial construction. This
will allow us to characterize the category of categories &ff Imehaviours, i.e., to axiomatize
the behaviour of nets ‘in the large’. Observe that althouglegeguer and Montanari 1990)
and (Deganet al. 1996) clarify how the behaviour of a single net can be captimea sym-
metric strict monoidal category, due to the lack of funatity of #(_), they cannot propose a
categorical semantics ‘in the large’ for net causal behagio

Proposition 2.2 shows that, necessarily, there is a prideetpayed. Here, the idea is to re-
nounce to the commutativity of the monoids of objects. Maexjsely, the arrows of (N) are
built over Synj, the free category of symmetries on #et & of places ofN. This implies that
objects form the free non-commutative monoid3y and that symmetries are precisely pes-
mutationsof such objects. Looking at such strings of places as comceatizations of multisets,
the natural way to represent the transition®Nag by replicating them, one copy of a transition
for each choice of representatives of its source and targétsats. In other terms, the gener-
ators ofQ (N) are not transitions: more concretely, they are instancesaogitions acting on
the chosen representatives of states. Thus, each transfthd has many corresponding arrows
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in Q (N); in order to guarantee that (N) remains close to the categor(N) of concatenable
processes, therefore, it is necessary to link togetheualt arrows. This is achieved by means
of a ‘naturality’ condition, allowing us to prove in Sectidrthat the arrows o) (N) correspond
to Goltz-Reisig processes in which the minimal and the makjptaces ardinearly ordered.

Similarly to Sym, the categonsyny, serves a double purpose. While from the categorical
point of view it provides the symmetry isomorphism of a synttigenonoidal category, from a
semantic perspective it regulates the flow of causal depeyd# should be noticed, however,
that here the point of view is slightly more concrete thaoutfhnot essentially dissimilar from,
the case oByny,. Computationally, a symmetry iq (N) must be interpreted as'eorganiza-
tion’ of the tokens in the global state of the net which, when radmjag tokens belonging to
the same place, yields a exchange of causes exac8ymg does fore (N). In general, as will
become clear later, an arrow Qf(N) should be thought of as the realization of a processéé of
corresponding to an actual representation of its sourcesagdt states.

Notation In the following, we useS® to indicate the set of (finite) strings on the Simore commonly
denoted by&*. In the same way, we use to denote string concatenation, whileenotes the empty string.
As usual, foru € S, we indicate byu| the length ofu and byu; its ith element. Moreover, we letr (u)
denote the multiset of the elementsxccurring inu.

Definition 3.1. (The categoryQ (N)) The categoryQ (N), for N a net inPetri, is obtained
from the symmetric strict monoidal category freely genedldtom the places dfl and, for each
transitiont of N, an arrowt, y: u — v for each pair of linearizations (as stringsandv of the pre-
and post- sets (multisets) gfby quotienting modulo the axiom

Sty =tuy:S, for s;u — u ands:V — v symmetries (P)

Explicitly, @ (N) is (isomorphic to) the categor§y whose objects are the elementsSyf and
whose arrows are generated by the inference rules
ue sy u,vin § i (u) — (V) in Ty
idiu—uinC  cuviuv—veuinC tuv:u—vinC

a:u—vandB:u —VvinC a:u—vandB:v—winC
a@Buu —-veVvin C o;B:u—winC

modulo the axioms expressing th@ats a strict monoidal category, namely,
o;idy=a=idy;a and (a;B);d=0a;(B;d),
(0B ®d6=0® (B®d) and d:®a=0=0®idg, (1)
idy®idy =idyey and (a®a’);(Bxp)=(a;B)= (a;B),

(the latter whenever the right-hand term is defined), pledotiowing axioms corresponding to
axioms (6) expressing thatis symmetric with symmetry isomorphism

Cuvow = (Cu,v & idw); (idv & Cu,w)7
Gl (BHT) = (ASPB)Gy forau—v piu —V, 2)
CuviCyu = Iidugy,

and, finally, axiom @).
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Observe that, while the first part of the previous definitioreg @ (N) in terms of universal
constructions, its second part provides a completely aatandescription ofy (N) which can be
useful in many contexts. In the following, we shall in facewss definition ofy (N) whichever
version, constructive or axiomatic, is best suited to thaa@pplication.

It is worth noticing that axiom®) entails, as a particular case, the last axiom in the Defi-
nition 1.5 of #(N) — called axiom W) in (Deganoet al. 1996) — whenever it makes sense
in Q (N). In fact, axiom(®) asserts that any diagram@(N) of the kind

commutes. Then, fixing = U’ andv =V, and using the fact that symmetries are isomorphisms,
one obtains precisely axior). Exploiting this observation it is not difficult to show ththere
exists aquotientfunctor Q (N) — 2 (N) in SSMC, and that? (N) can be obtained frong, (N)
simply by enforcing commutativity on objects and the firstoax in Definition 1.5. Moreover,
using @) for u=£ U oru# U, choosing = id, respectivelys=id, one proves that the interesting
equatiors; ty , = tyy, respectivelyt, , ; 8 = tyy, holds inQ (N).

A simple inspection of Definition 3.1 suggests that the cate@f symmetries ofQ (N),
say Syny, is thefree symmetric strict monoidal category on the &t In fact, by definition,
an arrow ofQ (N) is a symmetry if and only if the rule for transitions has neveen used in its
generation, and, moreover, axigd) — the only one introducing identifications not imposed by
the definition of symmetric monoidal categories — has cleawl effect on such arrows. We shall
now give a useful direct description 8§y that, besides making explicit some of the structure
of @ (N), will play a relevant role in the development to come. Namelyshall prove thaBynj
is thecategory of permutationsn Sy.

Notation We usd1(n) to denote thesymmetric groun n elements, i.e., the group of tmé permutations

of n elements. To simplify the notation, we shall assume thaethpty function: @ — & is the (unique)
permutation of zero elements. thanspositionis a permutation which leaves all the elements fixed except
for two adjacent ones, which are transposed, that is ‘swdipjdée use(ii+1) to denote the transposition
of i andi+1.

Definition 3.2. (The Category of Permutations) et Sbe a set. The categoByn§ has as objects
the strings inS?, and an arrowp: u — v if and only if p € M(Jul), i.e., p is a permutation oful
elements, andt is the string obtained by applying the permutatpto u, i.e., vy = U

Arrow composition inSyn§ is obviously given by the product of permutations, i.e.jithempo-
sition as functions, here denoted by_ written in diagrammatic order.

Graphically, we represent an arr@w — vin Syng by drawing a line betweeny andvy), as
for example in Figure 3.

Of course, it is possible to extend the monoidal structur8-ofo a tensor product o8yng,
together with natural transformations associated toghtenge permutations between strings that
make it a symmetric monoidal category (see also Figure 3rawhis the permutatioifl 2)).

Definition 3.3. (Operations on Permutations)Given permutationp:u — v and p:u’ — Vv
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(aab) (aaabbaab)

(aab) (aaabbaab

(aabaaabb)

v((a ab.,@aaab @)

(aaabbaab

Figure 3. The monoidal structure @yng

in Syng their parallel composition ® p:u® U — v®V is the permutation such that
. p(i) if 0 <i<|u
i— h . : ,
(= ul) +Jul i ful < i < ful+ U]
Giventie MN(m) andm stringsy; € S®, i = 1,...,m, theinterchange permutation(ug, ..., Un)
is the permutatiom such that
h-1

h—-1 h
p(i)=i—"3 |uj|+ lul if Sl <i <Yyl
2 n(j)Zn(h) J; J;

=1
Clearly,® so defined is associative and furthermore a simple caloulatiows that it satisfies
the equations
(peP);(@@d)=(p;a)®(p':d) and idy®idy = idusy.
It follows easily that the mapping: Syng x Syn§ — Syng defined by

Syng x Sym§ ———— Syng

(uu) ———uau

(p,r/)l lp@p’

WV) ————— vV

is a functor makingyn§ a strict monoidal category. Finally, the symmetric struetof Syng is
made explicit through the interchange permutations.
Proposition 3.4. Symg is symmetric strict monoidal) For any seS, the family of interchange
permutationsy = {V(U’V)}u,veSyng' defined from the permutation= (1 2), provides the sym-
metry isomorphism endowin8yng with a symmetric monoidal structure.

