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Abstract

Groupoidal relative pushouts (GRPOs) have recently been proposed by the authors as a new foun-
dation for Leifer and Milner’s approach to deriving labelled bisimulation congruences from reduction
systems. In this paper, we develop the theory of GRPOs further, proving that well-known equivalences,
other than bisimulation, are congruences. To demonstrate the type of category theoretic arguments
which are inherent in the 2-categorical approach, we construct GRPOs in a category of ‘bunches
and wirings.’ Finally, we prove that the 2-categorical theory of GRPOs is a generalisation of the
approaches based on Milner’s precategories and Leifer’s functorial reactive systems.
© 2004 Elsevier B.V. All rights reserved.

0. Introduction

It has become increasingly common to view modern foundational process calculi as be-
ing, at their corereduction systemsStarting from their common ancestor, thealculus,
most recent calculi consist of a reduction system together with a contextual equivalence
(built out of basic observations, viz. barbs). The strength of such an approach resides in
its intuitiveness. In particular, we need not invent labels to describe the interactions be-
tween systems and their possible environments, a procedure that may present a degree of
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arbitrariness, (cf. early and late semantics of#tmlculus) and may prove quite complex
(cf. [1,3-5] for instance).

By contrast, reduction semantics suffer at times by their lack of compositionality, and
have complex semantic theories because contextual equivalences usually involve quantifi-
cation over an infinite set of contexts. Labelled bisimulation congruences batsubtiad
transition systemg&LTS) may in such cases provide fruitful proof techniques; in particu-
lar, bisimulations provide the power and manageability of coinduction, while the closure
properties of congruences provide for compositional reasoning.

A well-behaved LTS associated with a reduction system should involve a compositional
system of labels, with silent moves (@actions) reflecting the original reductions and labels
describing potential external interactions. Ideally, the resulting bisimulation should be a
congruence, and should be at leastincluded in the original contextual reduction equivalence.
Proving bisimilarity is then enough to prove reduction equivalence.

Sewell[24] and Leifer and Milneif14,12] set out to develop a theory to perform such
derivations using general criteria; a meta-theorgi@rfving bisimulation congruenceghe
basic idea behind their construction is to use contexts as labels. To exemplify the idea, in a
CCS-like calculus one would for instance derive a transition

—la.0
aP——»P|Q

because term. P in context— a.Q reacts to become& | Q; in other words, the context is
a trigger for the reduction.

The first hot spot of the theory is the selection of the right triggers to use as labels. The
intuition is to take only thesmallestcontexts which allow a given reaction to occur. As well
asreducing the size of the LTS, this often makes the resulting bisimulation equivalence finer
and often closer to operational intuitions. Sewell’s method is based on dissection lemmas
which provide a deep analysis of a term’s structure. A generalised, more scalable approach
was later developed ifiL4], where the notion of ‘smallest’ is formalised in categorical
terms as aelative-pushou{RPOs). More precisely, as we shall see, a context is selected as
a label for the transition system if it makes a certain categorical diagram be a pushout. Both
theories, however, do not seem to scale up to calculi with non-tgtrattural congruences
Already in the case of the monoidal rules that govern parallel composition, things become
rather involved.

The fundamental difficulty brought about by a structural congrueaéethat working
up to= loses too much information about terms for the RPO approach to work as expected.
RPOs do not usually exist in such cases, because the fundamental indication of exactly
which occurrences of a term constructor belong to the redex becomes blurred when terms
are quotiented bye. A very simple, yet significant example of this is the categdun of
bunch contexts considered|it4], and similar problems arise in structures such as action
graphg15] and bigraph$17].

In [19,21], we therefore proposed a framework in which term structure is not explicitly
guotiented, but the equality of terms is taken ugtdPrecisely, to givep = s¢q one must
exhibit a proofx of structural congruence. Thinking of terms as arrows in categories where
objects represent term arities (e.g. as induced by a signajuthe equationp = sg can
be recast categorically as a commuting diagram together with a 2-gmhstructed from
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the rules generating: and closed under all contexts), as in the diagram below.

Since such proofs are naturally isomorphisms, we were led to corgolgpoid-enriched
categories@-categoriegor short), i.e. 2-categories where all 2-cells are iso, and initiated the
study ofG-relative pushoutéGRPOs), as a suitable generalisation of RPOs from categories
to G-categories. The idea of using 2-cells to represent generalised structural congruence
was first suggested by Sewg2i3].

The purpose of this paper is to continue the development of the theory of GRPOs. We aim
to show that, while adding little further complication (cf. Secti@@d3), GRPOs advance
the field by providing a convenient solution to simple, yet important problems (cf. Sections
4 and5). GRPOs indeed promise to be part of an elegant foundation for a meta-theory of
‘deriving bisimulation congruences’.

This paper presents two main technical results in support of our claims. Firstly, we
prove that the case of the aforementioned cateBorry of bunch contexts, problematic for
RPOs, can be treated in a natural way using GRPOs. Secondly, we show that the notions of
precategory and functorial reactive system, theories introduced to deal with the problems
solved by GRPOs, can be encompassed in the GRPO-based approach.

The notion ofprecategoryis proposed if12,13] inspired by the examples of Leifer
in [12], Milner in [17] and, most recently, of Jensen and Milner[&}. It consists of a
category appropriately decorated by so-callegpport setswhich identify syntactic ele-
ments so as to keep track of them under arrow composition. Such supported structures are
no longer categories—arrow composition is partial—which bring us away from the well-
known world of categories and their established theory, and requires an ad hoc development.
The intensional information recorded in precategories, however, allows one to generate a
category ‘above’ where RPOs exist, as opposed to the category of interest ‘belo®, say
where they do not. The category ‘above’ is relatedCtwia a well-behaved functor, used
to map RPOs diagrams from the category ‘aboveCtonvhere constructing them would
be impossible. (Here, ‘well-behaved’ means that the functor satisfies technical conditions
which guarantee the transport of relevant properti€s }d hese structures take the name of
functorial reactive systemand give rise to a theory developed 2] to generate labelled
bisimulation congruences.

This paper presents a technique for mapping precategories to G-categories so thatthe LTS
generated using GRPOs is the same (i.e. igxastlythe same labels) as the LTS generated
using the above-mentioned approach. The translation derives from the precategory’s support
information a notion of homomaorphism, specific to the particular structure in hand, which
constitutes the 2-cells of the derived G-category. We claim that this yields a mathematically
elegant approach, potentially more general and in principle more direct than precategories,
in that it allows for arbitrary structural isomorphisms to be considered, and fits well within
existing category theory, with no need for new frameworks. In particular, one advantage of
G-categories is that one may apply standard categorical constructions without translations
or alterations. Further supporting evidence for GRPOs is providgRinwhere we apply
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their theory to graphs and graph rewriting. It remains to be seen, of course, whether future
developments, e.g. for the analysis of specific LTSs obtained through our constructions,
will point towards the need of additional structure on G-categories.

Structure of the papern Section2 we review definitions and results presented in our
previous worl{19,21} Section3 shows that, analogously to the 1-dimensional case, trace
and failures equivalence are congruences provided that enough GRPOs exist. In&ection
we show that the category of bunch contexts is naturally a 2-category where GRPOs exist;
Section5 shows how precategories are subsumed by our notion of GRPOs. The exposition
ends with a few concluding remarks; Sectibnecalls basic notions of 2-categories, and
can be safely skipped by those readers acquainted with the standard notations.

An extended abstract of this work appeared28. Here we additionally develop the
theory of weak operational congruences, and illustrate the role of the notion of extensive
category in the construction of GRPOsBnn.

