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Abstract. We present a new class of perceptron-like algorithms with
margin in which the “effective” learning rate, defined as the ratio of
the learning rate to the length of the weight vector, remains constant.
We prove that the new algorithms converge in a finite number of steps
and show that there exists a limit of the parameters involved in which
convergence leads to classification with maximum margin.

1 Introduction

It is generally believed that the larger the margin of the solution hyperplane the
greater is the generalisation ability of the learning machine [11, 9]. The simplest
on-line learning algorithm for binary linear classification, Rosenblatt’s Percep-
tron [8], does not aim at any margin. The problem, instead, of finding the optimal
margin hyperplane lies at the core of Support Vector Machines (SVMs) [11, 2].
SVMs, however, require solving a quadratic programming problem which makes
their efficient implementation difficult and, often, time consuming.

The difficulty in implementing SVMs has respurred a lot of interest in al-
ternative large margin classifiers many of which are based on the Perceptron
algorithm. The most well-known such variants are the standard Perceptron with
margin [3, 6, 7, 10] and the ALMA [4] algorithms both similar in many respects.
Our purpose here is to address the maximum margin classification problem in
the context of perceptron-like algorithms which, however, differ from the above
mentioned variants in the sense that the learning rate varies with time in more
or less the same way as the length of the weight vector does. This new class of
algorithms emerged from an attempt to classify perceptron-like classifiers with
margin in a few very broad categories according to the dependence on time of
the misclassification condition or of the effect that an update has on the current
weight vector. The new algorithms are shown to converge in a finite number of
steps to an approximation of the optimal solution vector which becomes better
as the parameters involved follow a specific limiting process.

A taxonomy of perceptron-like large margin classifiers can be found in Sect.
2. The new algorithm, called Constant Rate Approximate Maximum Margin Al-
gorithm (CRAMMA), is described in Sect. 3 together with an analysis regarding
its convergence. Section 4 provides experimental evidence supporting the theo-
retical analysis put forward in Sect. 3. Finally, Sect. 5 contains our conclusions.



2 Taxonomy of Perceptron-Like Large Margin Classifiers

In what follows we make the assumption that we are given a training set which,
even if not initially linearly separable can, by an appropriate feature mapping
into a space of a higher dimension [1, 11, 2] be classified into two categories by a
linear classifier. This higher dimensional space in which the patterns are linearly
separable will be the considered space. By adding one additional dimension and
placing all patterns in the same position at a distance ρ in that dimension we
construct an embedding of our data into the so-called augmented space [3]. The
advantage of this embedding is that the linear hypothesis in the augmented space
becomes homogeneous. Thus, only hyperplanes passing through the origin in the
augmented space need to be considered even for tasks requiring bias. Throughout
our discussion a reflection with respect to the origin in the augmented space
of the negatively labelled patterns is assumed in order to allow for a uniform
treatment of both categories of patterns. Also, we use the notation R = max

k
‖yk‖

and r = min
k
‖yk‖, where yk is the kth augmented pattern. Obviously, R ≥ r ≥ ρ.

The relation characterising optimally correct classification of the training
patterns yk by a weight vector u of unit norm in the augmented space is

u · yk ≥ γd ∀k . (1)

The quantity γd, which we call the maximum directional margin, is defined as

γd = max
u:‖u‖=1

min
k
{u · yk}

and is obviously bounded from above by r. The maximum directional margin
determines the maximum distance from the origin in the augmented space of the
hyperplane normal to u placing all training patterns on the positive side and
coincides with the maximum margin in the augmented space with respect to
hyperplanes passing through the origin if no reflection is assumed. In the deter-
mination of this hyperplane only the direction of u is exploited with no reference
to its projection onto the original space. As a consequence the maximum direc-
tional margin is not necessarily realised with the same weight vector that gives
rise to the maximum geometric margin γ in the original space. Notice, however,
that

1 ≤ γ

γd
≤ R

ρ
. (2)

In the limit ρ→∞, R/ρ→ 1 and from (2) γd → γ [10]. Thus, with ρ increasing
the maximum directional margin γd approaches the maximum geometric one γ.

We concentrate on algorithms that update the augmented weight vector at by
adding a suitable positive amount in the direction of the misclassified (according
to an appropriate condition) training pattern yk. The general form of such an
update rule is

at+1 =
at + ηtftyk

Nt+1
, (3)



where ηt is the learning rate which could depend explicitly on the number t of
updates that took place so far and ft an implicit function of the current step
(update) t, possibly involving the current weight vector at and/or the current
misclassified pattern yk, which we require to be positive and bounded, i.e.

