
Theoretical Computer Science 333 (2005) 297–327
www.elsevier.com/locate/tcs

Locating reaction with 2-categories�

Vladimiro Sassonea,∗, Paweł Sobocínskib
aDepartment of Informatics, University of Sussex, Brighton BN1 9QH, UK

bBRICS, University of Aarhus, Denmark

Abstract

Groupoidal relative pushouts (GRPOs) have recently been proposed by the authors as a new foun-
dation for Leifer andMilner’s approach to deriving labelled bisimulation congruences from reduction
systems. In this paper, wedevelop the theory ofGRPOs further, proving thatwell-knownequivalences,
other than bisimulation, are congruences. To demonstrate the type of category theoretic arguments
which are inherent in the 2-categorical approach, we construct GRPOs in a category of ‘bunches
and wirings.’ Finally, we prove that the 2-categorical theory of GRPOs is a generalisation of the
approaches based on Milner’s precategories and Leifer’s functorial reactive systems.
© 2004 Elsevier B.V. All rights reserved.

0. Introduction

It has become increasingly common to view modern foundational process calculi as be-
ing, at their core,reduction systems. Starting from their common ancestor, the�-calculus,
most recent calculi consist of a reduction system together with a contextual equivalence
(built out of basic observations, viz. barbs). The strength of such an approach resides in
its intuitiveness. In particular, we need not invent labels to describe the interactions be-
tween systems and their possible environments, a procedure that may present a degree of

� Research supported by ‘DisCo: Semantic Foundations of Distributed Computation, EU IHP ‘Marie Curie’
contract HPMT-CT-2001-00290, andBRICS, Basic Research in Computer Science, funded by the Danish National
Research Foundation.

∗ Corresponding author. Tel.: +441273873828; fax: +441273671320.
E-mail address:vs@susx.ac.uk(V. Sassone).

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.10.025

http://www.elsevier.com/locate/tcs
mailto:vs@susx.ac.uk

298 V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327

arbitrariness, (cf. early and late semantics of the� calculus) and may prove quite complex
(cf. [1,3–5], for instance).
By contrast, reduction semantics suffer at times by their lack of compositionality, and

have complex semantic theories because contextual equivalences usually involve quantifi-
cation over an infinite set of contexts. Labelled bisimulation congruences based onlabelled
transition systems(LTS) may in such cases provide fruitful proof techniques; in particu-
lar, bisimulations provide the power and manageability of coinduction, while the closure
properties of congruences provide for compositional reasoning.
A well-behaved LTS associated with a reduction system should involve a compositional

systemof labels, with silentmoves (or�-actions) reflecting the original reductions and labels
describing potential external interactions. Ideally, the resulting bisimulation should be a
congruence, and should be at least included in the original contextual reduction equivalence.
Proving bisimilarity is then enough to prove reduction equivalence.
Sewell[24] and Leifer and Milner[14,12] set out to develop a theory to perform such

derivations using general criteria; a meta-theory ofderiving bisimulation congruences. The
basic idea behind their construction is to use contexts as labels. To exemplify the idea, in a
CCS-like calculus one would for instance derive a transition

a.P
−|ā.Q

� P | Q

because terma.P in context—| ā.Q reacts to becomeP | Q; in other words, the context is
a trigger for the reduction.
The first hot spot of the theory is the selection of the right triggers to use as labels. The

intuition is to take only the ‘smallest’ contextswhich allowagiven reaction to occur. Aswell
as reducing the size of the LTS, this oftenmakes the resulting bisimulation equivalence finer
and often closer to operational intuitions. Sewell’s method is based on dissection lemmas
which provide a deep analysis of a term’s structure. A generalised, more scalable approach
was later developed in[14], where the notion of ‘smallest’ is formalised in categorical
terms as arelative-pushout(RPOs). More precisely, as we shall see, a context is selected as
a label for the transition system if it makes a certain categorical diagram be a pushout. Both
theories, however, do not seem to scale up to calculi with non-trivialstructural congruences.
Already in the case of the monoidal rules that govern parallel composition, things become
rather involved.
The fundamental difficulty brought about by a structural congruence≡ is that working

up to≡ loses too much information about terms for the RPO approach to work as expected.
RPOs do not usually exist in such cases, because the fundamental indication of exactly
which occurrences of a term constructor belong to the redex becomes blurred when terms
are quotiented by≡. A very simple, yet significant example of this is the categoryBun of
bunch contexts considered in[14], and similar problems arise in structures such as action
graphs[15] and bigraphs[17].
In [19,21], we therefore proposed a framework in which term structure is not explicitly

quotiented, but the equality of terms is taken up to≡. Precisely, to giverp ≡ sq one must
exhibit a proof� of structural congruence. Thinking of terms as arrows in categories where
objects represent term arities (e.g. as induced by a signature�), the equationrp ≡ sq can
be recast categorically as a commuting diagram together with a 2-cell� (constructed from

V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327 299

the rules generating≡ and closed under all contexts), as in the diagram below.

k
p ��

q

��

l

r

��
m

�

s
�� n

Since such proofs are naturally isomorphisms, we were led to considergroupoid-enriched
categories (G-categoriesfor short), i.e. 2-categorieswhereall 2-cells are iso, and initiated the
study ofG-relative pushouts(GRPOs), as a suitable generalisation of RPOs from categories
to G-categories. The idea of using 2-cells to represent generalised structural congruence
was first suggested by Sewell[23].
The purpose of this paper is to continue the development of the theory of GRPOs.We aim

to show that, while adding little further complication (cf. Sections2and3), GRPOs advance
the field by providing a convenient solution to simple, yet important problems (cf. Sections
4 and5). GRPOs indeed promise to be part of an elegant foundation for a meta-theory of
‘deriving bisimulation congruences’.
This paper presents two main technical results in support of our claims. Firstly, we

prove that the case of the aforementioned categoryBun of bunch contexts, problematic for
RPOs, can be treated in a natural way using GRPOs. Secondly, we show that the notions of
precategory and functorial reactive system, theories introduced to deal with the problems
solved by GRPOs, can be encompassed in the GRPO-based approach.
The notion ofprecategoryis proposed in[12,13] inspired by the examples of Leifer

in [12], Milner in [17] and, most recently, of Jensen and Milner in[8]. It consists of a
category appropriately decorated by so-called ‘support sets’ which identify syntactic ele-
ments so as to keep track of them under arrow composition. Such supported structures are
no longer categories—arrow composition is partial—which bring us away from the well-
knownworld of categories and their established theory, and requires an ad hoc development.
The intensional information recorded in precategories, however, allows one to generate a
category ‘above’ where RPOs exist, as opposed to the category of interest ‘below,’ sayC,
where they do not. The category ‘above’ is related toC via a well-behaved functor, used
to map RPOs diagrams from the category ‘above’ toC, where constructing them would
be impossible. (Here, ‘well-behaved’ means that the functor satisfies technical conditions
which guarantee the transport of relevant properties toC.) These structures take the name of
functorial reactive systems, and give rise to a theory developed in[12] to generate labelled
bisimulation congruences.
This paper presents a technique formapping precategories toG-categories so that the LTS

generated using GRPOs is the same (i.e. it hasexactlythe same labels) as the LTS generated
using the above-mentionedapproach. The translation derives from theprecategory’s support
information a notion of homomorphism, specific to the particular structure in hand, which
constitutes the 2-cells of the derived G-category. We claim that this yields a mathematically
elegant approach, potentially more general and in principle more direct than precategories,
in that it allows for arbitrary structural isomorphisms to be considered, and fits well within
existing category theory, with no need for new frameworks. In particular, one advantage of
G-categories is that one may apply standard categorical constructions without translations
or alterations. Further supporting evidence for GRPOs is provided in[22], where we apply

300 V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327

their theory to graphs and graph rewriting. It remains to be seen, of course, whether future
developments, e.g. for the analysis of specific LTSs obtained through our constructions,
will point towards the need of additional structure on G-categories.
Structure of the paper: In Section2 we review definitions and results presented in our

previous work[19,21]; Section3 shows that, analogously to the 1-dimensional case, trace
and failures equivalence are congruences provided that enough GRPOs exist. In Section4,
we show that the category of bunch contexts is naturally a 2-category where GRPOs exist;
Section5 shows how precategories are subsumed by our notion of GRPOs. The exposition
ends with a few concluding remarks; Section1 recalls basic notions of 2-categories, and
can be safely skipped by those readers acquainted with the standard notations.
An extended abstract of this work appeared as[20]. Here we additionally develop the

theory of weak operational congruences, and illustrate the role of the notion of extensive
category in the construction of GRPOs inBun.