1. Preliminaries

Throughout the paper, we assume a moderate knowledge of category theory and related
terminology. In this section, we fix notations and recall the basic elements of 2-categories
we need to state our definitions and prove our results. For a thorough introduction to 2-
categories, the reader is referred16].

We useOrd to denote the category of finite ordinals. The objects of this category are
the natural numbers, @, 2, .. .. The morphisms frormto n are the all the functions from
them-element sefm] = {1, 2,...,m} to[n] = {1, 2,...,n}. Composition is the usual
compositions of functions. The category is skeletal, in that we hage »n’ if and only
if n = n’. We assume thddrd has chosen coproducts, namely ordinal additibrOne
possible way to define this is to let, on objeats® n = m + n, while on arrows, given
f:m—m'andg : n — n',letf+g : m+n — m’+n’ be the function f +g)(x) = f(x)
for 1<x <m and(f + g)(x) = g(x —m) +m’ otherwise. Intuitively,f + g is constructed
by puttingf andg side-by-side.

For any finite sek, letord(x) be the finite ordinal of the same cardinality andx —
ord(x) be achosenisomorphism. There is an equivalence of categorgets — Ord. On
objects it sendstoord(x); on morphisms, it mapg: x — yto tyftx‘lz ord(x) — ord(y).

A 2-categoryC is a category where homsets (that is the collections of arrows between any
pair of objects) are categories and, correspondingly, whose composition maps are functors.
Explicitly, a 2-categoryB consists of the following:

e Aclass ofobjectsX., Y, Z, .. ..
e ForanyX,Y e C, a categoryC(X, Y). The objectsC(X, Y) are called leells or
simply arrows, and denoted by X — Y. Its morphisms are called &lls, are written

o f = g: X — Y and drawn as
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Composition inC(X, Y) is denoted bye. and referred to asvertical composition.
Identity 2-cells are denoted dy:: f = f. Isomorphic 2-cells are occasionally denoted
asao: f = g. As an example of vertical composition, consider 2-cellsf = ¢ and

p: g = h as below.

They can be composed, yieldifg o : f = h.

e For eachX, Y, Z there is a functor: C(Y, Z) x C(X,Y) — C(X, Z), the so-called
‘horizontal composition, which we often denote by mere juxtaposition. Horizontal
composition is associative and adndifs, as identities. As an example, consider 2-cells
o: f=f andﬂ : g = ¢/, as llustrated below.

g

\f’/\g'/

They can be composed horizontally, obtainfg: ¢f = ¢’ 1.

As a notation, we write f andga for, respectivelyx1  and1,«. We follow the convention
that horizontal composition binds tighter than vertical composition.

In 2-categories, the order of composition of 2-cells is notimportant. This is a consequence
of the horizontal composition being a functor, and can be axiomatised with the so called
middle-four interchange lawfor £, f', f”: X — Y andg, g, ¢”:Y — Z andw: f = f7,

o ff = ', Bg = g andf’: g = g”, asillustrated by

Xg““\ Y QUB\Z
Yot W
f// g//

we have

Bol e for= (S o) o).

As a consequence, it can be shown that a diagram of 2-cells defines at most one composite
2-cell; that is, all the possible different ways to combine together vertical and horizontal
composition, yield the same composite 2-cell. This primitive operation is referred to as
pasting

In order to illustrate the notion of pasting, we shall consider the following diagrams.

B f A h
N (E A
Y P q

q C B+——C——D

4 4 ¥
&—»Dﬂ 1 ij
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The left diagram features 2-cells: f = ¢,/ : q¢ = p andy : rh = g. They can be
pasted together uniquely to obtain a 2-eélf = p. This 2-cell can be written as either
peqgueyf :rhf = p,orequallyfeygerha:rhif = p.Now consider the right diagram
with 2-cellsa : f = pg, f:h = qg, 7 : pt = s andd : gt = u. There is no way of
composing these 2-cells.

The canonical example of a 2-categorgiat, the 2-category of categories, functors and
natural transformations.

Two objectsC, D of a 2-categoryC areequivalentwhen there are arrowg : C — D,
g : D — C and isomorphic 2-cells : idc = gf, f: fg = idp. We refer tof andg as
equivalences.

2. Reactive systems and GRPOs

Lawvere theoriegll] provide a canonical way to recast term algebras as categories,
and open the way to the categorical treatment of related notionsX osignature, the
(free) Lawvere theory o, sayCy, has the natural numbers for objects and a morphism
t:m — n, fort an-tuple ofm-holed terms. Composition is substitution of terms into holes.
For instance, fo2 the signature for arithmetics, ter(a1 x x) + —2 is an arrow 2— 1
(two holes yielding one term) whilé8, 2 x y) is an arrow 0— 2 (a pair of terms with no
holes). Their composition is the terf8 x x) + (2 x y), an arrow of type G 1.

Generalising from term rewriting systems G4, Leifer and Milner formulated a def-
inition of reactive systeniil4], and defined a technique to extract labelled bisimulation
congruences from them. In order to accommodate calculi with non-trivial structural con-
gruences, as explained in the Introduction, we refine their approach as follows.

Definition 1. A G-categoryis a 2-category where all 2-cells are isomorphisms.

A G-category is a thus a category enriched dger the category of groupoids.

We shall adopt the convention of not indicating the direction of 2-cells when working with
G-categories. This will considerably simplify notation while not causing much confusion;
our 2-cellsa: p = ¢ will always be isomorphic.

Definition 2. A G-reactive syster@ consists of

(1) a G-category,

(2) a collectionD of arrows ofC which shall be referred to as tieactive contexist is
required to be closed under 2-cells and reflect composition,

(3) adistinguished object & C,

(4) asetofpairR < |Jccc CO, C) x C(0, C) called thereaction rules

The reactive contexts are those contexts inside which evaluation may occur. By composition-
reflecting we mean thatd’ € D impliesd € D andd’ € D, while the closure property
means that gived € D ando: d = d’ in C impliesd’ € D. The reaction relatior—> is
defined by taking

a—>a' ifthere exists(l,r), d € D andp:dl = a, p':a’ = dr.
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As illustrated by the diagram below, this represents the fact that, up to structural congruence
(as witnessed by), ais the left-hand sideof a reaction rule in a reactive contektwhile

a’ is, up to structural congruence (witnes$, the corresponding right-hand sidef the
reaction rule in the reactive context

éo

The setR of reaction rules is, therefore, a set of base rules with which one generates the
reaction relatior—> by closure under suitable contexts. For pragmatic reasons, we choose
not to stipulate thaR is to be closed under structural congruence; that is, in our formalism,
under 2-cells. More precisely, we do not require t(m’atr’) € R if there exist(/,r) € R

and 2-cellsx : I = I’, p : r = r'. Indeed, modern process calculi often have very simple
reaction rules and the closure under structural congruence comes at the point of defining
the reaction relation. For example, the standard textbook definition of [C&]Sists the

single reaction rule

aP+P |aQ+Q —>P| 0

without listing, additionally, all of its structurally congruent variants. It is easy to check
that, if we did choose to impose this conditioR ¢losed under 2-cells) then the reaction
relation—rp>, as well as the canonical labelled transition system (Definiti@nwould
remain unchanged.

The notion of GRPO formalises the idea of a context being the ‘smallest’ that enables a
reaction in a G-reactive system, and is a conservative 2-categorical extension of Leifer and
Milner's RPOs[14] (cf. [19,21]for a precise comparison).

