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This paper retraces, collects, and summarises the cotirislof the author — both individually and in collabo-
ration with others — on the theme of algebraic, compositiapproaches to the semantics of Petri nets.

Introduction

An extremely successful line of research in #emantics of concurrencyooted in
the very ideas of denotational semantics, is the one fofigwhealgebraicapproach. It
focuses orstructuralandcompositionahspects of systems and behaviours, and the leading
idea is to describe them by means of a few basic building lsl@eid a small number of
combinatorq 39, 62, 38, 64]. The appeal of this is that it tends to devise neat algebraic
structures that capture tlessentiahature of the class of systems considered.

In this paper, we first survey a line of research — detaile&#24, 59, 86, 87, 16] —
aimed at recasting Petri ngtocesse lieu of ideas fronprocess algebraandcategorical
algebra In particular, we shall focus on Petri nedbncatenable process§g4, 86], on
stronglyconcatenable process&3[16], and on their representation in termssymmetric
monoidal categories

Petri netswere introduced in theg6o’s by Carl Adam Petri inT4] (see also the refer-
ences 15, 80, 85, 72, 83]). They are a widely used model for concurrency, attradtioen
the theoretical point of view because of its simplicity atgintrinsically concurrent and
distributed nature, and very successful in applicatioct system modeling, analysis, and
design (see, e.g.81, 82, 46, 99] and browse through the several available computer-aided
design, analysis, and verification tools based on Petri[[7T&{3. Actually, ‘Petri net’ is
a rather generic term: in fact, Petri’s original idea can bestrained and generalised in
many sensible ways, giving rise to several net-based meddidy studied in the litera-
ture. These range from the essengiEdmentanf84] andplace/transition net$26] to the
sophisticategbredicate/transitior§88] and coloured net$47, 48, 49], including stochastic
Petri netg[2] used in simulation and performance evaluation.

Here we shall be concerned exclusively with place/tramsi{PT) nets — though it
would be interesting to explore to what extent these idedsechniques can be lifted to
classes of high-level nets. The reason why PT nets form aoritapt class is that they
formalise a very basic model of distributed systems, in Whinstances of) places (i.e.,
tokens) can be understood as available resources, anditas®s concurrent activities
that require exclusive use of some of these resources ahdafter completion, release
new resources (tokens in places) to the environment. Anstlggestive possible interpre-
tation is to look at places as ‘mailboxes’ and at tokens assages, portraying a view of
place/transition nets as a distributed model of concugrevith a form of asynchronous
message passing. We shall study PT nets under the bdpetdrriets are monoidsiniti-
ated by p8]. Our first aim will be to axiomatise the (noninterleavingneputations of a
net, i.e., its processes, and their structure. We sealg@brato represent them; an algebra
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where processes can be seen as terms built up from theiratmmiponents and whose
algebraic laws can be used to compute with and reason on amd th

The mathematical structures we shall use to this purposthargymmetric monoidal
categoriesMonoidal categorieslate back toT] (see B5] for an easy thorough introduc-
tion and p8] for advanced topics). Essentially, a monoidal categogniglgebraic theory
of so-called ‘arrows’, or ‘morphisms’, and of two operatioon them, a (partiagequen-
tial composition_; _, and aparallel composition, the tensor product. But let us proceed
orderly. Acategoryis a graph equipped with a self-looping eddg for each nodel, and
with an associative binary operatian _ of composition of adjacent edges. Nodes and
edges here are call@djectsandarrows, andid, is theidentityarrow at objects, and be-
haves as a unit under compositionfukactoris a mapping between categories that behaves
homomorphically with respect to; _ andid, i.e., it maps identities to identities. Adding a
tensor product to a category amounts to adding to the grapiparation of parallel com-
position of objects and arrows that behaves well with refsfoec; _. In this paper we shall
be concerned only with a particular kind of monoidal catéggmamely the ‘strict’ ones.

A strict monoidal categoris a structuréC, ®, e), whereC is a categoryeis an object
of C, called theunit object,®: C x C — Cis a functor that, as an operation of objects and
arrows, is associative and adm@sndide as, respectively, the unit object and arrow. A
monoidal category isymmetridf, informally, the tensor product isommutativeup to a
chosen family of isomorphisntg , : u®v-— v u, for all objectsu,v € C. The collection
of the arrowscyy must be subject to maturality condition 5] and to the all important
Kelly-MacLanecoherenceaxioms b4, 51], and is called theymmetryof C.

