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We introduce the notion ofstrongly concatenable processas a refinement of concatenable
processes (Deganoet al.1996) which can be expressed axiomatically via afunctorQ ( ) from the
category of Petri nets to an appropriate category of symmetric strict monoidal categories, in the
precise sense that, for each netN, the strongly concatenable processes ofN are isomorphic to the
arrows ofQ (N). In addition, we identify acoreflectionright adjoint toQ ( ) and characterize its
replete image, thus yielding an axiomatization of the category of net computations.

Introduction

Petri nets, introduced by C.A. Petri in (Petri 1962) (see also Petri 1973; Reisig 1985), are unani-
mously considered one of the most representativemodels for concurrency, since they are a fairly
simple and natural model ofconcurrentanddistributedcomputations. However, Petri nets are,
in our opinion, not yet completely understood.

Among the semantics proposed for Petri nets, a relevant roleis played by the various notions
of process(Petri 1977; Goltz and Reisig 1983; Best and Devillers 1987), whose merit is to
provide a faithful account of computations involving many different transitions and of thecausal
connectionsbetween the events occurring in a computation. However, process models, at least
in their standard forms, fail to bring to the foreground thealgebraic structureof nets and their
computations. Since such a structure is relevant to the understanding of nets, they fail, in our
view, to give a comprehensive account of net behaviours.

The idea of looking at nets asalgebraic structures(Reisig 1985; Nielsenet al.1981; Winskel
1984; Winskel 1987; Brown and Gurr 1990; Brownet al.1991) has been given an original inter-
pretation by considering monoidal categories as a suitableframework (Meseguer and Montanari
1990). In fact, in (Meseguer and Montanari 1990; Deganoet al. 1996) the authors have shown
that the semantics of Petri nets can be understood in terms ofsymmetric monoidal categories
— where objects are states, arrows processes, and the tensorproduct and the arrow compo-
sition model, respectively, the operations of parallel andsequential composition of processes.
In particular, (Deganoet al. 1996) introducedconcatenable processes— a simple variation of
Goltz-Reisig processes (Goltz and Reisig 1983) on which sequential composition can be defined
— and structured the concatenable processes of a Petri netN as the arrows of the symmetric
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strict monoidal categoryP (N). This construction complements the process-oriented viewof net
computations by explaining their underlying algebra; moreprecisely, it yields an axiomatization
of the causal behaviour of a net as anessentially algebraic theory, and thus provides aunification
of the process and the algebraic view of net behaviours.

However, also this construction is somehow unsatisfactory, since it is not functorial. More
strongly, given a morphism between two nets, i.e., asimulationbetween them, it may not be
possible to identify a corresponding monoidal functor between the respective categories of com-
putations. This fact, besides showing that our understanding of the algebraic structure of Petri
nets is still incomplete, prevents us from identifying thecategory(of the categories)of net com-
putations, i.e., from axiomatizing the behaviour of Petri nets ‘in thelarge’.

This paper presents an analysis of this issue and a solution based on the new notion ofstrongly
concatenable processes, introduced in Section 4. These are a slight refinement of concatenable
processes which are still rather close to the standard notion of process: they are Goltz-Reisig
processes whose minimal and maximal places are equipped with a linear ordering. In the paper
we show that, similarly to concatenable processes, also this new notion can be axiomatized as an
algebraic construction onN by providing an abstract symmetric strict monoidal category Q (N)

whose arrows are in one-to-one correspondence with the strongly concatenable processes ofN.
The categoryQ (N) constitutes our proposed axiomatization of the behaviour of N in categorical
terms.

Corresponding directly to the linear ordering of pre- and post-sets which characterizes strongly
concatenable processes, the key feature ofQ ( ) is that, differently fromP ( ), it associates to the
netN a monoidal category whose objects form a freenon-commutativemonoid. The reason for
renouncing to commutativity when passing fromP ( ) to Q ( ), a choice that at first may seem
odd, is explained in Section 2, where the following negativeresult is proved:

under very reasonable assumptions,no mapping from nets to symmetric strict monoidal
categories whose monoids of objects are commutative can be lifted to a functor, since
there exists a morphism of nets whichcannotbe extended to amonoidalfunctor between
the appropriate categories.

Thus, abandoning the commutativity of the monoids of objects and consideringstrings as
explicit representatives of multisets, i.e., consideringstrongly concatenable processes, seem to be
a choice forced upon us by the aim of a functorial algebraic semantics of nets. As a consequence
of this choice, any transition ofN has many corresponding arrows inQ (N), actually one for
each linearization of its pre-set and of its post-set. However, such arrows are ‘related’ to each
other by anaturality condition, in the precise sense that, when collected together, they form a
natural transformation between appropriate functors. This naturality axiom is the second relevant
feature ofQ ( ) and it is actually the key for keeping the computational interpretation of the new
categoryQ (N), i.e., the strongly concatenable processes ofN, surprisingly close to that ofP (N),
i.e., the concatenable processes ofN, and to the classic notion of net processes.

Concerning our main issue,viz. functoriality, in Section 3 we introduce a categorySPetriCat

of symmetric strict monoidal categories with free non-commutative monoids of objects, called
symmetric Petri categories, whose arrows are equivalence classes — accounting for our view
of strings as representatives of multisets — of those symmetric strict monoidal functors which
preserve some further structure related to nets, and we showthatQ ( ) is a functor fromPetri, a
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rich category of nets introduced in (Meseguer and Montanari1990), toSPetriCat. In addition, we
prove thatQ ( ) has acoreflectionright adjointN ( ):SPetriCat→Petri. This implies, by general
reasons, thatPetri is equivalentto an easily identified coreflective subcategory ofSPetriCat,
namely thereplete imageof Q ( ). The categorySPetriCat, together with the functorsQ ( )

andN ( ), constitutes our proposed axiomatization (‘in the large’)of Petri net computations in
categorical terms.

Although this contribution is a first attempt towards the aims of a functorial algebraic seman-
tics for nets and of an axiomatization of net behaviours ‘in the large’, we think that the results
given here help to deepen the understanding of the subject. We remark that the refinement of
concatenable processes into strongly concatenable processes is similar and comparable to the
one which brought from Goltz-Reisig processes to them, and that the result of Section 2 makes
strongly concatenable processes ‘unavoidable’ if a functorial construction is desired. In addition,
from the categorical viewpoint, our approach is quite natural, since it is the one which simply
observes that multisets are equivalence classes of stringsand then takes into account the categor-
ical paradigm, following which one always prefers to add suitable isomorphisms between objects
rather than considering explicitly equivalence classes ofthem. Finally, concerning the use of cat-
egory theory in semantics, and in particular in this paper, it may be appropriate to observe here
that the categorical framework made it possible to discoverand amend a significant ‘anomaly’ of
concatenable processes which, although of general relevance, would have not been easily noticed
in other frameworks.

This paper is a full and extended version of (Sassone 1995). Some preliminary related results
appear also in the author’s thesis (Sassone 1994).

Notation. Given a categoryC, we denote the composition of arrows inC by the usual symbol ◦ and
follow the usual right to left order. The identity ofc∈ C is written asidc. However, we make the following
exception. When dealing with a category in which arrows are meant to represent computations, in order to
stress this, we write arrow composition from left to right, i.e., in the diagrammatic order, and we denote it
by ; . Moreover, when no ambiguity arises,idc is simply written asc. We shall useSSMC to indicate the
category of (small) symmetric strict monoidal categories and symmetric strict monoidal functors. Since the
monoidal categories considered in the paper are alwaysstrict monoidaland (non-strictly) symmetric, we
may sometimes omit to mention all the attributes without causing misunderstandings.
The reader is referred to (MacLane 1971) for the categoricalconcepts used in the paper. The basic defini-
tions concerning symmetric strict monoidal categories aresummarized in Appendix A.

Acknowledgments. I wish to thank José Meseguer and Ugo Montanari to whom I am indebted for sev-
eral discussions on the subject. Thanks to Mogens Nielsen, Claudio Hermida, Jaap van Oosten, and the
anonymous referees for their valuable comments on an early version of this paper.

1. Concatenable Processes

In this section we recall the notion of concatenable process(Deganoet al.1996) and we give the
definitions which will be used in the rest of the paper.

Notation. Given a functionν from a setS to the set of natural numbersω, its support is the subset ofS
consisting of those elementss such thatν(s) > 0. We denote byS⊕ the set offinite multisetsof S, i.e., the
set of all functions fromS to ω with finite support. We shall represent a finite multisetν ∈ S⊕ as a formal
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sum
L

i∈I nisi where{si | i ∈ I} is the support ofν andni = ν(si), i.e., as a sum whose summands are all
nonzero. Recall thatS⊕ is a commutative monoid, actually thefree commutative monoid onS, under the
operation of multiset union with unit element the empty multiset 0.

Definition 1.1. (Petri Nets)A Place/Transition Petri netis a structureN = (∂0
N,∂1

N:TN → S⊕N),
whereTN is a set oftransitions, SN is a set ofplaces, ∂0

N and∂1
N are functions.

A morphismof nets fromN0 to N1 is a pair f = 〈 fT , fS〉, where fT :TN0 → TN1 is a functionand
fS:S⊕N0

→ S⊕N1
is amonoid homomorphism, that respects source and target, i.e., the two squares

obtained by choosing the upper or lower arrows in the parallel pairs of the diagram below com-
mute.

TN0
++

∂0
N0

33

∂1
N0

��

fT

S⊕N0

��

fS

TN1
++

∂0
N1

33

∂1
N1

S⊕N1

This, with the obvious componentwise composition of morphisms, defines the categoryPetri of
nets.

Thus, according to Definition 1.1, a Petri net is precisely asa graph whose set of nodes is
a free commutative monoid, i.e., the set offinite multisetson a given set ofplaces. The source
and target of an arc, here called atransition, are meant to represent, respectively, themarkings
consumed and produced by the firing of the transition.

In the noninterleaving approaches to concurrency, it is common to describe computations in
terms of partial orderings representing the causal relationships between event occurrences. In the
case of nets, this is fruitfully formalized through the following notion of process.

Definition 1.2. (Process Nets and Processes)A process netis a finite, acyclic netΘ such that

(i) for all t ∈ TΘ, ∂0
Θ(t) and∂1

Θ(t) are sets (as opposed to multisets);
(ii) for all pairst0 6= t1 ∈ TΘ, ∂i

Θ(t0)∩∂i
Θ(t1) = ∅, for i = 0,1.

Given N ∈ Petri, a processof N is a morphismπ:Θ → N, whereΘ is a process net andπ is
a net morphism which maps places to places (as opposed to morphisms which map places to
markings).

The constraint onπ in the definition above means that process morphisms map a single com-
ponent of the process net to a single component ofN; otherwise said, processes are nothing but
labelings ofΘ — which in turn, as implied by the constraints on it, is essentially a partial ordering
of transitions — with appropriate elements ofN.

In order to define processes at the right level of abstraction, we need to make some identifica-
tions and consider as identical process nets which are isomorphic. Precisely, we shall make no
distinction between processesπ:Θ → N andπ′:Θ′ → N for which there exists an isomorphism
ϕ:Θ → Θ′ of the underlying process nets such thatπ′ ◦ϕ = π.

Example 1.3.Figure 1, in which we use the standard graphical representation of nets with cir-
cles for places, boxes for transitions, and directed arcs for sources and targets, shows a netN
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Figure 1. A net N and two of its processes

with SN = {a,b,c,d} andTN = {t0:a → c,t1:b → c,t:c → d} and two of its processes. A pro-
cessπ of N is represented implicitly by labeling each elementx of its process net byπ(x), the
(unique) element ofN it corresponds to. The picture also makes clear the distinctroles of the
two components of processes: the morphismπ identifies which elements ofN are involved in the
computation, whilst the process netΘ serves to describe their causal links.
It is worth observing thatπ andπ′, although are based on the same process net, describe compu-
tations which are rather different from the causal point of view: in π the occurrence oft depends
on t0, whereas it depends ont1 in π′. In particular,π andπ′ are not isomorphic.

As already mentioned in the introduction, processes explain only the meaning of single com-
putations, and fail to describe the algebraic structure of the space of behaviours as a whole. On
the contrary, following well-established ideas in semantics, it would certainly be desirable to
have an algebra of processes that singles out the basic building blocks of such a space, their
compositional properties, and the laws they are governed by. Clearly enough, the bulk of such an
algebra should consist of the operations ofsequentialandparallel composition. Unfortunately,
due to the inherent ambiguity on the identity of the instances of places that occur in processes (the
so-calledtokens), process concatenation isnot a well defined operation. In the example above,
for instance, bothπ andπ′ are decomposable into a concatenation of thesametwo processes,
namely the one that runst0 and t1 in parallel, followed by the one that runst: the difference
between them resides entirely in the choice of one of the two possible sources fort. This means
that concatenation must handle the flow of causal dependencies between subprocesses; and since
such a flow is regulated down to the level of tokens, process concatenation must be concerned
with merging tokens rather than places. It is therefore necessary to disambiguate the identity of
all the tokens a process offers as possible ‘concatenation points’.