0 < fmin ≤ ft ≤ fmax . (4)

We also allow for the possibility of normalising the newly produced weight vector
at+1 to a desirable length through a factor Nt+1. For the Perceptron algorithm
ηt is constant, ft = 1 and Nt+1 = 1. Each time the predefined misclassification
condition is satisfied by a training pattern the algorithm proceeds to the update
of the weight vector. We adopt the convention of initialising t from 1.

A sufficiently general form of the misclassification condition is

ut · yk ≤ C(t) , (5)

where ut is the weight vector at normalised to unity and C(t) > 0 if we require
that the algorithm achieves a positive margin. If a1 = 0 we treat the first pattern
in the sequence as misclassified. We distinguish two cases depending on whether
C(t) is bounded from above by a strictly decreasing function of t which tends to
zero or remains bounded from above and below by constants. In the first case the
minimum directional margin required by such a condition becomes lower than
any fixed value provided t is large enough. Algorithms with such a condition have
the advantage of achieving some fraction of the unknown existing margin pro-
vided they converge. Examples of such algorithms are the well-known standard
Perceptron algorithm with margin [3, 6, 7, 10] and the ALMA2 algorithm [4]. In
the standard Perceptron algorithm with margin the misclassification condition
takes the form

ut · yk ≤
b

‖at‖
, (6)

where c1(t−1) ≤ ‖at‖ ≤ c2
√
t− 1 with b, c1, c2 positive constants. In the ALMA2

algorithm the misclassification condition is

ut · yk ≤
b

‖at‖
√
t
, (7)

in which c3
√
t− 1 ≤ ‖at‖ ≤ R with b, c3 positive constants (see Appendix

A). Notice the striking similarity characterising the behaviour of C(t) in the
Perceptron and ALMA2 algorithms. In the second case the condition amounts to
requiring a directional margin, assumed to exist, which is not lowered arbitrarily
with the number t of updates. In particular, if C(t) is equal to a constant β [10]
(5) becomes

ut · yk ≤ β (8)

and successful termination of the algorithm leads to a solution with margin larger
than β. Obviously, convergence is not possible unless β < γd. In this case an
organised search through the range of possible β values is necessary.



An alternative classification of the algorithms with the perceptron-like update
rule (3) is according to the dependence on t of the “effective” learning rate

ηeff t ≡
ηtR

‖at‖
(9)

which controls the impact that an update has on the current weight vector. More
specifically, ηeff t determines the update of the direction ut

ut+1 =
ut + ηeff tftyk/R

‖ut + ηeff tftyk/R‖
. (10)

Again we distinguish two cases depending on whether ηeff t is bounded from above
by a strictly decreasing function of t which tends to zero or remains bounded
from above and below by constants. We do not consider the case that ηeff t

increases indefinitely with t since, as we will argue below, we do not expect such
algorithms to converge in a finite number of steps. In the first category belong
the Perceptron algorithm with both the standard misclassification condition (6)
and the fixed directional margin one of (8) [10] in which ηt remains constant
and ‖at‖ is bounded from below by a positive linear function of t. Also to the
same category belongs the ALMA2 algorithm in which ηt decreases as 1/

√
t. The

similarity of the standard Perceptron with margin and ALMA2 algorithms with
respect to the behaviour of ηeff t is apparent if we consider the bounds obeyed
by ‖at‖ in these two cases. Moreover, in both algorithms ηeff t is proportional to
C(t). In the second category belong algorithms with the fixed directional margin
condition of (8), ‖at‖ normalised to the target margin value β and fixed learning
rate [10].

A very desirable property of an algorithm is certainly progressive convergence
at each step meaning that at each update ut moves closer to the optimal direction
u. Let us assume that

ut · u > 0 . (11)

This condition is readily satisfied provided the initial weight vector either van-
ishes or is chosen in the direction of any of the patterns yk. Indeed, on account
of the update rule (3) and the assumption that there exists a positive margin γd

according to (1) the weight vector is always a linear combination with positive
coefficients of vectors which possess a positive inner product with the optimal
direction u. Because of (11) the criterion for stepwise angle convergence [10],
namely

∆ ≡ ut+1 · u− ut · u > 0 ,

can be equivalently expressed as a demand for positivity of D

D ≡ (ut+1 · u)2 − (ut · u)2 = 2ηeff tft(ut · u)
∥∥∥ut + ηeff tft

yk

R

∥∥∥−2A

R
,

where use has been made of (10) and A is defined by

A ≡ yk · u− (ut · u)(yk · ut)−
ηeff tft

2R

(
‖yk‖2 (ut · u)− (yk · u)2

(ut · u)

)
.