Proof. Itis just a matter of performing a few calculations to vetifiat, for anyp:u — U and
p':v — V, the equations defining a symmetry isomorphism i.e., eqnat{6) in Appendix A,
which in the current case reduce to

(Yuv)@w); (veyuw) = yuvow)
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Figure 4. Some instances of the axioms of permutations

(aaabbaab)

b2 = (aaabbaab)

(a aabbaa B
Figure 5. The parallel composition of permutations

yuv);(Pep = (pop);yu,Vv)
y(u,v);y(vu) = uey,
hold. O

The previous proposition justifies using the nasgenmetriedor the arrows of the groupoid
Syn§. As anticipated above, the key point ab&ying is that it is a free construction. In order to
show it, we need the following lemma (Moore 1897; Burnsid&1)9

Lemma 3.5.The symmetric groupl(n) is (isomorphic to) the groufs freely generated from
the set of elementft; | 1 <i < n}, modulo the equations (see also Figure 4)

TiTit1li = Ti+aTiTita,
LT = Ty if[i—j[>1; 3)
UL = €

wheree s the neutral element of the group. The equivalence classmbdulo the above equa-
tions corresponds to the transpositi@n-1).

We are now ready to show the announced fact aByuf.

Proposition 3.6. Symg is free) Let Sbe a set, le€ be a symmetric strict monoidal category, and
let f be a function fronBto the set of objects df. Then, there exists a unique symmesinct
monoidal functofF: Syn§ — C extendingf.

Proof. Let ® be the tensor produatthe unit object, and@: x; ® Xo = X, ® X; the symmetry
natural isomorphism of. There is of course a choice forced upon us for the behaviokirom
objects: the monoidal extension bfi.e., the mapping

F(e)=e F(a)=f(a)foracS and F(u®v)=F(u)®F(v)foruve S~

Concerning morphisms, we know by Lemma 3.5 that each arroByn§ can be written as a
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composition of transpositions. The transpositiont- 1): u® a® b v— u b a®v, whereu is
a string of length— 1, coincides irSyn§ with the tensor of/(a, b):a® b — b® awith appropriate
identities, namely{u ® y(a,b) ® v). Thus, recalling also tha&® y(a,b) = y(a,b) = y(a,b) ®,
the following equations definfe on all the arrows oByng.

Fluey@ab)®@v) = FU)®@Crarm®@F(V) abes uves®;
F(p;p) = F(p)oF(p). (4)

Observe that both the equations (4) are forced by the defind@f symmetricstrict monoidal
functor (see axioms (7) in Appendix A). It follows that thetexsion off to a strict monoidal
functor, if it exists, is unique and must be given by (4). Tharorder to conclude the proof, we
only need to show thdt is well defined and that it is a symmetric monoidal functor.
For the former, it is enough to show that the axioms (3) of Lexr@rb are preserved Hy.
Concerning axioms (3), the third one matches directly withfict that the inverse @f ) r ()
IS Cr(b),F(a)» While the second one follows easily from the fact thais a functor. In fact, in the
hypothesis, we have = (u® y(a,b)  v@ c® d®w) andT; = (U®b®a®vey(c,d) @w). Thus,
we have that

Fitiit) = (Fu)@F(b)®@F(@)®F(V) ©Cre) e @ F(w) o

(F(U) ® Cr(a),F(b) @ F(V) ® F(C) ® F(d) ® F(W))

= (F(U) ® Cr(a) rn) ® F(V) @ Cr(c) F(d) @ F(W))

&
= (F(U)®Cra)rpm ®

) @ F(v) @ F(d) @ F(c) ® F(w)) o
(F(u)

® F(a) ® F(b) ® F(V) ® CF(C) F(d) ® F(W))

= F(1j;1)

Finally, exploiting the naturality and the coherence emumst forc, a similar calculation shows
thatF(Ti ; i1 1) = F(Tit1 s T s Tig)-

Let us prove thaf is a symmetric monoidal functor. Sin€eis a symmetric strict monoidal
category, we haveey = Cegex = Cex ® €0 €® Cex = Cex © Cex, and Sincecey is invertible, it
follows thatceyx = idy. Of course, the same holds for any other symmetric strictaiutan cate-
gory. Therefore, sinci(idy) = F(y(g,u)) andce () = idg(y), we have thak(idy) = idgy. This,
together with the second of the equations (4), meansttigaa functor.

Observe further that, fop:u — vandp’:u’ — Vv in Syn§, we havep® p' = (pa ') ; (ve p/)
(see also Figure 5). Then, by definition,

F(p® p) =F(v@p)oF(pau) = (F(v)@F(p'))o (F(p) @ F(U)) = F(p) ® F(p'),
i.e.,F is a strict monoidal functor.
Finally, thanks to the first of the coherence axioms for symie y(a,b®c) = (y(a,b) ®c) ;
(b®Yy(a,c)) and thus, by the aforesaid axiom and by the correspondingreabe axiom of,
F(v(ab®c)) = F((v(ab)®c);(b®y(ac)))
= (F(b) ® Cr(a) r(c) © (Cr(a),rn) @ F(C))

= Cr(a),F(b)®F(c) = CF(a),F(bxc)-
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Now, by considering the inverses of the arrows appearingerfitst coherence axiom, we have
y(a®b,c) = (a®y(b,c)); (v(a,c) ®b) andceaup) () = (Cr(a) F(c) ® F(D)) o (F(8) @ Crp) F(c))-
Therefore, it follows easily by induction th&ty(u,v)) = Cg(y) r). Then,F maps each compo-
nent of the symmetry natural isomorphism®yn to the corresponding component@fand,
therefore, we conclude thatis a symmetric monoidal functor. ]

This result proves that the mappii®— Syn§ extends to deft adjoint functor from Set
to SSMC, the standard category of symmetric strict monoidal (Sntaltegories and symmet-
ric strict monoidal functors, whose right adjoint send eaahh category to its set of objects.
Equivalently, we can say th&yng is, up to isomorphism, the free symmetric strict monoidal
category on the s& This is remarked by the following corollary, which also pes thatSyny,
the category of symmetries af (N), is isomorphic taSyng, .

Corollary 3.7. (Symg is free) Let S be the category whose monoid of objectsSi§ the free
monoid onS, and whose arrows are freely generated from the family afvesid,:u — u and
Cuv:U®V—vau, foru,ve S?, subject to axioms (1) and (2). ThérandSyng are isomorphic.

It follows thatQ (N) can be described as the symmetric strict monoidal categaolityover the
subcategory of symmetri&yng by addingfreelythe arrows given by
t: (u) — M (v)in Ty
tuv:u—vin Q (N)

and quotienting modulo axion®). In force of these facts, in the following we shall safely
confuseSynj, andSyng and, therefore, the symmeteyy € Synj, and the corresponding per-
mutationy(u,v) € Syng, .

We show next tha (_) can be lifted to a functor from the category of Petri nets t@pn
propriate category of symmetric strict monoidal categoaied equivalence classes of symmetric
strict monoidal functors. The role of such an equivalende iske into account that we look at
the strings ofS{ as concrete representatives of the multiset§paind, therefore, we want to
consider as perfectlgqualthose functors which differ only by picking up differenttysmmpat-
ible, linearizations of multisets. The task is not very difft now, since most of the work has
been done in the proof of Proposition 3.6.