The solution proposed in (Deganoet al.1996) is the following notionconcatenable processes.
As a matter of notation, we shall use min(Θ) and max(Θ) denote the‘minimal’ and ‘maximal’
places of a process netΘ, i.e., the places ofΘ belonging respectively to the post-set and to the
pre-set of no transition.

Definition 1.4. (Concatenable Processes)A concatenable processof N is a tripleCP= (π, ℓ,L)

where

— π:Θ → N is a process ofN;
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— ℓ is a family of total orderingsℓb of π−1
S (b)∩min(Θ), for b∈ SN.

— L is a family of total orderingsLb of π−1
S (b)∩max(Θ), for b∈ SN.

Two concatenable processes are isomorphic, and thus identified, if their underlying processes are
isomorphic via an isomorphism that respects all the orderings.

It is now easy to define an operation of concatenation of concatenable processes, whence their
name. We can associate a source and a target inS⊕N to any concatenable processCP, namely
by taking the image throughπ of, respectively, min(Θ) and max(Θ), whereΘ is the underlying
process net ofCP. Then, the concatenation of concatenable processes(π0:Θ0 →N, ℓ0,L0):u→ v
and(π1:Θ1 →N, ℓ1,L1):v→w is realized by merging the maximal places ofΘ0 and the minimal
places ofΘ1 usingπ0, π1, and the orderingsL0 and ℓ1 to match those places one-to-one (cf.
Figure 2). Under this operation of sequential composition,the concatenable processes ofN form
a categoryC P (N) with identities those processes consisting only of places,which therefore are
both minimal and maximal, and such thatℓ = L.

Concatenable processes admit also a tensor operation⊗ which can be represented as putting
two processes side by side and extending their orderings in such a way that the places of the pro-
cess on the left precede those of the one on the right (cf. Figure 2). The algebra of (concatenable)
processes so obtained enjoys some interesting properties that suggest a connection to symmet-
ric monoidal categories, as for instance the facts that parallel composition is essentially but not
strictly commutative, and that whenever(CP0 ; CP′

0)⊗ (CP1 ; CP′
1) is defined it coincides with

CP0⊗CP1 ; CP′
0⊗CP′

1. In fact, it easy to prove that the concatenable processes consisting only
of places form the category ofsymmetrieswhich makeC P (N) into a symmetric strict monoidal
category. Then, in order to find an axiomatization of the algebra, i.e., to understand in abstract
terms both processes and the laws that rule their composition, one can proceed trying to capture
C P (N) by means of (categorical) universal constructions. This isthe purpose of the following
improved definition of the categoryP (N), whose equivalence with the original one in (Degano
et al.1996) has been proved in (Sassone 1996).

Definition 1.5. (The CategoryP (N)) The categoryP (N) is the monoidal quotient (see Ap-
pendix A) ofF (N), the free symmetric strict monoidal category generated byN, obtained by
imposing the axioms

ca,b = ida⊕b if a,b∈ SN anda 6= b,

s ; t ; s′ = t if t ∈ TN ands,s′ are symmetries,

wherec, id, ⊗, and ; are, respectively, the symmetry isomorphism, the identities, the tensor
product, and the composition ofF (N).

The main result of (Deganoet al. 1996) is thatP (N) offers a precise, abstract description of
the algebra of concatenable processes ofN.

Proposition 1.6. (Concatenable Processes vs.P ( )) C P (N) andP (N) are isomorphic inSSMC.

Example 1.7.Figure 2 shows a concatenable processπ of the netN of Figure 1 that corresponds
to the arrowt0 ⊗ t1 ; t ⊗ idc of P (N). The orderingsℓ andL, omitted whenever irrelevant, are
represented in the obvious way by labeling places with natural numbers. To exemplify the algebra
of processes ofN, π is expressed as parallel (⊗ ) and sequential (; ) composition of simpler
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t1⊗ t0 ; cc,c ; t ⊗ idc (t1⊗ t0 ; cc,c) ; t ⊗ idc t0⊗ t1 ; t ⊗ idc

Figure 2. The concatenable processπ = t0⊗ t1 ; t ⊗ idc of the netN of Figure 1

processes. Such operations are matched precisely by operations and axioms ofP (N), and this is
the essence of Proposition 1.6 above.
The symmetries ofP (N), of course, correspond one-to-one to those ofC P (N) which, as already
mentioned, are the processes consisting only of places. Forinstance,cc,c:c⊕c→ c⊕c represents
the (unique up to isomorphism) process that inverts in its ‘output’ the order of the two ‘input’
tokens. This simple example illustrates that the role of thesymmetries in process terms is that
of regulating the flow of causalitybetween subprocesses by permuting tokens appropriately. In
fact, such permutations yield exactly the ‘exchanges’ of causes needed to gain control over the
operation of process concatenation. It is a rather interesting observation, in our opinion, that the
axioms of symmetries in monoidal categories, together withthose ofP (N), capture this precisely
enough. With this understanding of symmetries, we can read the axioms of Definition 1.5 as
follows: (1) tokens that are instances of different places cannot be permuted, since they differ
structurally, not just for their causal histories; and (2) permuting tokens in the pre- and in the
post-set of a single transitiont has no effect whatsoever on causality, since it does not change
causes or effects oft.
Concerning the generators ofP (N), i.e., the transitions ofN, under the correspondence of Propo-
sition 1.6 the arrowt:u → v for t ∈ TN represents the unique concatenable processCP:u → v
consisting of the single transitiont. Observe that there is a unique such process since the labeling
of places inCPare irrelevant in this case: they all yield isomorphic processes. This fact is directly
reflected by the second axiom in the definition ofP (N) .

2. A Negative Result about Functoriality

Among the primary requirements usually imposed on constructions like P ( ) there is that of
functoriality. One of the reasons supporting a categorical treatment of semantics is the need
for specifying further the structure of the systems under analysis by considering morphisms be-
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tween them which determine, e.g., how the given systems simulate each other. This, in turn,
means choosing precisely what the relevant (behavioural) structure of the systems is. It is there-
fore clear that such morphisms should be preserved at the semantic level. In the case ofP ( ), this
means that wheneverN can be mapped toN′ via a morphismf , which by the very definition of
net morphisms implies thatN can be simulated byN′, there must be a way, namelyP ( f ), to map
the concatenable processes ofN in those ofN′, respecting their algebraic structure. However, this
is not the case: there are net morphisms which cannot be extended to symmetric monoidal func-
tors between the respective categories of processes. The problem, as illustrated by the following
example, is due to the particular shape of the symmetries ofP (N) which, on the other hand, is
exactly what makesP (N) capture quite precisely the notion of processes ofN.

Example 2.1. (P ( ) cannot be a functor)Consider the netsN andN̄ in the picture below. We
haveSN = {a0,a1,b0,b1} andTN consisting of the transitionst0:a0 → b0 andt1:a1 → b1, while
SN̄ = {ā, b̄0, b̄1} andTN̄ contains̄t0: ā→ b̄0 andt̄1: ā→ b̄1.

GFED@ABCa0

��

GFED@ABCa1

��

GFED@ABCā

��
>>

>>
����
��

t0
��

t1
��

t̄0
��

t̄1
��

GFED@ABCb0
GFED@ABCb1

GFED@ABCb̄0
GFED@ABCb̄1

N N̄

Consider now the net morphismf where fT(ti) = t̄i , fS(ai) = ā and fS(bi) = b̄i , for i = 0,1. We
claim thatf cannot be extended to a monoidal functorP ( f ) from P (N) to P (N̄). Suppose in fact
thatF is such an extension. Then, we must haveF(t0⊗ t1) = F(t0)⊗F(t1) = t̄0⊗ t̄1. Moreover,
sincet0⊗ t1 = t1⊗ t0, we must also have

t̄0⊗ t̄1 = F(t1⊗ t0) = t̄1⊗ t̄0,

which is impossible, since the leftmost and the rightmost terms above aredifferentprocesses
in P (N̄), as follows from Definition 1.5.

Formally speaking, the problem is that the category of symmetries sitting insideP (N), say
SymN, is not freeon N. Clearly, this is due to first axiom of Definition 1.5, a conditional axiom
with a negativepremise. To make things worse, the theory illustrated extensively in (Deganoet
al. 1996; Sassone 1994) makes it clear that, in order forP (N) to maintain its interesting com-
putational meaning, such an axiom is strictly needed. Moreover, it is easy to verify that as soon
as one imposes further axioms onP (N) which guarantee to get a functor, one annihilates all the
symmetries and, therefore, destroys the ability ofP (N) to deal with causality. It is also impor-
tant to observe that it would be definitelymeaninglessto try to overcome the problem simply by
removing fromPetri the morphisms which ‘behave badly’: the morphismf of Example 2.1, for
instance, is clearly asimulationand, as such, it should definitely be allowed by any serious at-
tempt to formulate a definition of net morphisms. Finally, also the natural idea of looking fornon
strict monoidal functors (Eilenberg and Kelly 1966) as semantic counterparts of net morphisms
does not lead anywhere, as implicitly shown again by Example2.1.
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In other words, there does not seem to be an easy and satisfactory solution to the functoriality
problem forP ( ). The following proposition shows that the problem illustrated in Example 2.1
is serious, actually deep enough to prevent any naive modification ofP ( ) to be functorial.

Proposition 2.2. (No simple variation ofP ( ) can be a functor)Let X ( ) be a function which
assigns to each netN a symmetric strict monoidal category whose monoid of objects is com-
mutativeand containsSN, the places ofN. Suppose further that the group of symmetries at any
object ofX (N) is finite. Finally, suppose that there exists a netN with a placea∈ SN such that,
for eachn≥ 1, we have that the component at(na,na) of the symmetry isomorphism ofX (N) is
not an identity.
Then, there exists a Petri net morphismf :N0 → N1 which cannot be extended to a symmetric
strict monoidal functor fromX (N0) to X (N1).

Proof. The key of the proof is the following observation about monoidal categories. LetC be
a symmetric strict monoidal category with symmetry isomorphismc. Then, for alla∈ C and for
all n≥ 1, we have(ca,(n−1)a)

n = id, where, in order to simplify the notation, throughout the proof
we writenaandcn

x,y to denote, respectively, the tensor product ofn copies ofa, with 0a = e, and
the sequential composition ofn copies ofcx,y. To show that the above identity holds, consider for
i = 1, . . . ,n the functorFi from Cn, the cartesian product ofn copies ofC, toC defined as follows.

Cn //
Fi

C

(x1, . . . ,xn)
� //

��

( f1,..., fn)

xixi+1 · · ·xnx1 · · ·xi−1

��

( fi fi+1··· fn f1··· fi−1)

(y1, . . . ,yn)
� // yiyi+1 · · ·yny1 · · ·yi−1

Moreover, consider the natural transformationsφi :Fi
�→ Fi+1, i = 1, . . . ,n−1 andφn:Fn → F1

whose components atx1, . . . ,xn are, respectively,cxi ,xi+1···xnx1···xi−1 andcxn,x1···xn−1. Finally, letφ be
the sequential composition ofφ1, . . . ,φn. Then,φ is a natural transformationx1 · · ·xn

�→ x1 · · ·xn

built up only from components ofc. From the Kelly-MacLane coherence theorem (MacLane
1963; Kelly 1964) (see also Appendix A) we know that there is at most one natural transfor-
mation consisting only of identities and components ofc, and since the identity ofF1 is one
such transformation, we have thatφ = idF1. Then, instantiating each variable witha, we obtain
(ca,(n−1)a)

n = idna, as required.
It is now easy to conclude the proof. LetN′ be a net witha∈ SN′ such that, for eachn≥ 1, we
havec′na,na 6= id, wherec′ is the symmetry natural isomorphism ofX (N′), let N be a net with two
distinct placesa andb and withno transitions, and letc be the symmetry natural isomorphism
of X (N). Since the group of symmetries atab is finite, there is acyclic subgroup generated
by ca,b, i.e., there existsk ≥ 1, the order of the subgroup, such that(ca,b)

k = id and(ca,b)
n 6= id

for any 1≤ n < k.
Let p be anyprimenumber greater thank. We claim that the net morphismf :N→N′, wherefT is
the (unique) function∅ → TN′ and fS is the monoid homomorphism such thatfS(b) = (p−1)a
and fS(a) = a, cannot be extended to a symmetric strict monoidal functorF:X (N) → X (N′).
In fact, from the first part of this proof, we know that(c′a,(p−1)a)

p = id. Moreover, by general

results of group theory, the order of the cyclic subgroup generated byc′a,(p−1)a must be a factor
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of p and then, in this case, 1 orp. In other words, eitherc′a,(p−1)a = id, or (c′a,(p−1)a)
n 6= id for

all 1 ≤ n < p. If the second situation occurs, then we have thatF((ca,b)
k) = id and also that

F((ca,b)
k) = (c′

F(a),F(b))
k = (c′a,(p−1)a)

k 6= id, i.e.,F cannot exists. Thus, in order to conclude the

proof, we only need to show that it follows from our hypothesis thatc′a,(p−1)a 6= id. For this,

it is enough to observe thatc′a,(p−1)a = id implies c′na,na = id for n = p− 1, which is against

our hypothesis onN′. In fact, by the axioms of symmetries in monoidal categories(viz. the first
of (6) in Appendix A)c′ka,(p−1)a = ac′(k−1)a,(p−1)a ; c′a,(p−1)a(k−1)a, whence it follows directly

thatc′(p−1)a,(p−1)a = id.