Positivity of A leads to positivity of D on account of (4) and (11) and conse-
quently to stepwise convergence. Actually, convergence occurs in a finite number
of steps provided that after some time A becomes bounded from below by a
positive constant and ηeff t remains bounded by positive constants or decreases
indefinitely but not faster than 1/t. Following this rather unified approach one
can examine whether sooner or later an algorithm enters the stage of stepwise
convergence and terminates successfully in a finite number of steps [10].

We are now going to argue that algorithms with ηeff t growing indefinitely
are unlikely to converge in a finite number of steps since such a behaviour is
incompatible with the onset of stepwise convergence if such a stepwise conver-
gence leads to convergence in a finite number of steps. Indeed, if we assume that
for t larger than a critical value tc the algorithm enters such a stage then sooner or
later ut·u will increase sufficiently such that

(
‖yk‖2 (ut · u)− (yk · u)2/(ut · u)

)
becomes positive. Multiplication of such a positive term with a sufficiently large
ηeff t will then make A negative contradicting our assumption.

It is not difficult to see that (1), (4), (5) and R ≥ ‖yk‖ lead to

A ≥ γd − C(t)− 1
2
fmaxηeff tR . (12)

By requiring that the r.h.s. of (12) be positive we derive a sufficient condition
for the onset of stepwise convergence

ηeff t < 2
γd − C(t)
fmaxR

. (13)

The above condition is always eventually satisfied in the case of algorithms with
ηeff t → 0 in the limit t→∞ like the Perceptron and ALMA2 algorithms. If this
is not the case, however, we are forced to suppress ηeff t sufficiently.

In summary, the misclassification condition and the effective learning rate
of a perceptron-like algorithm could, roughly speaking, either be “relaxed” with
time or remain practically constant. Thus, we are led to four broad categories of
potentially convergent algorithms. Out of these categories the one with condition
“relaxed” with time and fixed effective learning rate has not, to the best of our
knowledge, been examined before and is the subject of the present work.

3 The Constant Rate Approximate Maximum Margin
Algorithm CRAMMAε

We consider algorithms with constant effective learning rate ηeff t = ηeff in which
the misclassification condition takes the form of (5) with

C(t) =
β

tε
, (14)

where β and ε are positive constants. We assume that the initial value u1 of ut

is the unit vector in the direction of the first training pattern in order for (11)



Fig. 1. The constant rate approximate maximum margin algorithm CRAMMAε.

Require: A linearly separable aug-
mented training set with reflection
assumed S = (y1, . . . , ym)
Define:
For k = 1, . . . , m
R = max

k
‖yk‖ , y′

k = yk/R

Fix: ε, ηeff , β1 (= β/R)
Initialisation:
t = 1, u1 = y′

1/ ‖y′
1‖

repeat until no update
made within the for loop

for k = 1 to m do

if ut · y′
k ≤ βt then

ut+1 =
ut+ηeffy′

k

‖ut+ηeffy′
k‖

t = t + 1

βt = β1/tε

to hold. We additionally make the choice ft = 1. Since the above C(t) does not
depend on ‖at‖ and given that (the update (10) of) ut depends on ‖at‖ only
through ηeff the algorithm does not depend separately on ηt and ‖at‖ but only
on their ratio i.e. on ηeff . From (13) we obtain the constraint

ηeff < 2
γd

R

on the constant effective learning rate ηeff in order for the algorithm to eventually
enter the stage of stepwise convergence. Obviously, the further ηeff is from this
upper bound the earlier the stepwise convergence will begin.

Although only ηeff plays a role we still prefer to think of it as arising from a
weight vector normalised to the constant value β

‖at‖ = β

and a learning rate having a fixed value as well

ηt = η .

This is equivalent to normalising the weight vector to the variable margin value
C(t) that the algorithm is after assuming at the same time a variable learning
rate ηt = η/tε. Having in mind our earlier comment regarding the meaning of
the directional margin in the augmented space the geometric interpretation of
such a choice becomes clear: The algorithm is looking for the hyperplane tangent
to a hypersphere centered at the origin of the augmented space of radius ‖at‖
equal to the target margin value C(t) which leaves all the augmented (with a
reflection assumed) patterns on the positive side. The t-independent value of the
learning rate η might also be considered as dependent on (a power of) β, i.e.