We start by showing thag (-) is a pseudo-functofrom Petri to SSMC in the sense made
explicit by Proposition 3.8 below. More precisely, we exten (-) to a mapping from Petri
net morphisms to symmetric strict monoidal functors in sactay thatdentitiesare preserved
strictly, while net morphisncompositions preserved only up tomonoidal natural isomorphism
(see Appendix A). In order to do that, the key point which i stissing is to be able to ‘lift’
morphisms of free commutative monoids to morphisms of free-commutative monoids. To
achieve this, we proceed as follows.

Let FMon andFCMon be, respectively, the categoryfode and freecommutativenonoids, to-
gether with their homomorphisms. Consider the obviousigaofunctor(_)’: FMon — FCMon.
Explicitly, (S*)’ = S® /{xy=yx} = S?, whilst the action of )’ on f: S — S gives the unique
homomorphismf’: S — S/ such thatf’(a) = a/ (f(a)) for all a€ S. It is easy to verify that,
when considered as a morphismreflexive graphs(_)” admits a section, i.e., @flexive graph
morphism(_)*: FCMon — FMon such tha{(_)")” = idecmon- In other words(_)* mapsS? to S*
and assigns a ‘linearizatiori®: §y — S} to f:§ — Sy in such a way that
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— a1 (f%(a)) = f(a), forall f:§ — S} and alla € &;
— (idg»)? = idgs, for all setsS.

Fixed one sucli_)", we can define the action af (_) on Petri net morphisms. Observe that,
in principle, choosing two different different fqr)’ gives twodifferent— yet equivalent —
extensions ofy (-) to a pseudo-functor. We would like to remark that this appeaebitrariness
of @ (-) is not at all a concern, since the relevant fact we want to show is that such an
extension exists. Moreover, we shall see shortly that ¢hteing the categor@SSMC one can
completely dispense with)?, i.e., the ‘choice mapping’)? is actually, in a precise mathemati-
cal senseifrelevant

Proposition 3.8. @ (-): Petri — SSMC) Let f:Ng — N; be a morphism irPetri. Then, there
exists a symmetric strict monoidal functQr(f): Q@ (Np) — Q@ (N1) which extends. Moreover,

Q (idy) =idy (vy andQ (go f) = @ (9) o Q (f) via @ monoidal natural isomorphism (see Ap-
pendix A) whose components are all symmetries.

Proof. Sincefgis a monoid homomorphism froﬁ0 to ﬁl, we consider the homomorphism

fg: 3%0 — Sfjl. By the freeness ddynj,, such a morphism can be extended (uniquely) to a sym-
metric strict monoidal functoFs: Synj, — Q (N1) and, thus, to a functdf: Q (Ng) — Q (Ny),
defined as the unique symmetric strict monoidal functor Witigincides withFs on Symy,, and
mapstyy:u — V1o fr (t)gy) rv: F(U) — F(v). Since monoidal functors map symmetries to sym-
metries, and sincér (t) is a transition ofNy, it follows immediately thaf respects axiomdy),
i.e., thatF is well defined.

We show next that the above definition makeg ) into a pseudo-functor. First of all, since(f)

is uniquely determined by and fé, by the property(idg: )? = idg= of (_)¢, it follows that

Q (idn):Q (N) — @ (N) is the identity functor. Now, lef:Nyo — N; andg:N; — N, be mor-
phisms of nets. Observe thatalE Sy, the string(gso fs)*(a) is a permutation o@g( fg(a)) and
that, therefore, there exists a symmetyQ (go f)(a) — @ (9) o Q (f)(a) in @ (N2). Then, for
U=Ur--Up € §, takes, to besy, ® - @ sy, Q (9o F)(u) — @ (g) o (f)(u). We claim that
the family {sy | u € § } is a natural transformatioa (go ) = @ (g) o Q (f). Sincesis clearly
monoidal and each, is a symmetry isomorphism, this concludes the proof.

We proceed by induction on the structureootfo show that, for angi:u — vin @ (Np), we have

Q(gof)(a);sy=su;Q(9) o (f)(a).

The key to the proof is thad is monoidal, i.e.Sysv = Sy ® Sy, as a simple inspection of the
definition shows. Ifx is an identity, then the claim is obvious. Moreoverifs a transitiorty,y,
thenq (go f)(a) andq (g) o @ (f)(a) are instances of the same transitioN\gf and the thesis
follows immediately from axiom®). Suppose now that = ¢y, a symmetry ofg (Np). Since
Q (gof)andq (g)o qQ () are symmetric strict monoidal functors, the equation weshiayrove
reduces to

Ca.(gof)(u).a(gof)v) + VO =@ S Cq (g)oq (f)(u).a (g)oa (V)
which certainly holds sincéc,y | u,v € %} is a natural transformatior; ® Xo = X ® Xj.
If o =0p®aq, with a;:u; — vi, then, fori = 0, 1, it follows from the induction hypothesis that
Q(go f)(ai); sy =y ; Q(9) o (f)(ai), whence

Q (QOf)(O‘o) ® Q(gof)(dl) 1 Svpvy = Supeuy Q(g)oQ(f)(GO) ® Q(g)OQ(f)(Gl),
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whichisq (go f)(a);sy=su;Q(9) o (f)(a). Finally, in casex = ag ; ay, with ap:u — wand
a1:w — v, the induction is maintained by pasting the two commutatiyeares in the following
diagram, which exists by the induction hypothesis

Q(go f)(u) —— (9o (f)(u)
Q(Qof)(ao)l lq(gm(f)(ao)
Q(go F)(w) ———(g)o(f)(w)
Q(gof)(ql)l lq(gm(f)(al)
Q(go f)(v) —5——(9)o(f)(v)

Thus,Q (go f)(a); sy =su; @ (g) o Q (f)(a), which concludes the proof. 0

Therefore, due to technical reasons depending exclusivetite lack of functoriality of _)?,
Q (-) fails to be a functor fronPetri to SSMC. Itis only apseudo-functoHowever, it is worth re-
marking that this failure imtrinsically different from the situation fop (_), and that the pseudo-
functoriality of @ (_) is already avaluableresult. In fact, in the case @f(_), we cannotlift net
morphisms to functors between the categories of proceadadure which may possibly rise
doubts on the structure chosen to represent the processiks single net, while in the case
of Q (1), we just cannot define composition of the lifted morphismisdsehan ‘up to isomor-
phism’. Of course, this depends on the fact that our ideaiohgs as representatives of multisets’
is not reflected adequately B5MC, and simply brings us to the conclusion t1$&MC is not
quite the correct target category for the functorial cangton we are looking for. Indeed, as we
shall see in the following, it is easy to identify a categ@$SMC of symmetric strict monoidal
categories such thag (_) is a functorPetri — QSSMC. Actually, this construction is already
implicit in Proposition 3.8 and corresponds to taking anrappate quotient o§SMC.

Definition 3.9. (Symmetric Petri Categories)A symmetric Petri categorg a symmetric strict
monoidal categor{ in SSMC whose monoid of objects is the free mon&id for some sef.

For any pairC andD of symmetric Petri categories, consider the binary refedie p on the
symmetric strict monoidal functors frofto D defined byF % ¢ p G if and only if there exists
amonoidal natural isomorphism: F = G whose components are ammetriesClearly, ® c p
is an equivalence relation. MoreoverHf C' — C andK: D — D’ are symmetric strict monoidal
functors then, whenevét ® c p G, we haveKFH % ¢ pr KGH. In fact, if 0:F = G is monoidal
and all its components are symmetries, then $toBl: KFH = KGH. In other words, the family
of equivalence® is actually a congruence with respect to functor compasificherefore, the
following definition makes sense.

Definition 3.10. (The categoryQSSMC) Let QSSMC be the quotient of the full subcategory of
SSMC consisting of the symmetric Petri categories modulo theyooencer .

Of course, concernin@SSMC there is the following easy result.
Proposition 3.11. Q (.): Petri — QSSMC) @ (-) extends to a functor froretri to QSSMC.