1. Preliminaries

Throughout the paper, we assume a moderate knowledge of category theory and related
terminology. In this section, we fix notations and recall the basic elements of 2-categories
we need to state our definitions and prove our results. For a thorough introduction to 2-
categories, the reader is referred to[10].
We useOrd to denote the category of finite ordinals. The objects of this category are

the natural numbers 0,1,2, The morphisms fromm to n are the all the functions from
them-element set[m] = {1, 2, . . . , m} to [n] = {1, 2, . . . , n}. Composition is the usual
compositions of functions. The category is skeletal, in that we haven ∼= n′ if and only
if n = n′. We assume thatOrd has chosen coproducts, namely ordinal addition⊕. One
possible way to define this is to let, on objects,m ⊕ n = m + n, while on arrows, given
f : m→ m′ andg : n→ n′, letf+g : m+n→ m′+n′ be the function(f+g)(x) = f (x)
for 1�x�m and(f + g)(x) = g(x−m)+m′ otherwise. Intuitively,f + g is constructed
by puttingf andg side-by-side.
For any finite setx, let ord(x) be the finite ordinal of the same cardinality andtx : x →

ord(x) be a chosen isomorphism. There is an equivalence of categoriesF :Setf → Ord . On
objects it sendsx toord(x); onmorphisms, it mapsf : x → y to tyf t−1x : ord(x)→ ord(y).
A 2-categoryC is a categorywhere homsets (that is the collections of arrows between any

pair of objects) are categories and, correspondingly, whose composition maps are functors.
Explicitly, a 2-categoryB consists of the following:
• A class ofobjectsX, Y,Z,
• For anyX, Y ∈ C, a categoryC(X, Y). The objectsC(X, Y) are called 1-cells, or
simply arrows, and denoted byf :X→ Y . Its morphisms are called 2-cells, are written
�: f ⇒ g:X→ Y and drawn as

V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327 301

Composition inC(X, Y) is denoted by• and referred to as ‘vertical’ composition.
Identity 2-cells are denoted by1f : f ⇒ f . Isomorphic 2-cells are occasionally denoted
as�: f ∼= g. As an example of vertical composition, consider 2-cells� : f ⇒ g and
� : g ⇒ h as below.

They can be composed, yielding� • � : f ⇒ h.
• For eachX, Y,Z there is a functor.:C(Y, Z) × C(X, Y) → C(X,Z), the so-called
‘horizontal’ composition, which we often denote by mere juxtaposition. Horizontal
composition is associative and admits1idX as identities. As an example, consider 2-cells
� : f ⇒ f ′ and� : g ⇒ g′, as illustrated below.

They can be composed horizontally, obtaining�� : gf ⇒ g′f ′.
As a notation, we write�f andg� for, respectively,�1f and1g�. We follow the convention
that horizontal composition binds tighter than vertical composition.
In 2-categories, the order of composition of 2-cells is not important. This is a consequence

of the horizontal composition being a functor, and can be axiomatised with the so called
middle-four interchange law: for f, f ′, f ′′:X→ Y andg, g′, g′′:Y → Z and�: f ⇒ f ′,
�′: f ′ ⇒ f ′′, �: g ⇒ g′ and�′: g′ ⇒ g′′, as illustrated by

we have

�′�′ •�� = (�′ •�)(�′ • �).

As a consequence, it can be shown that a diagram of 2-cells defines at most one composite
2-cell; that is, all the possible different ways to combine together vertical and horizontal
composition, yield the same composite 2-cell. This primitive operation is referred to as
pasting.
In order to illustrate the notion of pasting, we shall consider the following diagrams.

302 V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327

The left diagram features 2-cells� : f ⇒ g, � : qg ⇒ p and� : rh ⇒ q. They can be
pasted together uniquely to obtain a 2-cellrhf ⇒ p. This 2-cell can be written as either
�•q�•�f : rhf ⇒ p, or equally,�•�g • rh� : rhf ⇒ p. Now consider the right diagram
with 2-cells� : f ⇒ pg, � : h ⇒ qg, � : pt ⇒ s and� : qt ⇒ u. There is no way of
composing these 2-cells.
The canonical example of a 2-category isCat, the 2-category of categories, functors and

natural transformations.
Two objectsC, D of a 2-categoryC areequivalentwhen there are arrowsf : C → D,

g : D → C and isomorphic 2-cells� : idC ⇒ gf , � : fg ⇒ idD. We refer tof andg as
equivalences.

2. Reactive systems and GRPOs

Lawvere theories[11] provide a canonical way to recast term algebras as categories,
and open the way to the categorical treatment of related notions. For� a signature, the
(free) Lawvere theory on�, sayC�, has the natural numbers for objects and a morphism
t :m→ n, for t an-tuple ofm-holed terms. Composition is substitution of terms into holes.
For instance, for� the signature for arithmetics, term(−1 × x) + −2 is an arrow 2→ 1
(two holes yielding one term) while〈3,2× y〉 is an arrow 0→ 2 (a pair of terms with no
holes). Their composition is the term(3× x)+ (2× y), an arrow of type 0→ 1.
Generalising from term rewriting systems onC�, Leifer and Milner formulated a def-

inition of reactive system[14], and defined a technique to extract labelled bisimulation
congruences from them. In order to accommodate calculi with non-trivial structural con-
gruences, as explained in the Introduction, we refine their approach as follows.

Definition 1. A G-categoryis a 2-category where all 2-cells are isomorphisms.

A G-category is a thus a category enriched overGp, the category of groupoids.
Weshall adopt the convention of not indicating the direction of 2-cellswhenworkingwith

G-categories. This will considerably simplify notation while not causing much confusion;
our 2-cells�:p⇒ q will always be isomorphic.

Definition 2. A G-reactive systemC consists of
(1) a G-categoryC,
(2) a collectionD of arrows ofC which shall be referred to as thereactive contexts; it is

required to be closed under 2-cells and reflect composition,
(3) a distinguished object 0∈ C,
(4) a set of pairsR ⊆ ⋃

C∈C C(0, C)× C(0, C) called thereaction rules.

The reactive contexts are thosecontexts insidewhichevaluationmayoccur.By composition-
reflecting we mean thatdd ′ ∈ D impliesd ∈ D andd ′ ∈ D, while the closure property
means that givend ∈ D and�: d ⇒ d ′ in C impliesd ′ ∈ D. The reaction relation � is
defined by taking

a �a′ if there exists〈l, r〉 , d ∈ D and	: dl ⇒ a, 	′: a′ ⇒ dr.

V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327 303

As illustrated by the diagram below, this represents the fact that, up to structural congruence
(as witnessed by), a is the left-hand sidel of a reaction rule in a reactive contextd, while
a′ is, up to structural congruence (witness	′), the corresponding right-hand sider of the
reaction rule in the reactive contextd.

0

l

��

a

��������������

C

	

d
��C′

0

r

��

a′

��������������

C

	′

d
��C′

The setR of reaction rules is, therefore, a set of base rules with which one generates the
reaction relation � by closure under suitable contexts. For pragmatic reasons, we choose
not to stipulate thatR is to be closed under structural congruence; that is, in our formalism,
under 2-cells. More precisely, we do not require that

〈
l′, r ′

〉 ∈ R if there exist〈l, r〉 ∈ R
and 2-cells� : l ⇒ l′, � : r ⇒ r ′. Indeed, modern process calculi often have very simple
reaction rules and the closure under structural congruence comes at the point of defining
the reaction relation. For example, the standard textbook definition of CCS[16] lists the
single reaction rule

a.P + P ′ | a.Q+Q′ �P | Q

without listing, additionally, all of its structurally congruent variants. It is easy to check
that, if we did choose to impose this condition (R closed under 2-cells) then the reaction
relation �, as well as the canonical labelled transition system (Definition10) would
remain unchanged.
The notion of GRPO formalises the idea of a context being the ‘smallest’ that enables a

reaction in a G-reactive system, and is a conservative 2-categorical extension of Leifer and
Milner’s RPOs[14] (cf. [19,21] for a precise comparison).
For readers acquaintedwith 2-dimensional category theory, GRPOsare defined inDefini-

tion 3. This is spelled out in elementary categorical terms in Proposition4, taken
from [19,21].