For readers acquainted with 2-dimensional category theory, GRPOs are defined in Defini-
tion 3. This is spelled out in elementary categorical terms in Proposiiptaken
from[19,21]

Definition 3 (GRPOS. Let p:ca = db:W — Z be a 2-cell (cf. diagram below) in a
G-categoryC. A G-relative pushou{GRPO) forp is a bipushout (cf[9]) of the pair of
arrows(a, 1) : ca — c and(b, p) : ca — d in the pseudo-slice categoty/ Z.

Z
7 N
x vy
DA

w 1)
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Proposition 4. LetC be a G-category. A candidate GRPO fora = db asin diagranm(1)
isatuple(R, e, f, g, B, 7. 6) such thatdb e« g e ya = p — cf. diagram(i).

Y R’<—R
] (ii) (iii)
A GRPO forp is a candidate which satisfies a universal property (viz. to be the ‘smallest’
such candidate). Namely, for any other candidde ¢’, 1/, g, ', 7', &') there exists a
quadruple(h, o, Y, 7:) whereh: R — R/, ¢:¢’ = he andy:hf = f'— cf. diagram
(i)—and t: g'h = g— diagram (iii)—which makes the two candidates compatible after
the obvious pasting, i.e.

teeg'pey =9, degYetr i f =0, Ybehfega=/p.

Such aquadruple, which we shall refer tavaediating morphispmust beessentially unique
that is unique up to a unique iso. Namely, for any other mediating morplisey’, v/, 7)
there must exist aniquetwo cell &:h — k' which makes the two mediating morphisms
compatible, i.e.:

Ceep=0¢, Yollf =y, Tegli=1
Observe that whereas RPOs are defined up to isomorphism, GRPOs are defined up to

equivalence, as they are bicolimits.
The definition below plays an important role in the following development.

Definition 5 (GIPO). Diagram () of Definition 3 is said to be &-idem-pushouGIPO)
if (Z,c,d,idgz, p, 1., 1) is its GRPO.

The next two lemmas explain the relationships between GRPOs and GIPOs.

Lemma 6 (GIPOs from GRPOs If (Z, ¢, d, u, o, 1, u) is a GRPO for(i) below as illus-
trated in(ii), then(iii) is a GIPQ

VA Z' Z
4 d 1 c d
n | u
4 X—c—Z—d—Y X o Y

N4 \ / SA

w w

® (i) (iii)
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Lemma 7 (GRPOs from GIPOs If square(ii) above is a GIPQ(i) has a GRPQand
(Z,c,d,u,a,n, nisacandidate for it as shown (i), then(Z, ¢, d, u, o, 1, ) isa GRPO
for (i).

The following technical lemmas frofd9,21] state the basic properties of GRPOs, upon
which the congruence theorems below rest.

Lemma 8. Suppose that diagraifii) below has a GRPO

U—-=2 14 ¢ w U—~4—vy
b‘ o Jd B Jg bJ Bae fou Jge
® (i)

(1) If both squares irfi) are GIPOs then the rectangle 6§ is a GIPQ
(2) If the left square and the rectangle @f are GIPOs then so is the right square

Lemma 9. Suppose that diagraifi) below is a GIPO

NG NG N
S A A

® (ii) (iii)

Then the regions obtained by pasting the 2-cells in (ii) and (iii) are GIPOs. Note that the
proof relies on the fact thatis, in both diagrams (i) and (ii), an isomorphism.

The previous lemma in particular implies that the following definition of labelled transi-
tion system derived from a G-reactive system is well defined.

Definition 10 (LTS. For C a G-reactive system whose underlying categGrys a G-

category, define GTE&) as follows:

e the states GT&E) are iso-classes of arroig]: 0 — X in C;

e fora,a’ : 0 - Xandf : X — Z, there is a transitiofu] —» L/] [a1if fa —>ad
via a GIPO; that is, if there exists a reaction riler) € R, a reactlve contexd € D,
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and 2-cells : fa = di andp’ : dr = o’ such that diagran?] below is a GIPO.

XVjYY
oA

Notice that this amounts to considerfaiabelled transition frona only if f is the ‘smallest’
context—in the technical sense defined by the universal property of GRPOs—to induce a
particular reaction ira. The role ofp is absolutely fundamental here: by determining the
correspondence (isomorphism) betweemddl, it determines exactly thédcation of the
redex being reduced, and therefore the reaction being fired. We will remark again on this
with specific examples in later sections.

Henceforth we shall abuse notation and leave out the square brackets when writing

transitions; i.e. we shall write simply L 4 instead ofla] m»[a’]. Note that, taking
into account the conclusions of Lemr@athis abuse is quite harmless. Indeed, from a

transition[a] m»[a’], we can conclude thda —r>a’ (working with the “concrete”
underlying representatives) and that there exists a reaction/tule € R and a GIPO

p : fa = dlI with dr = 4d’. In patrticular, it does not matter which representatives of
equivalence classes one starts with.

Categories can be seen as a discrete G-categories, where the only 2-cells are the identities.
Using this observation, each G-concept introduced above reduces to the corresponding 1-
categorical concept. For instance, a GRPO (resp. GIPO) in a category is exactly a RPO
(resp., IPO) of14].

(@)

3. Congruence results for GRPOs
The following notion is the precondition needed to prove the congruence theorem.

Definition 11 (Redex GRPQs A G-reactive systert is said to haveedex GRPO¥ its
underlying G-categorf has GRPOs for all squares lik8)( wherel is the left-hand side
of areactionruldl, r) € R, andd € D.

Observe that this means that there exists a GRPO for each possible interaction between
aterm and a context. We are therefore able to determine a ‘smallestf talelpture each
of them in GTYC). The main theorem dfL9,21]is then expressed as follows.

Theorem 12(cf. Sassone and SobaskKi[19,21]). Let C be a G-reactive system which
has redex GRPOs. Then the largest bisimulatioan GTS(C) is a congruence

The next three subsections complement this result by proving the expected corresponding
theorems for trace and failure semantics, and by lifting them to the case of weak equiva-
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lences. Theorems and proofs in this section follow clofER)], as they are meant to show
that GRPOs are as viable a tool as RPOs are.

3.1. Traces preorder

Trace semantid4d 8] is a simple notion of equivalence which equates processes if they can
engage in the same sequences of actions. Even though it lacks the fine discriminating power
of branching time equivalences, viz. bisimulations, it is nevertheless interesting because
many safety properties can be expressed as conditions on sets of traces.

We say that a sequengeg- - - f,, of labels of GTSC) is a trace ofaif

atip. . Lipg
for someay, ..., a,. The trace preordef,, is then defined as<, b if all traces ofa are
also traces ob.