Proof. For f:Ng — Ny, defineq (f) to be the equivalence class of the functof8MC from
Q (Np) to @ (N;) described in Proposition 3.8. It follows immediately frolretproof of that
proposition thaty (_) is a functor fromPetri to QSSMC. U
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Observe that, when describig( f) in QSSMC, there is no need to consider the sectigh of
(_)’, since the extensions dfto a symmetric strict monoidal functor corresponding tdedént
sections or(_)” yield the same functor iIQSSMC. In fact, if (_)? and(_)* are sections of_)’,
for any morphismf:No — N; and alla € Sy, the stringfh(a) is a permutation of*(a). Then,
we can proceed as in the proof of Proposition 3.8 to chooser@idal natural isomorphism
composed only of symmetries such thgt(f) = Q #(f).

However, the categoi@SSMC s still too general for our purposes. In particular, it isigano-
ticed thatq (_) is notfull (though it is faithful), i.e., that there are functors fran{No) to @ (Nz)
in QSSMC which do not correspond to any morphism frddg to Ny in Petri. This means that
QSSMC has too little structure to represent net behaviours withugh precision; equivalently,
since the structure of the objects of a catedorig ‘encoded’ in the morphisms @, it means
that the morphisms oQSSMC do not capture the structure of symmetric Petri categornies p
cisely enough. Specifically, the transitions, which arerdifly primary components of nets, and
as such are treated by the morphismBéfri, haveno corresponding notion iQRSSMC: we need
to identify such a notion and refine the choice of the categbnet computations accordingly.

Notation Given a symmetric monoidal catego€y let Synt indicate the subcategory &f consisting of
the symmetries, i.e., of those arrows which are built up fidemtities and components of symmetry iso-
morphism ofC.

The key to accomplishing our task is the following obsensatbout axiom ®) in Defini-
tion 3.1: as already mentioned, it simply expresses thatdfiection of arrowd,y of Q (N),
fort € Ty andu,v € ], is a natural transformation. Namely, fGra symmetric Petri category
with objectsS”, andv a multiset inS”, let Sym ,, be the subcategory @ consisting of those
objectsu € S? such thatv (u) = v and the symmetries between them, andret, be the in-
clusion of Symg ,, in C. Then, forv,v" € S”, one obtains a pair of parallel functom%v‘v/ and
néw, by composingnc, andinc,, respectively with the first and with the second prOjection of
Syn@:,v x Syn&,v’-

Tl[C),v,v’ = inC,vOTb

( o, SYnty mc\ﬁ

Syn@:,v X Syn&,v’

C
k o Syng {) j

1 —
e yu = IN¢ oy

It follows directly from the definitions that, whe@is Q (N), axiom @) states exactly that, for
allt:v — V' € Ty, the set{ty | 2/ (u) =v, 2 (v) =V'} is a natural transformation fron%(N)

1
to LN

AVAY
AVAV

A further very relevant property of the transitionsifwhen considered as arrows Qf(N)
is that of being decomposable as a tensor only trivially amd aomposition only by means of
symmetries. This is easily captured by the following notéprimitive arrow.

Definition 3.12. (Primitive Arrows) Let C be a symmetric Petri category. An arrawn C is
primitive if
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(i) Ttisnotasymmetry;
(i) t=a;pB Iimplies aisasymmetryan@ is primitive, or vice versa;
(i) T=0a®pB implies a=id andPis primitive, or vice versa.

A simple inspection of Definition 3.1 shows that the only ptine arrows inQ (N) are the
arrowsty,y, fort: o (u) — a¢ (v) atransition olN. As a consequence, the natural transformations
T T‘%(N),v,y( = ”é(N),v,w whgse components are primitive are in one-to-one corr&&npe with
the transitions ofN. Following the usual categorical paradigm, we then use thpeasties that
characterize the transitions Nfin @ (N), expressed in abstract categorical terms, to define the
notion of transition in any symmetric Petri category.

Definition 3.13. (Transitions in Symmetric Petri Categories) Let C be a symmetric Petri
category and leS® be its monoid of objects. Aransition of C is a natural transformation
T Tl%vyv = T[év v for v,V in S, whose components,, areprimitive arrows ofC.

It is now clear what the extra structure required8SMC is: transitions must be preserved
by morphisms of symmetric Petri categories. Formally,GaandD in QSSMC andF:C — D
in SSMC, F respects transitiond, for each transitionr:n‘é‘v v Tréw, of C, there exists a
transitionr’:n%!W = TtlDy\N, of D such thaf(tyy) = T;:(u),F(v) for all (u,v) in Syng ,, x Symg ;
in this case, we say that corresponds ta via F.
Lemma 3.14.If F: C — D respects transitions, then for any transitiasf C, there exists anique
transitiont’ of D which corresponds tovia F.

Proof. First observe that, for any symmetric Petri categbrgnd any pair of natural trans-
formationst, . 1@, , > T¢,, ,» Whenevern,y =T, for someu andv, thent = 7’. In fact, for
anyu’ andv there existgs,s): (U,v) — (u,V) in Symy, x Sym s, and themy v = S Tyy;S =
S TS =Ty y-

Now consider the transitiomg andt” of D and suppose that they both correspond téa F.
Then,F(Tuy) = Te(y) Fvy) = Trw) Fv) Which impliest’ = 1. UJ

The previous lemma shows that any symmetric strict mondidadtor which preserves tran-
sitions defines a mapping between the respective sets aiticars. The next lemma proves that
this property extends to the arrows@Q$SMC. It follows then immediately that Definition 3.16
is well given.

Lemma 3.15.1f F ® G, thenF respects transitions if and and onlyGfdoes so, and thetl
corresponds to via F if and only if T corresponds to via G.

Proof. Leto:F = G:C — D be a monoidal natural isomorphism whose components are sym-
metries, suppose thatrespects transitions, and consider a trans'rttcr@yv‘v, = Tré,w,. By hy-
pothesis, there exists a transitiohmy ;o — T ;5 of D such thatF (Tyy) = T r(v for all
(u,v) € Sym , x Symg ,,. Then, by naturality o6, G(Tuy) = O-Jl;T;:(u).F(v);O-V’ and therefore, by
naturality oft’, G(Tyy) = TlG(u),G(v)’ and the proof is concluded. ' O]
Definition 3.16. (Symmetric Petri Morphisms and the Categoy SPetriCat) A morphism
of symmetric Petri categories is an arrow@%SMC which respects transitions. We shall use
SPetriCat denote the subcategory SSMC consisting of the symmetric Petri categories and
their morphisms.

Finally, it is easy to prove thag (_) is actually a functor t&PetriCat.
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Proposition 3.17. @ (-): Petri — SPetriCat) The functorqQ, (.) restricts to a functor frorRPetri
to SPetriCat.

Proof. It is enough to verify that, for any morphisnNg — Nj; in Petri, a representativé
of @ (f) respects transitions. But this follows at once, sificés a function fromily, to Ty, , since
F(tuy) = fr(1)r(),Fv), @nd since the transitions af (N;) are exactly the natural transformations
{tuy | M (u) =v, 91 (v) =V}, fortiv — V' € Ty, U

Interestingly enough, we can identify a functor fr@fetriCat to Petri which is acoreflection
right adjoint toQ (-). It is worth remarking that this answers a possible legiter@doubt about
the categonpPetriCat: in principle, in fact, the functoriality of (-) could be due to a very tight
choice of the target category, e.g., the congruetceould induce too many isomorphisms of
categories and then (-) could make undesirable identifications of nets. The excg@fia core-
flection right adjoint tog (-) is, of course, the best possible proof of the adequa&pPefriCat:
it implies thatPetri is embedded in ifully andfaithfully. More preciselyPetri is (equivalent
to) a coreflective subcategory PetriCat. This result supports our claim thaPetriCat is an
axiomatization of the category of net computations.