Definition 3 (GRPOs). Let 	: ca ⇒ db:W → Z be a 2-cell (cf. diagram below) in a
G-categoryC. A G-relative pushout(GRPO) for	 is a bipushout (cf.[9]) of the pair of
arrows(a,1) : ca→ c and(b,) : ca→ d in the pseudo-slice categoryC/Z.

(1)

304 V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327

Proposition 4. LetCbeaG-category.A candidateGRPO for	: ca ⇒ db as in diagram(1)
is a tuple

〈
R, e, f, g,�, �, �

〉
such that�b • g� • �a = 	 – cf.diagram(i).

A GRPO for	 is a candidate which satisfies a universal property (viz. to be the ‘smallest’
such candidate). Namely, for any other candidate

〈
R′, e′, f ′, g′,�′, �′, �′

〉
there exists a

quadruple
〈
h,
,�, �

〉
whereh:R → R′,
: e′ ⇒ he and�:hf ⇒ f ′— cf. diagram

(ii)—and �: g′h ⇒ g— diagram (iii)—which makes the two candidates compatible after
the obvious pasting, i.e.

�e • g′
 • �′ = �, �′ • g′� • �−1f = �, �b •h� •
a = �′.

Suchaquadruple,whichweshall refer toasmediatingmorphism,mustbeessentiallyunique,
that is unique up to a unique iso. Namely, for any other mediating morphism

〈
h′,
′,�′, �′

〉
there must exist auniquetwo cell �:h → h′ which makes the two mediating morphisms
compatible, i.e.:

�e •
 =
′, � • �−1f = �′, �′ • g′� = �.

Observe that whereas RPOs are defined up to isomorphism, GRPOs are defined up to
equivalence, as they are bicolimits.
The definition below plays an important role in the following development.

Definition 5 (GIPO). Diagram (1) of Definition3 is said to be aG-idem-pushout(GIPO)
if 〈Z, c, d, idZ,	,1c,1d〉 is its GRPO.

The next two lemmas explain the relationships between GRPOs and GIPOs.

Lemma 6 (GIPOs from GRPOs). If 〈Z, c, d, u, �,
,�〉 is a GRPO for(i) below, as illus-
trated in(ii), then(iii) is a GIPO.

V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327 305

Lemma 7 (GRPOs from GIPOs). If square(iii) above is a GIPO, (i) has a GRPO, and
〈Z, c, d, u, �,
,�〉 is a candidate for it as shown in(ii), then〈Z, c, d, u, �,
,�〉 is a GRPO
for (i).

The following technical lemmas from[19,21]state the basic properties of GRPOs, upon
which the congruence theorems below rest.

Lemma 8. Suppose that diagram(ii) below has a GRPO.

(1) If both squares in(i) are GIPOs then the rectangle of(i) is a GIPO;
(2) If the left square and the rectangle of(i) are GIPOs then so is the right square.

Lemma 9. Suppose that diagram(i) below is a GIPO.

Then the regions obtained by pasting the 2-cells in (ii) and (iii) are GIPOs. Note that the
proof relies on the fact that� is, in both diagrams (i) and (ii), an isomorphism.
The previous lemma in particular implies that the following definition of labelled transi-

tion system derived from a G-reactive system is well defined.

Definition 10 (LTS). For C a G-reactive system whose underlying categoryC is a G-
category, define GTS(C) as follows:
• the states GTS(C) are iso-classes of arrows[a]: 0→ X in C;

• for a, a′ : 0 → X andf : X → Z, there is a transition[a] [f]�[a′] if f a �a′
via a GIPO; that is, if there exists a reaction rule〈l, r〉 ∈ R, a reactive contextd ∈ D,

306 V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327

and 2-cells	 : fa⇒ dl and	′ : dr ⇒ a′ such that diagram (2) below is a GIPO.

(2)

Notice that this amounts to consider anf-labelled transition fromaonly if f is the ‘smallest’
context—in the technical sense defined by the universal property of GRPOs—to induce a
particular reaction ina. The role of	 is absolutely fundamental here: by determining the
correspondence (isomorphism) betweenaanddl, it determines exactly the ‘location’ of the
redex being reduced, and therefore the reaction being fired. We will remark again on this
with specific examples in later sections.
Henceforth we shall abuse notation and leave out the square brackets when writing

transitions; i.e. we shall write simplya f �a′ instead of[a] [f]�[a′]. Note that, taking
into account the conclusions of Lemma9, this abuse is quite harmless. Indeed, from a

transition[a] [f] �[a′], we can conclude thatfa �a′ (working with the “concrete”
underlying representatives) and that there exists a reaction rule〈l, r〉 ∈ R and a GIPO
	 : fa ⇒ dl with dr ∼= a′. In particular, it does not matter which representatives of
equivalence classes one starts with.
Categories can be seen as a discreteG-categories, where the only 2-cells are the identities.

Using this observation, each G-concept introduced above reduces to the corresponding 1-
categorical concept. For instance, a GRPO (resp. GIPO) in a category is exactly a RPO
(resp., IPO) of[14].

3. Congruence results for GRPOs

The following notion is the precondition needed to prove the congruence theorem.

Definition 11 (Redex GRPOs). A G-reactive systemC is said to haveredex GRPOsif its
underlying G-categoryC has GRPOs for all squares like (2), wherel is the left-hand side
of a reaction rule〈l, r〉 ∈ R, andd ∈ D.

Observe that this means that there exists a GRPO for each possible interaction between
a term and a context. We are therefore able to determine a ‘smallest’ labelf to capture each
of them in GTS(C). The main theorem of[19,21] is then expressed as follows.

Theorem 12(cf. Sassone and Soboci´nski[19,21]). Let C be a G-reactive system which
has redex GRPOs. Then the largest bisimulation∼ onGTS(C) is a congruence.

The next three subsections complement this result by proving the expected corresponding
theorems for trace and failure semantics, and by lifting them to the case of weak equiva-

V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327 307

lences. Theorems and proofs in this section follow closely[12], as they are meant to show
that GRPOs are as viable a tool as RPOs are.

3.1. Traces preorder

Trace semantics[18] is a simple notion of equivalencewhich equates processes if they can
engage in the same sequences of actions. Even though it lacks the fine discriminating power
of branching time equivalences, viz. bisimulations, it is nevertheless interesting because
many safety properties can be expressed as conditions on sets of traces.
We say that a sequencef1 · · · fn of labels of GTS(C) is a trace ofa if

a
f1 � · · · fn �an+1

for somea1, . . . , an. The trace preorder�tr is then defined asa�trb if all traces ofa are
also traces ofb.

Theorem 13(Trace congruence). �tr is a congruence.

Proof. Assumea�trb. We shall prove thatca�trcb for all contextsc ∈ C. Suppose that

ca = ā1 f1 �ā2 · · · ān fn �ān+1.

We first prove that there exists a sequence, fori = 1, . . . , n,

wherea1 = a, c1 = c, ci+1 = d ′i , āi = ciai , and each square is a GIPO.1 The ith

induction step proceeds as follows. Sinceāi
fi �āi+1, there exists�i : ficiai ⇒ d̄i li , for

some〈li , ri〉 ∈ Randd̄i ∈ D,with āi+1 = d̄i ri .SinceChas redexGIPOs (cf.Definition11),
this can be split in two GIPOs:�i : giai ⇒ dili and�i : fici ⇒ d ′igi (cf. diagram above).
Takeai+1 = diri , and the induction hypothesis is maintained. In particular, we obtain a
trace

a = a1 g1 �a2 · · · an gn �an+1

and, by the inductive hypothesis,a�trb must be matched by a corresponding trace ofb.
This means that, fori = 1, .., n, there exist GIPOs�′i : gibi ⇒ ei l

′
i , for some

〈
l′i , r ′i

〉 ∈ R and
ei ∈ D, once we takebi+1 to beeir ′i . We can then paste each of such GIPOs together with

1 Since the fact is not likely to cause confusion, we make no notational distinction between the arrows ofC
(e.g. in GRPOs diagrams) and the states and labels of GTS(C), where the latter are iso-classes of the former.