Theorem 13(Trace congruende <, is a congruence

Proof. Assumeu <;.b. We shall prove thata <, cb for all contextse € C. Suppose that

ca=ayLwas- -y L 0ay1.
We first prove that there exists a sequencej terl, ..., n,
. ai . Ci .
|
I o & B fi
1
e

wherea; = a, ¢1 = ¢, ¢i41 = d], @ = c;a;, and each square is a GIPOTheith

induction step proceeds as follows. Sirﬁ;ein‘ziH, there existy;: ficiai = d:l;, for
some(l;, r;) € Randd; € D,witha; 1 = d;r;. SinceC has redex GIPOs (cf. Definitidi),

this can be split in two GIPOs;: gja; = d;l; andp;: fici = dl.’gi (cf. diagram above).
Takea;11 = d;r;, and the induction hypothesis is maintained. In particular, we obtain a
trace

a=a1-2par---a, i>an+1

and, by the inductive hypothesis<, b must be matched by a corresponding tracé.of
This means that, far= 1, .., n, there exist GIPOS]: g;b; = e;I/, for somell/, /) € R and

e; € D, once we také; 1 to bee;r/. We can then paste each of such GIPOs together with

1 Since the fact is not likely to cause confusion, we make no notational distinction between the ar@ws of
(e.g. in GRPOs diagrams) and the states and labels of GT ®here the latter are iso-classes of the former.
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the corresponding;: f;c; = d!g; obtained abovei(= 1,...,n) and, using Lemma,
conclude that there exist GIPQfsc; b; = de;l], as in the diagram below,

. bi . Ci .
| which means ¢;b; Lw d'e;r.
I;J of & B Jﬁ v il
€ ' dll

As cb = c1b1, in order to construct a traee = by iy i»l;nH and complete the
proof, we only need to verify that far= 1, ..., n, we have thatl/e;r; = c; y1b; 1. This
follows at once, as; 1 = d; andb; 11 = ¢;r]. [

3.2. Failures preorder

Failure semanticf6] enhances trace semantics with limited branch-inspecting power.
More precisely, failure sets allow to test when processes deplete the capability of engaging
in certain actions.

Formally, fora a state of GT&C), afailure of ais a pair(f1--- f,, X), wherefi--- f,
andX are, respectively, a non-empty sequence and a set of labels, such that:

e f1--- fyisatrace of, a i’ e i>(1n+1;

e a,11, the final state of the trace, $$able i.e.a,+1 ~;
e a,.1 refuses Xi.e.a, 1 A~ forallx € X.
The failure preordefs ; is defined as < ;4 if all failures of a are also failures db.

Theorem 14(Failures congruence gf is a congruence

Proof. Assumea < ;b to prove thataS cb for all contextsc € C. The proof extends the
previous one of Theorerm3.
Let(f1--- fn, X), n > 0, be a failure ota. We proceed exactly as above to determine

a matching traceb = by Sy i»l},,ﬂ. In addition, we contextually need to prove
thatb,, 1 is stable and refuse§ exploiting the corresponding hypothesis@n 1.

First, we claim that;, 1 is stable. In fact, were it not, it would follow fromy,.1 € D
(which equals?)) that alsoa,+1 = cy+1a,+1 —>. But this is impossible, sinc&, 1 is
stable. Secondly, ;1 refuses both

Y = {g | there exists a GIPQ,: x¢, 41 = dg, forx € X, d € D} and
Z ={g | there exists a 2-cell,: dg = c,41, ford € D},

which can be seen as follows df ;1 - » for g € Y, then there exists a GlIPOga,+1 =
d'l,forsomerulél, r), which could be pasted together withto yield a GIPQxc,, 11,41 =
dd'l, which is impossible since it means tlaat 1 =, forx € X. Similarly, if a,, 1 <
for g € Z, pasting the corresponding GIPO with we see tha&, 1 —>, contradicting
the hypothesis thai, 1 is stable.
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If follows then from the hypothesisgfb thatb,, ;1 is stable and refus@su Z. It is then

easy to complete the proof by transferring stability aacefusal tob,, 1. First, suppose
that b,,1 —0>. This means that there exists a 2-a#ll = b, 1. SinceC has redex-
GRPOs, we can factar, 1 out and obtain from this a GRPQsgb, 11 = d'l together
with a 2-celld”g = c¢,41. But this would mean tha, 1 -, for g € Z, which is a
contradiction.

Suppose finally that, .1 <, forx € X. Again, by definition of the transition relation,
and exploiting the existence of redex-GRPOs, we find GRRQs; = d”g andgb,+1 =
d'l, which mean thab, 1 4, forge Y. O

3.3. Weak equivalences

Theoremsl2-14 can be extended to weak equivalences, as below.

) . f .
For f a label of GTSC) define aweak transitiora —» b to be a mixed sequence of

transitions and reductions —>* L» ——>>*b. Observe that this definition identifies

silent transitions in the LTS with reductions. As a consequence, care has to be taken to avoid

interference with transitions of the kifd-», synthesised from GRPOs and labelled by an
equivalence. These transitions have essentially the same meaning as silent transitions (i.e.
no context involved in the reduction), and must therefore be omitted in weak observations.
The following lemma makes the reasoning above precise.

Lemma 15. Suppose tha is a G-reactive system.df—b with e an equivalencehen
there exist®’ such thaz —>b'. Moreover b’ = ¢’b, wheree’ is the pseudo-inverse of e

Proof. Suppose thap : dl = fais a GIPO and is an equivalence, that is, there exist
isomorphisms: : idxy = gf andf : f{g = idy. Thenata e gp : gdl = a and it remains
to show thaigd € D. But fid : fgd = d and sinceD is closed under 2-cellfgd € . Then
gd € D sinceD is composition-reflecting. [J

We may now consider the weak counterparts of the preorders and equivalences studied
earlier.

Definition 16 (Weak traces and failurgs A sequencefy - - - f,, of non-equivalencéabels
of GTS(C) is a weak trace aodi if

f1 In
a=—>»a1---d,—1 =k a,

for someay, ..., a,. The weak trace preorder is then defined accordingly.

A weak failureof a is a pair(f1--- fu, X), where f1--- f, and X, are, respectively,
a sequence and a setmbn-equivalencdabels, such thaf - - - f,, is a weak trace o&
reaching a final state which is stable and refuge3he weak trace preorder is defined
accordingly.
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Definition 17 (Weak bisimulation A symmetric relatiorS on GTSC) is a weak bisimu-
lation if foralla S b
. T f .
a-Lea f not an equivalence impliesb = b’ witha’ S b’;
a—>a’ impliesh —>*b' witha' S b'.

Using the definitions above Theorerh2-14 can be lifted, respectively, to weak traces,
failures and bisimulation.

Itis worth remarking that the congruence results, however, only hold for contexis,
as itis well known that non-reactive contexts—i.e. thostereca —>cb does not follow
froma —>b, as e.g. the CCS context= — + cg, do not preserve weak equivalences.
Alternative definitions of weak bisimulations are investigatgd #j, and they are applicable
mutatis mutandiso GRPOs.

4. Bunches and wires

In this section we consider an example of a simple G-category, recasting in the present
framework the notion of bunch context first due to Leifer and Milfiet]. We will recall
the notion of extensive categof®] and proceed to construct GRPOs in the G-category
of bunches. The construction will only make use of the fact @rat, the category whose
objects are the node sets of our bunches, is extensive and has pushouts.

4.1. Category of bunch contexts

The category of ‘bunches and wires’ was introduced #] as a skeletal algebra of shared
wirings, abstracting over the notion nAmesn, e.g. ther-calculus. Although elementary,
its relevance resides in representing the simplest possible form of naming. In any case, its
structure is complex enough to lack RPOs.

A bunch context of typeng — m1 consists of an ordered setaf; trees of depth one
containing exactlyng holes. Leaves are labelled from an alpha6eThese data represent
m1 bunches of unspecified controls (the leaves), togethermgthlaces (the holes) where
further bunch contexts can be plugged to. Before illustrating this graphically, let us proceed
with the formal definition of Leifer and Milner's category of bunch contexts.

Definition 18. Letmg andm  be finite ordinals. Aconcrete bunch context: mg — m1

is a tuplec = (X, char, rt), whereXis a finite carrierrt: mg + X — m1 is a surjective
function linking leavesX) and holes o) to their roots £21), andchar: X — K is a leaf
labelling function.