η = η0

(
β

R

)1−δ

,

where η0, δ are positive constants. Thus, we are led to an effective learning rate
which scales with β

R like

ηeff = η0

(
β

R

)−δ

. (15)



The above algorithm with constant effective learning rate ηeff and misclassifi-
cation condition described by (5) and (14) involving the power ε of t will be called
the Constant Rate Approximate Maximum Margin Algorithm CRAMMAε and
is presented in Fig. 1. A justification of the qualification of the algorithm as an
“Approximate Maximum Margin” one stems from the following theorem.

Theorem 1. The CRAMMAε algorithm of Fig. 1 converges in a finite number
of steps provided ηeff < γd

R . Moreover, if ηeff is given a dependence on β through

the relation ηeff = η0

(
β
R

)−δ

the guaranteed fraction of the maximum directional

margin γd achieved in the limit β
R →∞ tends to 1 provided 0 < εδ < 1.

Proof. Taking the inner product of (10) with the optimal direction u we have

ut+1 · u =
(
ut · u + ηeff

yk · u
R

)∥∥∥ut + ηeff
yk

R

∥∥∥−1

. (16)

Here ∥∥∥ut + ηeff
yk

R

∥∥∥−1

=

(
1 + 2ηeff

yk · ut

R
+ η2

eff

‖yk‖2

R2

)− 1
2

from where, by using the inequality (1 + x)−
1
2 ≥ 1− x

2 , we get

∥∥∥ut + ηeff
yk

R

∥∥∥−1

≥ 1− ηeff
yk · ut

R
− η2

eff

‖yk‖2

2R2
.

Then, (16) becomes

ut+1 · u ≥
(
ut · u + ηeff

yk · u
R

)(
1− ηeff

yk · ut

R
− η2

eff

‖yk‖2

2R2

)
.

Thus, we obtain for ∆ = ut+1 · u− ut · u

R

ηeff
∆ ≥ yk · u− (ut · u)(yk · ut)−

ηeff
2R

(
‖yk‖2 ut · u + 2(yk · u)(yk · ut)

)
− η2

eff

2R2
‖yk‖2 yk · u .

By employing (1), (5), (11) and (14) we get a lower bound on ∆

∆ ≥ ηeff

(
γd

R
− ηeff

2
− η2

eff

2

)
− ηeff (1 + ηeff)

β

R
t−ε . (17)

From the misclassification condition it is obvious that convergence of the algo-
rithm is impossible unless C(t) ≤ γd i.e.

t ≥ t0 ≡
(
β

γd

) 1
ε

. (18)



A repeated application of (17) (t+ 1− t0) times yields

ut+1·u−ut0 ·u ≥ ηeff

(
γd

R
− ηeff

2
− η2

eff

2

)
(t+ 1− t0)−ηeff (1 + ηeff)

β

R

t∑
m=t0

m−ε .

By employing the inequality

t∑
m=t0

m−ε ≤
∫ t

t0

m−εdm+ t−ε
0 =

t1−ε − t1−ε
0

1− ε
+ t−ε

0

and taking into account (11) we finally obtain

1 ≥ ηeff

(
γd

R
− ηeff

2
− η2

eff

2

)
(t− t0)− ηeff (1 + ηeff)

β

R

(
t1−ε − t1−ε

0

)
1− ε

−η
2
eff

2

(
1 + ηeff + 2

γd

R

)
. (19)

Let us define the new variable τ ≥ 0 through the relation

t = t0 (1 + τ) =
(
β

γd

) 1
ε

(1 + τ) . (20)

In terms of τ (19) becomes

1
ηeff

(
β

R

)− 1
ε (γd

R

)( 1
ε−1)(

1 +
η2
eff

2

(
1 + ηeff + 2

γd

R

))
≥
(

1− ηeff
2

(1 + ηeff)
R

γd

)
τ − (1 + ηeff)

(1 + τ)1−ε − 1
1− ε

. (21)

Let g(τ) be the r.h.s. of the above inequality. Since

χ ≡
(γd

R
− ηeff

2
(1 + ηeff)

)
> 0 ,

given that ηeff < γd
R ≤ 1, it is not difficult to verify that g(τ) (with τ ≥ 0) is

unbounded from above and has a single extremum, actually a minimum, at

τmin = (1 + ηeff)
1
ε

(
1− ηeff

2
(1 + ηeff)

R

γd

)− 1
ε

− 1 ≥ 0

with g(τmin) ≤ 0. Moreover, the l.h.s of (21) is positive. Therefore, there is a
single value τb of τ where (21) holds as an equality which provides an upper
bound on τ

τ ≤ τb (22)

satisfying
τb ≥ τmin ≥ 0 .