308 V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327

the corresponding�i : fici ⇒ d ′igi obtained above (i = 1, . . . , n) and, using Lemma8,
conclude that there exist GIPOsficibi ⇒ d ′iei l′i , as in the diagram below,

As cb = c1b1, in order to construct a tracecb = b̄1 f1 � · · · fn �b̄n+1 and complete the
proof, we only need to verify that fori = 1, . . . , n, we have thatd ′ieir ′i = ci+1bi+1. This
follows at once, asci+1 = d ′i andbi+1 = eir ′i . �

3.2. Failures preorder

Failure semantics[6] enhances trace semantics with limited branch-inspecting power.
More precisely, failure sets allow to test when processes deplete the capability of engaging
in certain actions.
Formally, fora a state of GTS(C), a failure of a is a pair(f1 · · · fn,X), wheref1 · · · fn

andX are, respectively, a non-empty sequence and a set of labels, such that:

• f1 · · · fn is a trace ofa, a f1 � · · · fn �an+1;
• an+1, the final state of the trace, isstable, i.e.an+1 � �;
• an+1 refuses X, i.e.an+1 � x � for all x ∈ X.
The failure preorder�f is defined asa�f b if all failures ofa are also failures ofb.

Theorem 14(Failures congruence). �f is a congruence.

Proof. Assumea�f b to prove thatca�f cb for all contextsc ∈ C. The proof extends the
previous one of Theorem13.
Let (f1 · · · fn,X), n > 0, be a failure ofca. We proceed exactly as above to determine

a matching tracecb = b̄1 f1 � · · · fn �b̄n+1. In addition, we contextually need to prove
that b̄n+1 is stable and refusesX, exploiting the corresponding hypothesis onān+1.
First, we claim thatan+1 is stable. In fact, were it not, it would follow fromcn+1 ∈ D

(which equalsd ′n) that alsoān+1 = cn+1an+1 �. But this is impossible, sincēan+1 is
stable. Secondly,an+1 refuses both

Y = {g | there exists a GIPO�g: xcn+1 ⇒ dg, for x ∈ X, d ∈ D} and
Z = {g | there exists a 2-cell�g: dg ⇒ cn+1, for d ∈ D},

which can be seen as follows. Ifan+1 g � for g ∈ Y , then there exists a GIPO�: gan+1 ⇒
d ′l, for somerule〈l, r〉,whichcouldbepasted togetherwith�g to yieldaGIPOxcn+1an+1 ⇒
dd ′l, which is impossible since it means thatān+1 x �, for x ∈ X. Similarly, if an+1 g �
for g ∈ Z, pasting the corresponding GIPO with�g, we see that̄an+1 �, contradicting
the hypothesis that̄an+1 is stable.

V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327 309

If follows then from the hypothesisa�f b thatbn+1 is stable and refusesY ∪Z. It is then
easy to complete the proof by transferring stability andX-refusal tob̄n+1. First, suppose
that b̄n+1 �. This means that there exists a 2-celldl ⇒ b̄n+1. SinceC has redex-
GRPOs, we can factorcn+1 out and obtain from this a GRPOs�: gbn+1 ⇒ d ′l together
with a 2-celld ′′g ⇒ cn+1. But this would mean thatbn+1 g �, for g ∈ Z, which is a
contradiction.
Suppose finally that̄bn+1 x �, for x ∈ X. Again, by definition of the transition relation,

and exploiting the existence of redex-GRPOs, we find GRPOsxcn+1 ⇒ d ′′g andgbn+1 ⇒
d ′l, which mean thatbn+1 g �, for g ∈ Y . �

3.3. Weak equivalences

Theorems12–14can be extended to weak equivalences, as below.

For f a label of GTS(C) define aweak transitiona
f
� b to be a mixed sequence of

transitions and reductionsa �∗ f � �∗b. Observe that this definition identifies
silent transitions in the LTSwith reductions. As a consequence, care has to be taken to avoid

interference with transitions of the kindequi�, synthesised from GRPOs and labelled by an
equivalence. These transitions have essentially the same meaning as silent transitions (i.e.
no context involved in the reduction), and must therefore be omitted in weak observations.
The following lemma makes the reasoning above precise.

Lemma 15. Suppose thatC is a G-reactive system. Ifa e �b with e an equivalence, then
there existsb′ such thata �b′.Moreover, b′ = e′b,wheree′ is the pseudo-inverse of e.

Proof. Suppose that	 : dl ⇒ fa is a GIPO andf is an equivalence, that is, there exist
isomorphisms� : idX ⇒ gf and� : fg⇒ idY . Then�−1a • g	 : gdl ⇒ a and it remains
to show thatgd ∈ D. But�d : fgd∼= d and sinceD is closed under 2-cells,fgd ∈ D. Then
gd ∈ D sinceD is composition-reflecting. �

We may now consider the weak counterparts of the preorders and equivalences studied
earlier.

Definition 16 (Weak traces and failures). A sequencef1 · · · fn of non-equivalencelabels
of GTS(C) is a weak trace ofa if

a
f1� a1 · · · an−1

fn� an

for somea1, . . . , an. The weak trace preorder is then defined accordingly.
A weak failureof a is a pair(f1 · · · fn,X), wheref1 · · · fn andX, are, respectively,

a sequence and a set ofnon-equivalencelabels, such thatf1 · · · fn is a weak trace ofa
reaching a final state which is stable and refusesX. The weak trace preorder is defined
accordingly.

310 V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327

Definition 17 (Weak bisimulation). A symmetric relationS on GTS(C) is a weak bisimu-
lation if for all a S b

a
f �a′ f not an equivalence, impliesb

f
� b′ with a′ S b′;

a �a′ impliesb �∗b′ with a′ S b′.

Using the definitions above Theorems12–14 can be lifted, respectively, to weak traces,
failures and bisimulation.

It is worth remarking that the congruence results, however, only hold for contextsc ∈ D,
as it is well known that non-reactive contexts—i.e. thosecwhereca �cb does not follow
from a �b, as e.g. the CCS contextc = − + c0, do not preserve weak equivalences.
Alternativedefinitionsofweakbisimulationsare investigated in[12], and theyareapplicable
mutatis mutandisto GRPOs.

4. Bunches and wires

In this section we consider an example of a simple G-category, recasting in the present
framework the notion of bunch context first due to Leifer and Milner[14]. We will recall
the notion of extensive category[2] and proceed to construct GRPOs in the G-category
of bunches. The construction will only make use of the fact thatOrd , the category whose
objects are the node sets of our bunches, is extensive and has pushouts.

4.1. Category of bunch contexts

The category of ‘bunches andwires’ was introduced in[14] as a skeletal algebra of shared
wirings, abstracting over the notion ofnamesin, e.g. the�-calculus. Although elementary,
its relevance resides in representing the simplest possible form of naming. In any case, its
structure is complex enough to lack RPOs.
A bunch context of typem0 → m1 consists of an ordered set ofm1 trees of depth one

containing exactlym0 holes. Leaves are labelled from an alphabetK. These data represent
m1 bunches of unspecified controls (the leaves), together withm0 places (the holes) where
further bunch contexts can be plugged to. Before illustrating this graphically, let us proceed
with the formal definition of Leifer and Milner’s category of bunch contexts.

Definition 18. Letm0 andm1 be finite ordinals. Aconcrete bunch contextc : m0 → m1
is a tuplec = 〈X, char, rt〉, whereX is a finite carrier,rt:m0 + X → m1 is a surjective
function linking leaves (X) and holes (m0) to their roots (m1), andchar:X → K is a leaf
labelling function.

Given concrete bunch contextsc0:m0 → m1 andc1:m1 → m2, we can compose them
to obtain a concrete bunch contextc1c0:m0 → m2. Roughly, this involves ‘plugging’ the
m1 trees ofc0 orderly intom1 holes ofc1; leaves and holes ofc0 are ‘wired’ to the roots of

V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327 311

c1, alongsidec1’s leaves. Formally,c1c0 is (X, rt, char) with

X = X0 +X1, rt = rt1(rt0 + idX1), char = [char0, char1],

where+ and[_,_] are, respectively, coproduct and copairing.
A homomorphismof concrete bunch contexts	 : c ⇒ c′:m0 → m1 is a function

	:X→ X′ which respectsrt andchar, i.e. rt′	 = rt andchar′	 = char. An isomorphism
is a bijective homomorphism.

Definition 19. The category ofbunch contextsBun0 has
• objects the finite ordinals (cf. Section1), written asm0,m1, . . .

• arrows fromm0 tom1 are isomorphismclasses[a]:m0 → m1 of concretebunchcontexts.