Another relevant application of Petri nets is their use asraasitic basis to interpret
concurrent languages, a task that calls for a compositigmalcess algebra-likedescrip-
tion of nets. And in fact, the literature is rich of examplégmcess algebras and concur-
rent programming languages interpreted over the domaietst as, e.g., 7L, 34, 23, 20],
and also of real net-based process algebras, su@6as(, 63]. In particular, B4] uses
Petri nets to model an algebra of processes and to inferae@rinterleaving behavioural
equivalences on it, while2B] interprets CCS (cf.§2]) on nets — taking up a line of re-
search initiated byd4], where event structures (c®g]) were used — based on an oper-
ation of decomposition of processes into sequential agditts decomposition approach
is also followed by 71], while the semantics for tha-calculus (cf. p4]) presented inZ0]
is based on nets with inhibitory arcs (see, e 22, fi5]), a powerful extension of PT nets.
A related line of research, as already mentioned, takesratgm from the work on pro-
cess algebras and set out to design and study net algebrasof@me most prominent
approaches among these is the Petri Box calcdliis §¢entered around operations of asyn-
chronous communication and synchronisation, wt8& puilds on operations of parallel
and non-deterministic composition. In a different contéxtt with a similar vein, §3] in-
troduces the notion of named Petri nets and provides a reiagfon for them as an action
calculus.

We proceed in our survey by focusing on the algebra of netsldped in p8]. That
approach is entirely based on a notionimerfacefor Petri nets that specifies what parts
of the net argublic, i.e., accessible to the environment, and what partpavate Also,
it partitions public net components imput places and 6utput transitions, and dictates
the discipline by which nets are composed via a minimal setoofibinators forming a
rudimentary calculus of nets. The most important of thesefegm of asynchronous com-
munication — message passing — by means of which a net maiysdatput transitions,
send messages to another net, by delivering tokens to thadeet’s input places. Net
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composition is centred on an interesting fornredursionconsisting offeeding baclout-
puts to inputs, yielding a bridge to structures of recentimmm interest in category theory
and in computer science: th@ced monoidal categorig$0].

PETRINETS IN THE SMALL

Among the semantics proposed for Petri nets, a role of pavatimportance is played
by the various notions gfrocesse.g. [76, 35, 9], whose merit is to provide a faithful ac-
count of computations involving many different transiscend of thecausal connections
between the events occurring in computations. This is,dt) fhe essence of th@ninter-
leavingapproach to the semantics of concurrency, where compuogadie decorated with
additional information describing causes and effectsrihiatl the occurrences of events in
them. The mathematical structures arising naturally fdrispremises are the partially or-
dered multisetsq9], pomsetdor short. Thus, informally speaking, Petri net processes —
whose standard version is given by the Goltz-Reigig-sequential processg3b] — are
net computations together with an explanation of the caysshich each transition has
fired, that be represented abstractly by means of ordersdvbetse elements are labelled
by transitions.

Bare process models, however, fail to bring to the foregdatealgebraic structure
of the space of computations of a net. Our interest, insteaitjes on abstract models that
capture the mathematical essence of such spaces, possibfyadically, roughly in the
same way as a prime algebraic domain (or, equivalently,ragévent structuredp, 98])
models the computations of a net (see, ef)])[ The research detailed i3, 24, 59,
86, 87] identifies such structures agmmetric monoidal categories where objects are
states, i.e., multisets of tokens, arrows are processdgharnensor product and the arrow
composition model, respectively, the operations of pakalhd sequential composition of
processes.

At a higher level of abstraction, the next important quastioncerns thglobal struc-
ture of the collection of such spaces, i.e., the axiomatisatiortte large of net com-
putations. In other words, the space of the spaces of cotiqunsaof Petri nets. Building
on [24, 86], the work presented ir8[] shows that the so-callexsymmetric Petri categories
a class of symmetric strict monoidal categories with freenfcommutative) monoids of
objects, provide one such an axiomatisation.

In this part, we retrace and illustrate the main resultseaad so far along these lines
of research by the author, both in joint and individual wofke next one will look at net
algebras ‘in the large’ from a different angle.

1. Petri nets as monoids

The idea of looking at nets adgebraic structurese.g. B0, 97], has been interpreted
in [58] by viewing nets asnternal graphsin categories of sets with structure and using
monoidal categories as a suitable semantic framework &nttPrecisely, a net is a graph

N = (prey,posk: Tn — W(Sv))

whose nodes form the free commutative mongifly) of thefinite multisets ofSy. Here,
Sy and Ty are sets of, respectivelplacesandtransitions andprey andpost, are func-
tions assigning aourceand atarget multiset of places to each transition. Accordingly,
a morphism of nets is graph homomorphisf f,) whose node component respects the
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SN :{a,b,C}
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t

FIGURE 1. A netN and one of its two concatenable processBs a+ b — 2¢

monoidal structure on places. This, with the obvious conepbrise composition of mor-
phisms, defines the categdpytri.