Proposition 3.18. Q (-) 4 A( (_): Petri — SPetriCat) Let C be a symmetric Petri category, and
let S® be its monoid of objects. Defing (C) to be the Petri netd®,d*: T — S?), where

— T is the set of transitions n‘é,w, =T, of G

— ao(T:T'%v,v/ - T[%,v,v’) =V

- al(T:T%v,v/ - T[é,v,v’) =V

Then,a( () extends to a functd$PetriCat — Petri which is right adjoint toQ (-). In addition,
since the unit is an isomorphism, the adjunction is a coridiec

Proof. Given a symmetric Petri categofy, there is a (unique) symmetric strict monoidal
functorec: @ AC(C) — C which is the identity on the objects and which sends the corepb
at (u,v) of the transitiort:v — v’ of 2 (C), in the following denoted by}, v, to the component
Ty,v Of the corresponding natural transformatton‘élv,v, = T[éw,: Sym, x Sym ,» — C. Infact,
by naturality oft, we have that; 1, = Tyy; 8 for any symmetries;u — U’ ands:v — V' in
Sym. It follows then directly from Definition 3.1 that the conidihs above definec (uniquely)
as a symmetric strict monoidal functor fragma (C) to C. In addition, since it clearly preserves
transitions, we have that is a (representative of a) morphism of symmetric Petri aaieg.
We shall prove thatc enjoys the following couniversal property: for eakhq (N) — C in
SPetriCat, there exists a unique morphisitN — a¢ (C) in Petri such that the following diagram
commutes.

&c

QA (C) 7 C
Q(f)T "
Q (N)
This proves tha#\ (-) is right adjoint toQ (-), in symbols,Q (-) 4 A (-).
Let S denote the monoid of objects &, let (8°,0%: T — S?) be a/(C), and letF be any

representative oK. Since the object component &fis a monoid homomorphism, we have
M (F(u)) = o (F(v)) wheneveras (u) = 94 (v). Therefore, the functiorfs: ] — S” which
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sendsv to ¢ (F(uy)), for uy, any linearization ob, is a well defined monoid homomorphism.
Moreover, fs does not depend on the chosen representativ€, dor if F £ G then, for all

u e S, there is a symmetrg,: F(u) — G(u), whencess (F(u)) = 2 (G(u)). Concerning the
transitions, considefr: Ty — T defined adft (t) =1, wheret is the transition o€ corresponding
via F to the transition{t, v} of @ (N). By Lemma 3.14f7 is well defined, and by Lemma 3.15,
it does not depend on the representativéoMoreover, sincefr (t:v — V') = T implies that
T:ng,fs(V).,fs(v/) - T[éafS(V)afS(V/), we hgve thaf. =(fr . fs):N — a (C)is a m.orphism_irPetri.

We have to prove that o Q (f) = K in SPetriCat. Without loss of generality, exploiting the fact
that® is a congruence, we prove thext G = F for chosen representative®f ¢, G of Q (f),
andF of K. In particular, we can assume tleas the identity on the objects and thatu) = F(u)
for allu e % Then,sG(tu,v) = E([f(t)]G(u),G(v)) = f(t)G(u),G(v) = TF(u),F(v) = F(tu,v), the last
equality following fromt being the transition o€ corresponding tdt,v} via F. The required
equality of functors follows now directly from DefinitionB.Finally, the uniqueness dffollows
immediately, since if the diagram has to commute, then boghdefinitions offt and fs are
forced.

By general results in category theory, the compomgniN — A Q (N) of the unit of the ad-
junction@ (-) 4 a((-) is the unique arrow which makes the diagram commute whi&nQ (N)
andK is the (equivalence class of the) identity@f-). Applying the previous part of the proof,
we have thatjy = f, wherefsis the identity oiﬁ andfr sends € Ty to {tyv} € TNQ(N)- Since
by the definitions ofz’ (_) and of transition ofg (N) we know thatfr is an isomorphism, we
conclude thatyy is such. O]

Finally, we can identify the replete image qQf(_) in SPetriCat, i.e., we can identify those
symmetric Petri categories which are isomorphi@ttN), for some neN.

Proposition 3.19. Petri = FSPetriCat) Let FSPetriCat be the full subcategory BPetriCat
consisting of those symmetric Petri categotieshose arrows can be generated by tensor and
composition fromsymmetriesand components afansitionsof C, uniquelyup to the axioms of
symmetric strict monoidal categories, i.e., axioms (1) é@)¢dand the naturality of transitions,
i.e., axiom ().

Then,FSPetriCat andPetri are equivalent via( (-) andq (-).

Proof. By general results in category theory, it is enough to shauGtbelongs td-SPetriCat
if and only if the componerdc: Q A (C) — C of the counit ofQ (=) 4 A (-) is an isomorphism.
Let € be a representative ef. Clearly,sc is iso if and only ife is such. Moreover, sinceis an
isomorphism on the objects, it is iso if and only if it is annsorphism on each homset. Then
the result follows, since each arrow@fcan be written as tensor and composition of symmetries
and component of transitions if and onlygifs surjective on each homset, and this can be done
uniquely (up to the equalities that necessarily hold in amgreetric Petri category) if and only
if € is injective on each homset. [

4. Strongly Concatenable Processes

In this section we introduce a slight refinement of concdinarocesses and we show that
they are abstractly represented by the arrows of the categdN). In other words, we find a
process-like representation for the arrowsofN). This yields a functorial construction for the
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Figure 6. Three strongly concatenable processes correspondingft&igure 2

category of the processes of a hetOur task is simplified by the work already done in the proof
of Proposition 3.6.

Definition 4.1. (Strongly Concatenable Processes) strongly concatenable procesfa netN

is a triple(m, ¢,L) wherert © — N is a process o, and/ andL are total orderings of, respec-
tively, the minimal and the maximal places®f i.e., bijections: min(®) — {1,...,|min(®)|}
andL:max©) — {1,...,|max©)|}.

An isomorphism of strongly concatenable processes is anagghism of the underlying pro-
cesses which, in addition, preserves the orderthgadL. As usual, we identify isomorphic
strongly concatenable processes.

Example 4.2.Thus, as already remarked, a strongly concatenable prixcsssply a Goltz-
Reisig process whose minimal and maximal places are lyneadered. As in the case of con-
catenable processes, we shall represent strongly coatéégprocesses by decorating places —
when necessary — with the valuesédndL. As an example, Figure 6 shows three (of the four)
different strongly concatenable processes obtained leatining source and target of the con-
catenable processof Figure 2. The corresponding arrows @f(N) are also given; the reader
can safely ignore them for the moment: the corresponderitbadome clear after the proof of
our representation result in Proposition 4.5.

As in the case of concatenable processes, strongly comtaéeprocesses df can be en-
dowed with a symmetric monoidal algebraic structure, dituather similar to the one of
c?(N). First, we associate a source and a targefjrto each strongly concatenable process
by taking thestring corresponding to the linear ordering of, respectively, (®inand max®).
Then, the concatenation ¢fi): ©9 — N, {p,Lp):u — v and (4:©; — N,¢3,L1):v — wis the
concatenable procesx©® — N, /,L):u — w defined as follows (see also Figure 7), where
denotes the disjoint union of sets and functions.

— Let mbe the cardinality of ma®,) and mir(®,), coinciding by definition of source and
target, and consider the functiobs{1,...,m} — Sg, and/:{1,...,m} — S, defined by

-1
él

L={1...,m} iimax(ao)qseo and (= {1,....m} — min(©,) — Sy,
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Figure 7. An example of the algebra of strongly concatenable prosesse

Let Sbe a pushout of and/, e.9.,S, U Se, quotiented by the equatiorh_:{i) = ((i), for
i=1,...,m whenS, andSe, are disjoint, and leing: Sp, — Sandin;:Sp, — Sbe the
corresponding injections. Then,

0= (<3go+agl,a(190 +05,:Toy + To, — SY),

i S
whereagai is To E % n S” andin” is the free monoid homomorphism inducediby
— Let go:S, — Sv andg1: S, — Sy be the functions underlying the place components of,
respectively,p and . SinceggolL = g; 04, there exists a (unique) functiapS — Sy
(induced by the pushout) such th@b ing = gg andgoing = gy, i.e., that agrees witht
on Sg, and withy on Se,. Thenm= (Tt + T4 1,9%).
— ((ing(a)) = {o(a).
— L(iny(a)) = L1(a).
Proposition 4.3. (The Categoryc @ (N)) Under the above defined operation of sequential com-
position, the strongly concatenable processds fifrm acategoryc @ (N) with identities those
processes consisting only of places, which therefore atte ininimal and maximal, and such
that/ = L.