Given an objectm0, the identity is (the isomorphism class of)〈∅, !, id〉 : m0 → m0. Iso-
morphic bunch contexts are equated, making composition associative andBun0 a category.
The pictures below illustrate the concept of bunch context. The leftmost diagram repre-

sents a bunch context[a] : 0 → 2 with X = 3, char(1) = char(3) = K, char(2) = L,
rt(1) = 1 andrt(2) = rt(3) = 1. Themiddle diagram represents a bunch context[b] : 2→
2 withX = {∗}, char(∗) = M, rt(1) = rt(∗) = 1 andrt(2) = 1.

The final diagram represents[ba] : 0→ 2, the result of composinga andb.
A bunch context[c]:m0 → m1 can alternatively be depicted as a string ofm1 non-empty

multisets onK + m0 (the bunches of leaves and holes connected to the same root), with
the proviso that elementsm0 must appear exactly once in the string. In the examples, we
represent elements ofm0 as numbered holes−i . For instance, the three pictures above can
be written, respectively, as{K}{L,K}, {−1,M}{−2}, and{M,K}{L,K}.
As we mentioned before, RPOs do not exist inBun0. Indeed, consider (i) below.

312 V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327

The following diagrams show two candidate RPOs (ii) and (iii) which are easily proved not
to have a common ‘lower bound’ candidate.

The point here is that by taking the arrows ofBun0 up to isomorphism we lose information
abouthowbunch contexts equal each other. Diagram (i), for instance, can be commutative
in two different ways: theK in the bottom left part may correspond either to the one in the
bottom right or to the one in the top right, according to whether we read{K,−1} or {−1,K}
for the top rightmostarrow.Thepoint is thereforeexactlywhichoccurrencesofKcorrespond
to each other. The fundamental contribution of G-categories is to equip our structures of
interest with an explicit mechanism (viz. the 2-cells) to track such correspondences. Fed
into the categorical machinery of relative pushouts, this gives GRPOs the power to ‘locate’
reaction beyond the blurring effect of a structural congruence (in this case, the commutation
of elements inside amultiset). To illustrate our ideas concretely, let us grantBun0 its natural
2-categorical structure.

Definition 20. The 2-category of bunch contextsBun has:
• objects the finite ordinals (cf. Section1), denotedm0,m1, . . .

• arrowsc = (x, char, rt):m0 → m1 consist of a finite ordinalx, a surjective function
rt:m0 ⊕ x → m1 and a labelling functionchar: x → K.

• 2-cells	 are isomorphisms between bunches’ carriers which preserve the structure, that
is respectchar andrt.

Composition of arrows and 2-cells is defined in the obvious way. Notice that since⊕ is
associative, composition inBun is associative. ThereforeBun is a G-category.
Replacing the carrier setXwith a finite ordinalxallowsus to avoid theunnecessary burden

of working in a bicategory, which would arise because sum on sets is only associative up to
isomorphism. Observe that this simplification is harmless since the set-theoretical identity
of the elements of the carrier is irrelevant. We remark, however, that GRPOs are naturally
a bicategorical notion and would pose no particular challenge in that setting. In particular,
in [22] we use a bicategorical framework in order to apply the theory of GRPOs to derive
bisimulation congruence for generic graph rewriting systems.

4.2. Extensive categories

WhenconstructingGRPOs,wehave tried to use general categorical constructions defined
using universal properties. This not only simplifies the proofs, freeing one fromunnecessary

V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327 313

set-theoretical detail but also makes themmore robust in that the proofs lift relatively easily
to other models.
In particular, in the proof of Theorem23 below, we use only the fact thatOrd is an

extensive[2] category with pushouts. An extensive category can be thought of roughly as a
category where coproducts are in many ways ‘well-behaved,’ where the paradigm for good
behaviour comes from the category of sets and functions. For the reader’s convenience we
reproduce a definition below.

Definition 21. A categoryC is extensivewhen
• it has finite coproducts,
• it admits pullbacks along injections of binary coproducts,
• given a commutative diagram,

where the bottom row is a coproduct, the two squares are pullbacks if and only if the top
row is a coproduct diagram.

In order to provide the reader with some intuition for the good behaviour of coproducts
in extensive categories, we recall below some properties of extensive categories. Notice
that these simply express expected properties of coproducts inSet, the category of sets and
functions.

Lemma 22. LetC be an extensive category. Then,
(i) sums are disjoint; that is, the pullback of the two injections of a binary coproduct is
the initial object,

(ii) coproduct injections are mono,

(iii) if A
i1−−−−−→ C

i2←− B andA′ i′1−−−−−→ C
i2←− B are coproduct diagrams, then there

exists a unique isomorphism
 : A→ A′ such thati′1
 = i1,
(iv) suppose that
 : A+C → B+C is an isomorphism such that
i2 = i2 : C → B+C;

then there exists a unique isomorphism� : A→ B so that
 = � + C,

Proof. We begin by proving (i) and (ii). In the following diagram, the bottom row and the
top row are coproduct diagrams,

and the two squares are clearly commutative. Using the definition of extensivity, the two
squares are, therefore, pullbacks. The left square being a pullback means that coproducts

314 V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327

are disjoint. The fact that the right-hand side is a pullback implies thati2 is mono. By a
similar argument,i1 is also mono.
We shall now proceed with (iii). Consider the following diagram:

using (i), we deduce that the two lower regions are pullbacks. Let the upper region be a

pullback. Using extensivity, 0
!−−−−−→ A

a←− X and 0
!−−−−−→ A′ a′←− X are coproduct

diagrams, and therefore, it follows thata anda′ are isomorphisms. Let
 = a′a−1, which
satisfiesi′1
 = i1, as required. Given another such
′, we havei′1
 = i1 = i′1
. We can
now use (ii) to deduce thati′1 is mono, and therefore, that
 =
′.
It remains to prove (iv). Consider the diagram below, where

the right square can be verified to be pullback, using the fact that
 is mono. Suppose that
the left-square is a pullback. Note that�′ is an isomorphism, since it is a pullback of an
isomorphism. Using extensivity, the resulting top row is a coproduct diagram, and using
part (iii), we can deduce that there exists an isomorphism
 : A→ X such thatf
 = i1 :
A→ A + C. Letting� = �′
, we obtain
 = � + C. The fact thati1 : B → B + C is
mono implies uniqueness.�

Examplesof extensive categories includeSet, andmoregenerally any topos. Thecategory
of topological spaces and continuous functionsTop is extensive. Any category with freely
generated coproducts is extensive[2].
The following simple fact will prove useful for us later in this section. It holds in any

category, that is, it does not require the assumption of extensivity.

Proposition 23.Suppose that the diagram(i), below, is a pushout. Then diagram(ii) is also
a pushout.

V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327 315

4.3. Construction of GRPOs

Theorem 23. Bunhas GRPOs.

Proof. The proof is divided into two parts. In the first part we give the construction, and in
the second part we verify that the universal property holds.�

4.4. Construction of GRPO

Suppose that we have an isomorphic 2-cell	: ca ⇒ dl as illustrated below.

The intuition here is that, for an ‘agent’a and a left-hand sidel of some reaction rule, we
are given bunch contextsc andd so thatca is dl, up to	 (in symbols,ca ∼=	 dl). We shall
find the smallest upper bound ofa andl which ‘respects’	.
Using	 : xa⊕xc → cc⊕xd and the injections into the chosen coproduct inOrd (which

in the diagrams below we leave unlabelled, or denote generically withi1 andi2), we take
four pullbacks obtaining the following diagram. Due to the extensivity ofOrd , each ofli ,
ai , di andci wherei ∈ {1,2} is a coproduct injection.

Here, one can think ofxdc as the nodes common to bunch contextsd andc, whenca is
translated, via	, to dl. Similarly, xcl are the nodes common toc and l, xla are the nodes
common tol anda, whilexad are the nodes common toa andd. We shall show thatxcl and
xad form the nodes of the minimal candidate.
Let xe = xcl , xf = xad andxg = xdc. Using the morphisms from the diagram above

as building blocks, we can construct bijections�: xc → xe ⊕ xg, �: xf ⊕ xg → xd

316 V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327

and�: xa ⊕ xe → xl ⊕ xf such that

xl ⊕ �.� ⊕ xg.xa ⊕ � = 	, (3)

more precisely,� = [c1, c2]−1, � = [d2, d1] and� is the following composition,

xa ⊕ xe [a2,a1]−1⊕xe−−−−−−→ xf ⊕ xla ⊕ xe xf⊕[l2,l1]−−−−−→ xf ⊕ xl tw−−−−−→ xl ⊕ xf ,

wheretw : xf ⊕ xl → xl ⊕ xf is the ‘twist’ isomorphism. Letrte andrtf be morphisms
making (ii) below a pushout diagram.