The contents of the previous proposition may be further clarified by remarking that in thefree
category of symmetries on a commutative monoidM there areinfinitehomsets. This means that
dropping axiomca,b = ida⊕b in the definition ofP (N) causes an ‘explosion’ in the structure of
the symmetries. More precisely, if we omit that axiom, we canfind some objectu such that the
group of symmetries onu has infinite order. Of course, since symmetries represent causality,
and as such they are integral parts of processes, this makes the category so obtained completely
useless for the applications we have in mind.

The hypotheses of Proposition 2.2 can be certainly weakenedin several ways, at the expense
of complicating the proof. However, we avoided such complications since the conditions stated
above arealreadyweak enough if one wants to regardX (N) as a category of processes ofN. In
fact, since places represent the atomic bricks of which states are built, one needs to consider them
in X (N). Since symmetries regulate the ‘flow of causality’, there will be cna,na different from the
identity, and since in a computation we can have only finitelymany ‘causality streams’, there
should not be categories of processes with infinite groups ofsymmetries. Therefore, the given
result means that there is no chance to have a functorial construction along the lines ofP (N) for
the category of processes of a Petri netN if the objects form a commutative monoid.

3. The CategoryQ (N)

In this section we introduce the symmetric strict monoidal categoryQ (N) which is meant to
represent the processes of the Petri netN and which supports a functorial construction. This
will allow us to characterize the category of categories of net behaviours, i.e., to axiomatize
the behaviour of nets ‘in the large’. Observe that although (Meseguer and Montanari 1990)
and (Deganoet al. 1996) clarify how the behaviour of a single net can be captured by a sym-
metric strict monoidal category, due to the lack of functoriality of P ( ), they cannot propose a
categorical semantics ‘in the large’ for net causal behaviours.

Proposition 2.2 shows that, necessarily, there is a price tobe payed. Here, the idea is to re-
nounce to the commutativity of the monoids of objects. More precisely, the arrows ofQ (N) are
built overSym∗N, the free category of symmetries on theset SN of places ofN. This implies that
objects form the free non-commutative monoid onSN, and that symmetries are precisely theper-
mutationsof such objects. Looking at such strings of places as concrete realizations of multisets,
the natural way to represent the transitions ofN is by replicating them, one copy of a transition
for each choice of representatives of its source and target multisets. In other terms, the gener-
ators ofQ (N) are not transitions: more concretely, they are instances oftransitions acting on
the chosen representatives of states. Thus, each transition of N has many corresponding arrows
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in Q (N); in order to guarantee thatQ (N) remains close to the categoryP (N) of concatenable
processes, therefore, it is necessary to link together all such arrows. This is achieved by means
of a ‘naturality’ condition, allowing us to prove in Section4 that the arrows ofQ (N) correspond
to Goltz-Reisig processes in which the minimal and the maximal places arelinearly ordered.

Similarly to SymN, the categorySym∗N serves a double purpose. While from the categorical
point of view it provides the symmetry isomorphism of a symmetric monoidal category, from a
semantic perspective it regulates the flow of causal dependency. It should be noticed, however,
that here the point of view is slightly more concrete than, thoughnot essentially dissimilar from,
the case ofSymN. Computationally, a symmetry inQ (N) must be interpreted as a‘reorganiza-
tion’ of the tokens in the global state of the net which, when reorganizing tokens belonging to
the same place, yields a exchange of causes exactly asSymN does forP (N). In general, as will
become clear later, an arrow ofQ (N) should be thought of as the realization of a processes ofN
corresponding to an actual representation of its source andtarget states.

Notation. In the following, we useS⊗ to indicate the set of (finite) strings on the setS, more commonly
denoted byS∗. In the same way, we use⊗ to denote string concatenation, whileε denotes the empty string.
As usual, foru∈ S⊗, we indicate by|u| the length ofu and byui its ith element. Moreover, we letM (u)

denote the multiset of the elements ofSoccurring inu.

Definition 3.1. (The categoryQ (N)) The categoryQ (N), for N a net inPetri, is obtained
from the symmetric strict monoidal category freely generated from the places ofN and, for each
transitiont of N, an arrowtu,v:u→ v for each pair of linearizations (as strings)u andv of the pre-
and post- sets (multisets) oft, by quotienting modulo the axiom

s; tu′,v = tu,v′ ;s
′, for s:u→ u′ ands′:v′ → v symmetries. (Φ)

Explicitly, Q (N) is (isomorphic to) the categoryC whose objects are the elements ofS⊗N and
whose arrows are generated by the inference rules

u∈ S⊗N
idu:u→ u in C

u,v in S⊗N
cu,v:u⊗v→ v⊗u in C

t:M (u) →M (v) in TN

tu,v:u→ v in C

α:u→ v andβ:u′ → v′ in C

α⊗β:u⊗u′ → v⊗v′ in C

α:u→ v andβ:v→ w in C

α;β:u→ w in C

modulo the axioms expressing thatC is a strict monoidal category, namely,

α; idv = α = idu;α and (α;β);δ = α;(β;δ),

(α⊗β)⊗ δ = α⊗ (β⊗ δ) and idε ⊗α = α = α⊗ idε, (1)

idu⊗ idv = idu⊗v and (α⊗α′);(β⊗β′) = (α;β)⊗ (α′;β′),

(the latter whenever the right-hand term is defined), plus the following axioms corresponding to
axioms (6) expressing thatC is symmetric with symmetry isomorphismc

cu,v⊗w = (cu,v⊗ idw);(idv⊗cu,w),

cu,u′ ;(β⊗α) = (α⊗β);cv,v′ for α:u→ v, β:u′ → v′, (2)

cu,v;cv,u = idu⊗v,

and, finally, axiom (Φ).
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Observe that, while the first part of the previous definition givesQ (N) in terms of universal
constructions, its second part provides a completely axiomatic description ofQ (N) which can be
useful in many contexts. In the following, we shall in fact use as definition ofQ (N) whichever
version, constructive or axiomatic, is best suited to the actual application.

It is worth noticing that axiom (Φ) entails, as a particular case, the last axiom in the Defi-
nition 1.5 of P (N) — called axiom (Ψ) in (Deganoet al. 1996) — whenever it makes sense
in Q (N). In fact, axiom(Φ) asserts that any diagram inQ (N) of the kind

u

��
s

//
tu,v′

v′

��
s′

u′ //
tu′ ,v

v

commutes. Then, fixingu = u′ andv = v′, and using the fact that symmetries are isomorphisms,
one obtains precisely axiom (Ψ). Exploiting this observation it is not difficult to show that there
exists aquotientfunctorQ (N) → P (N) in SSMC, and thatP (N) can be obtained fromQ (N)

simply by enforcing commutativity on objects and the first axiom in Definition 1.5. Moreover,
using (Φ) for u 6= u′ or u 6= u′, choosings′ = id, respectivelys= id, one proves that the interesting
equations ; tu′,v = tu,v, respectivelytu,v′ ; s′ = tu,v, holds inQ (N).

A simple inspection of Definition 3.1 suggests that the category of symmetries ofQ (N),
saySym∗N, is the free symmetric strict monoidal category on the setSN. In fact, by definition,
an arrow ofQ (N) is a symmetry if and only if the rule for transitions has neverbeen used in its
generation, and, moreover, axiom(Φ) — the only one introducing identifications not imposed by
the definition of symmetric monoidal categories — has clearly no effect on such arrows. We shall
now give a useful direct description ofSym∗N that, besides making explicit some of the structure
of Q (N), will play a relevant role in the development to come. Namely, we shall prove thatSym∗N
is thecategory of permutationsonSN.

Notation. We useΠ(n) to denote thesymmetric grouponn elements, i.e., the group of then! permutations
of n elements. To simplify the notation, we shall assume that theempty function∅:∅ → ∅ is the (unique)
permutation of zero elements. Atranspositionis a permutation which leaves all the elements fixed except
for two adjacent ones, which are transposed, that is ‘swapped’. We use(i i+1) to denote the transposition
of i andi +1.

Definition 3.2. (The Category of Permutations)LetSbe a set. The categorySym∗S has as objects
the strings inS⊗, and an arrowp:u→ v if and only if p∈ Π(|u|), i.e., p is a permutation of|u|
elements, andv is the string obtained by applying the permutationp to u, i.e.,vp(i) = ui.
Arrow composition inSym∗S is obviously given by the product of permutations, i.e., their compo-
sition as functions, here denoted by; written in diagrammatic order.

Graphically, we represent an arrowp:u→ v in Sym∗S by drawing a line betweenui andvp(i), as
for example in Figure 3.

Of course, it is possible to extend the monoidal structure ofS⊗ to a tensor product onSym∗S,
together with natural transformations associated to interchange permutations between strings that
make it a symmetric monoidal category (see also Figure 3, where γ is the permutation(1 2)).

Definition 3.3. (Operations on Permutations)Given permutationsp:u → v and p′:u′ → v′
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Figure 3. The monoidal structure ofSym∗S

in Sym∗S theirparallel composition p⊗ p′:u⊗u′ → v⊗v′ is the permutation such that

i 7→

{

p(i) if 0 < i ≤ |u|
p′(i −|u|)+ |u| if |u| < i ≤ |u|+ |u′|

Givenπ ∈ Π(m) andm stringsui ∈ S⊗, i = 1, . . . ,m, the interchange permutationπ(u1, . . . ,um)

is the permutationp such that

p(i) = i −
h−1

∑
j=1

|u j |+ ∑
π( j)<π(h)

|u j | if
h−1

∑
j=1

|u j | < i ≤
h

∑
j=1

|u j |.

Clearly,⊗ so defined is associative and furthermore a simple calculation shows that it satisfies
the equations

(p⊗ p′) ; (q⊗q′) = (p ; q)⊗ (p′ ; q′) and idu⊗ idv = idu⊗v.

It follows easily that the mapping⊗:Sym∗S×Sym∗S→ Sym∗S defined by

Sym∗S×Sym∗S //
⊗

Sym∗S

(u,u′) � //

��

(p,p′)

u⊗u′

��

p⊗p′

(v,v′) � // v⊗v′

is a functor makingSym∗S a strict monoidal category. Finally, the symmetric structure of Sym∗S is
made explicit through the interchange permutations.

Proposition 3.4. (Sym∗
S is symmetric strict monoidal) For any setS, the family of interchange

permutationsγ = {γ(u,v)}u,v∈Sym∗
S
, defined from the permutationγ = (1 2), provides the sym-

metry isomorphism endowingSym∗S with a symmetric monoidal structure.

Proof. It is just a matter of performing a few calculations to verifythat, for anyp:u→ u′ and
p′:v → v′, the equations defining a symmetry isomorphism i.e., equations (6) in Appendix A,
which in the current case reduce to

(γ(u,v)⊗w) ; (v⊗ γ(u,w)) = γ(u,v⊗w)
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Figure 4. Some instances of the axioms of permutations
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Figure 5. The parallel composition of permutations

γ(u,v) ; (p′⊗ p) = (p⊗ p′) ; γ(u′,v′)
γ(u,v) ; γ(v,u) = u⊗v,

hold.

The previous proposition justifies using the namesymmetriesfor the arrows of the groupoid
Sym∗S. As anticipated above, the key point aboutSym∗S is that it is a free construction. In order to
show it, we need the following lemma (Moore 1897; Burnside 1911).