Combining now (20) and (22) we obtain the bound on the number of updates

t ≤ tb ≡
(
β

γd

) 1
ε

(1 + τb) (23)

which provides a proof, alternative to the one along the lines of Sect. 2, that
the algorithm converges in a finite number of steps. From (23) and taking into
account the misclassification condition we obtain a lower bound β/tεb on the mar-
gin achieved. Thus, the fraction f of the directional margin that the algorithm
achieves satisfies

f ≥ β/γd

tb
ε = (1 + τb)

−ε
. (24)

Let us assume that β
R →∞ in which case from (15) ηeff → 0 and (21) becomes

1
η0

(
β

R

)−( 1
ε−δ) (γd

R

)( 1
ε−1)

≥ τ − (1 + τ)1−ε − 1
1− ε

. (25)

Provided εδ < 1 the l.h.s. of the above inequality vanishes in the limit β
R →∞.

Then, since τmin vanishes as well, the r.h.s. of the inequality becomes a strictly
increasing function of τ and (25) obviously holds as an equality only for τ =
τb = 0. Therefore,

τb → τmin → 0 as
β

R
→∞ . (26)

Combining (24) with (26) and taking into account that f ≤ 1 we conclude that

f → 1 as
β

R
→∞ .

ut

We now turn to special cases some of which are not covered by Thm. 1.

ε = 1
2
: For this case we obtain an explicit upper bound on the number of updates

by solving the quadratic equation derived from (19). Setting ψ =
(
1 + ηeff + 2γd

R

)
we get

t ≤
(
β

γd

)2
1 +

ηeff
2
ψ

χ
+

√(
ηeff
2
ψ

χ

)2

+
γ2
d

β2ηeff

(2 + η2
effψ)

2χ


2

.

In the limit β
R →∞ the quantity in braces on the r.h.s. of the above inequality

tends to unity provided ηeff scales with β according to (15) with 0 < δ < 2. This
demonstrates explicitly the statement made in Thm. 1.

εδ = 1: If εδ = 1 the l.h.s. of (25) becomes 1
η0

(
γd
R

)( 1
ε−1) which does not vanish

in the limit β
R → ∞. Therefore, τb tends to a non-zero value depending on η0.

If, however, η0 �
(

γd
R

)( 1
ε−1) the bound τb can become very small leading to a

guaranteed fraction of the margin achieved very close to 1.



ε = δ = 1: In this case η = η0 and as ε→ 1 (25) becomes

1
η
≥ τ − ln(1 + τ) .

For η = 1 we obtain the bound τb ' 2.15 leading to a fraction of the maximum
margin f ≥ (1+τb)−1 ' 0.32. By choosing larger values of the learning rate η we
can make the value of the guaranteed fraction approach unity. In this particular
case, however, it is possible to obtain better bounds on the number of updates
leading to larger estimates for the guaranteed fraction of the margin by different
proof techniques. Following the one introduced by Gentile [4] (see Appendix B)
we can obtain for ε = 1, provided the inequalities η

(
1 + η2R2/β2

)−1 ≤ 1 and
η < βγd/

√
6R2 are satisfied, the upper bound

t ≤ 2
η

β

γd

(
1 +

ηγd

β

)(
1 +

η2R2

β2

)
+

8
3

(
R

γd

)2(
1 +

ηγd

β

)2(
1 +

η2R2

β2

)2

+ 1

(27)
on t and the lower bound

f ≥ η

2

{(
1 +

ηR

β

)(
1 +

η2R2

β2

)
+

4
3
ηR2

βγd

(
1 +

ηR

β

)2(
1 +

η2R2

β2

)2

+
ηR

2β

}−1

(28)
on the fraction f of the margin achieved. In the limit β

R →∞ we see that f ≥ η
2

which saturating the constraint on η could become f ≥ 1
2 . By imposing the more

relaxed constraint η
(
1 + η2R2/β2

)−1 ≤ 2 we can show that in the limit β
R →∞

f ≥ 2η
3

(
1 +

√
1 +

8
3
γ2
d

R2

)−1

. (29)

In this limit the constraint on η allows η values as large as 2. This fact combined
with the observation that the ratio γd/R can be made very small by placing the
patterns at a larger distance from the origin in the augmented space leads to
a guaranteed fraction 2

3 of the margin for the largest allowed value of η. Thus,
our earlier conclusion that for ε = δ = 1 the guaranteed fraction of the margin
achieved as β

R →∞ increases with η is confirmed by this alternative technique.