Ideally, Petri net processes are simply computations magrgxplicit information
about cause/effect relationship between event occursefdgs is conveniently described
by defining a process ™ to be a mapt: © — N, where® defines the process ‘skeleton’
andrt ‘labels’ © with places and transitions &f in a way compatible with its structure.

DEFINITION. A process neis a finite, acyclic ne® such that for alt € To, preg(t) and
posk(t) are sets (as opposed to multisets), and fotpah t1 € To,

preg(to) Npreg(ty) = @ and posi(to) Nposk(t1) = 2.
A processof N € Petri is (up to isomorphism) a net morphism © — N, where®© is a
process net and maps places to places (as opposed to multisets of places).

Inspired by the work in process algebras, we would like tocebenate a process
T ©1 — N with sourceu to a processiy: ©9 — N with targetu by gluing appropriately
theterminalplaces o9y and thenitial places 0@;. However, the simple minded attempt
fails immediately: due to the ambiguity introduced by nplkiinstances of places, two
processes dfl can be composed sequentially in many ways, each of whicls gip@ssibly
different process dfl. In other words, process concatenation has to do with mgtgkens
in the process placethat is instances of places, rather than mergiages

2. Concatenable processes

It follows from the precedent argument that any attempttasethe processes fas
an algebrathat includes sequential composition must digarate each token in a process.
This is exactly the idea afoncatenable processg]: they are simply processes where,
when needed, instances of places (tokens) are distingulsh@ppropriate decorations,
e.g., by ordering the initial and terminal places that céng/same label.

DEFINITION. A concatenable process N is a triple

(T[: ©—N, {<a}aeSN, {<<a}a€SN)7

whereTtis a process, ane, and<, are linear orderings of, respectively, the initial and
terminal places o® contained imgl(a) (cf. Figure 1).

This immediately yields an operation of concatenation:ahwbiguity about multiple
tokens is resolved using the additional information givegthe orderings (cf. Figure 2).

DEFINITION. LetCPy: u— vandCP;: v— w be concatenable processed\bfand let
Th: ©g — N andmy : ©1 — N be their underlying processes. Téequential compositign
or concatenationCPp ; CP;: u— w is obtained by gluing together andmy, identify-
ing injectively each terminal place @g with an initial place of®; in the uniqueway
compatible with the orderingg; on©p and<, on@; for all a € Sy.
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FIGURE 2. A netN and its concatenable procass-ty®1t1;t ®idc

The existence of concatenation leads easily to the definidfahe category of con-
catenable processes Nf It turns out this is asymmetric strict monoidal categof$5]
under the tensor product given by the following operatiopafallel composition of pro-
cesses: foCPy: ug — Vo andCPy: u; — vy, CPp® CPy: ug+U; — Vg -+ V1 is obtained
by puttingmy and Ty disjointly side by side and by making the places3f precede the
places 0f©; (cf. Figure 2; consult34] for further examples).

The main result of 24] is an axiomatisation of such a category, stated here in the
improved enunciation proved iB¢)]. Its relevance is that it describes net behaviours as
algebrasin terms ofuniversalconstructions.

THEOREM. Forany netN, there exists a one-to-one correspondence sepfi@g source,
target, sequential and parallel composition (tensor profjwf processes (arrows) — be-
tween the concatenable processes of N and the arrows of tgarg® (N) obtained from
the free symmetric strict monoidal categaryN) on N by imposing the axioms

Cap = Iidagp, Iifaand b are different places of N
sit;s =t if t is a transition of N and s and sre symmetries of (N),
where ¢, id,®, and_; _ are, respectively, the symmetry isomorphism, the idestithe
tensor product, and the composition®{N).
This also yields an equational theory for net processesasplicit terms,? (N) is
the category whose arrows are generated by the rules
ueuS) aandbin Sy t:u—vin Ty
idy: u—uin2(N) Cab: @a+b—b+ain2?(N) t:u—vin2?(N)

a:u—vandp: u —Vin2(N) a:u—vandp: v—win 2(N)
a®pB:u+u —v+Vin2(N) a;B: u—win 2(N)
modulo the axioms expressing that it is a strict monoida@atty with composition ; _,
tensor_® -, and symmetry isomorphismand the two axioms quoted above.