Lemma 3.5.The symmetric groupΠ(n) is (isomorphic to) the groupG freely generated from
the set of elements{τi | 1≤ i < n}, modulo the equations (see also Figure 4)

τiτi+1τi = τi+1τiτi+1;

τiτ j = τ j τi if |i − j| ≥ 1; (3)

τiτi = e;

wheree is the neutral element of the group. The equivalence class ofτi modulo the above equa-
tions corresponds to the transposition(i i+1).

We are now ready to show the announced fact aboutSym∗S.

Proposition 3.6. (Sym∗
S is free)Let Sbe a set, letC be a symmetric strict monoidal category, and

let f be a function fromS to the set of objects ofC. Then, there exists a unique symmetricstrict
monoidal functorF:Sym∗S→ C extendingf .

Proof. Let ⊗ be the tensor product,e the unit object, andc:x1⊗ x2
�→ x2⊗ x1 the symmetry

natural isomorphism ofC. There is of course a choice forced upon us for the behaviour of F on
objects: the monoidal extension off , i.e., the mapping

F(ε) = e, F(a) = f (a) for a∈ S, and F(u⊗v) = F(u)⊗F(v) for u,v∈ S⊗.

Concerning morphisms, we know by Lemma 3.5 that each arrow inSym∗S can be written as a
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composition of transpositions. The transposition(i i +1):u⊗a⊗b⊗v→ u⊗b⊗a⊗v, whereu is
a string of lengthi−1, coincides inSym∗S with the tensor ofγ(a,b):a⊗b→ b⊗awith appropriate
identities, namely(u⊗ γ(a,b)⊗ v). Thus, recalling also thatε⊗ γ(a,b) = γ(a,b) = γ(a,b)⊗ ε,
the following equations defineF on all the arrows ofSym∗S.

F(u⊗ γ(a,b)⊗v) = F(u)⊗cF(a),F(b)⊗F(v) a,b∈ S, u,v∈ S⊗;

F(p ; p′) = F(p′)◦F(p). (4)

Observe that both the equations (4) are forced by the definition of symmetricstrict monoidal
functor (see axioms (7) in Appendix A). It follows that the extension of f to a strict monoidal
functor, if it exists, is unique and must be given by (4). Then, in order to conclude the proof, we
only need to show thatF is well defined and that it is a symmetric monoidal functor.
For the former, it is enough to show that the axioms (3) of Lemma 3.5 are preserved byF.
Concerning axioms (3), the third one matches directly with the fact that the inverse ofcF(a),F(b)

is cF(b),F(a), while the second one follows easily from the fact that⊗ is a functor. In fact, in the
hypothesis, we haveτi = (u⊗γ(a,b)⊗v⊗c⊗d⊗w) andτ j = (u⊗b⊗a⊗v⊗γ(c,d)⊗w). Thus,
we have that

F(τi ; τ j) = (F(u)⊗F(b)⊗F(a)⊗F(v)⊗cF(c),F(d)⊗F(w))◦

(F(u)⊗cF(a),F(b)⊗F(v)⊗F(c)⊗F(d)⊗F(w))

= (F(u)⊗cF(a),F(b)⊗F(v)⊗cF(c),F(d)⊗F(w))

= (F(u)⊗cF(a),F(b)⊗F(v)⊗F(d)⊗F(c)⊗F(w))◦

(F(u)⊗F(a)⊗F(b)⊗F(v)⊗cF(c),F(d)⊗F(w))

= F(τ j ; τi)

Finally, exploiting the naturality and the coherence equations forc, a similar calculation shows
thatF(τi ; τi+1 ; τi) = F(τi+1 ; τi ; τi+1).
Let us prove thatF is a symmetric monoidal functor. SinceC is a symmetric strict monoidal
category, we havece,x = ce⊗e,x = ce,x ⊗ e◦ e⊗ ce,x = ce,x ◦ ce,x, and sincece,x is invertible, it
follows thatce,x = idx. Of course, the same holds for any other symmetric strict monoidal cate-
gory. Therefore, sinceF(idu) = F(γ(ε,u)) andce,F(u) = idF(u), we have thatF(idu) = idF(u). This,
together with the second of the equations (4), means thatF is a functor.
Observe further that, forp:u → v and p′:u′ → v′ in Sym∗S, we havep⊗ p′ = (p⊗u′) ; (v⊗ p′)
(see also Figure 5). Then, by definition,

F(p⊗ p′) = F(v⊗ p′)◦F(p⊗u′) = (F(v)⊗F(p′))◦ (F(p)⊗F(u′)) = F(p)⊗F(p′),

i.e.,F is a strict monoidal functor.
Finally, thanks to the first of the coherence axioms for symmetries,γ(a,b⊗ c) = (γ(a,b)⊗ c) ;
(b⊗ γ(a,c)) and thus, by the aforesaid axiom and by the corresponding coherence axiom ofc,

F(γ(a,b⊗c)) = F((γ(a,b)⊗c) ; (b⊗ γ(a,c)))

= (F(b)⊗cF(a),F(c))◦ (cF(a),F(b)⊗F(c))

= cF(a),F(b)⊗F(c) = cF(a),F(b⊗c).
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Now, by considering the inverses of the arrows appearing in the first coherence axiom, we have
γ(a⊗b,c) = (a⊗ γ(b,c)) ; (γ(a,c)⊗b) andcF(a⊗b),F(c) = (cF(a),F(c)⊗F(b))◦ (F(a)⊗cF(b),F(c)).
Therefore, it follows easily by induction thatF(γ(u,v)) = cF(u),F(v). Then,F maps each compo-
nent of the symmetry natural isomorphism ofSym∗S to the corresponding component ofc, and,
therefore, we conclude thatF is a symmetric monoidal functor.

This result proves that the mappingS 7→ Sym∗S extends to aleft adjoint functor from Set

to SSMC, the standard category of symmetric strict monoidal (small) categories and symmet-
ric strict monoidal functors, whose right adjoint send eachsuch category to its set of objects.
Equivalently, we can say thatSym∗S is, up to isomorphism, the free symmetric strict monoidal
category on the setS. This is remarked by the following corollary, which also proves thatSym∗N,
the category of symmetries ofQ (N), is isomorphic toSym∗SN

.

Corollary 3.7. (Sym∗
S is free) Let S be the category whose monoid of objects isS⊗, the free

monoid onS, and whose arrows are freely generated from the family of arrows idu:u → u and
cu,v:u⊗v→ v⊗u, for u,v∈ S⊗, subject to axioms (1) and (2). ThenS andSym∗S are isomorphic.

It follows thatQ (N) can be described as the symmetric strict monoidal category built over the
subcategory of symmetriesSym∗SN

by addingfreely the arrows given by

t:M (u) →M (v) in TN

tu,v:u→ v in Q (N)

and quotienting modulo axiom (Φ). In force of these facts, in the following we shall safely
confuseSym∗N andSym∗SN

and, therefore, the symmetrycu,v ∈ Sym∗N and the corresponding per-
mutationγ(u,v) ∈ Sym∗SN

.

We show next thatQ ( ) can be lifted to a functor from the category of Petri nets to anap-
propriate category of symmetric strict monoidal categories and equivalence classes of symmetric
strict monoidal functors. The role of such an equivalence isto take into account that we look at
the strings ofS⊗N as concrete representatives of the multisets ofS⊕N and, therefore, we want to
consider as perfectlyequalthose functors which differ only by picking up different, yet compat-
ible, linearizations of multisets. The task is not very difficult now, since most of the work has
been done in the proof of Proposition 3.6.

We start by showing thatQ ( ) is a pseudo-functorfrom Petri to SSMC in the sense made
explicit by Proposition 3.8 below. More precisely, we extend Q ( ) to a mapping from Petri
net morphisms to symmetric strict monoidal functors in sucha way thatidentitiesare preserved
strictly, while net morphismcompositionis preserved only up to amonoidal natural isomorphism
(see Appendix A). In order to do that, the key point which is still missing is to be able to ‘lift’
morphisms of free commutative monoids to morphisms of free non-commutative monoids. To
achieve this, we proceed as follows.

Let FMon andFCMon be, respectively, the category offreeand freecommutativemonoids, to-
gether with their homomorphisms. Consider the obvious quotient functor( )♭:FMon→ FCMon.
Explicitly, (S⊗)♭ = S⊗/{xy= yx} = S⊕, whilst the action of( )♭ on f :S⊗0 → S⊗1 gives the unique
homomorphismf ♭:S⊕0 → S⊕1 such thatf ♭(a) = M ( f (a)) for all a∈ S. It is easy to verify that,
when considered as a morphism ofreflexive graphs, ( )♭ admits a section, i.e., areflexive graph
morphism( )♮:FCMon→ FMon such that(( )♮)♭ = idFCMon. In other words,( )♮ mapsS⊕ to S⊗

and assigns a ‘linearization’f ♮:S⊗0 → S⊗1 to f :S⊕0 → S⊕1 in such a way that
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— M ( f ♮(a)) = f (a), for all f :S⊕0 → S⊕1 and alla∈ S0;
— (idS⊕)♮ = idS⊗ , for all setsS.

Fixed one such( )♮, we can define the action ofQ ( ) on Petri net morphisms. Observe that,
in principle, choosing two different different for( )♭ gives twodifferent— yet equivalent —
extensions ofQ ( ) to a pseudo-functor. We would like to remark that this apparent arbitrariness
of Q ( ) is not at all a concern, since the relevant fact we want to shownow is that such an
extension exists. Moreover, we shall see shortly that introducing the categoryQSSMC one can
completely dispense with( )♮, i.e., the ‘choice mapping’( )♮ is actually, in a precise mathemati-
cal sense,irrelevant.

Proposition 3.8. (Q ( ):Petri → SSMC) Let f :N0 → N1 be a morphism inPetri. Then, there
exists a symmetric strict monoidal functorQ ( f ):Q (N0) → Q (N1) which extendsf . Moreover,
Q (idN) = idQ (N) andQ (g◦ f ) �→ Q (g) ◦Q ( f ) via a monoidal natural isomorphism (see Ap-
pendix A) whose components are all symmetries.

Proof. Since fS is a monoid homomorphism fromS⊕N0
to S⊕N1

, we consider the homomorphism

f ♮
S:S⊗N0

→ S⊗N1
. By the freeness ofSym∗N0

, such a morphism can be extended (uniquely) to a sym-
metric strict monoidal functorFS:Sym∗N0

→ Q (N1) and, thus, to a functorF:Q (N0) → Q (N1),
defined as the unique symmetric strict monoidal functor which coincides withFS on SymN0

and
mapstu,v:u→ v to fT(t)F(u),F(v):F(u) → F(v). Since monoidal functors map symmetries to sym-
metries, and sincefT(t) is a transition ofN1, it follows immediately thatF respects axiom (Φ),
i.e., thatF is well defined.
We show next that the above definition makesQ ( ) into a pseudo-functor. First of all, sinceQ ( f )
is uniquely determined byfT and f ♮

S, by the property(idS⊕)♮ = idS⊗ of ( )♮, it follows that
Q (idN):Q (N) → Q (N) is the identity functor. Now, letf :N0 → N1 andg:N1 → N2 be mor-
phisms of nets. Observe that alla∈ SN0, the string(gS◦ fS)♮(a) is a permutation ofg♮

S( f ♮
S(a)) and

that, therefore, there exists a symmetrysa:Q (g◦ f )(a) → Q (g)◦Q ( f )(a) in Q (N2). Then, for
u = u1 · · ·un ∈ S⊗N0

, takesu to besu1 ⊗ ·· ·⊗ sun:Q (g◦ f )(u) → Q (g) ◦Q ( f )(u). We claim that
the family{su | u∈ S⊗N0

} is a natural transformationQ (g◦ f ) �→ Q (g)◦Q ( f ). Sinces is clearly
monoidal and eachsu is a symmetry isomorphism, this concludes the proof.
We proceed by induction on the structure ofα to show that, for anyα:u→ v in Q (N0), we have

Q (g◦ f )(α) ; sv = su ; Q (g)◦Q ( f )(α).