Given concrete bunch contexig. mo — m1 andci:my — m2, we can compose them
to obtain a concrete bunch contexto: mg — m2. Roughly, this involves ‘plugging’ the
m1 trees ofcg orderly intom1 holes ofcy; leaves and holes @ are ‘wired’ to the roots of
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c1, alongsider1’s leaves. Formallygico is (X, rt, char) with
X = Xo+ X3, rt = rt1(rto + idx, ), char = [charg, charq],

where+ and[_, ] are, respectively, coproduct and copairing.

A homomorphisnof concrete bunch contexjs : ¢ = ¢:mg — m1 is a function
p: X — X' which respectst andchar, i.e.rt’p = rt andchar’p = char. An isomorphism
is a bijective homomorphism.

Definition 19. The category obunch context8ung has
e objects the finite ordinals (cf. Sectidi, written asng, mq, ...
e arrows frommgtomj are isomorphism classgs: mg — m1 of concrete bunch contexts.

Given an objectng, the identity is (the isomorphism class &f), !, id) : mg — mo. Iso-
morphic bunch contexts are equated, making composition associatiBiag@ category.

The pictures below illustrate the concept of bunch context. The leftmost diagram repre-
sents a bunch contekt] : 0 — 2 with X = 3, char(1) = char(3) = K, char(2) = L,
rt(1) = 1 andrt(2) = rt(3) = 1. The middle diagram represents a bunch corjtgxt2 —
2 with X = {x}, char(x) = M, rt(1) = rt(x) = 1 andrt(2) = 1.

WA AN RVANYAN

K L K
[a]:0—2 [b]: 22 [ba]: a—2

The final diagram representsa] : 0 — 2, the result of composingandb.

A bunch contexfc]: mg — m1 can alternatively be depicted as a stringafnon-empty
multisets onk + mgo (the bunches of leaves and holes connected to the same root), with
the proviso that elemenigg must appear exactly once in the string. In the examples, we
represent elements ofy as numbered holes;. For instance, the three pictures above can
be written, respectively, dX }{L, K}, {—1, M}{—2}, and{M, K}{L, K}.

As we mentioned before, RPOs do not exisBimg. Indeed, consider (i) below.

1
{K7_V w(’_l}
1 1
{A {K}
;

0
i)
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The following diagrams show two candidate RPOs (ii) and (iii) which are easily proved not
to have a common ‘lower bound’ candidate.

1
%11} K1) / \

|
1 — L {1} — g{K}a%{K}{

ST S

(i) (iii)

The point here is that by taking the arrowsBafng up to isomorphism we lose information
abouthowbunch contexts equal each other. Diagram (i), for instance, can be commutative
in two different ways: th& in the bottom left part may correspond either to the one in the
bottom right or to the one in the top right, according to whether we f&ad-1} or {—1, K}

forthe top rightmost arrow. The pointis therefore exactly winicburrencesfK correspond

to each other. The fundamental contribution of G-categories is to equip our structures of
interest with an explicit mechanism (viz. the 2-cells) to track such correspondences. Fed
into the categorical machinery of relative pushouts, this gives GRPOs the pourats*
reaction beyond the blurring effect of a structural congruence (in this case, the commutation
of elements inside a multiset). To illustrate our ideas concretely, let usBuagtits natural
2-categorical structure.

Definition 20. The 2-category of bunch contex@sin has:

e objects the finite ordinals (cf. Sectidi, denotedng, my, ...

e arrowsc = (x, char, rt):mg — mj consist of a finite ordinak, a surjective function
rt:mo ® x — m1 and a labelling functiomhar: x — K.

e 2-cellsp are isomorphisms between bunches’ carriers which preserve the structure, that
is respecthar andrt.

Composition of arrows and 2-cells is defined in the obvious way. Notice that Ginige
associative, composition Bun is associative. Therefoilun is a G-category.

Replacing the carrier s&iwith a finite ordinak allows us to avoid the unnecessary burden
of working in a bicategory, which would arise because sum on sets is only associative up to
isomorphism. Observe that this simplification is harmless since the set-theoretical identity
of the elements of the carrier is irrelevant. We remark, however, that GRPOs are naturally
a bicategorical notion and would pose no particular challenge in that setting. In particular,
in [22] we use a bicategorical framework in order to apply the theory of GRPOs to derive
bisimulation congruence for generic graph rewriting systems.

4.2. Extensive categories

When constructing GRPOSs, we have tried to use general categorical constructions defined
using universal properties. This not only simplifies the proofs, freeing one from unnecessary
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set-theoretical detail but also makes them more robust in that the proofs lift relatively easily
to other models.

In particular, in the proof of Theorer23 below, we use only the fact th&rd is an
extensivg?2] category with pushouts. An extensive category can be thought of roughly as a
category where coproducts are in many ways ‘well-behaved,” where the paradigm for good
behaviour comes from the category of sets and functions. For the reader’s convenience we
reproduce a definition below.

Definition 21. A categoryC is extensivavhen

e it has finite coproducts,

e it admits pullbacks along injections of binary coproducts,
e given a commutative diagram,

C—L 2

g 1 Je

A—”>A+B<iZ—B

where the bottom row is a coproduct, the two squares are pullbacks if and only if the top
row is a coproduct diagram.

In order to provide the reader with some intuition for the good behaviour of coproducts
in extensive categories, we recall below some properties of extensive categories. Notice
that these simply express expected properties of coproduSts,ithe category of sets and
functions.

Lemma 22. LetC be an extensive category. Then
(i) sums are disjointthat is, the pullback of the two injections of a binary coproduct is
the initial object
(i) coproduct injections are mono

(i) ifA —2 - ¢ < pandA’ —* ¢ <% B are coproduct diagramshen there
exists a unique isomorphism: A — A’ such that; ¢ = i1,

(iv) supposethap : A+C — B+ Cisanisomorphismsuchthat,; =i, : C — B+C;
then there exists a unique isomorphigm A — B so thatyp =y + C,

Proof. We begin by proving (i) and (ii). In the following diagram, the bottom row and the
top row are coproduct diagrams,

O—!>B<LB

.

A—il)A-FB(iZ—B

and the two squares are clearly commutative. Using the definition of extensivity, the two
squares are, therefore, pullbacks. The left square being a pullback means that coproducts
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are disjoint. The fact that the right-hand side is a pullback impliesithist mono. By a
similar argument;y is also mono.
We shall now proceed with (iii). Consider the following diagram:

Fas
N
ANVe

using (i), we deduce that the two lower regions are pullbacks. Let the upper region be a

pullback. Using extensivity, 06— A <~ X and 0—— A’ < X are coproduct
diagrams, and therefore, it follows thetinda’ are isomorphisms. Lep = a’a~1, which
satisfies’; ¢ = i1, as required. Given another sugh we haveij¢p = i1 = ij¢p. We can
now use (ii) to deduce thaf is mono, and therefore, that= ¢’

It remains to prove (iv). Consider the diagram below, where

XLA+C<LC

RN

BT>B+C<TC

the right square can be verified to be pullback, using the factlismono. Suppose that

the left-square is a pullback. Note thatis an isomorphism, since it is a pullback of an
isomorphism. Using extensivity, the resulting top row is a coproduct diagram, and using
part (iii), we can deduce that there exists an isomorphismd — X such thatf ¢ =

A — A+ C. Lettingy = Y/, we obtaingp =  + C. The fact that, : B — B + C is

mono implies uniqueness.[]

Examples of extensive categories incl&# and more generally any topos. The category
of topological spaces and continuous functidop is extensive. Any category with freely
generated coproducts is extengg2g

The following simple fact will prove useful for us later in this section. It holds in any
category, that is, it does not require the assumption of extensivity.