EXAMPLE. Figure 2 shows a concatenable processr the netN of Figure 1 that corre-
sponds to the arroty ®t1;t ® idc of 2(N). To exemplify the algebra of processeshof
T is expressed as parallel$ ) and sequential_(; -) composition of simpler processes.
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FIGURE 3. Two strongly concatenable processes correspondingfd-igure 2

Such operations are matched precisely by operations andhaxaf® (N), and this is the
essence of the theorem above.

The symmetries of (N) and the related axiom on the symmetry isomorphigotay
in this correspondence a role absolutely fundamental: #uwepunt for the families of
orderings{ <a}acs, and{<a}acs,, which are the key to concatenable processes, guaran-
teeing a correct treatment of sequential composition. heioivords, they are an algebraic
representation of ththreads of causalityin process concatenation. On the other hand,
the axiom is actually a problematic one: because of its negatemiseyviz. a# b, it
invalidates the freeness gf(N) on Petri. Much worse, it make® () actnot functorially
on Petri. A detailed study of this issue is undertaken &7][ where a functorial and uni-
versal construction for net computations is presentecdas a refinement of the notion
of concatenable processes that is the topic of next section.

3. Strongly Concatenable Processes

Strongly concatenable processee a slight refinement of concatenable processes in-
troduced in 87] to yield afunctorialalgebraic description of net computations. The refine-
ment, which consists of decorating initial and terminakpkof processes more strongly
than in concatenable processes, e.g., by ordeaihgf them (cf. Figure 3), is shown to
be — in a very precise mathematical sense —dlightestrefinement that may achieve
this. As for their predecessors, strongly concatenablegases admit an axiomatisation in
terms of a universal algebraic construction based on synomebnoidal categories.

THEOREM. The strongly concatenable processes of a net N are the araws(N),
obtained from the symmetric strict monoidal category freggnerated from the places of
N and, for each transition t of N, an arrow,: u — v for each pair of linearisations (as
strings) u and v of the source and target (multisets) of t, inytienting modulo the axiom

(®) Styy=tuyv;S, fors: u— u and $: Vv — v symmetries

The key point here is to associate Nba category whose objects form a freen-
commutativemonoid {iz. § as opposed tp(Sy)), i.e., to deal withstringsas explicit
representativesf multisets. As a consequence, each transitidN bhs many correspond-
ing arrows inQ (N), all however ‘related’ to each other by tinaturality condition (®),
which is the second relevant feature@f_), actually the one that keeps the computational
interpretation of the category (N) (strongly concatenable processes) so surprisingly close
to that of » (N) (concatenable processes).

Concerning functorialityQ (-) extends to aoreflectionfunctor from the category of
Petri nets taa category of symmetric monoidal categories. Here, a$ij jwe proceed
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using 2-categoriesan high-level approach that has the advantage of hidinge sainthe
gory details.

DEFINITION. A symmetric Petri categorys a symmetric strict monoidal categofy
whose monoid of objects &, the free monoid o1, for some se&.

Symmetric Petri categories allow us to capture the essefite @rrows generating
Q(N), i.e., the instances of the transitiond\df These have in fact two very special proper-
ties that characterise them completely: (1) they are decsatgle as tensors only trivially,
and as compositions only by means of symmetries, and (2)gagsfy axiom(®). We
then use such properties, expressed in abstract catelgerices, to define the notion of
transitionin a general symmetric Petri category.

DEFINITION. LetC be asymmetric Petri category agtlits monoid of objects. An arrow
Tin Cis primitive if (denoting bye the empty word ir5")

> T is nota symmetry;

> T=d;B implies aisasymmetryan is primitive, or vice versa;

> T=0®P implies a=ideandfis primitive, or vice versa.
A transitiont: u— vofC, foru,ve i(S), is afamily{tyy: u— vin C} of primitivearrows
indexed by those pairs of stringsandv with underlying multisetsi andv, respectively,
and such thag;ty , = 1,y;8, fors: u— U ands': vV — v symmetries of.

The definition above — that can also be formalised stating tlaasitions are nat-
ural transformations between appropriate functors — captthe essence af (N): the
transitions inQ (N) areall andonly the families{t,y | t: u— v e Ty}. This leads us to
the following characterisation theategory(of the categorie)f net computationsThe 2-
categorical notions used in the theorem below are natutahsions of the corresponding
(1-)categorical concepts; the interested reader will fireddetailed definitions irbp].

THEOREM. LetSPetriCat be the 2-category whose objects are the symmetric Petri cate
gories, whose arrows are the symmetric strict monoidal orscthat respect transitions,
and with a 2-cell F= G if there exists a monoidal natural isomorphism between & @n
whose components are all symmetries.