The key to the proof is thats is monoidal, i.e.,su⊗v = su ⊗ sv, as a simple inspection of the
definition shows. Ifα is an identity, then the claim is obvious. Moreover, ifα is a transitiontu,v,
thenQ (g◦ f )(α) andQ (g)◦Q ( f )(α) are instances of the same transition ofN2, and the thesis
follows immediately from axiom (Φ). Suppose now thatα = cu,v, a symmetry ofQ (N0). Since
Q (g◦ f ) andQ (g)◦Q ( f ) are symmetric strict monoidal functors, the equation we have to prove
reduces to

cQ (g◦ f )(u),Q (g◦ f )(v) ; sv⊗su = su⊗sv ; cQ (g)◦Q ( f )(u),Q (g)◦Q ( f )(v),

which certainly holds since{cu,v | u,v ∈ S⊗N0
} is a natural transformationx1 ⊗ x2

�→ x2 ⊗ x1.
If α = α0⊗α1, with αi :ui → vi , then, fori = 0,1, it follows from the induction hypothesis that
Q (g◦ f )(αi) ; svi = sui ; Q (g)◦Q ( f )(αi), whence

Q (g◦ f )(α0)⊗Q (g◦ f )(α1) ; sv0⊗v1 = su0⊗u1 ; Q (g)◦Q ( f )(α0)⊗Q (g)◦Q ( f )(α1),
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which isQ (g◦ f )(α) ; sv = su ; Q (g)◦Q ( f )(α). Finally, in caseα = α0 ; α1, with α0:u→w and
α1:w→ v, the induction is maintained by pasting the two commutativesquares in the following
diagram, which exists by the induction hypothesis

Q (g◦ f )(u)

��
Q (g◦ f )(α0)

//
su

Q (g)◦Q ( f )(u)

��
Q (g)◦Q ( f )(α0)

Q (g◦ f )(w)

��
Q (g◦ f )(α1)

//
sw

Q (g)◦Q ( f )(w)

��
Q (g)◦Q ( f )(α1)

Q (g◦ f )(v) //
sv

Q (g)◦Q ( f )(v)

Thus,Q (g◦ f )(α) ; sv = su ; Q (g)◦Q ( f )(α), which concludes the proof.

Therefore, due to technical reasons depending exclusivelyon the lack of functoriality of( )♮,
Q ( ) fails to be a functor fromPetri toSSMC. It is only apseudo-functor. However, it is worth re-
marking that this failure isintrinsically different from the situation forP ( ), and that the pseudo-
functoriality ofQ ( ) is already avaluableresult. In fact, in the case ofP ( ), wecannotlift net
morphisms to functors between the categories of processes,a failure which may possibly rise
doubts on the structure chosen to represent the processes ofthe single net, while in the case
of Q ( ), we just cannot define composition of the lifted morphisms better than ‘up to isomor-
phism’. Of course, this depends on the fact that our idea of ‘strings as representatives of multisets’
is not reflected adequately inSSMC, and simply brings us to the conclusion thatSSMC is not
quite the correct target category for the functorial construction we are looking for. Indeed, as we
shall see in the following, it is easy to identify a categoryQSSMC of symmetric strict monoidal
categories such thatQ ( ) is a functorPetri → QSSMC. Actually, this construction is already
implicit in Proposition 3.8 and corresponds to taking an appropriate quotient ofSSMC.

Definition 3.9. (Symmetric Petri Categories)A symmetric Petri categoryis a symmetric strict
monoidal categoryC in SSMC whose monoid of objects is the free monoidS⊗ for some setS.

For any pairC andD of symmetric Petri categories, consider the binary relation R C,D on the
symmetric strict monoidal functors fromC to D defined byF R C,D G if and only if there exists
a monoidal natural isomorphismσ:F �→ G whose components are allsymmetries. Clearly,R C,D

is an equivalence relation. Moreover, ifH:C′ → C andK:D → D′ are symmetric strict monoidal
functors then, wheneverF R C,D G, we haveKFH R C′,D′ KGH. In fact, if σ:F �→ G is monoidal
and all its components are symmetries, then so isKσH:KFH

�→ KGH. In other words, the family
of equivalencesR is actually a congruence with respect to functor composition. Therefore, the
following definition makes sense.

Definition 3.10. (The categoryQSSMC) Let QSSMC be the quotient of the full subcategory of
SSMC consisting of the symmetric Petri categories modulo the congruenceR .

Of course, concerningQSSMC there is the following easy result.

Proposition 3.11. (Q ( ):Petri → QSSMC) Q ( ) extends to a functor fromPetri to QSSMC.

Proof. For f :N0 → N1, defineQ ( f ) to be the equivalence class of the functor inSSMC from
Q (N0) to Q (N1) described in Proposition 3.8. It follows immediately from the proof of that
proposition thatQ ( ) is a functor fromPetri to QSSMC.



An Axiomatization of the Category of Petri Net Computations 19

Observe that, when describingQ ( f ) in QSSMC, there is no need to consider the section( )♮ of
( )♭, since the extensions off to a symmetric strict monoidal functor corresponding to different
sections or( )♭ yield the same functor inQSSMC. In fact, if ( )♮ and( )♯ are sections of( )♭,
for any morphismf :N0 → N1 and alla∈ SN0, the stringf ♮(a) is a permutation off ♯(a). Then,
we can proceed as in the proof of Proposition 3.8 to choose a monoidal natural isomorphism
composed only of symmetries such thatQ ♮( f ) �→ Q ♯( f ).

However, the categoryQSSMC is still too general for our purposes. In particular, it is easily no-
ticed thatQ ( ) is notfull (though it is faithful), i.e., that there are functors fromQ (N0) toQ (N1)

in QSSMC which do not correspond to any morphism fromN0 to N1 in Petri. This means that
QSSMC has too little structure to represent net behaviours with enough precision; equivalently,
since the structure of the objects of a categoryC is ‘encoded’ in the morphisms ofC, it means
that the morphisms ofQSSMC do not capture the structure of symmetric Petri categories pre-
cisely enough. Specifically, the transitions, which are definitely primary components of nets, and
as such are treated by the morphisms inPetri, havenocorresponding notion inQSSMC: we need
to identify such a notion and refine the choice of the categoryof net computations accordingly.

Notation. Given a symmetric monoidal categoryC, let SymC indicate the subcategory ofC consisting of
the symmetries, i.e., of those arrows which are built up fromidentities and components of symmetry iso-
morphism ofC.

The key to accomplishing our task is the following observation about axiom (Φ) in Defini-
tion 3.1: as already mentioned, it simply expresses that thecollection of arrowstu,v of Q (N),
for t ∈ TN andu,v∈ S⊗N , is a natural transformation. Namely, forC a symmetric Petri category
with objectsS⊗, andν a multiset inS⊕, let SymC,ν be the subcategory ofC consisting of those
objectsu ∈ S⊗ such thatM (u) = ν and the symmetries between them, and letinC,ν be the in-
clusion ofSymC,ν in C. Then, forν,ν′ ∈ S⊕, one obtains a pair of parallel functorsπ0

C,ν,ν′ and

π1
C,ν,ν′ by composinginC,ν andinC,ν′ respectively with the first and with the second projection of

SymC,ν ×SymC,ν′ .

SymC,ν �

z

,,

inC,ν
YYYYYYYYYY

SymC,ν ×SymC,ν′

33π0 fffff

++π1
XXXX

GF ED

π0
C,ν,ν′ = inC,ν◦π0

��

@A BC

π1
C,ν,ν′ = in

C,ν′◦π1

OOC

SymC,ν′
�

$

22

in
C,ν′

eeeeeeeeee

It follows directly from the definitions that, whenC is Q (N), axiom (Φ) states exactly that, for
all t:ν → ν′ ∈ TN, the set

{

tu,v |M (u) = ν,M (v) = ν′
}

is a natural transformation fromπ0
Q (N),ν,ν′

to π1
Q (N),ν,ν′ .

A further very relevant property of the transitions ofN when considered as arrows ofQ (N)

is that of being decomposable as a tensor only trivially and as a composition only by means of
symmetries. This is easily captured by the following notionof primitivearrow.

Definition 3.12. (Primitive Arrows) Let C be a symmetric Petri category. An arrowτ in C is
primitive if
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(i) τ is not a symmetry;
(ii) τ = α ; β implies α is a symmetry andβ is primitive, or vice versa;
(iii) τ = α⊗β implies α = idε andβ is primitive, or vice versa.

A simple inspection of Definition 3.1 shows that the only primitive arrows inQ (N) are the
arrowstu,v, for t:M (u)→M (v) a transition ofN. As a consequence, the natural transformations
τ:π0
Q (N),ν,ν′

�→ π1
Q (N),ν,ν′ whose components are primitive are in one-to-one correspondence with

the transitions ofN. Following the usual categorical paradigm, we then use the properties that
characterize the transitions ofN in Q (N), expressed in abstract categorical terms, to define the
notion of transition in any symmetric Petri category.

Definition 3.13. (Transitions in Symmetric Petri Categories) Let C be a symmetric Petri
category and letS⊗ be its monoid of objects. Atransition of C is a natural transformation
τ:π0

C,ν,ν
�→ π1

C,ν,ν′ , for ν,ν′ in S⊕, whose componentsτu,v areprimitive arrows ofC.

It is now clear what the extra structure required inQSSMC is: transitions must be preserved
by morphisms of symmetric Petri categories. Formally, forC andD in QSSMC andF:C → D

in SSMC, F respects transitionsif, for each transitionτ:π0
C,ν,ν′

�→ π1
C,ν,ν′ of C, there exists a

transitionτ′:π0
D,ν̄,ν̄′

�→ π1
D,ν̄,ν̄′ of D such thatF(τu,v) = τ′

F(u),F(v) for all (u,v) in SymC,ν ×SymC,ν′ ;

in this case, we say thatτ′ corresponds toτ via F.

Lemma 3.14.If F:C→D respects transitions, then for any transitionτ of C, there exists aunique
transitionτ′ of D which corresponds toτ via F.

Proof. First observe that, for any symmetric Petri categoryC and any pair of natural trans-
formationsτ,τ′:π0

C,ν,ν
�→ π1

C,ν,ν′ wheneverτu,v = τ′u,v for someu andv, thenτ = τ′. In fact, for
anyu′ andv′ there exists(s,s′):(u′,v) → (u,v′) in SymC,ν ×SymC,ν′ , and thenτu′,v′ = s;τu,v;s′ =
s;τ′u,v;s

′ = τ′u′,v′ .
Now consider the transitionsτ′ andτ′′ of D and suppose that they both correspond toτ via F.
Then,F(τu,v) = τ′

F(u),F(v) = τ′′
F(u),F(v), which impliesτ′ = τ′′.

The previous lemma shows that any symmetric strict monoidalfunctor which preserves tran-
sitions defines a mapping between the respective sets of transitions. The next lemma proves that
this property extends to the arrows ofQSSMC. It follows then immediately that Definition 3.16
is well given.

Lemma 3.15.If F R G, thenF respects transitions if and and only ifG does so, and thenτ′

corresponds toτ via F if and only if τ′ corresponds toτ via G.

Proof. Let σ:F �→ G:C → D be a monoidal natural isomorphism whose components are sym-
metries, suppose thatF respects transitions, and consider a transitionτ:π0

C,ν,ν′
�→ π1

C,ν,ν′ . By hy-

pothesis, there exists a transitionτ′:π0
D,ν̄,ν̄′

�→ π1
D,ν̄,ν̄′ of D such thatF(τu,v) = τ′

F(u),F(v) for all

(u,v) ∈ SymC,ν ×SymC,ν′ . Then, by naturality ofσ, G(τu,v) = σ−1
u ;τ′

F(u),F(v);σv, and therefore, by

naturality ofτ′, G(τu,v) = τ′
G(u),G(v), and the proof is concluded.

Definition 3.16. (Symmetric Petri Morphisms and the Category SPetriCat) A morphism
of symmetric Petri categories is an arrow inQSSMC which respects transitions. We shall use
SPetriCat denote the subcategory ofQSSMC consisting of the symmetric Petri categories and
their morphisms.

Finally, it is easy to prove thatQ ( ) is actually a functor toSPetriCat.
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Proposition 3.17. (Q ( ):Petri → SPetriCat) The functorQ ( ) restricts to a functor fromPetri

to SPetriCat.

Proof. It is enough to verify that, for any morphismf :N0 → N1 in Petri, a representativeF
of Q ( f ) respects transitions. But this follows at once, sincefT is a function fromTN0 to TN1, since
F(tu,v) = fT(t)F(u),F(v), and since the transitions ofQ (Ni) are exactly the natural transformations
{tu,v |M (u) = ν,M (v) = ν′}, for t:ν → ν′ ∈ TNi .