Proposition 23.Suppose that the diagrafi), below is a pushout. Then diagrafi) is also
a pushout

4—55¢ A+EL"‘”>C+E
fl l ' f+£dE f’tldE
B——D  BYE—5———D+E

g g +ide
(1) (ii)
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4.3. Construction of GRPOs

Theorem 23. Bunhas GRPOs

Proof. The proof is divided into two parts. In the first part we give the construction, and in
the second part we verify that the universal property holds.

4.4. Construction of GRPO
Suppose that we have an isomorphic 2-pella = dI as illustrated below.

m3
m p my
’\ /
mo

The intuition here is that, for an ‘agerd’and a left-hand sideof some reaction rule, we
are given bunch contextsandd so thatca is dl, up top (in symbolsca =, dI). We shall
find the smallest upper bound afindl which ‘respects)p.

Usingp : x, ®x. — ¢ ® x4 and the injections into the chosen coproduddi (which
in the diagrams below we leave unlabelled, or denote genericallyiwihdiz), we take
four pullbacks obtaining the following diagram. Due to the extensivitpad, each of};,
ai, d; andc; wherei € {1, 2} is a coproduct injection.

I I
Xel ! » X[ < 2 Xla

Xe—— X, DX, Lm; DxXg—x. Dxg+—Xq

~

2 az

R —

~

Xad

~N

X,
dc a4 A

@

Here, one can think of;. as the nodes common to bunch contek&ndc, whenca is
translated, vig, to dl. Similarly, x.; are the nodes common toandl, x;, are the nodes
common td anda, while x,,; are the nodes common &andd. We shall show that.; and
xqq form the nodes of the minimal candidate.

Let x, = x¢, xf = Xx4q9 @Ndx, = x4.. Using the morphisms from the diagram above
as building blocks, we can construct bijectiofiscc — x. @ x4, 0:xf B X, — xg
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andf:x, ® x, — x; ® x ¢ such that

X POPBDXgxa DY =p, 3
more preciselyy = [c1, c2]7Y, 6 = [do, di] andp is the following composition,

[az,a1]" ®x, xr@ll2,l1] tw
Xag@Xe ———> X B Xlg DXe ——> X DX —> X1 D xy,

whererw : x @ x; — x; @ xy is the ‘twist’ isomorphism. Lett, andrt y be morphisms

making (ii) below a pushout diagram.
m3
c g d
T )

op

rt; ©x
my P x, @xem0—>mo ®x; EBfomz Dxr

rtq ©xe rey m|—e— My f—my
- \ p /
ml @xe rte >m4 mO

(ii) (iii)

We can then definehar,, char » andchar, (fromy, 6, char. andchar,) so as to form bunch
contextse, g andf which make (iii) above a candidate GRPO. Notice that the commutativity
of (i) implies thatf; is a bunch homomorphism.

It remains to definet, and prove thap andé are bunch homomorphisms.

Consider the diagram (iv), below.

t; Dx D
my O xg @xe@xg%mo Dx; Bxy ®xg L ) O xp xg ™y Bxy

rty OxeDOxg (T) :
’7 rty
mi; Sxe Dxg rte Gxg ) eaxgw
m]@y—] ,..rtg.......
mi éaxc rte %mB
(iV)

The exterior of (iv) is commutative singeis a bunch homomorphism, this can be verified
by precomposing witmg @ x, @ y : mo ® x4 ® xo — mo ® x, ® x. ® x, and using §).
Now, since (ii) is a pushout, an application of Lemffayields that (1) is a pushout. We
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obtain a morphisnrt, : ms4 ® x; — m3 which makes the remaining regions of (iv)
commute. These two remaining regions imply thandé are bunch homomorphisms. We
can deduce that, is epi sincertg.rty @ xg = rtg.ma @ 9, rtg is epi andm, @ J is an
isomorphisms.

Thus, diagram (ii) is indeed a candidate GRPO for the 2¢cell = di.

4.5. Verification of the universal property

Supposethdtns, r, s, ¢, ', 7', §')is another candidate GRPO fayi.e.d'l o 1§ ¢ y'a = p.
A diagram chase shows that the diagram (v), below, is commutative.

1 /
Xt 2 X5 D x; #) X4
izl
X DXy ip
v
Xe — ¥a Dx. — X Dxy
v)

Sincex, with mapsc, : x; — x. anddy : x; — x4 is a pullback ofpiz : x. — x; ® x4
andiz : x4 — x; @ xq — cf. (i) —, there exists a monomorphisrhsy; — x, such that

y/_liz = cok andd'ip = dik.

Xy w Xy X k Xge?  x,

J Xr DX id w

X, X Xt Xe Xr
& @ ¢ 7 Y1

(vi) (vii)

Take the pullback (vi). Using extensivity, SN Xg L x; is a coproduct diagram,
as shown byV), where the square on the right-hand side is (vii). The commutative square
on the left-hand side can be verified to be a pullback singbeing a coproduct injection
in an extensive category, is mono. We shall show thas the set of nodes of a mediating
bunch context: : m4 — ms.

Let denote the isomorphisy, k]: x, ®x; — x,. By the definition ofr, the composites
at the bottom edges of diagrams (viii) and (ix), below, act as the identity on the second
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injections ;). Applying part (iv) of Lemma22,

X L.

Xe Dxy
J 1 -1 ‘
X DXy 14 Xe—T s, Dxg ik Xe Dxy DX
(viii)
XrOxy hd s Xs

J o § ! [

T
XrDxy @x,x—mf@xg—md—)xs DXt

(ix)

we obtain isomorphisme andys so that diagrams (viii) and (ix) are pullbacks.
The commutativity of these pullback diagrams implies that

Xe ®TOD XY =7 (4)

andd’.y @ x,.xy & t~1 = 3. These two equations, together with those which rejate,
y, 6 andp’,y,d, give

xlealp-ﬁ@xu-xa@(p:ﬁ/' (5)

Now consider diagram (x), below.

o © X 0, © g .31 D B O 12 @ X/ B X
rty e)xeéexul Exag! (%) BBy sz oy
mi P x. Dx, moeaxa@x,ﬂmo@xl@&%mz D xs
m ﬂﬂp"l y/ 6] ths

my Ox, rt, ms
(x)

The commutativity of regiork) follows from Eq. 6). Region (1) is commutative because

B is a bunch homomorphism. Thus, the entire diagram is commutative. The commutativity
of (x) implies that the outside of diagram (xi) is commutative. Applying the conclusion of
Lemma??to diagram (ii) implies that the inner region is a pushout diagram, and therefore,
that there exists a unique morphisty : ms4 @ x, — m3 which renders regions (*)
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and (**) commutative.

my®pDdxy rt; @xy b x, my ey
moPx, Sxe Bxy,——moOxX;OxXfBxy——myDxrDxy,——my Dx;

rt, EBerBxul rty @xul ()
m O Xe DXy rte Oy ymy O Xy rty
mle)qu (%) rtu
my Dx, % ms

e,
(xi)
Thusu: mgq — msis abunch context. Regions (*) and (**) of (xi) imply that r = ue and

Y uf = s, respectively, are homomorphisms. To see that = g is a homomorphism,
consider diagram (xii), below.

mpey
MmO xe ——smy Ox, Dx, TP Ly, DX, D m) GxBx
¢ may r e‘ u T Ox T g
rte rt, gx, rte ©x,Dx; lrte DOxg

myDT

rt

rtg

(xii)

The two rectangles on the left are commutative sifignd¢ are homomorphisms. Using
(4), the top row is equal ter1 @ y. Using the fact thag is a homomorphism (the commuta-
tivity of the outside region) and the surjectivity of the marked arrow in the above diagram,
we conclude thatt,.ms & t = rt,.rt, @ x,. Thus{u, ¢, , 7) is a mediating morphism.