We can then definechare, charf andcharg (from �, �, charc andchard) so as to form bunch
contextse,gandfwhichmake (iii) above a candidate GRPO. Notice that the commutativity
of (ii) implies that� is a bunch homomorphism.
It remains to definertg and prove that� and� are bunch homomorphisms.
Consider the diagram (iv), below.

The exterior of (iv) is commutative since	 is a bunch homomorphism, this can be verified
by precomposing withm0 ⊕ xa ⊕ � : m0 ⊕ xa ⊕ xc → m0 ⊕ xa ⊕ xe ⊕ xg and using (3).
Now, since (ii) is a pushout, an application of Lemma?? yields that (†) is a pushout. We

V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327 317

obtain a morphismrtg : m4 ⊕ xg → m3 which makes the remaining regions of (iv)
commute. These two remaining regions imply that� and� are bunch homomorphisms. We
can deduce thatrtg is epi sincertg.rtf ⊕ xg = rtd .m2 ⊕ �, rtd is epi andm2 ⊕ � is an
isomorphisms.
Thus, diagram (ii) is indeed a candidate GRPO for the 2-cell	: ca ⇒ dl.

4.5. Verification of the universal property

Suppose that
〈
m5, r, s, t,�

′, �′, �′
〉
is another candidateGRPOfor	, i.e.�′l • t�′ • �′a = 	.

A diagram chase shows that the diagram (v), below, is commutative.

Sincexg with mapsc2 : xg → xc andd1 : xg → xd is a pullback of	i2 : xc → xl ⊕ xd
and i2 : xd → xl ⊕ xd – cf. (i) –, there exists a monomorphismsk: xt → xg such that
�′−1i2 = c2k and�′i2 = d1k.

Take the pullback (vi). Using extensivity,xu
j−−−−−→ xg

k←− xt is a coproduct diagram,
as shown by(∇), where the square on the right-hand side is (vii). The commutative square
on the left-hand side can be verified to be a pullback sincec2, being a coproduct injection
in an extensive category, is mono. We shall show thatxu is the set of nodes of a mediating
bunch contextu : m4 → m5.
Let � denote the isomorphism[j, k]: xu⊕xt → xg. By the definition of�, the composites

at the bottom edges of diagrams (viii) and (ix), below, act as the identity on the second

318 V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327

injections (xt). Applying part (iv) of Lemma22,

we obtain isomorphisms
 and� so that diagrams (viii) and (ix) are pullbacks.
The commutativity of these pullback diagrams implies that

xe ⊕ �.
 ⊕ xt .�′ = � (4)

and�′.�⊕ xt .xf ⊕ �−1 = �. These two equations, together with those which relate	 to �,
�, � and�′, �′,�′, give

xl ⊕ �.� ⊕ xu.xa ⊕
 = �′. (5)

Now consider diagram (x), below.

The commutativity of region (�) follows from Eq. (5). Region (‡) is commutative because
�′ is a bunch homomorphism. Thus, the entire diagram is commutative. The commutativity
of (x) implies that the outside of diagram (xi) is commutative. Applying the conclusion of
Lemma?? to diagram (ii) implies that the inner region is a pushout diagram, and therefore,
that there exists a unique morphismrtg : m4 ⊕ xg → m3 which renders regions (*)

V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327 319

and (**) commutative.

Thusu:m4 → m5 is a bunch context. Regions (*) and (**) of (xi) imply that
: r ⇒ ue and
�: uf ⇒ s, respectively, are homomorphisms. To see that�: tu⇒ g is a homomorphism,
consider diagram (xii), below.

The two rectangles on the left are commutative since�′ and
 are homomorphisms. Using
(4), the top row is equal tom1⊕ �. Using the fact that� is a homomorphism (the commuta-
tivity of the outside region) and the surjectivity of the marked arrow in the above diagram,
we conclude thatrtg.m4 ⊕ � = rtt .rtu ⊕ xt . Thus

〈
u,
,�, �

〉
is a mediating morphism.

Now consider any other mediating morphism
〈
u′, �′,
′,�′〉. We have that

xe ⊕ �′.
′ ⊕ xt .�′ = �, (6)

�′.�′ ⊕ xt .xf ⊕ (�′)−1 = � andxl ⊕ �′.� ⊕ xu′ .xu ⊕
′ = �′.
Using (4) and (6), we havexe ⊕ �.
 ⊕ xt .�′ = � = xe ⊕ �′.
′ ⊕ xt .�′ and therefore

xe⊕ �.
⊕ xt = xe⊕ �′.
′ ⊕ xt . Precomposing with the second injectioni2 : xt → xr ⊕ xt
allows us to deduce�i2 = �′i2 : xt → xg. Thus, we have coproduct diagramsxu

�i1−−−−−→
xg

�i2←− xt andxu′
�′i1−−−−−→ xg

�i2←− xt . Using (iii) of Lemma22, we obtain a unique
isomorphism� : xu → xu′ such that�′i1� = �i1, and therefore�′.� ⊕ xt = �.
Now, using (4) and (6) again,xe ⊕ �′.
′ ⊕ xt = �.(�′)−1 = xe ⊕ �.
 ⊕ xt = xe ⊕

�′.xe ⊕ � ⊕ xt .
 ⊕ xt , from which follows
′ ⊕ xt = (x ⊕ �.
) ⊕ xt . A straightforward
application of part (iv) of Lemma22yields that
′ = x ⊕ �.
. Similarly, one may derive
�.xf ⊕ �−1 = �′.

320 V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327

We remark again that the proof relies nicely on the fact thatOrd is an extensive category
with pushouts, and it goes through unchanged for any other such category.

Examples. Let �: 2→ 2 be the function taking 1 → 2 and 2 → 1. We give below on the
right the GRPOs for the squares on the left.

Of course, the ambiguity inBun0 about ‘how’ the diagrams commute—which ultimately
leads toBun0 failing to have RPOs—is resolved here by the explicit presence of1 or �.
And in both cases, GRPOs exist.

5. 2-categories vs. precategories

Other categories which, besidesBun0, lack RPOs include the closedshallow action
contexts[12,13]andbigraph contexts[17,8]. The solution adopted by Leifer[13] and later
by Milner [17] is to introduce a notion of awell-supported precategory, where the algebraic
structures at hand are decorated by finite ‘support sets’. The result is no longer a category—
since composition of arrows is defined only if their supports are disjoint—but from any
such precategory one can generate two categories which jointly allow the derivation of a
bisimulation congruence via afunctorial reactive system. These categories are the so-called
track category, where support information is built into the objects, and thesupport quotient
category, where arrows are quotiented by the support structure. The track category has
enough RPOs and is mapped to the support quotient category via a ‘well-behaved’functor,
so as to transport RPOs adequately. We remark that Jensen and Milner[7] have recently
simplified the theory by developing their arguments internally in precategories, in order to
bypass working with the track category.
In this sectionwepresentageneral translation fromarbitraryprecategories toG-categories.

Our main result shows that the LTS derived using precategories and functorial reactive

V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327 321

systems is identical to the LTS derived using GRPOs. We begin with a brief recapitulation
of the definitions from[13], to which the reader is referred for motivations and details.

Definition 24. A precategoryA consists of the same data as a category. The composition
operator◦ is, however, a partial function which satisfies:
(1) for any arrowf : A→ B, idB ◦f andf ◦ idA are defined and idB ◦f = f = f ◦ idA;
(2) for anyf : A→ B, g : B → C, h : C → D, (h ◦ g) ◦ f is defined iffh ◦ (g ◦ f) is

defined and then(h ◦ g) ◦ f = h ◦ (g ◦ f).

Definition 25. Let Setf be the category of finite sets. Awell supported precategoryis a
pair 〈A, |−|〉, whereA is a precategory and|−| is a map from the arrows ofA toSetf , the
so-called support function, satisfying:
(1) g ◦ f is defined iff|g| ∩ |f | = ∅, and ifg ◦ f is defined then|g ◦ f | = |g| ∪ |f |;
(2) |idA| = ∅.
For anyf : A→ B and any injective function	 in Setf the domain of which contains|f |
there exists an arrow	 · f : A→ B called thesupport translationof f by 	. The following
axioms are to be satisfied.