Then,qQ (-): Petri — SPetriCat is a pseudo 2-functor (considering the categBeyri
of Petri nets as a trivial 2-category) that admits a pseudtiadjointa’ (-) forming with
Q(-) a pseudo coreflection.

4. Pre-Nets

Although strongly concatenable processes settle the taksriguity problem of §1,
they yield a construction that is functorial only up to isainism, thus needing a complex
guotient operationd7] or, equivalently, the 2-categorical treatment outlinede.

In [15, 16] we proposed an alternative construction centred on thiemaff pre-net.
Pre-netsare nets whose states ateingsof tokens (as opposed toultisety. Such states
can be seen as totally ordered markings, a more concretesaqation of multisets. The
idea is that each transition of a pre-net must specify theigeeorder in which the required
resources are fetched and the results are produced, aséfdét an elementary strongly
concatenable process.

DEFINITION. A pre-netis a tupleR= ({o,{1: TR — S}), WhereSg is a set ofplaces Tr
is a set otransitions and{p and{; are functions assigning, respectively, source and target
to each transition.
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A pre-net can be thought of as an implementation of a net, aéeabstract data struc-
ture, the multiset, is refined into a more concrete implesgon data structure, the string,
and where each transitidn U — v is simulated byonelinear implementatioty, y: u — v
arbitrarily fixed for some linearisationsandv of uandv. For each PT we can arbitrarily
choose a pre-net representation. This corresponds to ftaleotaler for the pre- and post-
set of each transition, and differs from the approach redati 83 where, in order to avoid
a choiceall the possible linearisations of the pre- and post-sets arsidered in the al-
ternative presentation of the net. We shall see that, inrdedeapture the standard process
semantics of nets, choosing one representative for eachitican suffices. In particular,
although abandoning multisets might appear at first unahtilnis approach enjoys some
good properties. Here we limit ourselves to the followingtw

> All pre-net implementations of the same net share the samarsé&c model, i.e.,
the semantics is independent of the choice of linearisstion

> The semantic model for the implemented net given by the coctsbn @ (_) can
be recovered from any pre-net implementation.

We shall usePreNet to indicate the category of pre-nets with the obvious notion
of morphisms, i.e., a graph morphism whose node componeatni®noid homomor-
phism. Letpr: S5 — H(SR) denote the function that mapsto u, the multiset consist-
ing of the symbols iru. Then, the mapz, from pre-nets to PT nets, sending the pre-net
R=({o,01: Tr— S}) to the neta (R) = (Uro o, Mro {1 TR — H(SR)) extends to a functor
from PreNet to Petri.

The functora (_): PreNet — Petri is neither full, nor faithful. However, if we con-
sider the categoriet whose objects are either PT nets or pre-nets and whose rsorphi
are graph morphisms with monoid homomorphism as node coemtsytherPetri is the
guotient ofNet modulo commutativity of the monoidal structure of nodesisHEstablishes
a strong relationship, between PT nets and pre-nets, esiblesia a coreflection between
Petri andNet, which supports and further motivates our approach.

The natural algebraic models for representing concurremtpaitations on pre-nets
live in the categorSMC of symmetric strict monoidal categories. More preciseky,axe
only interested in the full subcategory consisting of catexs whose monoid of objects is
freely generated. We denote it B§SMC. The obvious forgetful functor from the category
FSSMC to the categoryPreNet admits a left adjoinz. The categonyg (R) has as objects
the strings ofS;, and as arrows those generated by the rules below, modubxibes of
monoidal categories (associativity, functoriality, itiéas, unit), including the coherence
axioms that make af the symmetry natural isomorphism.

we S aandbin S t:u—vinTg
idy: w—we z(R) Cap: ab— bac z(R) t:u—ve z(R)

a:u—vandp: v -V e z(R) o:u—vandp:v—V € z(R)
aRB:ud —w e z(R) a;B:u—Vvez(R)

The above construction bears strong similarities to thé&warcoherence by MacLane
and Kelly, and even more closely to Pfender’s constructiothe freeS-monoidal cate-
gory [78]. In computer science, similar constructions are given biztd X-categories44],
and by Bensond], with grammars as the primary area of application.

As anticipated, corresponding to the two features of our@gugh, we have the follow-
ing results. The first states that pre-nets representingagehic PT nets yield the same
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algebraic net semantics. The second relateg, and.a, and contains the entire essence
of the pre-net approaclany pre-net representation of the ne(R) is as good as R

THEOREM. LetRR € PreNet. If 2(R) ~ a2 (R)), thenz (R) ~ z(R).

THEOREM. For R a pre-net, the category(R) quotiented out by the axiom= sp;t; 51,
for each transition t u — v and symmetriepsu — u and §: v — v is equivalent to the
categoryQ (4 (R)) of strongly concatenable processes.