Interestingly enough, we can identify a functor fromSPetriCat to Petri which is acoreflection
right adjoint toQ ( ). It is worth remarking that this answers a possible legitimate doubt about
the categorySPetriCat: in principle, in fact, the functoriality ofQ ( ) could be due to a very tight
choice of the target category, e.g., the congruenceR could induce too many isomorphisms of
categories and thenQ ( ) could make undesirable identifications of nets. The existence of a core-
flection right adjoint toQ ( ) is, of course, the best possible proof of the adequacy ofSPetriCat:
it implies thatPetri is embedded in itfully and faithfully. More precisely,Petri is (equivalent
to) a coreflective subcategory ofSPetriCat. This result supports our claim thatSPetriCat is an
axiomatization of the category of net computations.

Proposition 3.18. (Q ( ) ⊣ N ( ):Petri → SPetriCat) Let C be a symmetric Petri category, and
let S⊗ be its monoid of objects. DefineN (C) to be the Petri net(∂0,∂1:T → S⊕), where

— T is the set of transitionsτ:π0
C,ν,ν′

�→ π1
C,ν,ν′ of C;

— ∂0(τ:π0
C,ν,ν′

�→ π1
C,ν,ν′) = ν;

— ∂1(τ:π0
C,ν,ν′

�→ π1
C,ν,ν′) = ν′.

Then,N ( ) extends to a functorSPetriCat → Petri which is right adjoint toQ ( ). In addition,
since the unit is an isomorphism, the adjunction is a coreflection.

Proof. Given a symmetric Petri categoryC, there is a (unique) symmetric strict monoidal
functor εC:Q N (C) → C which is the identity on the objects and which sends the component
at (u,v) of the transitionτ:ν → ν′ of N (C), in the following denoted by[τ]u,v, to the component
τu,v of the corresponding natural transformationτ:π0

C,ν,ν′
�→ π1

C,ν,ν′ :SymC,ν×SymC,ν′ →C. In fact,
by naturality ofτ, we have thats;τu′,v′ = τu,v;s′ for any symmetriess:u → u′ ands′:v → v′ in
SymC. It follows then directly from Definition 3.1 that the conditions above defineεC (uniquely)
as a symmetric strict monoidal functor fromQ N (C) to C. In addition, since it clearly preserves
transitions, we have thatεC is a (representative of a) morphism of symmetric Petri categories.
We shall prove thatεC enjoys the following couniversal property: for eachK:Q (N) → C in
SPetriCat, there exists a unique morphismf :N→N (C) in Petri such that the following diagram
commutes.

Q N (C) //
εC

C

Q (N)

OO

Q ( f )

77

K

oooooooooooooo

This proves thatN ( ) is right adjoint toQ ( ), in symbols,Q ( ) ⊣ N ( ).
Let S⊗ denote the monoid of objects ofC, let (∂0,∂1:T → S⊕) be N (C), and letF be any
representative ofK. Since the object component ofF is a monoid homomorphism, we have
M (F(u)) = M (F(v)) wheneverM (u) = M (v). Therefore, the functionfS:S⊕N → S⊕ which
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sendsν to M (F(uν)), for uν any linearization ofν, is a well defined monoid homomorphism.
Moreover, fS does not depend on the chosen representative ofK, for if F R G then, for all
u ∈ S⊗, there is a symmetryσu:F(u) → G(u), whenceM (F(u)) = M (G(u)). Concerning the
transitions, considerfT :TN →T defined asfT(t) = τ, whereτ is the transition ofC corresponding
via F to the transition{tu,v} of Q (N). By Lemma 3.14,fT is well defined, and by Lemma 3.15,
it does not depend on the representative ofK. Moreover, sincefT(t:ν → ν′) = τ implies that
τ:π0

C, fS(ν), fS(ν′)
�→ π1

C, fS(ν), fS(ν′)
, we have thatf = 〈 fT , fS〉:N → N (C) is a morphism inPetri.

We have to prove thatεC ◦Q ( f ) = K in SPetriCat. Without loss of generality, exploiting the fact
thatR is a congruence, we prove thatε ◦G = F for chosen representativesε of εC, G of Q ( f ),
andF of K. In particular, we can assume thatε is the identity on the objects and thatG(u) = F(u)

for all u ∈ S⊗N . Then,εG(tu,v) = ε([ f (t)]G(u),G(v)) = f (t)G(u),G(v) = τF(u),F(v) = F(tu,v), the last
equality following fromτ being the transition ofC corresponding to{tu,v} via F. The required
equality of functors follows now directly from Definition 3.1. Finally, the uniqueness off follows
immediately, since if the diagram has to commute, then both the definitions offT and fS are
forced.
By general results in category theory, the componentηN:N → N Q (N) of the unit of the ad-
junctionQ ( ) ⊣ N ( ) is the unique arrow which makes the diagram commute whenC is Q (N)

andK is the (equivalence class of the) identity ofQ ( ). Applying the previous part of the proof,
we have thatηN = f , wherefS is the identity ofS⊕N and fT sendst ∈ TN to {tu,v} ∈ TN Q (N). Since
by the definitions ofN ( ) and of transition ofQ (N) we know thatfT is an isomorphism, we
conclude thatηN is such.

Finally, we can identify the replete image ofQ ( ) in SPetriCat, i.e., we can identify those
symmetric Petri categories which are isomorphic toQ (N), for some netN.

Proposition 3.19. (Petri ∼= FSPetriCat) Let FSPetriCat be the full subcategory ofSPetriCat

consisting of those symmetric Petri categoriesC whose arrows can be generated by tensor and
composition fromsymmetries, and components oftransitionsof C, uniquelyup to the axioms of
symmetric strict monoidal categories, i.e., axioms (1) and(2), and the naturality of transitions,
i.e., axiom (Φ).
Then,FSPetriCat andPetri are equivalent viaN ( ) andQ ( ).

Proof. By general results in category theory, it is enough to show thatC belongs toFSPetriCat

if and only if the componentεC:Q N (C) → C of the counit ofQ ( ) ⊣ N ( ) is an isomorphism.
Let ε be a representative ofεC. Clearly,εC is iso if and only ifε is such. Moreover, sinceε is an
isomorphism on the objects, it is iso if and only if it is an isomorphism on each homset. Then
the result follows, since each arrow ofC can be written as tensor and composition of symmetries
and component of transitions if and only ifε is surjective on each homset, and this can be done
uniquely (up to the equalities that necessarily hold in any symmetric Petri category) if and only
if ε is injective on each homset.

4. Strongly Concatenable Processes

In this section we introduce a slight refinement of concatenable processes and we show that
they are abstractly represented by the arrows of the category Q (N). In other words, we find a
process-like representation for the arrows ofQ (N). This yields a functorial construction for the
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Figure 6. Three strongly concatenable processes corresponding toπ of Figure 2

category of the processes of a netN. Our task is simplified by the work already done in the proof
of Proposition 3.6.

Definition 4.1. (Strongly Concatenable Processes)A strongly concatenable processof a netN
is a triple(π, ℓ,L) whereπ:Θ → N is a process ofN, andℓ andL are total orderings of, respec-
tively, the minimal and the maximal places ofΘ, i.e., bijectionsℓ:min(Θ) → {1, . . . , |min(Θ)|}

andL:max(Θ) →{1, . . . , |max(Θ)|}.
An isomorphism of strongly concatenable processes is an isomorphism of the underlying pro-
cesses which, in addition, preserves the orderingsℓ and L. As usual, we identify isomorphic
strongly concatenable processes.

Example 4.2.Thus, as already remarked, a strongly concatenable processis simply a Goltz-
Reisig process whose minimal and maximal places are linearly ordered. As in the case of con-
catenable processes, we shall represent strongly concatenable processes by decorating places —
when necessary — with the values ofℓ andL. As an example, Figure 6 shows three (of the four)
different strongly concatenable processes obtained by linearizing source and target of the con-
catenable processπ of Figure 2. The corresponding arrows ofQ (N) are also given; the reader
can safely ignore them for the moment: the correspondence will become clear after the proof of
our representation result in Proposition 4.5.

As in the case of concatenable processes, strongly concatenable processes ofN can be en-
dowed with a symmetric monoidal algebraic structure, actually rather similar to the one of
C P (N). First, we associate a source and a target inS⊗N to each strongly concatenable process
by taking thestring corresponding to the linear ordering of, respectively, min(Θ) and max(Θ).
Then, the concatenation of(π0:Θ0 → N, ℓ0,L0):u → v and (π1:Θ1 → N, ℓ1,L1):v → w is the
concatenable process(π:Θ → N, ℓ,L):u → w defined as follows (see also Figure 7), where+

denotes the disjoint union of sets and functions.

— Let m be the cardinality of max(Θ0) and min(Θ1), coinciding by definition of source and
target, and consider the functionsL̄:{1, . . . ,m}→ SΘ0

andℓ̄:{1, . . . ,m}→ SΘ1
defined by

L̄ = {1, . . . ,m}
L−1

0−→ max(Θ0) →֒ SΘ0
and ℓ̄ = {1, . . . ,m}

ℓ−1
1−→ min(Θ1) →֒ SΘ1

.
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Figure 7. An example of the algebra of strongly concatenable processes

Let S be a pushout of̄L and ℓ̄, e.g.,SΘ0
∪SΘ1

quotiented by the equations̄L(i) = ℓ̄(i), for
i = 1, . . . ,m, whenSΘ0

andSΘ1
are disjoint, and letin0:SΘ0

→֒ S and in1:SΘ1
→֒ S be the

corresponding injections. Then,

Θ = (∂0
Θ0

+ ∂0
Θ1

,∂1
Θ0

+ ∂1
Θ1

:TΘ0
+TΘ1

→ S⊕),

where∂ j
Θi

is TΘ
∂ j

Θi−→ S⊕Θi

in⊕
i−→ S⊕ andin⊕

i is the free monoid homomorphism induced byini .
— Let g0:SΘ0

→ SN andg1:SΘ1
→ SN be the functions underlying the place components of,

respectively,π0 and π1. Sinceg0 ◦ L̄ = g1 ◦ ℓ̄, there exists a (unique) functiong:S→ SN

(induced by the pushout) such thatg◦ in0 = g0 andg◦ in1 = g1, i.e., that agrees withπ0

onSΘ0
and withπ1 onSΘ1

. Thenπ = 〈π0T + π1T,g⊕〉.
— ℓ(in0(a)) = ℓ0(a).
— L(in1(a)) = L1(a).

Proposition 4.3. (The CategoryC Q (N)) Under the above defined operation of sequential com-
position, the strongly concatenable processes ofN form acategoryC Q (N) with identities those
processes consisting only of places, which therefore are both minimal and maximal, and such
thatℓ = L.

Concerning the operation of parallel composition, forSCP0 = (π0:Θ0 → N, ℓ0,L0):u → v
andSCP1 = (π1:Θ1 → N, ℓ1,L1):u′ → v′ strongly concatenable processes,SCP0⊗SCP1 is the
process(π:Θ → N, ℓ,L):u⊗u′ → v⊗v′ defined below (see also Figure 7), whereini denotes the
inclusion ofSΘi in the disjoint unionSΘ0

+SΘ1
.

— Θ = (∂0
Θ0

+ ∂0
Θ1

,∂1
Θ0

+ ∂1
Θ1

:TΘ0
+TΘ1

→ (SΘ0
+SΘ1

)⊕);
— π = 〈π0T + π1T,π0S+ π1S〉;
— ℓ(in0(a)) = ℓ0(a) and ℓ(in1(a)) = |min(Θ0)|+ ℓ1(a);
— L(in0(a)) = L0(a) and L(in1(a)) = |max(Θ0)|+L1(a).
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Figure 8. A transitionstu,v:u→ v and the symmetrȳγ(u,v) in C Q (N)

It is easy to verify that⊗ is a functor⊗:C Q (N)×C Q (N)→ C Q (N). The strongly concaten-
able processes consisting only of places are analogous inC Q (N) to the symmetries ofQ (N).
In particular, for anyu,v∈ S⊗, the strongly concatenable processγ̄(u,v) consisting of places are
in one-to-one correspondence with the elements of the string u⊗ v mapped byπ to the corre-
sponding places ofN, and such thatℓ(ui) = i, ℓ(vi) = |u|+ i, L(ui) = |v|+ i, andL(vi) = i, plays
in C Q (N) the role played by the symmetrycu,v, i.e., the permutationγ(u,v), in Q (N) (see also
Figure 8).

Proposition 4.4. (The Symmetric Monoidal CategoryC Q (N)) Under the above defined tensor
product,C Q (N) is a symmetric strict monoidal categorywhose symmetry isomorphism is the
family {γ̄(u,v)}u,v∈S⊗N

. Moreover, the subcategory ofC Q (N) consisting of the processes with

only places is the category of symmetries ofC Q (N) and is isomorphic toSym∗N.