1. 	 · idA = idA; 4. 	 · (g ◦ f) = 	 · g ◦ 	 · f ;
2. id|f | · f = f ; 5. (1 ◦ 	0) · f = 	1 · (0 · f);
3. 	0|f | = 	1|f | implies	0 · f = 	1 · f ; 6. |	 · f | = 	|f |.

We illustrate these definitions giving a precategorical definition of bunches and wiring
(cf. Section4).

Example 26(Bunches). The precategory of bunch contextsA-Bun has objects as inBun0.
However, differently fromBun0, arrows are concrete bunch contexts, they are not isomor-
phism classes. The support ofc = (X, char, rt) is X. Compositionc1c0 = (X, char, rt):
m0 → m2 of c0:m0 → m1 andc1:m1 → m2 is defined ifX0∩X1 = ∅ and, if so, we have
X = X0 ∪ X1. Functionschar andrt are defined in the obvious way. The identity arrows
are the same as inBun0. Given an injective function	:X → Y , the support translation
	 · c is (X, char	−1, rt (idm0 + 	−1)). It is easy to verify that this satisfies the axioms of
precategories.

The definitions below recall the construction of the track and the support quotient cat-
egories from a well-supported precategoryA. The track has the support information built
into the objects. On the contrary, the support quotient consists of isomorphism classes of
arrows with respect to support translation. Both constructions yield categories relevant to
A. The track category, in particular, is concrete enough to admit RPOs in important cases.
We shall question shortly the relationship between these constructions and our notion of
G-categories.

Definition 27. Thetrack of A is a categorŷC with
• objects: pairs〈A,M〉 whereA ∈ A andM ∈ Setf ;

• arrows:〈A,M〉 f−−−−−→ 〈B,N〉 wheref :A→ B is inA,M ⊆ N and|f | = N\M.

322 V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327

Composition of arrows is as inA. Observe that the definition of|f | ensures that compo-
sition is total. We leave it to the reader to check that the data defines a category (cf.[13]).

Definition 28. Thesupport quotientof A is a categoryC with
• objects: as inA;
• arrows: equivalence classes of arrows ofA, wheref andg are equated if there exist a
bijective	 such that	 · f = g.

Example 29(Bunches). The support quotient ofA-Bun isBun0.

There is an obvious functorF : Ĉ → C, the support-quotienting functor. There is a
straightforward way of defining a reactive system over a well-supported precategory, akin
to the definition of G-reactive system for a G-category (Definition2).

Definition 30. A reactive systemA over a well-supported precategoryA consists of
(1) a collectionD of arrows ofA, the reactive contexts; it is required to be closed under

support translation and to be composition-reflecting,
(2) a distinguished object 0∈ A,
(3) a set of pairsR ⊆ ⋃

A∈A A(0, A) × A(0, A) called the reaction rules. These are
required to be pointwise closed under support translation, that is, given〈l, r〉 ∈ R and
support translations	, 	′ whose domains contain, respectively,|l| and|r|, we require
that

〈
	 · l,	′ · r 〉 ∈ R.

In the following we use the typewriter font for objects and arrows ofĈ. We make the
notational convention that anyA andf in Ĉ are such thatF(A) = A andF(f) = f .

Definition 31. LetA be a reactive system over a well-supported precategoryA. Let Ĉ and
C be the corresponding track and support quotient. The LTS FLTSc(A) has
• States: arrowsa: 0→ X in C;

• Transitions:a f �dr if and only if there exista, l, f, d in Ĉ with 〈l, r〉 ∈ R, d ∈ D,
and such that

It is proved in[13] that the support-quotienting functorF satisfies the conditions required
by the theory of functorial reactive systems[12,13]. Thus, if the categorŷC has enough
RPOs, then the bisimulation on FLTSc(A) is a congruence.
All the theory presented so far can be elegantly assimilated into the theory of GRPOs.

In [13], Leifer predicted that instead of precategories, one could consider a bicategorical
notion of RPO in a bicategory of supports. This is indeed the case, with GRPOs being the
bicategorical notion of RPO. However, working with ordinals for support sets we can avoid

V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327 323

bicategories and, as in the case ofBun, stay within the realm of 2-categories. It is worth
noticing, however, that a bicategory of supports as above and the G-category we introduce
below would be biequivalent (in the sense of, e.g.[25]). In the following, we make use of
a chosen isomorphismtx : x → ord(x), as defined in Section1.

Definition 32 (G-Category of supports). Given a well-supported precategoryA, the
G-category of supportsB has
• objects – as inA;
• arrows –f :A→ B wheref :A→ B is an arrow ofA and|f | is an ordinal;
• 2-cells –	: f ⇒ g for 	 a ‘structure preserving’ support bijection, i.e.	 · f = g in A.
Composition is defined as follows. Givenf : A→ B andg : B → C,

g ◦B f = i2 · g ◦A i1 · f,

where|f | i1−−−−−→ |f | ⊕ |g| i2←− |g| is the chosen coproduct diagram inOrd . Given an
arrowf in A, we usef̃ = t|f | · f in B, the ‘canonical representative’ off in B. To simplify
the notation in the following we writetf for t|f |. Observe that, with these conventions,
tf : |f | → |f̃ |.

Notice that the translation can be easily extended to reactive systems. That is, starting
with a reactive systemA over a well-supported precategoryA, one uses the translation of
Definition32 to obtain a G-reactive systemB over the G-category of supportsB. Observe
that such structure gives a concise representation of both the quotient, via the 2-structure,
and the support, with no need to include the latter explicitly in the objects. The following
theorem guarantees that the LTS generated is the same as the one generated with the theory
of functorial reactive systems.

Theorem 33. Let A be a reactive system over a well-supported precategoryA, and let
B andB be, respectively, the G-reactive system and G-category obtained as above. Then,
FLTSc(A) = GTS(B).

Proof. Let Ĉ be the track ofA. It is enough to present a translation between GIPOs in
B and IPOs in̂C which preserves the resulting label in the derived LTS. Suppose that (i)
below is a GIPO.

Then we claim that (ii) above is an IPO in̂C, for N = |l| ⊕ |d| andi1, i2 injections into
coproducts inOrd . (Observe that thei’s in the two sides of the diagram refer to different

324 V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327

coproducts;we trust thiswill not cause confusion.)Note that (ii) is commutative since	 is by
definition a structure-preserving support bijection and, therefore,	(i2·c◦i1·a) = i2·d◦i1·l.
Suppose that〈〈R,M〉 , e, f, g〉 is a candidate for (ii). We then show how to find�, �

and� such that〈R, ẽ, f̃ , g̃,�, �, �〉 is a candidate GRPO for (i). This amounts to require
that�, �, and� are such that their pasting composite yields	, and that each of them is a
structure-preserving bijection.
Let � represent the following composite:

|a| ⊕ |̃e|
[
	i1,t−1e

]
−−−−−−→ |	i1 · a| ∪ |e| = |i1 · l| ∪ |f |

[
i1i

−1
1 ,i2tf

]
−−−−−−−−→ |l| ⊕ |f̃ |

and similarly let� and� be, respectively,

|c| 	i2−−→ |	i2 · c| = |g ◦ e| = |e| ∪ |g| [i1te,i2tg]−−−−−−→ |̃e| ⊕ |̃g|

and

|f̃ | ⊕ |̃g|
[
t−1f ,t−1g

]
−−−−−−→ |f | ∪ |g| = |g ◦ f | = |i2 ◦ d|

i−12−−→ |d|.

It is easy to check that the pasting of�, � and� as in the GRPO diagram yields	. We
show that� is a structure-preserving bijection The argument for the other morphisms is
similarly trivial. Since	i2 · c = g ◦ e we have[i1te, i2tg]	i2 · c = [i1te, i2tg] · (g ◦ e) and
so� · c = g̃ ◦ ẽ.
Indeed,〈R, ẽ, f̃ , g̃,�, �, �〉 is a candidate GRPO for (i). Thus there existsh:Z→ R and

2-cells (structure-preserving support bijections)
: ẽ⇒ hc, �:hd ⇒ f̃ and�: g̃h⇒ idZ.
From the existence of� and the definition of well-supported category, we can deduce that

|̃g| = |g| = ∅ and|h| = ∅. Note that� = id, since there is only one endofunction on∅. We
can therefore conclude that alsoM = N andg̃ = g.