5. Related Work

An alternative important line of research on Petri nets s#iosis the so-calledn-
folding approach, initiated by Nielsen et al. i67] and further developed by Winskel
in [96, 98], according to which thedynamic’ structure of nets is ‘unrolled’, ‘unfolded’
to the'static’ structure of event structures or, equivalently, of soezhtbccurrence nets.
Its main merit is to assign to each net a single object thaessmts its entire behaviour
and explains in a uniform, appealing way the interplay betweon-determinism and con-
currency. This fact can be justified formally by consideringt the unfolding is a special
(co)limit construction that gives rise to a coreflectionibetn the categories of (safe) Petri
nets and prime event structures. An alternative unfoldorgstruction is described it69],
while Engelfriet in B2] consider a wider class of nets. Meseguer et &0] pxtend the
construction of §7] to the entire category of place/transition nets and 58i,[study the
relationships between unfolding and process semantics.

Other semantic investigations have capitalized direatiyhee algebraic structureof
Petri nets, noticed by Reisig(], by Winkowski [92, 93], and later exploited by Winskel to
identify a sensible notion ahorphismbetween netsdb, 97] and open the way to categor-
ical treatments. Among the algebraic/categorical apgresca relevant place is occupied
by those drawing on the analogy between nets and prodfsen logic, first noticed by
Asperti [3]. Among these, we mentioriB, 14, 31]. A really excellent survey is given by
Marti-Oliet and Meseguer irbff]. Other relevant approaches are by Mukufi6l][ which
provides an account of net behaviours in terms of (stepjitian systems, and by Hoogers
et al. in [42], that uses (generalised) trace theory (86,[27]) to the same purpose, and
in [43], where a notion of net unfolding is explained in terms of diom of local event
structure.

More recently, Ehrig and Padber80; 73], inspired by the ‘Petri nets as monoid’
approach, give a uniform algebraic presentation of sextaases of nets based on the idea
of a parameterized abstract Petri net. Desel ep8].dttain results on the representation of
net processes similar to those presented here using mgeddras, in a fashion not unlike
the early work of Winkowski$92, 93].

The ‘Petri nets as monoids’ paradigm has been applied ssfodiggo the semantics
of several extensions of place/transition nets. Amongeth®go recent interesting results
concernzero-safeand contextual nets Zero-safe nets, introduced by Bruni and Monta-
nari [17, 18], extend Petri nets with a simple mechanism to model traises; i.e., two
or more transitions that must always occur without any ottaarsition occurring in be-
tween. Contextual net®2, 65, 45] (see also 21, 91, 6, 5]) are nets with ‘read-arcs’ used
to ‘read’ without consuming, so allowing multiple, non-&xsive, concurrent uses of the
same resource (token) and, therefore, the modeling of dheseurces. Bruni and Sassone
in [19] extend the categorical process semantics approach sdere satisfactorily to
contextual nets, building on previous work by Gadducci arahMnari B3].



10 . Vladimiro Sassone

PETRINETS IN THE LARGE

The previous sections have mainly focused our atteriiothe small’, at level of single
nets, whereas Petri nets are often usedhe large’, for instance as a semantic basis to
interpret concurrent languages, which calls for the studglgebras of net&n the large’
and, possibly, for their abstract characterisations. Agneeveral existing approaches, we
recall the fundamental ideas underlying the work preseimt¢@B], focusing onfinite nets
whose transitions alabelledby (possibly silent) actions. We shall usea@untablesetAct

of visibleactionsay, 2,03, ..., and a distinguishesilentactiont.

DEFINITION. A labelledPetri netis a Petri neN together with arinitial state gy € W(Sy),
and alabellingfunctionAn: Ty — Actu{t}.

6. An Algebra of Nets

Similarly to [10, 63], everything is based on a notionioterfacefor Petri nets. These
are ordered selections of places, the ‘input’, and traovsstithe ‘output’, that specify what
parts ofN arepublic, i.e., accessible from the environment, and what partpavate to
the net. The private places and transitions cannot be atessl, therefore, cannot be
used directly for connecting nets to each other.

DEFINITION. A net with interfaceis a structurepy,... , pn;ta, ... ,tm> N, whereN is a
finite labelled net, angy, ..., pn € S\, t1, ... ,tm € Ty are all distinct, andn (i) # T.