4 Experiments

In this section we present the results of experiments performed in order to verify
the theoretical statements made earlier and to evaluate the performance of the
CRAMMAε algorithm in comparison with the other two well-known similar in
spirit ones, namely the standard Perceptron algorithm with margin and the
ALMA2 algorithm (as modified in Appendix A). Our primary concern will be
the ability of the algorithms to find the maximum margin. For the Perceptron
algorithm the guaranteed fraction of the margin achieved in terms of b

ηR2 is



Table 1. Experimental results for the sonar data set. The directional margin γ′d, the
number of epochs (eps) and updates per epoch (up/ep) are given for the Perceptron,
the ALMA2 and the CRAMMAε (δ = 1) algorithms.

Perceptron ALMA2 CRAMMAε ε = 1
2
, η = 0.001

b
ηR2 γ′d eps up/ep α γ′d eps up/ep β

R
γ′d eps up/ep

1 0.00578 18793 13.2 0.8 0.00512 21828 11.2 0.65 0.00550 19066 11.3

3 0.00709 42053 15.2 0.6 0.00694 62009 14.1 1.5 0.00707 50887 12.9

5.5 0.00746 73283 15.5 0.5 0.00740 109466 15.1 2 0.00746 79658 13.2

20 0.00780 252938 15.7 0.4 0.00777 207486 16.1 3 0.00782 153699 13.9

30 0.00785 376879 15.7 0.3 0.00800 438763 17.1 4 0.00800 247707 14.7

100 0.00791 1242783 15.8 0.2 0.00818 1154964 18.1 6.5 0.00819 582937 15.7

500 0.00793 6189654 15.8 0.1 0.00831 5350730 19.1 14 0.00832 2358082 17.5

Table 2. Experimental results for the sonar data set. The directional margin γ′d, the
number of epochs (eps) and updates per epoch (up/ep) are given for the CRAMMAε

algorithm with ε = 1 and the values η = 1, 2, 5 of the learning rate (δ = 1).

η = 1 η = 2 η = 5β
R γ′d eps up/ep γ′d eps up/ep γ′d eps up/ep

1000 0.00670 36815 15.6
2000 0.00725 65415 16.1
3000 0.00747 94909 16.2
5000 0.00761 154057 16.3 0.00768 137493 18.1
7000 0.00767 212595 16.4 0.00781 187984 18.2
10000 0.00772 299476 16.5 0.00791 264053 18.3
20000 0.00778 593527 16.5 0.00803 517399 18.4 0.00808 465477 20.3
40000 0.00782 1179629 16.5 0.00808 1024704 18.4 0.00822 905121 20.5
60000 0.00783 1766427 16.5 0.00810 1531253 18.4 0.00827 1346366 20.6

(
2 + ηR2/b

)−1 [6, 7, 10] and tends to 1
2 as b

ηR2 →∞. For the ALMA2 algorithm
this fraction in terms of the parameter α ∈ (0, 1] is 1 − α [4]. Everywhere the
data are embedded in the augmented space at a distance ρ = 1 from the origin
in the additional dimension.

First we analyse the training data set of the sonar classification problem
as selected for the aspect-angle dependent experiment in [5]. It consists of 104
instances each with 60 attributes obtainable from the UCI repository. The results
of our comparative study of the Perceptron, ALMA2 and CRAMMAε (ε = 1

2 )
algorithms are presented in Table 1. We observe that although for values of the
margin not too close to the maximum one the CRAMMAε algorithm is probably
not the fastest, for values in the vicinity of the maximum margin it is certainly
the fastest by far. Moreover, the data suggest that the Perceptron is not always
able to obtain margins infinitely close to the maximum one. In Table 2 we present
results obtained by the CRAMMAε algorithm with ε = 1 and increasing but β-
independent values of the learning rate η. The behaviour observed is perfectly
consistent with the one suggested by the theoretical analysis. Finally, in Table



Table 3. Experimental results for the sonar data set. The directional margin γ′d, the
number of epochs (eps) and updates per epoch (up/ep) are given for the CRAMMAε

algorithm with ε = 2 and a β-dependent learning rate η = 0.4( β
R

)1−δ with δ = 0.3.