Concerning the operation of parallel composition, 8€R = (TH:©g — N, 4g,Lg):u — v
andSCR = (m:©; — N, /1,L1):u — V strongly concatenable processB§R) @ SCR is the
procesgt® — N,/,L):u® u — vV defined below (see also Figure 7), wharedenotes the
inclusion ofSg, in the disjoint uniorSg, + S, -

— 0= (aoeo + a01’6(190 + a(lal:TOO JrT@l - (S@o + &91)$);
— Tt=(ToT + T4T,Tos+ Tus);

— {(ing(a)) =4p(a) and £(ini(a)) =|min(Op)|+ ¢1(a);
— L(ino(a)) =Lo(a) and L(iny(a)) =|maxOo)|+L1(a).
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n n+1 n+m

m+1

Figure 8. A transitionst, y: U — v and the symmetry(u,v) in ¢ Q (N)

It is easy to verify that is a functor®: ¢ Q (N) x cQ (N) — ¢ Q (N). The strongly concaten-
able processes consisting only of places are analogoa®ifN) to the symmetries of) (N).
In particular, for anyu,v € S?, the strongly concatenable procgés,v) consisting of places are
in one-to-one correspondence with the elements of thegstrinv mapped byrt to the corre-
sponding places dfl, and such that(u;) =i, £(vi) = |u|+1i, L(u;) = |v|+1i, andL(v;) =i, plays
in ¢ (N) the role played by the symmetgyy, i.e., the permutatiog(u,v), in Q (N) (see also
Figure 8).
Proposition 4.4. (The Symmetric Monoidal Categoryc Q (N)) Under the above defined tensor
product,c @ (N) is asymmetric strict monoidal categowhose symmetry isomorphism is the
family {V(u,v)}ujveg,i. Moreover, the subcategory ofQ (N) consisting of the processes with
only places is the category of symmetriesaaf, (N) and is isomorphic t&yny;.

Proof. Concerning the first claim, it is enough to verify thag (N) satisfies the axioms (6)
with respect tax and the symmetriggu, v) defined above. The task is really immediate and thus
omitted.

Let Symbe the subcategory of the processes consisting only of plaiceq (N). Since® re-
stricts to a functoBymx Sym— Sym we have thaSymis a symmetric strict monoidal category
with symmetry isomorphisnﬁﬂu,v)}uyvesﬁ. Then, by Proposition 3.6, there exists a fundior

from Synj, to Sym corresponding to the identity function &, which is the identity on the
objects and such that(y(u,v)) = y(u,v). Moreover, since for any,v € §j the strongly con-
catenable processes fromto v in Symare clearly isomorphic to the permutatiopsu — v

in Syny,, it follows easily thaf is full and faithful. Thereforef is an isomorphism. This means
that Symis generated via composition and tensor product from thensstmesy(u,v) and from
the identities, i.e., theBymis the category of symmetries ofQ (N). ]

The transitions of N are faithfully represented in the obvious way by processtsawnique
transition which is in the post-set of any minimal place andhe pre-set of any maximal
place, minimal and maximal places being in one-to-one spordence, respectively, widh ()
anday (t). Thus, varying/ andL on the process corresponding to a transition we obtain &repr
sentative inc Q (N) of each instancg,y of t in Q (N) (see also Figure 8).

We can show the announced correspondence betwggiN) andq (N).

Proposition 4.5. (Strongly Concatenable Processes w3.(-)) cQ (N) andq (N) are isomor-
phic inSSMC.

Proof. First observe that Q (N) satisfies axiom®) of Definition 3.1, the symmetries and
the (instances of) transitions being as explained aboverdier to prove this statement, let
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Tuyv = (To: @ — N, 4o, Lo) andTy v = (M:©1 — N, /1,L1) be different instances of some tran-
sitiont, and letS:.u — U’ andS:v — V' be symmetries of Q (N). Assume also tha® ! andS
correspond, respectively, to the permutatipng — uandg:v—V in @ (N). Then,S™*; Tyy; S
is (isomorphic t0)(Th: @9 — N, po fo,qo Lo). Consider now the functiog: Sg, — S, such
thatg(x) = ¢7X(p(fo(X))) if x € min(®p) andg(x) = Ly *(a(Lo(X))) if x € max@p). Clearly,
by definition of @y and @1, g is an isomorphism. Moreover, since for eack min(®p) and

y € max@o) we have thal ) = Uy ) andViyy) = Uy () it follows thatm(g(x)) =

Ury(gx) = Yp(to() = Yorx) = To(X) and thatm (g(y)) = U, qy)) = Ugiy(y)) = Usoty) = To(Y):
Therefore, we have an isomorphigig®):©y — ©1, wheref is the function which maps the
unique transition if®g to the unique transition i®;. Then,S™%; T,y ; S = Ty v, i.e., @) holds.

Thus, sinceg (N) is the free symmetric strict monoidal category built &y, plus the addi-
tional arrows inTy and which satisfies axiom), there is a strict symmetric monoidal functor
#:Q (N) — cQ (N) which is the identity on the objects and sends the generaterssym-
metries and transitions, to the corresponding stronglgatemable processes. We want to show
that # is an isomorphism. Observe that, by Proposition 4.4, weadreknow thats is an
isomorphism between the corresponding categories of syrane

fullness It is completely trivial to see that any strongly concataegrocesSCPmay be ob-
tained as a concatenati8CR ; ... ; SCR, of strongly concatenable proces&€R of depth one.
Now, each of thes8CR may be split into the concatenation of a symm@gythe tensor of the
(processes representing the)_ transitions which appeapins some identities, say ® &); J-i
and finally another symmeti§,. In fact, we can take the tensor of the transitions which appe
in SCR in any order, and multiply the result by an identity concatae process in order to get
the correct source and target; we then need a pre-condateaatd a post-concatenation with
symmetries in order to get the right indexing of minimal analkimal places. Then, we obtain

SCP=; (@@ 1) (S:5) i (S H) (e @ T} 8],

which shows that every strongly concatenable process feimtage ofx .

faithfulness The arrows of (N) are equivalence classes, modulo the axioms stated in Defini-
tion 3.1, of terms built by applying tensor and sequentighposition to the identitie&,, the
symmetriex,y, and the transitiont,y. We have to show that, given two such termsnd3,
whenever# (a) = # (B) we havea =; B, where=; is the equivalence induced by the ax-
ioms (1), (2) and®).
First of all, observe that if/ (a) is a strongly concatenable proc&SPof depthn, thena can
be proved equal to a term

o =5; (idy, ®®;T}) ;81581 (idy, © R T]) s &0
where, for 1< i < n, Tij = (t})uij v and the transitionﬁj, for 1 < j < n;, are exactly the tran-
sitions of SCPat depthi and wheres, ..., s, are symmetries. Moreover, we can assume that
in theith tensor produc®jtij the transitions are indexed_ according to a global ordering
of Ty assumed for the purpose of this proof, i#.< --- <ty for 1 <i < n. Our claim can
easily be shown by induction on the structure of terms. Int, fasing axioms (1y can be
rewritten asay;...;ay, whereaj = ®kEL and E‘k is either a transition or a symmetry. Now,
observe that, by functoriality of, for anya’:v' — Vv, a”:u” — V' ands.u — u, we have
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o’ ®sea’ = (dy ®s®idy); (0’ ®id, ® a”), and thus, by repeated applications of (1), we
can prove thatt is equivalent tosp; 01;S; . . . ;S-1;0n, Wheresy,...,§_1 are symmetries and
eachq; is a tensor®kEik of transitions and identities. The fact that the transiian depth
can be brought to thiéh tensor product, follows intuitively from the facts thaey are ‘dis-
jointly enabled’, i.e., concurrent to each other, and thaytdepend causally on some transition
at depth — 1. In particular, the sources of the transitions of depthrilimatarget only of symme-
tries. Therefore, reasoning formally as above, they carubbgd up tar; exploiting axioms (1).
Then, the same happens for the transitions of depth 2, wiaictbe brought tar,. Proceedlng

in this way, eventually we show thatis equivalent to the COMPOSIticy; a11;S1 .. . Sn—1; 0n; S

of the symmetriesy, . ..,_sn and the products; = ®kEk of transitions at depthand identities.
Finally, the order of thé}( can be permuted in the way required 8y This is achieved by pre-
and post-composing each product by appropriate mter@aymmetnes More preusely, let
be a permutation such th@, &ig coincides withidy, @ ®J , suppose th&§i,:u, — v'k, for