Drawing on the experience of developments in concurrersyrihh a minimal yet ex-
pressive, set of combinators should certainly include a@ns allowing (forms of)nter-
action/communicatiorparallel compositionrecursion and — to facilitate the description
of modular systems — operations suchrasbelling and hiding. However, in order to
avoid a chaotic ‘structural’ calculus where everythingésrmitted, it is obvious that some
restrictions on the allowed connections of places and itians must be imposed. The
input/output partition of interfaces readily suggest asoemble discipline of interaction:
connections between nets should go from outputs to inputslving only public compo-
nents. This formalises the well-motivated and solid indmithat the only allowed interac-
tions are achieved bsendingandreceivingalong interfaces, thought of as communication
channels, the input interfaces providing ‘buffers’ in whithe tokens arriving from the
environment are gathered, the output interfaces sendiksgnsoout to the environment. In
other words, interfaces provide the notions of ‘privated goublic’ channels for nets, and
their input/output partition suggests a discipline for c@bperation.

DEFINITION. The sefCM of combinators of nets with interface consists of the corabin
tors defined by the following rules.
_bo;fob No and 61;f1l> N1 diSjOil’lt
par(Po;to> No, py;T1>Na) = Po, Py;To, T1>Nof[Ny
whereNp||Ny is the (componentwise) union b andNg;
1<i<|p| and 1<j<[f]
add(i, j, p;t>N) = p;te N(pi —itj)
whereN(p < t) is the netN augmented with an arc frotrto p;

> rel(@,p;teN) = p;t>Nq,
where@: Act— ActU {1} is a ‘relabelling’ function, andN[q] is obtained
from N by relabelling viap the transitions that carnyon-t actions;
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maxP) < [B| and maxT) < [t
hideP, T, p;t>N) = puP;iNTeN

whereP andT are finite sets of positive natural numbers (f@x= 0), and
X\ X is the string obtained from by removingx;, for alli € X;

1<i<|p|
mark(i, p;i>N) = p;f>Ne

whereN e p is the netN augmented with a token ip.

Observe that, since thgar(_, ) combinator is defined explicitly only for disjoint nets,
a ‘renaming’ is generally needed before applying it to itguanents. This implies that
no ‘fusion’ of nets is allowed byCM. Combinatoradd(i, j,-) adds an arc from théh
place to thejth transitions of the interface. It provides both a form afuesion and, used
in connection withpar(_,_), a form of ‘asynchronous message passing’ which feeds the
inputs of a net with the outputs of another one.

7. Congruences and Contexts for Labelled Petri Nets

The semantic equivalence of concurrent systems can beiloleddn terms of sev-
eral kinds of models, e.g., languages, traces, pomsetst stvactures, etc., which reflect
different assumptions about how behaviour is to be obsertsth of these notions of
‘observation’ gives rise to standard equivalence@mear equivalence, disimulationand
possibly, fixed a set of operators, their congruence clesukehorough study of sixteen
such behavioural equivalences for nets with interfacegpe®ed in 8]. Here we treat a
single, yet typical, case: the step bisimulation.

DEFINITION. A step bisimulatiorof No andN; is a relation®. C p(Sy,) x H(Sy,) such
thatsy, & Sv,, and wheneves £ s, then (1) for each step (fireable multiset of transitions)
s[X)s of No, there exists a sequence of step§ - Y;,)S of N; resulting in the sammul-
tisetof nont labels asx, and withs % ; (2) vice versa swapping the rolesig§ andNj.
Nets po;To>No and py;t1> Ny arestep bisimilar written po;To> No < pq;tie Ny, if there
exists a step bisimulation ®&f andNj.

For engineering reasons, related to feasibility of corressverificationfor complex
systems, for mathematical reasons, related to the sirmpbifiequational reasoningand
for conceptual reasons, related to common intuitions afgstem equivalence, it is impor-
tant to consider equivalences which amgruencesor a chosen set of system construc-
tors. This guarantees that systems can be replaced by Entigaes in any context. Since
it easy to see that> is not a congruence fadd(i, j,_), we are led ta="°, the largest con-
gruence contained in itiz. po;To>No <€ py;T1 >Ny if and only if, for eachCM-context
¢, eitherbothnets are incompatible with it, ar[ po;To>No] < ¢[Pq;T1> Ny

This universal quantification ovetl contexts has however obvious drawbacks. The
main result of §8] is to show that it can actually be dispensed with by ideirifya minimal
set of context which isniversalffor it. More precisely, for each paldp andN; of nets with
interface there exists a readily-identified contexsuch thatNy andN; are <-congruent
if and only if ¢ does not=-distinguish them. Here follow some of the details.