β
R

106 107 108 109 1010 1011 1012 1013

γ′d 0.00103 0.00366 0.00552 0.00669 0.00737 0.00780 0.00810 0.00827

eps 8534 7243 14264 35849 98873 281397 821499 2443708

up/ep 8.3 14.7 18.5 21.1 23.0 24.9 26.4 27.8

3 we present results obtained by the CRAMMAε algorithm with ε = 2 but a
β-dependent η (δ = 0.3). Notice that η →∞ but ηeff → 0 as β

R →∞.
We additionally analyse an artificial data set known as LS-10 with 1000

instances divided into two classes. Each instance has 10 attributes whose values
are uniformly distributed in [0,1]. The attributes xi of the instances belonging
to the first class satisfy the inequality x1 + . . . + x5 < x6 + . . . + x10 with
the attributes of the instances of the other satisfying the inverse inequality.
In Table 4 we present the results of a comparative study of the Perceptron,
ALMA2 and CRAMMAε algorithms. It is apparent that the performance of
the CRAMMAε algorithm on this data set is astonishingly good, beyond any
expectation. Although analogous extraordinary results are obtainable for ε = 1

2
and small learning rates (which, however, do not enter the theoretically expected
guaranteed fraction of the maximum margin in the limit β

R →∞) we decided to
present the ones obtained for the parameter values ε = 1 and η � 1 for which
we theoretically anticipate only a tiny guaranteed fraction of the margin.

Table 4. Experimental results for the LS-10 data set. The directional margin γ′d, the
number of epochs (eps) and updates per epoch (up/ep) are given for the Perceptron,
the ALMA2 and the CRAMMAε (δ = 1) algorithms.

Perceptron ALMA2 CRAMMAε ε = 1, η = 0.02
b

ηR2 γ′d eps up/ep α γ′d eps up/ep β
R

γ′d eps up/ep

1 0.00245 168994 4.1 0.9 0.00160 79792 3.5 75 0.00278 6119 12.2

3 0.00273 362957 5.2 0.7 0.00242 408972 3.8 100 0.00282 7591 13.0

10 0.00286 1032612 5.7 0.5 0.00270 1357880 4.8 400 0.00288 26305 14.5

5 Conclusions

We presented a new class of approximate large margin classifiers characterised by
a constant effective learning rate. Our theoretical approach, having its roots in
the concept of stepwise convergence, proved sufficiently powerful in establishing
asymptotic convergence to the optimal hyperplane for a whole class of algorithms
in which the misclassification condition is relaxed with an arbitrary power of the
number of updates. Our analysis was also confirmed experimentally.



A The ALMA2 Algorithm

For completeness we briefly review the ALMA2 algorithm [4] slightly modified
in order to accommodate patterns which are not normalised to unit length. The
update rule is the one of (3) with ft = 1 and ηt = η/

√
t. The length of the newly

produced weight vector at+1 is subsequently normalised to R only if it exceeds
that value. The misclassification condition is given by (7) and the initial value
of the weight vector is a1 = 0. Following [4] one can derive the relation

R ≥ ‖at+1‖ ≥
ηγd

A+ 1
t√

2A+ t
, (30)

where A = η
(
η/2 + b/R2

)
. From (30) one can easily show that ‖at‖ satisfies

the inequalities c3
√
t− 1 ≤ ‖at‖ ≤ R, where c3 = ηγd

(
(A+ 1)

√
2A+ 1

)−1
, to

which we referred in Sect. 2. From (30) one also gets the bound

t ≤ tb ≡
(
A+ 1
η

)2(
R

γd

)2

+ 2(A+ 1) . (31)

Using (7) and (31) one can show that the fraction of the directional margin
achieved satisfies

f ≥ 1
γd

b

R
√
tb
≥ 1− α ,

where α ∈ (0, 1] is related to the parameters η and b as follows

b

R2
=

1− α

α

(
1
η

+
3
2
η

)
. (32)

We can partially optimise the value of η by minimising the dominant term pro-
portional to (R/γd)2 on the r.h.s. of (31) keeping fixed either b or α. In the
former case we obtain the value η =

√
2 (also employed in [4]) whereas in the

latter we obtain the value

η =

√
2

3− 2α
.

This is the value of η chosen in our experiments since it led to faster convergence
and to larger margin values for fixed α. Once η is fixed b is determined from (32).