Now consider any other mediating morphiém 7', ¢, y'). We have that

X ®T.Q ®x.y =7, (6)

Sy oxxre@) t=dandy @y O x x, ®¢ =f.
Using @) and @), we havex, ® 7.9 & x;.y) = 7y = x, ® 7.¢" @ x;.y’ and therefore
XeDT.QDx = x. DT.¢ D x;. Precomposing with the second injection x; — x, ® x;

. . . T
allows us to deducei; = 7'iz : x, — x,. Thus, we have coproduct diagrams———

X <% x, andx, ——— x, <= x;. Using (iii) of Lemma22, we obtain a unique
isomorphism? : x, — x, such that’i;¢ = i1, and therefore’.£ & x; = 7.

Now, using @) and @) again,x, ® 7.¢' ®x; = 7.()) L = x. D 1.0 D x; = x. B
T xe ® E® x:.¢ @ x;, from which follows¢’ @ x; = (x & £.¢) ® x;. A straightforward
application of part (iv) of Lemma&2 yields thatyp’ = x @ &.¢. Similarly, one may derive

Yxp@ &=y,
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We remark again that the proof relies nicely on the fact @rat is an extensive category
with pushouts, and it goes through unchanged for any other such category.

Examples. Lety: 2 — 2 be the function taking &> 2 and 2— 1. We give below on the
right the GRPOs for the squares on the left.

1 1
{K,=1} {K,—1} {K,—1} {71} {K,—1}
11 2
1 Y 1 1 {1 HK} =2 {K}H-1} =1
K} &} Nv%
0 0
1 1
y W ) {K,T—l} &=
|
1 1 1 1—A{-1}—1—{-1}—1
3 (k) (K} ! (K}
0 0

Of course, the ambiguity iBung about ‘how’ the diagrams commute—which ultimately
leads toBung failing to have RPOs—is resolved here by the explicit presendeanfy.
And in both cases, GRPOs exist.

5. 2-categories vs. precategories

Other categories which, besidBsing, lack RPOs include the closeshallow action
contextd12,13]andbigraph context$17,8]. The solution adopted by Leif¢t3] and later
by Milner[17] is to introduce a notion of @ell-supported precategorywhere the algebraic
structures at hand are decorated by finite ‘support sets’. The result is no longer a category—
since composition of arrows is defined only if their supports are disjoint—but from any
such precategory one can generate two categories which jointly allow the derivation of a
bisimulation congruence viafanctorial reactive systenThese categories are the so-called
track category, where support information is built into the objects, anddipport quotient
category, where arrows are quotiented by the support structure. The track category has
enough RPOs and is mapped to the support quotient category via a ‘well-behawetdt,
so as to transport RPOs adequately. We remark that Jensen and M]lhewe recently
simplified the theory by developing their arguments internally in precategories, in order to
bypass working with the track category.

Inthis section we presenta general translation from arbitrary precategories to G-categories.
Our main result shows that the LTS derived using precategories and functorial reactive
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systems is identical to the LTS derived using GRPOs. We begin with a brief recapitulation
of the definitions fron{13], to which the reader is referred for motivations and details.

Definition 24. A precategoryA consists of the same data as a category. The composition

operatoro is, however, a partial function which satisfies:

(1) foranyarrowf : A — B,idgo fandfoid4 are definedandiglo f = f = foidy;

(2) foranyf:A—> B,g:B—->C,h:C — D,(hog)o fisdefinediffho(go f)is
defined and theth o g)o f = ho (go f).

Definition 25. Let Sety be the category of finite sets. Well supported precategorng a
pair (A, |—|), whereA is a precategory and-| is a map from the arrows df to Set;, the
so-called support function, satisfying:

(1) go fisdefinediffig| N|f| =@, andifg o f is defined theng o | = |g| U | fI;

(2) lidal = 9.

Foranyf : A — B and any injective functiop in Set; the domain of which containg|
there exists an arrow- f : A — B called thesupport translatiorof f by p. The following
axioms are to be satisfied.

24y - f=f7 . (propg) - f =p1-(po- f);
3. polfl = pylflimpliespg- f =p1- f: 6. lp- fl=plfl

We illustrate these definitions giving a precategorical definition of bunches and wiring
(cf. Sectiord).

Example 26(Bunche} The precategory of bunch conteXsBun has objects as iBunyp.
However, differently fronBung, arrows are concrete bunch contexts, they are not isomor-
phism classes. The supportot= (X, char, rt) is X. Compositioncico = (X, char, rt):

mg — mo Of cg: mg — m1 andc1: m1 — mo is defined ifXgN X1 = @ and, if so, we have

X = Xo U X1. Functionschar andrt are defined in the obvious way. The identity arrows
are the same as iBung. Given an injective functiop: X — Y, the support translation
p-cis(pX,charp~L rt(id,,, + p~1)). Itis easy to verify that this satisfies the axioms of
precategories.

The definitions below recall the construction of the track and the support quotient cat-
egories from a well-supported precategdry The track has the support information built
into the objects. On the contrary, the support quotient consists of isomorphism classes of
arrows with respect to support translation. Both constructions yield categories relevant to
A The track category, in particular, is concrete enough to admit RPOs in important cases.
We shall question shortly the relationship between these constructions and our notion of
G-categories.

Definition 27. Thetrack of A is a categor@ with
e oObjects: pairgA, M) whereA € A andM e Sety;

e arrows:(A, M) —f> (B, N)wheref:A — BisinA, M C N and|f| = N\M.
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Composition of arrows is as iA. Observe that the definition ¢f | ensures that compo-
sition is total. We leave it to the reader to check that the data defines a categ@iB])cf.

Definition 28. Thesupport quotiendf A is a categoryC with

e Objects: asim;

e arrows: equivalence classes of arrowsfgfwheref andg are equated if there exist a
bijective p such thap - f = g.

Example 29(Bunchey The support quotient o-Bun is Bung.

There is an obvious functof: C — C, the support-quotienting functorThere is a
straightforward way of defining a reactive system over a well-supported precategory, akin
to the definition of G-reactive system for a G-category (Definig2hn

Definition 30. A reactive system over a well-supported precategofyconsists of

(1) a collectionD of arrows ofA, the reactive contexts; it is required to be closed under
support translation and to be composition-reflecting,

(2) adistinguished object& A,

(3) a set of pairsR < (J,cn A0, A) x A(0, A) called the reaction rules. These are
required to be pointwise closed under support translation, that is, ¢ivene R and
support translationg, p’ whose domains contain, respectively,and|r|, we require
that(p 1p - r) e R.

In the following we use the typewriter font for objects and arrowsCofWe make the
notational convention that anyandf in C are such that'(A) = A andF(f) = f.

Definition 31. Let A be areactive system over a well-supported precate@ot.yet@ and

C be the corresponding track and support quotient. The LTS HA)Shas

e States: arrows:0 — X in C;

e Transitionsa —Ldr if and only if there exist, 1, £,d in C with (1,r) e R,d e D,
and such that

7N,
WA

It is proved in[13] that the support-quotienting functBrsatisfies the conditions required
by the theory of functorial reactive systerfi®,13] Thus, if the categorfC has enough
RPOs, then the bisimulation on FLT@\) is a congruence.