Recalling thatctis equipped with an enumeration, ao, ..., let Y be the relabelling
functionaj — asj, i € w.
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DEFINITION. Let@;t>U andp; @>U’ be the nets with interface shown below.
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Letcijandu;j, i, j € w, be the contexts defined below (with self-explanatory $taortls)

i = par(par_y (2:t>U 032/ 4)). pari_; (pr 2> U'[031/q]) ).
ujj = adql;zl(k,iJrk, adq'(zl(jJrk, K, par(Ci,j,reI(qJ,_)))).

Figure 4 presents; ;[ p;t>N] for a p;t>N with |p| =i and[f] = j. The interface of
i ;[ p;T>N] is shown by naming and numbering the places and transititicvibelong
to it. The information in parentheses concern the orderimgst. Concerning the labels,
we usey forasg o, k=1,...,i,ocforaz 1, k=1,...,]j, andO(kl,...on(j for the labels of
fin N. The dashed arrows are those insertecdbg

The contextsu; j are conceptually very simple. They provide a copyentr-U for
each place irp, and a copy of; @ >U’ for each transition ifi. The cascade afdd(i, j,_)
connects together the transition-place pairs so createglrdle of the collection of;t>-U
is to test the ‘reactivity’ of the ‘input’ sites gb;t>N by sending in any number of tokens,
at any relative speed and independently for each plage ifihe collection ofp; U’
tests the ‘output’-behaviour by recording the firings of ttamsitions irf.

In order for these contexts to form universal collectiohs necessary to distinguish
in the behaviour ofu; ;[ p;t> N] the actions stemming fror; ; from those stemming
from N. This is achieved by theel(y, ) combinator: since the actions Nfare uniformly
‘remapped’ to 8-numbered actions, we are free to use differently numbectdre in
the contexts. The soundness of this technique relies onatitetiaty is injective and,
therefore, no equivalences are enforced byjihrelabelling. We thus conclude as follows.



On the Algebraic Structure of Petri Nets . 13

THEOREM. For py;to>No andpy;t1 >Ny nets with interface,

5o;fo>No € 51;f1>N1 — |E)O| = |E)1| =1, |f0| — |f1| =i, and
Ui j[ Poitor NoJ = i j[ py;tae Nl

8. Related Work

The work outlined in the second part of this survey relateseteral Petri net calculi
proposed in the literature. Among these, we mention Goaia Montanari's 8ONE[36],
defined around operations of prefixing, parallel, and naefdanistic composition, and
used to give semantics to a fragment of CCS. Differently froost other calculi, SONE
is not based on an explicit notion of interface by means ofcvimiets are composed. It
aims at describing behavioural more than structural coitippsand is essentially a big
net whose markings represent concurrent processes baha\imthe same sense as CCS
can be seen as a big transition system whose states reppesesgses.

The Petri Box calculuslD], by Best et al., has received much attention in the litegatu
Itis inspired by CCS and motivated by the need to simplifyttsk of giving compositional
denotational semantics to concurrent programming langgiad he calculus has a very
rich collection of operations, including sequential, mdgterministic, and asynchronous
parallel composition with explicit multiple synchronigat based on a notion of interface
constituted by designated entry and exit places. The Baxitied has been used to describe
distributed algorithms, to give semantics to concurrengpemming language47], and
has been embedded in the PEP computer-aided3a@pl [

A highly elegant calculus is Milner’s calculus of named r{é8, arisen in the context
of control structures and, as such, inspired by name passilegli, as thetcalculus. It
focuses on very few basic ‘controls’ by means of which platekens, and transitions
can be glued together to form any finite net. A notable difiesewith the work surveyed
here is that Milner’s calculus is definitely more structorgented. The controls are in
fact suggested by structural considerations rather thabebwavioural intuitions such as
asynchronous message passing underlgilly The dynamics of named nets is demanded
to an elegant reduction relation, and the question of bela&i congruences is open.

9. Conclusions and Future Work

Algebraic structures based on a central operatiagteddition, or feedback— inspired
by flowcharts and program schemata — have appeared rathglireaomputer science,
see, e.0.,39, 4, 89, 90, 63] and [12], that offers for a thorough exposition of so-called
‘iteration theory and more references. The adventtefced monoidal categorie0],
i.e., monoidal categories equipped witlfie@dbacloperation completely analogous to the
one considered iCM has recently revived interest in using such abstract strestin
semantics of computation, as e.qg., in $3, 40, 41]. Obviously, the calculus of6g] fits
nets into this framework very nicely, although some of theiestill need to be clarified.
In particular, it may still lack some important operatiomgst notably synchronisation.

Finally, as already mentioned, it would be interesting t@wrhow well and how
uniformly can the ‘Petri nets as monoids’ approach be liftedigh level nets.
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