1 <k < k. Then, by definition of interchange permutatiorﬁylnﬁI we have that

o(ul, . U ) ; (®kE:i0(k)) = (®kE:L) SOV, W),

and then, since(uj, .. .,uiki) is an isomorphism, we have that

(idy ® ®;Tj) = o(uj, ... Uiq)’l;(®kE=L);0(v"l,...,\/K).

Now, applying the same argument p one can prove that it is equivalent to a teffh=
Po; Bo; P1; - - - Pn_1; Bn; Pn, Wherepy, ..., pn are symmetries anl is the product of (instances of)
the transitions at depfhin #f () and of identities. Then, since (o) = #f (B), and since the tran-
sitions occurrmg irBj are indexed in a predetermined way, we concludefihat(id, ® ;T J)
WhereT = (t )T ¥ ie.,

o = 5;(idy, ® ;L )ulvl) Sti-oeiSne1 (idu, @ () unwe) 5 n
B = poi(idy ®®;(t)ga)i P Proas (idy, ®®; (i) P (5)

i

In other words, the only possible differences betweérand 3’ are the symmetries and the
sources and targets of the corresponding instances ofitioaiss Observe now that the steps
which led froma to o’ and fromp to B’ have been performed by using the axioms which de-
fine @ (N) and since such axioms hold inQ (N) as well and# preserves them, we have that
# (o) = # (a) = # (B) = # (B'). Thus, we conclude the proof by showing thatpifand

are terms of the form given in (5) which differ only by the inteediate symmetries and if
# (o) = #H (B), thena andp are equal i@ (N).

We proceed by induction om Observe that ifi is zero then there is nothing to show: since we
know that# is an isomorphism on the symmetrigg and pg, and thusx andf3, must coincide.
To provide a correct base for the induction, we need to priogéttesis also fon = 1.

depth 1 In this case, we have

a = so;(Idu®@@j(tj)uy) st
B = po;(idu®®;(tj)g,v); Pr-
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Without loss of generality we may assume thgiandp; are identities. In fact, we can multiply
both terms bypal on the left and byp;l on the right and obtain a pair of terms whose images
through# still coincide and whose equality implies the equalitgiriN) of the originala andp.

Let (t® — N,4,L) and (T_r.é — N,f_,lf) be, respectively, the strongly concatenable processes
H (idu @ ®j(tj)y;v;) and s (idy @ ®;(tj)g ;). Clearly, we can assume that(so) and s (s1)

are respectivelymy: ©g — N, ¢, ¢) and(my:©; — N,L,L’), where®g is min(®), ©; is max©),

Ty andty are the corresponding restrictionsmofand?’ andL’ are the orderings respectively of
the minimal and the maximal places®f

Then, we have that/ (so; (idu ® @ (tj)y,v;);51) is (t© — N,¢,L’), and by hypothesis there
is an isomorphisn$:© — © such thatrto ¢ = 1 and which respects all the orderings, i.e.,
((¢(a)) = ¢'(a) andL(¢(b)) = L'(b), for all a € ©p andb € ©;. Let us writeidy ® ®;(tj)u; v,
as®y &k andidy ® ®; (t; )Jj’vj as@y &k, wheregy, respectivelgy, is either a transitioft; )uj e
respectively(t;)g; v, or the identity of a place in. Clearly,¢ induces a permutation, namely the
permutationo such tha€ s = ¢(&k). In order for to be a morphism of nets, it must map the
(places corresponding to the) pre-set, respectively petswf(t;)y; v; to (the places correspond-
ing to the) pre-set, respectively post-set,(tg,(j))gcmyo(j). It follows that (my:©1 — N,L,L'),
which is #( (s;), must be a symmetry obtained by post-concatenating theemigy of the
interchange symmetrg(vs,..., Vg ) in ¢ Q (N) with a tensor producg®); SJ-1 of symmetries, one
for eacht occurring ina, whereS}:v; — v, whose role is to reorganize the tokens in the post-
sets of each transitions. Reasoning along the same linesameonclude that: ©g — N, 4, ),
which is# (sp) ™1, must be a symmetry obtained by concatenating a tensorqr@iiLBQ, where
SJ-):u,- — Uuj is a symmetry, with the image via of the interchange symmetiy(uy, ..., uy).
Then, sincex is anisomorphism betwe&ym, () andSym, (v, So ands; must necessarily be,
respectivelyo(Uy, ..., U ) % (idy © @, 87), and(idy @ ®; });0(Va, ..., Vi, ), wheres: U} — u;
ands}:v; — V; are symmetries.

Then, by distributing the tensor of symmetries on the ttéors and using®), we show that

a = o(ly,...,0) 1 (idy© @S (t)uy; i ) s 0V, .-, V)
= o(Uy,...,Ug) s (idu @ ®;(t)a; ) s O(Va, -, Vi),
which, by definition of interchange symmetry,(isl, ® ®; (tj)g ;). Thus, we haver =; B as
required.

Inductive step Suppose that > 1 and leta = a’;a” andp = @'; 3", where

a = So;(idul®®j'[jl);$1;...;$1,1 and a” (idu, ® ®; T]) s n
p' Po; (idy, @ ®;T});pr;---spnr and B’ = (idy, @®;T); pn

We show that there exists a symmesiip Q (N) such that (a’;s) = # (B') ands (s 1;a") =
7 (B"). Then, by the induction hypothesis, we hgaé s) = B and(s™%;a”) =, B". Therefore,
we conclude thata’;s;s™1;a”) =z (B';B"), i.e., thata = Bin Q (N).

Let (Tt ©® — N,¢,L) be the strongly concatenable proces&) = # (B). Without loss of gener-
ality we may assume that the strongly concatenable prosesg® ) ands (B') are, respectively,
(m® — N, 7, La") and(m:@ — N, 7, LB/), where@' is the subnet of depth— 1 of ©, ¢ is the
appropriate restriction afand finaIIyL“; andL? are orderings of the places at depth 1 of ©.
Consider the symmeti$= (Tt © — N, /,L) in ¢ Q (N), where
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— Qisthe process net consisting of the maximal place®'of

— L@ — N s the restriction oftto ©;

— (=LY

— L=LF,

Then, by definition, we haver (a’); S= # (’). Let us consider now” andp”. We can as-
sume thatr (o) ands (B”) are, respectivelyn’:©” — N, /%" L") and(":@” — N, ¢*" L"),
where®” is the process net obtained by removing fr@nthe subne®’, L” is the restriction
of L to @, and¢®” and¢®” are orderings of the places at depth 1 of ©. Now, in our hypoth-
esis, it must be® = ¢ andLP = (", which shows directly tha®L; 7 (a”') = # (B"). Then,
s= # ~1(S) is the required symmetry af (N).