Proof. Concerning the first claim, it is enough to verify thatC Q (N) satisfies the axioms (6)
with respect to⊗ and the symmetries̄γ(u,v) defined above. The task is really immediate and thus
omitted.
Let Symbe the subcategory of the processes consisting only of places of C Q (N). Since⊗ re-
stricts to a functorSym×Sym→ Sym, we have thatSymis a symmetric strict monoidal category
with symmetry isomorphism{γ̄(u,v)}u,v∈S⊗N

. Then, by Proposition 3.6, there exists a functorF

from Sym∗N to Sym, corresponding to the identity function onS⊗N , which is the identity on the
objects and such thatF(γ(u,v)) = γ̄(u,v). Moreover, since for anyu,v ∈ S⊗N the strongly con-
catenable processes fromu to v in Symare clearly isomorphic to the permutationsp:u → v
in Sym∗N, it follows easily thatF is full and faithful. Therefore,F is an isomorphism. This means
thatSymis generated via composition and tensor product from the symmetriesγ̄(u,v) and from
the identities, i.e., thatSymis the category of symmetries ofC Q (N).

The transitionst of N are faithfully represented in the obvious way by processes with a unique
transition which is in the post-set of any minimal place and in the pre-set of any maximal
place, minimal and maximal places being in one-to-one correspondence, respectively, with∂0

N(t)
and∂1

N(t). Thus, varyingℓ andL on the process corresponding to a transition we obtain a repre-
sentative inC Q (N) of each instancetu,v of t in Q (N) (see also Figure 8).

We can show the announced correspondence betweenC Q (N) andQ (N).

Proposition 4.5. (Strongly Concatenable Processes vs.Q ( )) C Q (N) andQ (N) are isomor-
phic inSSMC.

Proof. First observe thatC Q (N) satisfies axiom (Φ) of Definition 3.1, the symmetries and
the (instances of) transitions being as explained above. Inorder to prove this statement, let
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Tu,v = (π0:Θ0 → N, ℓ0,L0) andTu′,v′ = (π1:Θ1 → N, ℓ1,L1) be different instances of some tran-
sition t, and letS:u→ u′ andS′:v→ v′ be symmetries ofC Q (N). Assume also thatS−1 andS′

correspond, respectively, to the permutationsp:u′ → u andq:v→ v′ in Q (N). Then,S−1 ; Tu,v ; S
is (isomorphic to)(π0:Θ0 → N, p◦ ℓ0,q◦ L0). Consider now the functiong:SΘ0

→ SΘ1
such

that g(x) = ℓ−1
1 (p(ℓ0(x))) if x ∈ min(Θ0) andg(x) = L−1

1 (q(L0(x))) if x ∈ max(Θ0). Clearly,
by definition ofΘ0 andΘ1, g is an isomorphism. Moreover, since for eachx ∈ min(Θ0) and
y ∈ max(Θ0) we have thatuℓ0(x) = u′p(ℓ0(x))

and vL0(y) = u′q(L1(y))
, it follows that π1(g(x)) =

u′ℓ1(g(x)) = u′p(ℓ0(x))
= uℓ0(x) = π0(x) and thatπ1(g(y)) = u′L1(g(y)) = u′q(L0(y))

= uL0(y) = π0(y).

Therefore, we have an isomorphism〈 f ,g⊕〉:Θ0 → Θ1, where f is the function which maps the
unique transition inΘ0 to the unique transition inΘ1. Then,S−1 ; Tu,v ; S′ = Tu′,v′ , i.e., (Φ) holds.

Thus, sinceQ (N) is the free symmetric strict monoidal category built onSym∗N plus the addi-
tional arrows inTN and which satisfies axiom (Φ), there is a strict symmetric monoidal functor
H :Q (N) → C Q (N) which is the identity on the objects and sends the generators, i.e., sym-
metries and transitions, to the corresponding strongly concatenable processes. We want to show
that H is an isomorphism. Observe that, by Proposition 4.4, we already know thatH is an
isomorphism between the corresponding categories of symmetries.

fullness. It is completely trivial to see that any strongly concatenable processSCPmay be ob-
tained as a concatenationSCP0 ; . . . ; SCPn of strongly concatenable processesSCPi of depth one.
Now, each of theseSCPi may be split into the concatenation of a symmetrySi

0, the tensor of the
(processes representing the) transitions which appear in it plus some identities, sayui ⊗

N

j T
i
j

and finally another symmetrySi
1. In fact, we can take the tensor of the transitions which appear

in SCPi in any order, and multiply the result by an identity concatenable process in order to get
the correct source and target; we then need a pre-concatenation and a post-concatenation with
symmetries in order to get the right indexing of minimal and maximal places. Then, we obtain

SCP= S0
0 ; (u1⊗

N

j T
1
j ) ; (S0

1 ; S1
0) ; . . . ; (Sn−1

1 ; Sn
0) ; (un⊗

N

j T
n
j ) ; Sn

1,

which shows that every strongly concatenable process is in the image ofH .

faithfulness. The arrows ofQ (N) are equivalence classes, modulo the axioms stated in Defini-
tion 3.1, of terms built by applying tensor and sequential composition to the identitiesidu, the
symmetriescu,v, and the transitionstu,v. We have to show that, given two such termsα andβ,
wheneverH (α) = H (β) we haveα =E β, where=E is the equivalence induced by the ax-
ioms (1), (2) and (Φ).
First of all, observe that ifH (α) is a strongly concatenable processSCPof depthn, thenα can
be proved equal to a term

α′ = s0 ; (idu1 ⊗
N

j τ1
j ) ; s1 ; . . . ; sn−1 ; (idun ⊗

N

j τn
j ) ; sn

where, for 1≤ i ≤ n, τi
j = (t i

j)ui
j ,v

i
j

and the transitionst i
j , for 1 ≤ j ≤ ni , are exactly the tran-

sitions ofSCPat depthi and wheres0, . . . ,sn are symmetries. Moreover, we can assume that
in the ith tensor product

N

j τi
j the transitions are indexed according to a global ordering≤

of TN assumed for the purpose of this proof, i.e.,t i
1 ≤ ·· · ≤ t i

ni
, for 1≤ i ≤ n. Our claim can

easily be shown by induction on the structure of terms. In fact, using axioms (1)α can be
rewritten asα1; . . . ;αh, whereαi =

N

k ξi
k and ξi

k is either a transition or a symmetry. Now,
observe that, by functoriality of⊗, for any α′:u′ → v′, α′′:u′′ → v′′ and s:u → u, we have
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α′ ⊗ s⊗α′′ = (idu′ ⊗ s⊗ idu′′);(α′ ⊗ idu ⊗α′′), and thus, by repeated applications of (1), we
can prove thatα is equivalent to ¯s0; ᾱ1; s̄1 . . . ; s̄h−1; ᾱh, where ¯s0, . . . , s̄h−1 are symmetries and
eachᾱi is a tensor

N

k ξ̄i
k of transitions and identities. The fact that the transitions at depthi

can be brought to theith tensor product, follows intuitively from the facts that they are ‘dis-
jointly enabled’, i.e., concurrent to each other, and that they depend causally on some transition
at depthi−1. In particular, the sources of the transitions of depth 1 can be target only of symme-
tries. Therefore, reasoning formally as above, they can be pushed up tōα1 exploiting axioms (1).
Then, the same happens for the transitions of depth 2, which can be brought tōα2. Proceeding
in this way, eventually we show thatα is equivalent to the composition̄̄s0; ¯̄α1; ¯̄s1 . . . ; ¯̄sn−1; ¯̄αn; ¯̄sn

of the symmetries̄̄s0, . . . , ¯̄sn and the products̄̄αi =
N

k
¯̄ξi
k of transitions at depthi and identities.

Finally, the order of thē̄ξi
k can be permuted in the way required by≤. This is achieved by pre-

and post-composing each product by appropriate interchange symmetries. More precisely, letσ
be a permutation such that

N

k
¯̄ξiσ(k) coincides withidui ⊗

N

j τi
j , suppose that̄̄ξik:ui

k → vi
k, for

1≤ k≤ ki . Then, by definition of interchange permutation inSym∗N, we have that

σ(ui
1, . . . ,u

i
ki
) ; (

N

k
¯̄ξi

σ(k)) = (
N

k
¯̄ξi

k) ; σ(vi
1, . . . ,v

i
ki
),

and then, sinceσ(ui
1, . . . ,u

i
ki
) is an isomorphism, we have that

(idui ⊗
N

j τi
j) = σ(ui

1, . . . ,u
i
ki
)−1 ; (

N

k
¯̄ξi
k) ; σ(vi

1, . . . ,v
i
ki
).

Now, applying the same argument toβ, one can prove that it is equivalent to a termβ′ =

p0;β0; p1; . . . pn−1;βn; pn, wherep0, . . . , pn are symmetries andβi is the product of (instances of)
the transitions at depthi in H (β) and of identities. Then, sinceH (α) =H (β), and since the tran-
sitions occurring inβi are indexed in a predetermined way, we conclude thatβi = (idui ⊗

N

j τ̄i
j),

whereτ̄i
j = (t i

j)ūi
j ,v̄

i
j
i.e.,

α′ = s0 ; (idu1 ⊗
N

j(t
1
j )u1

j ,v
1
j
) ; s1 ; . . . ; sn−1 ; (idun ⊗

N

j(t
n
j )un

j ,v
n
j
) ; sn

β′ = p0 ; (idu1 ⊗
N

j(t
1
j )ū1

j ,v̄
1
j
) ; p1 ; . . . ; pn−1 ; (idun ⊗

N

j(t
n
j )ūn

j ,v̄
n
j
) ; pn. (5)

In other words, the only possible differences betweenα′ and β′ are the symmetries and the
sources and targets of the corresponding instances of transitions. Observe now that the steps
which led fromα to α′ and fromβ to β′ have been performed by using the axioms which de-
fine Q (N) and since such axioms hold inC Q (N) as well andH preserves them, we have that
H (α′) = H (α) = H (β) = H (β′). Thus, we conclude the proof by showing that, ifα andβ
are terms of the form given in (5) which differ only by the intermediate symmetries and if
H (α) = H (β), thenα andβ are equal inQ (N).

We proceed by induction onn. Observe that ifn is zero then there is nothing to show: since we
know thatH is an isomorphism on the symmetries,s0 andp0, and thusα andβ, must coincide.
To provide a correct base for the induction, we need to prove the thesis also forn = 1.

depth 1. In this case, we have

α = s0 ; (idu⊗
N

j(t j)u j ,vj ) ; s1

β = p0 ; (idu⊗
N

j(t j )ū j ,v̄j ) ; p1.
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Without loss of generality we may assume thatp0 andp1 are identities. In fact, we can multiply
both terms byp−1

0 on the left and byp−1
1 on the right and obtain a pair of terms whose images

throughH still coincide and whose equality implies the equality inQ (N) of the originalα andβ.
Let (π:Θ → N, ℓ,L) and(π̄:Θ̄ → N, ℓ̄, L̄) be, respectively, the strongly concatenable processes
H (idu⊗

N

j(t j)u j ,vj ) andH (idu⊗
N

j(t j)ū j ,v̄j ). Clearly, we can assume thatH (s0) andH (s1)

are respectively(π0:Θ0 → N, ℓ′, ℓ) and(π1:Θ1 → N,L,L′), whereΘ0 is min(Θ), Θ1 is max(Θ),
π0 andπ1 are the corresponding restrictions ofπ, andℓ′ andL′ are the orderings respectively of
the minimal and the maximal places ofΘ.
Then, we have thatH (s0;(idu⊗

N

j(t j)u j ,vj );s1) is (π:Θ → N, ℓ′,L′), and by hypothesis there
is an isomorphismϕ:Θ → Θ̄ such thatπ̄ ◦ ϕ = π and which respects all the orderings, i.e.,
ℓ̄(ϕ(a)) = ℓ′(a) andL̄(ϕ(b)) = L′(b), for all a∈ Θ0 andb∈ Θ1. Let us writeidu⊗

N

j(t j)u j ,vj

as
N

k ξk andidu⊗
N

j(t j )ū j ,v̄j as
N

k ξ̄k, whereξk, respectivelȳξk, is either a transition(t j)u j ,vj ,
respectively(t j)ū j ,v̄j , or the identity of a place inu. Clearly,ϕ induces a permutation, namely the

permutationσ such that̄ξσ(k) = ϕ(ξk). In order forϕ to be a morphism of nets, it must map the
(places corresponding to the) pre-set, respectively post-set, of(t j )u j ,vj to (the places correspond-
ing to the) pre-set, respectively post-set, of(tσ( j))ūσ( j) ,v̄σ( j)

. It follows that (π1:Θ1 → N,L,L′),
which isH (s1), must be a symmetry obtained by post-concatenating the image viaH of the
interchange symmetryσ(v̄1, . . . , v̄ki ) in C Q (N) with a tensor product

N

j S
1
j of symmetries, one

for eacht occurring inα, whereS1
j :v j → v̄ j , whose role is to reorganize the tokens in the post-

sets of each transitions. Reasoning along the same lines, wecan conclude that(π0:Θ0 →N, ℓ,ℓ′),
which isH (s0)

−1, must be a symmetry obtained by concatenating a tensor product
N

j S
0
j , where

S0
j :u j → ū j is a symmetry, with the image viaH of the interchange symmetryσ(ū1, . . . , ūki ).