We also get immediately that (ii) above commutes. We show that the left triangle of (i)
commutes, the proof for the right one is similar. From the definition of GRPO, we have
that idc = �c • g̃
 • � = g
 • � which then implies that
 = �−1. Using the definition of�,
	i2 •
 • te = id which amounts to saying that the triangle is commutative.
Uniqueness in̂C easily follows from essential uniqueness inB (which is in this case the

same as uniqueness, since there is only one endofunction on the∅).

V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327 325

Going the other way, suppose that (iii) below

is a RPO. Then (iv) is a GRPO where	 is

|̃a| ⊕ |̃c|
[
t−1a ,t−1c

]
−−−−−→ |a| ∪ |c| = |l| ∪ |d| [i1tl ,i2td]−−−−−→ |̃l| ⊕ |d̃|.

It is trivial to show that	 is structure-preserving, i.e.	·(̃c ã) = d̃ l̃. Nowconsider a candidate〈
R, e, f, g,�, �, �

〉
for (ii), above. Since the pasting composite of�, � and� yields	, we

have thatt−1c �−1i2 · g = t−1d �i2 · g = g′. Let V = N\|g′|. Let e′ = t−1c �−1i1 · e and
f ′ = t−1d �i1 · f . It is easy but tedious to check that

〈〈R,V 〉 , e′, f ′, g′
〉
is a candidate for

(i). By assumption, there exists an arrowh: 〈Z,N〉 → 〈R,V 〉 which satisfieshc = e′,
hd = f ′ andg′h = f ′. This can be translated in the by-now standard way into a mediating
morphism

〈
h,
,�, �

〉
where� is again the unique endofunction on the∅. Uniqueness again

follows by laborious, yet not challenging, work.�

Example 34(Bunches). The2-category of supports of the precategoryA-Bun isBun. Note
that a ‘structure preserving’ support bijection is exactly a bunch homomorphism. Indeed,
	: (X, char, rt) ⇒ (X′, char′, rt′) if X′ = 	X, char′ = char	−1 andrt′ = rt(id ⊕ 	−1)
which is the same as sayingchar = char′ 	 andrt = rt′(id ⊕).

In other words, our general construction translating from well-supported precategories to
G-categories applied to the particular case of ‘bunches and wirings,’ extractsBun out of
A-Bun. This confirms the results obtained by Leifer and Milner on this specific subject,
and supports our claim of appropriateness of the structures we have introduced. It is worth
remarking how in Definition32 precategories’ support-translation isomorphisms are sub-
sumed inG-categoriesas2-cells. Further study is of coursenecessary to verify theusefulness
of GRPOs in the presence of more complex terms. The results we obtained recently in the
case of graph rewriting and bigraphs are indeed encouraging[22].

6. Conclusion

We have extended our theory of GRPOs initiated in previous work in order to strengthen
existing techniques for deriving operational congruences for reduction systems in the pres-
ence of non-trivial structural congruences. In particular, this paper has shown that previous
theories can be recast using G-reactive systems and GRPOs at no substantial additional

326 V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327

complexity. Also, we proved that the theory is powerful enough to encompass several ex-
amples considered in the literature, as a precise consequence of the fact that any precategory
or functorial reactive system yields a corresponding G-category in a direct, systematic way.
Therefore, we believe that it constitutes a natural starting point for future investigations
towards a fully comprehensive theory, which we started to explore further in[22].
It follows from Theorem33that G-categories are at least as expressive as well-supported

precategories. A natural consideration is whether a reverse translationmay exist.We believe
that this is not the case, as general G-categories appear to carry more information than
precategories. This may turn out to have an impact in dealing with complex structural
congruences, such the one arising from the replication axiomP ≡ P | !P .

Acknowledgements

The authors are indebted to the referees, both of the extended abstract[20], and of this
article, for their helpful comments and suggestions. Thanks also go to Robin Milner for his
comments.

References

[1] M. Bugliesi, S. Crafa, M. Merro, V. Sassone, Communication interference in mobile boxed ambients, in:
Foundations of Software Technology and Theoretical Computer Science, FST&TCS‘02, Lecture Notes in
Computer Science, Vol. 2556, Springer, Berlin, 2002, pp. 71–84.

[2] A. Carboni, S. Lack, R.F.C. Walters, Introduction to extensive and distributive categories, J. Pure Appl.
Algebra 84 (2) (1993) 145–158.

[3] G. Castagna, F. Zappa Nardelli, The Seal calculus revisited, in: Foundations of Software Technology and
Theoretical Computer Science, FST&TCS‘02, Lecture Notes in Computer Science, Vol. 2556, Springer,
Berlin, 2002, pp. 85–96.

[4] J.C.Godskesen,T.Hildebrandt,V.Sassone,Acalculusofmobile resources, in: Internat.Conf. onConcurrency
Theory, CONCUR‘02, Lecture Notes in Computer Science, Vol. 2421, Springer, Berlin, 2002, pp. 272–287.

[5] M. Hennessy, M. Merro, Bisimulation congruences in safe ambients, in: Principles of Programming
Languages, POPL‘02, ACM Press, New York, 2002, pp. 71–80.

[6] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs, NJ, 1985.
[7] O.H. Jensen, R. Milner, Bigraphs and mobile processes, Technical Report 570, Computer Laboratory,

University of Cambridge, 2003.
[8] O.H. Jensen, R. Milner, Bigraphs and transitions, in: Principles of Programming Languages, POPL‘03, ACM

Press, New York, 2003.
[9] G.M. Kelly, Elementary observations on 2-categorical limits, Bull. Austral. Math. Soc. 39 (1989) 301–317.
[10] G.M. Kelly, R.H. Street, Review of the elements of 2-categories, Lecture Notes Math. 420 (1974) 75–103.
[11] F.W. Lawvere, Functorial semantics of algebraic theories, Proc. Natl. Acad. Sci. 50 (1963) 869–873.
[12] J. Leifer, Operational congruences for reactive systems, Ph.D. Thesis, University of Cambridge, 2001.
[13] J. Leifer, Synthesising labelled transitions and operational congruences in reactive systems, parts 1 and 2,

Technical Report RR-4394 and RR-4395, INRIA Rocquencourt, 2002.
[14] J. Leifer, R. Milner, Deriving bisimulation congruences for reactive systems, in: Internat. Conf. on

ConcurrencyTheory,CONCUR‘00, LectureNotes inComputerScience,Springer,Berlin, 2000, pp. 243–258.
[15] R. Milner, Calculi for interaction, Acta Inform. 33 (8) (1996) 707–737.
[16] R. Milner, Communicating and Mobile Systems: the Pi-calculus, Cambridge University Press, Cambridge,

1999.
[17] R.Milner, Bigraphical reactive systems: basic theory, TechnicalReport 523,Computer Laboratory,University

of Cambridge, 2001.

V. Sassone, P. Soboci´nski / Theoretical Computer Science 333 (2005) 297–327 327

[18] A.W. Roscoe, The Theory and Practice of Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1997.
[19] V. Sassone, P. Sobociński, Deriving bisimulation congruences: a 2-categorical approach, Electron. Notes

Theoret. Comput. Sci. 68 (2) (2002).
[20] V. Sassone,P. Sobociński, Deriving bisimulation congruences: 2-categories vs. precategories, in: Proc. Found.

of Software Science and Computation Structures, FOSSACS‘03, Lecture Notes in Computer Science, Vol.
2620, Springer, Berlin, 2003, pp. 409–424.

[21] V. Sassone, P. Sobociński, Deriving bisimulation congruences using 2-categories, Nordic J. Comput. 10
(2003) 163–183.

[22] V. Sassone, P. Sobociński, Coinductive reasoning for contextual graph rewriting, Manuscript, 2004.
[23] P. Sewell, Working note PS12, February 2000, Unpublished note.
[24] P. Sewell, From rewrite rules to bisimulation congruences, Theoret. Comput. Sci. 274 (1–2) (2002) 183–230.
[25] R.H. Street, Fibrations in bicategories, Cahiers Topologie Géom. Différentielle XXI-2 (1980) 111–159.

	Locating reaction with 2-categories62626262
	Introduction
	Preliminaries
	Reactive systems and GRPOs
	Congruence results for GRPOs
	Traces preorder
	Failures preorder
	Weak equivalences

	Bunches and wires
	Category of bunch contexts
	Extensive categories
	Construction of GRPOs
	Construction of GRPO
	Verification of the universal property

	2-categories vs. precategories
	Conclusion
	Acknowledgements
	References