Then, sincex is full and faithful and is an isomorphism on the objectss iah isomorphism and
the proof is concluded. ]

We conclude this section with a few remarks concerning thetiomships betweer (N)
and Q (N). As we have already noticed, (N) can be quotiented down ®(N) — although
not in a functorial way — by imposing the commutativity of ttensor product on the objects
and the equations, , = id, for a# b € Sy. On the other hand, there is clearly no reasonable way
to map? (N) in Q (N).

At the level of processes, the difference — clearly illusdsby Figures 2, 6 and 7 — is in our
opinion not very deep, at least conceptually. Intuitivelijle one the one hang (N) has many
more generators than(N), on the other hand process composition is a more restrigtechton,
since source and targets are strings rather than multiBeis.is why the difference between
concatenable and strongly concatenable processes is etatypbcalized in the orderings of
their minimal and maximal places.

Apart from such qualitative considerations, the essedifiérence betweemr (N) andqQ (N)
remains, of course, the symmetry, for a# b € §y. Toillustrate its role, let us consider again the
processes of Figure 6. They all correspond to the concatepaticesst of Figure 2. In fact, by
the second of (2 =ty ®ty ; t®idc can be rewritten alg ®ty ; Ccc ; idc ®1; ¢ g and, therefore,
if ccq = id, it coincides withrb =ty ® 17 ; Ce ¢ ; idc ®t. In the same wayr; =t ®tg ; idc ®t is
Cha;to®1t1; Coc ;s idc®t, i.e.,Th if cp , = id. However, as proved in this paper, such a difference
is the real key to the functoriality of (N). In particular, notice that the counterexample of
Example 2.1 exploits the fact that such symmetries areiiitsiin an essential way. Observe, in
fact, the axioms of symmetric monoidal categories implydhéatty @ty = Caga, ;11 @10 ; Cpy by-
Itis precisely the first axiom in Definition 1.5 that allowstoegdrop the symmetries and conclude
thatto ®t; =t; ®1g, yielding an absurd situation.

Conclusions

In this paper we studied the issue of functoriality for theegarical/algebraic viewpoint of Petri
net processes introduced in (Degaal. 1996). We gave a negative result showing that no naive
modification of? (N) can be functorial. Then, we introduced the strongly conttée processes
as a minimal modification of concatenable processes whidsstauch a result into account,
and showed that the construction of the strongly concatermabcesses can be expressed via a
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functorq (). This supports the informal claim that strongly concaté@abocesses are the least
extension of concatenable processes which yields furadityrii.e., the least extension of Goltz-
Reisig processes which yields an operation of concatenatid admits a functorial treatment.
In addition, the paper proposé&dPetriCat as an axiomatization of the category of (categories
of) net behaviours; the appropriateness of such a categatetpurpose has been proved by
showing thatQ, (-) embeds coreflectiveljetri in SPetriCat.

The choice of the category of Petri nets studied in the payenelyPetri exactly as defined
in (Meseguer and Montanari 1990) and used in (Degzrad. 1996), has been suggested by the
existence of the open problem of functoriality of the pracesmantics. It is worth remarking,
however, that such a category is rather general, in theggseinse of allowing all the reasonable
morphisms, as introduced in (Winskel 1984; Winskel 198 Ticl map transitions to transitions.
Nevertheless, more general kinds of morphisms, e.g., mggm@nsitions to computations, have
been occasionally proposed in the literature (Winskel 188¥seguer and Montanari 1990). A
question which may be worth investigating in the future @ne the categorical axiomatiza-
tions of the behaviour of nets, analogous to the one preddmaee, when such morphisms are
considered. More generally, the results of this paper npghwide both the motivations and the
technical ground for investigating new notions of morphfenPetri nets making (-) a functor
to SSMC, rather than a pseudo-functor.

We definedSPetriCat via a quotient which accounts precisely for the ‘strings esresen-
tatives of multisets’ paradigm that we pursued in this papér would like to remark that an
equivalent, ‘quotient-free’, exposition of our resultsidze given in terms a2-categoriegmore
precisely,groupoid-enricheccategories), the information about multisets being cdrbg the
2-structure. In fact, leR-SPetriCat be the 2-category whose objects are the symmetric Petri
categories, whose arrows are transition-respecting syrimsérict monoidal functors, and such
that there is a 2-cell betwednand G if there exists a monoidal natural isomorphigm= G
whose components are all symmetries. Then, consid@éngas a (trivial) 2-category, we have
thata (_): 2-SPetriCat — Petri is a 2-functorQ (.): Petri — 2-SPetriCat is apseud®-functor,
andQ (-) 44 (.) is apseudo coreflectiarThe latter means precisely that the natural family of
isomorphisms between homsets which defines an adjunctieteised to a pseudo natural, i.e.,
natural up to isomorphism, family of equivalences betweamdats.

We think that this alternative formulation of our axiomatipn of net behaviours has some
intrinsic value and deserves consideration. In fact, theug@s functoriality expressible in 2-
categories seems to be the right level of abstraction fonédizing constructions such as(-),
which are essentially functorial but cannot reasonablydpeeted to be strictly so. Nevertheless,
in this paper we followed a ‘1-categorical’ presentatiangs it relies on simpler categorical
tools whose use is by now rather common in our community.
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A. Symmetric Strict Monoidal Categories

A symmetric strict monoidal categoi@énabou 1963; Eilenberg and Kelly 1966; MacLane 1971) is a
categoryC together with a functog: C x C — C, called thetensor productand a selected objeet C, the

unit object such thatr, when viewed as a pair of operations respectively on obgadsarrows of, forms

two monoids whose units assandide, and together with a family of arrowg y:x®y — y®x, for x andy
objects ofC, such that, for eacli:x — y andg:xX' — Yy in C,

(idy ® Vx,z) o (Vx,y ®idz) = Yx,yoz
e flowy = Wyo(f®g); (6)
Vyﬁx o yxﬁy = idx@y

Notice that the equations above mean, respectivelyythatisfies the relevant Kelly-MacLane (MacLane
1963; Kelly 1964) coherence axiom, that {yxy}xyec is a natural transformatio® - @ oA, whereA

is the endofunctor o x C which ‘swaps’ its arguments, and thaly is an isomorphism with inversgx.

The role ofy is to express the commutativity ‘up to isomorphism’ of theusture by giving explicitly the
isomorphism, e.g., betweer® y andy®@ x. Then, the axioms above guarantee the reasonable requireme
that between any two functors built using exclusivelye, and permutations of arguments, there is at most
one natural transformation composed out of such strudswsadorphism, i.e., they guarantee the coherence
of the structural isomorphism

Theorem (MacLane 1963; Kelly 1964)Every diagram of natural transformations each arrow
of which is obtained by repeatedly applyingto ‘instances’ ofy and identities, where in turn
‘instances’ means components of the natural transformagibobjects ofC obtained by repeated
applications of to e and to ‘variables’, commutes.

A symmetryin a symmetric monoidal category is any arrow obtained asposition and tensor of
‘instances’ ofy and identities. We writ8ynt to denote the subcategory of a symmetric monoidal category
whose objects are those 6fand whose arrows are the symmetrie€of

A symmetric strict monoidal functdrom (C,®,e,y) to (D,®',€,Y) is a functorF: C — D such that

Fle = ¢,
Fixay) = FX)&'F(y), @)
Fity) = Vexry

These data define the categ&§MC of symmetric strict monoidal (small) categories and synminstrict
monoidal functors.

Given the symmetric strict monoidal categoriésand D and the symmetric strict monoidal functors
F:C — D andG: C — D, amonoidal transformatiofrom F to G is a natural transformatiom: F = G such
that

Oe = ide/7
0'u®\/ = Ou ®/ Oy. (8)
Given a (symmetric monoidal) categofyand a family® of binary relations on the homsets 6f(in
particular a set of equations on parallel arrows ofC) the (monoidal) quotienbf C modulo £, is the
categoryC/® , whose objects are those 6fand whose arrows are the equivalence classes of the arrows

of C modulo theleastequivalence closed with respect to arrow composition (anddr product) which
containsg_ .