Then, sinceH is an isomorphism betweenSymQ (N) andSymC Q (N), s0 ands1 must necessarily be,
respectively,σ(ū1, . . . , ūki )

−1;(idu⊗
N

j s
0
j ), and(idu⊗

N

j s
1
j );σ(v̄1, . . . , v̄ki ), wheres0

j : ū j → u j

ands1
j :v j → v̄ j are symmetries.

Then, by distributing the tensor of symmetries on the transitions and using (Φ), we show that

α = σ(ū1, . . . , ūki )
−1 ; (idu⊗

N

j s
0
j ; (t j )u j ,vj ; s1

j ) ; σ(v̄1, . . . , v̄ki )

= σ(ū1, . . . , ūki )
−1 ; (idu⊗

N

j(t j)ū j ,v̄j ) ; σ(v̄1, . . . , v̄ki ),

which, by definition of interchange symmetry, is(idu⊗
N

j(t j)ū j ,v̄j ). Thus, we haveα =E β as
required.

Inductive step. Suppose thatn > 1 and letα = α′;α′′ andβ = β′;β′′, where

α′ = s0 ; (idu1 ⊗
N

j τ1
j ) ; s1 ; . . . ; sn−1 and α′′ = (idun ⊗

N

j τn
j ) ; sn

β′ = p0 ; (idu1 ⊗
N

j τ̄1
j ) ; p1 ; . . . ; pn−1 and β′′ = (idun ⊗

N

j τ̄n
j ) ; pn

We show that there exists a symmetrys in Q (N) such thatH (α′;s) = H (β′) andH (s−1;α′′) =

H (β′′). Then, by the induction hypothesis, we have(α′;s) =E β′ and(s−1;α′′) =E β′′. Therefore,
we conclude that(α′;s;s−1;α′′) =E (β′;β′′), i.e., thatα = β in Q (N).
Let (π:Θ → N, ℓ,L) be the strongly concatenable processH (α) = H (β). Without loss of gener-
ality we may assume that the strongly concatenable processesH (α′) andH (β′) are, respectively,
(π:Θ′ → N, ℓ′,Lα′

) and(π′:Θ′ → N, ℓ′,Lβ′), whereΘ′ is the subnet of depthn−1 of Θ, ℓ′ is the
appropriate restriction ofℓ and finallyLα′

andLβ′ are orderings of the places at depthn−1 of Θ.
Consider the symmetryS= (π̄:Θ̄ → N, ℓ̄, L̄) in C Q (N), where
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— Θ̄ is the process net consisting of the maximal places ofΘ′;

— π̄:Θ̄ → N is the restriction ofπ to Θ̄;

— ℓ̄ = Lα′
;

— L̄ = Lβ′ .

Then, by definition, we haveH (α′);S= H (β′). Let us consider nowα′′ andβ′′. We can as-
sume thatH (α′′) andH (β′′) are, respectively,(π′′:Θ′′ → N, ℓα′′

,L′′) and(π′′:Θ′′ → N, ℓβ′′ ,L′′),
whereΘ′′ is the process net obtained by removing fromΘ the subnetΘ′, L′′ is the restriction
of L to Θ′′, andℓα′′

andℓβ′′ are orderings of the places at depthn−1 of Θ. Now, in our hypoth-
esis, it must beLα′

= ℓα′′
andLβ′ = ℓβ′′ , which shows directly thatS−1;H (α′′) = H (β′′). Then,

s= H −1(S) is the required symmetry ofQ (N).

Then, sinceH is full and faithful and is an isomorphism on the objects, it is an isomorphism and
the proof is concluded.

We conclude this section with a few remarks concerning the relationships betweenP (N)

andQ (N). As we have already noticed,Q (N) can be quotiented down toP (N) — although
not in a functorial way — by imposing the commutativity of thetensor product on the objects
and the equationsca,b = id, for a 6= b∈ SN. On the other hand, there is clearly no reasonable way
to mapP (N) in Q (N).

At the level of processes, the difference — clearly illustrated by Figures 2, 6 and 7 — is in our
opinion not very deep, at least conceptually. Intuitively,while one the one handQ (N) has many
more generators thanP (N), on the other hand process composition is a more restricted operation,
since source and targets are strings rather than multisets.This is why the difference between
concatenable and strongly concatenable processes is completely localized in the orderings of
their minimal and maximal places.

Apart from such qualitative considerations, the essentialdifference betweenP (N) andQ (N)

remains, of course, the symmetryca,b for a 6= b∈SN. To illustrate its role, let us consider again the
processes of Figure 6. They all correspond to the concatenable processπ of Figure 2. In fact, by
the second of (2),π1 = t0⊗ t1 ; t⊗ idc can be rewritten ast0⊗ t1 ; cc,c ; idc⊗ t ; cc,d and, therefore,
if cc,d = id, it coincides withπ2 = t0⊗ t1 ; cc,c ; idc⊗ t. In the same way,π3 = t1⊗ t0 ; idc⊗ t is
cb,a ; t0⊗ t1 ; cc,c ; idc⊗ t, i.e.,π2 if cb,a = id. However, as proved in this paper, such a difference
is the real key to the functoriality ofQ (N). In particular, notice that the counterexample of
Example 2.1 exploits the fact that such symmetries are identities in an essential way. Observe, in
fact, the axioms of symmetric monoidal categories imply only thatt0⊗ t1 = ca0,a1 ; t1⊗ t0 ; cb1,b0

.
It is precisely the first axiom in Definition 1.5 that allows usto drop the symmetries and conclude
thatt0⊗ t1 = t1⊗ t0, yielding an absurd situation.

Conclusions

In this paper we studied the issue of functoriality for the categorical/algebraic viewpoint of Petri
net processes introduced in (Deganoet al.1996). We gave a negative result showing that no naive
modification ofP (N) can be functorial. Then, we introduced the strongly concatenable processes
as a minimal modification of concatenable processes which takes such a result into account,
and showed that the construction of the strongly concatenable processes can be expressed via a
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functorQ ( ). This supports the informal claim that strongly concatenable processes are the least
extension of concatenable processes which yields functoriality, i.e., the least extension of Goltz-
Reisig processes which yields an operation of concatenation and admits a functorial treatment.
In addition, the paper proposedSPetriCat as an axiomatization of the category of (categories
of) net behaviours; the appropriateness of such a category to the purpose has been proved by
showing thatQ ( ) embeds coreflectivelyPetri in SPetriCat.

The choice of the category of Petri nets studied in the paper,namelyPetri exactly as defined
in (Meseguer and Montanari 1990) and used in (Deganoet al.1996), has been suggested by the
existence of the open problem of functoriality of the process semantics. It is worth remarking,
however, that such a category is rather general, in the precise sense of allowing all the reasonable
morphisms, as introduced in (Winskel 1984; Winskel 1987), which map transitions to transitions.
Nevertheless, more general kinds of morphisms, e.g., mapping transitions to computations, have
been occasionally proposed in the literature (Winskel 1987; Meseguer and Montanari 1990). A
question which may be worth investigating in the future concerns the categorical axiomatiza-
tions of the behaviour of nets, analogous to the one presented here, when such morphisms are
considered. More generally, the results of this paper mightprovide both the motivations and the
technical ground for investigating new notions of morphismfor Petri nets makingQ ( ) a functor
to SSMC, rather than a pseudo-functor.

We definedSPetriCat via a quotient which accounts precisely for the ‘strings as represen-
tatives of multisets’ paradigm that we pursued in this paper. We would like to remark that an
equivalent, ‘quotient-free’, exposition of our results can be given in terms of2-categories(more
precisely,groupoid-enrichedcategories), the information about multisets being carried by the
2-structure. In fact, let2-SPetriCat be the 2-category whose objects are the symmetric Petri
categories, whose arrows are transition-respecting symmetric strict monoidal functors, and such
that there is a 2-cell betweenF andG if there exists a monoidal natural isomorphismF �→ G

whose components are all symmetries. Then, consideringPetri as a (trivial) 2-category, we have
thatN ( ):2-SPetriCat → Petri is a 2-functor,Q ( ):Petri → 2-SPetriCat is apseudo2-functor,
andQ ( ) ⊣ N ( ) is apseudo coreflection. The latter means precisely that the natural family of
isomorphisms between homsets which defines an adjunction isrelaxed to a pseudo natural, i.e.,
natural up to isomorphism, family of equivalences between homcats.

We think that this alternative formulation of our axiomatization of net behaviours has some
intrinsic value and deserves consideration. In fact, the pseudo functoriality expressible in 2-
categories seems to be the right level of abstraction for formalizing constructions such asQ ( ),
which are essentially functorial but cannot reasonably be expected to be strictly so. Nevertheless,
in this paper we followed a ‘1-categorical’ presentation, since it relies on simpler categorical
tools whose use is by now rather common in our community.
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A. Symmetric Strict Monoidal Categories

A symmetric strict monoidal category(Bénabou 1963; Eilenberg and Kelly 1966; MacLane 1971) is a
categoryC together with a functor⊗:C×C → C, called thetensor product, and a selected objecte∈ C, the
unit object, such that⊗, when viewed as a pair of operations respectively on objectsand arrows ofC, forms
two monoids whose units aree andide, and together with a family of arrowsγx,y:x⊗y→ y⊗x, for x andy
objects ofC, such that, for eachf :x→ y andg:x′ → y′ in C,

(idy⊗ γx,z)◦ (γx,y⊗ idz) = γx,y⊗z

(g⊗ f )◦ γx,y = γx′,y′ ◦ ( f ⊗g); (6)

γy,x◦ γx,y = idx⊗y

Notice that the equations above mean, respectively, thatγ satisfies the relevant Kelly-MacLane (MacLane
1963; Kelly 1964) coherence axiom, thatγ = {γx,y}x,y∈C is a natural transformation⊗ �→ ⊗◦∆, where∆
is the endofunctor onC×C which ‘swaps’ its arguments, and thatγx,y is an isomorphism with inverseγy,x.
The role ofγ is to express the commutativity ‘up to isomorphism’ of the structure by giving explicitly the
isomorphism, e.g., betweenx⊗y andy⊗x. Then, the axioms above guarantee the reasonable requirement
that between any two functors built using exclusively⊗, e, and permutations of arguments, there is at most
one natural transformation composed out of such structuralisomorphism, i.e., they guarantee the coherence
of the structural isomorphismγ.

Theorem (MacLane 1963; Kelly 1964).Every diagram of natural transformations each arrow
of which is obtained by repeatedly applying⊗ to ‘instances’ ofγ and identities, where in turn
‘instances’ means components of the natural transformation at objects ofC obtained by repeated
applications of⊗ to e and to ‘variables’, commutes.

A symmetryin a symmetric monoidal category is any arrow obtained as composition and tensor of
‘instances’ ofγ and identities. We writeSymC to denote the subcategory of a symmetric monoidal categoryC

whose objects are those ofC and whose arrows are the symmetries ofC.
A symmetric strict monoidal functorfrom (C,⊗,e,γ) to (D,⊗′,e′,γ′) is a functorF:C → D such that

F(e) = e′,

F(x⊗y) = F(x)⊗′
F(y), (7)

F(γx,y) = γ′Fx,Fy.

These data define the categorySSMC of symmetric strict monoidal (small) categories and symmetric strict
monoidal functors.

Given the symmetric strict monoidal categoriesC andD and the symmetric strict monoidal functors
F:C → D andG:C → D, amonoidal transformationfrom F to G is a natural transformationσ:F �→ G such
that

σe = ide′ ,

σu⊗v = σu⊗
′ σv. (8)

Given a (symmetric monoidal) categoryC and a familyR of binary relations on the homsets ofC (in
particular a set of equationsE on parallel arrows ofC) the (monoidal) quotientof C moduloR , is the
categoryC/R , whose objects are those ofC and whose arrows are the equivalence classes of the arrows
of C modulo theleast equivalence closed with respect to arrow composition (and tensor product) which
containsR .