All the theory presented so far can be elegantly assimilated into the theory of GRPOs.
In [13], Leifer predicted that instead of precategories, one could consider a bicategorical
notion of RPO in a bicategory of supports. This is indeed the case, with GRPOs being the
bicategorical notion of RPO. However, working with ordinals for support sets we can avoid

isan IPO in C.
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bicategories and, as in the caseBofn, stay within the realm of 2-categories. It is worth
noticing, however, that a bicategory of supports as above and the G-category we introduce
below would be biequivalent (in the sense of, §2%]). In the following, we make use of

a chosen isomorphism: x — ord(x), as defined in Sectioh

Definition 32 (G-Category of supporjs Given a well-supported precategorft, the
G-category of support8 has

e Objects —as i\

e arrows —f: A — B wheref: A — B is an arrow ofA and| f| is an ordinal;

e 2-cells—p: f = g for p a ‘structure preserving’ support bijection, i@: f = g in A.
Composition is defined as follows. Giveh: A — B andg : B — C,

gop f=iz2-gopi1r- f,

where| 1| LN £l gl 2 |g| is the chosen coproduct diagram@mud . Given an
arrowfin A, we usef = 17| - f in B, the ‘canonical representative’ bin B. To simplify
the notation in the following we write; for 7 ;. Observe that, with these conventions,

el fl = £

Notice that the translation can be easily extended to reactive systems. That is, starting
with a reactive systerA over a well-supported precategofly, one uses the translation of
Definition 32to obtain a G-reactive systeBiover the G-category of suppotits Observe

that such structure gives a concise representation of both the quotient, via the 2-structure,
and the support, with no need to include the latter explicitly in the objects. The following
theorem guarantees that the LTS generated is the same as the one generated with the theory
of functorial reactive systems.

Theorem 33. Let A be a reactive system over a well-supported precatedorand let
B and B be respectivelythe G-reactive system and G-category obtained as above, Then
FLTS (A) = GTS(B).

Proof. LetC be the track ofA. It is enough to present a translation between GIPOs in
B and IPOs inC which preserves the resulting label in the derived LTS. Suppose that (i)
below is a GIPO.

Z : .
SN T
X P

Yy (X,pilla]) (v, alll)

NP

0
() (ii)

Then we claim that (ii) above is an IPO @1, for N = || & |d| andi1, i injections into
coproducts irOrd. (Observe that thés in the two sides of the diagram refer to different
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coproducts; we trust this will not cause confusion.) Note that (ii) is commutative gis s/
definition a structure-preserving support bijection and, therefaig,coii-a) = iz-dois-I.
Suppose that(R, M) , e, f, g) is a candidate for (ii). We then show how to firfid y
ando such that{R, e, f, %, f,7,0) is a candidate GRPO for (i). This amounts to require
that 3, v, and¢ are such that their pasting composite yieldsand that each of them is a
structure-preserving bijection.
Let 8 represent the following composite:

PR

lal @ ] ——— lpi1-alUle| =lir-1|U|f| —— [l|®|f]
and similarly lety ando be, respectively,

piz liateior]
lc] — |piz-c|=|goel=le|U|g] ——— le| D [g]

and

et —1
~ - I . 2
Ifl@lgl ——— |f1VIgl=Igo fl=lizod| —> |d|.

It is easy to check that the pasting pfff andd as in the GRPO diagram yielgs We
show thaty is a structure-preserving bijection The argument for the other morphisms is
similarly trivial. Sincepiz - ¢ = g o e we havelitt,, iotgpiz - ¢ = [i1t,, iot,] - (g 0 ) and
S0y-c=goe. _

Indeed(R, e, f,g, B, 7, d) is acandidate GRPO for (i). Thus there exist& — R and
2-cells (structure-preserving support bijectiopsy = hc, : hd = f andt:gh = idy.

From the existence afand the definition of well-supported category, we can deduce that
|g] = |g| = ¥ and|k| = @. Note thatr = id, since there is only one endofunction riWe
can therefore conclude that alsb= N andg = g.

(R,N) (z,N)
e A S g id
<X’i1|a|> piy-c (Z,N) ird <Y’i1|l|> <R7N><T<Z,N>

@ (ii)

We also get immediately that (ii) above commutes. We show that the left triangle of (i)
commutes, the proof for the right one is similar. From the definition of GRPO, we have
that id. = Tce g «7 = g« which then implies thap = y~1. Using the definition of;,
pi2e @ o1, = id which amounts to saying that the triangle is commutative.

Uniqueness irC easily follows from essential uniquenesdir{which is in this case the
same as uniqueness, since there is only one endofunction @ the
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Going the other way, suppose that (iii) below

(Z,N) z
AN 7N
(X,L) (Y, M) X P Y
S N

(iii) @iv)
is a RPO. Then (iv) is a GRPO whepds

[t [iats,i2t4]
—5

@ @ 18] == |a| U |c| = |I| U|d| Il & |d).

Itis trivial to show thap is structure-preserving, i.p:(ca) = d 1. Now consider a candidate
(R, e, f,g, 0,7, 5) for (ii), above. Since the pasting compositeyof; andé yields p, we
have that; 1y ~ti- g = 1710, - g = g'. LetV = N\|g|. Lete’ = 171y~ %i1 - e and
f'=1;1i1- f. Itis easy but tedious to check tHar, V), ¢', f’, ¢') is a candidate for

(). By assumption, there exists an arréw(Z, N) — (R, V) which satisfiesic = ¢/,

hd = f’andg’h = f’. This can be translated in the by-now standard way into a mediating
morphism(h, o, Y, 7:) wherert is again the unique endofunction on thdJniqueness again
follows by laborious, yet not challenging, work[]

Example 34(Bunchek The 2-category of supports of the precategmun isBun. Note

that a ‘structure preserving’ support bijection is exactly a bunch homomorphism. Indeed,
p: (X, char, rt) = (X', char, rt) if X’ = pX, char = charp~tandrt’ = rt(id ® p~1)

which is the same as sayirfar = char’ p andrt = rt’(id & p).

In other words, our general construction translating from well-supported precategories to
G-categories applied to the particular case of ‘bunches and wirings,” exBantsut of

A-Bun. This confirms the results obtained by Leifer and Milner on this specific subject,
and supports our claim of appropriateness of the structures we have introduced. It is worth
remarking how in DefinitiorB2 precategories’ support-translation isomorphisms are sub-
sumed in G-categories as 2-cells. Further study is of course necessary to verify the usefulness
of GRPOs in the presence of more complex terms. The results we obtained recently in the
case of graph rewriting and bigraphs are indeed encour§giig

6. Conclusion

We have extended our theory of GRPOs initiated in previous work in order to strengthen
existing techniques for deriving operational congruences for reduction systems in the pres-
ence of non-trivial structural congruences. In particular, this paper has shown that previous
theories can be recast using G-reactive systems and GRPOs at no substantial additional
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complexity. Also, we proved that the theory is powerful enough to encompass several ex-
amples considered in the literature, as a precise consequence of the fact that any precategory
or functorial reactive system yields a corresponding G-category in a direct, systematic way.
Therefore, we believe that it constitutes a natural starting point for future investigations
towards a fully comprehensive theory, which we started to explore furtfj22]n

It follows from TheorenB3that G-categories are at least as expressive as well-supported
precategories. A natural consideration is whether a reverse translation may exist. We believe
that this is not the case, as general G-categories appear to carry more information than
precategories. This may turn out to have an impact in dealing with complex structural
congruences, such the one arising from the replication axtom P | ! P.
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