B Bounds for the CRAMMAε Algorithm with ε = δ = 1

In this appendix we sketch the derivation of (27), (28) and (29) following the
technique of [4]. Taking the inner product of (3) with the optimal direction u,
employing (1) and repeatedly applying the resulting inequality we have

β = ‖at+1‖ ≥ at+1 · u =
at · u + ηyk · u

Nt+1
≥ at · u
Nt+1

+
ηγd

Nt+1

≥ a1 · u
Nt+1Nt · · ·N2

+ ηγd

(
1

Nt+1
+

1
Nt+1Nt

+ · · ·+ 1
Nt+1Nt · · ·N2

)
. (33)



For the normalisation factor Nm+1 we can derive the inequality

N−1
m+1 ≥ α−1 (1 + 2A/m)−

1
2 ≡ rm ,

where α =
(
1 + η2R2/β2

) 1
2 and A = ηα−2, which if substituted in (33) leads to

1
η

β

γd
≥

t∑
m=1

t∏
j=m

rj ≥
t∑

m=2

t∏
j=m

rj = rt

t∑
m=2

t−1∏
j=m

rj ≥ rt

t∑
m=2

αm−t

(
m− 1
t− 1

)A

(34)
given that a1 · u > 0. At the last stage of the previous inequality we made use
of

− ln
t−1∏
j=m

rj ≤ (t−m) lnα+
t−1∑
j=m

A

j
≤ ln at−m +A

∫ t−1

m−1

dj

j
.

Taking into account (18) and the fact that A ≤ η we have that (1 + 2A/t)
1
2 ≤

(1 + 2ηγd/β)
1
2 ≤ 1 + ηγd/β. Using the latter inequality and setting l = m − 1

(34) gives

1 +
1
η

β

γd
≥ α−t(t− 1)−A

t−1∑
l=1

lAαl . (35)

Let us first assume that A ≤ 1. Then, since l/(t− 1) ≤ 1, we can set A = 1
in (35) and using

n∑
l=1

lαl = α
d

dα

n∑
l=1

αl = α
d

dα

(
α
αn − 1
α− 1

)
=

nαn+1

(α− 1)2

{
(α− 1)− 1− α−n

n

}
obtain

1− α−(t−1)

t− 1
≥ (α− 1)

{
1− (α− 1)

(
1 +

1
η

β

γd

)}
. (36)

The r.h.s. of (36) is certainly positive if ηeff < γd/R or η < βγd/R
2. Since the

l.h.s. is a monotonically decreasing function of t vanishing in the limit t → ∞
(36) gives rise to an upper bound on t. To obtain an approximation of this
upper bound (i.e. obtain a less restrictive upper bound) we employ the relation
α−(t−1) = e−(t−1) ln α and the inequalities (1− e−x) /x ≤ 1 − x/2 + x2/6 for
x > 0, (x− 1)− (x− 1)2/2 ≤ lnx ≤ (x− 1) for x > 1 and 1/ lnx ≤ x/(x− 1) for
1 < x ≤ 2. Then, (36) can be shown to lead to

(t− 1)2 − 3
α− 1

(t− 1) + 6
α2

α− 1

(
1 +

1
η

β

γd

)
≥ 0 (37)

which gives the expected upper bound on (t − 1), namely the smallest positive
root of the corresponding quadratic equation. Real roots exist if η < βγd/

√
6R2

and are approximated by using the inequality
√

1− x ≥ 1 − x/2 − x2/2. The
bound obtained is the one of (27) from which (28) is readily derivable.



If A ≤ 2, again because l/(t− 1) ≤ 1, we can set A = 2 in (35). Then, using

n∑
l=1

l2αl = a
d

dα

n∑
l=1

lαl =
nαn+1

(α− 1)3

{
n(α− 1)2 − 2(α− 1) + (α+ 1)

1− α−n

n

}
,

we get

α− 1
t− 1

− 1− α−(t−1)

(t− 1)2
≥ 1

2
(α− 1)2

{
1− (α− 1)

(
1 +

1
η

β

γd

)}
. (38)

The l.h.s of (38) can be shown to be a strictly decreasing function of t vanishing
as t → ∞ whereas its r.h.s is positive if η < βγd/R

2. Thus, (38) leads to an
upper bound on t. To find an approximation of such a bound we employ again
the relation α−(t−1) = e−(t−1) ln α and the additional inequality (1− e−x) /x ≥
1− x/2 + x2/6− x3/24 for x > 0 in (38) to obtain the less restrictive relation

(t− 1)3 − 4
α− 1

(t− 1)2 + 12
α2

α− 1

(
1 +

1
η

β

γd

)
(t− 1) + 12

α4

(α− 1)2
≥ 0 .

In the limit β
R →∞ the above inequality is satisfied if t is bounded from above

by the smallest positive root of the corresponding cubic equation. This leads to
(29).
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