
Rôle-Based Access Control for
a Distributed Calculus

Chiara Braghin
Dip. Informatica

Univ. “Ca’ Foscari” di Venezia

Daniele Gorla
Dip. di Informatica

Univ. di Roma “La Sapienza”

Vladimiro Sassone
Dept. of Informatics

University of Sussex

Abstract

Rôle-based access control (RBAC) is increasingly attracting attention because
it reduces the complexity and cost of security administration by interposing the no-
tion of rôle in the assignment of permissions to users. In this paper, we present a
formal framework relying on an extension of theπ-calculus to study the behaviour
of concurrent systems in a RBAC scenario. We define a type system ensuring that
the specified policy is respected during computations, and abehavioural equiva-
lence to equate systems. We then consider a more sophisticated feature that can be
easily integrated in our framework, i.e., the possibility of automatically adding rôle
activations and deactivations to processes to be run under agiven policy (whenever
possible). Finally, we show how the framework can be easily extended to express
significant extensions of the core RBAC model, such as rôleshierarchies or con-
straints determining the acceptability of the system components.

Keywords: RBAC, Process Calculi, Type Systems, Behavioural Equivalences

Introduction

Rôle-based access control (RBAC) [10, 23] has recently emerged as an alternative to
classical discretionary and mandatory access controls: a standard is currently under
development by the National Institute of Standards and Technology (NIST) [11] and
several commercial applications directly support some forms of RBAC, e.g., Oracle, In-
formix and Sybase in the field of commercial database management systems. Further-
more, the RBAC technology is finding applications in areas ranging from health-care
to defence, in addition to the commerce systems for which it was originally designed.

RBAC is a flexible and policy-neutral access control technology: it regulates the
access of users to information and system resources on the basis of activities they need
to execute in the system. The essence of RBAC lies with the notions ofuser, rôle and
permission: users are authorised to use only the permissions assigned to the rôles they
belong to. More specifically, RBAC allows for a preliminary assignment of permissions
to rôles (thus abstracting from which users will play the various rôles at run-time). A
user may then establish multiple sessions, e.g., by signingon to the system, during
which he activates a subset of rôles that he is a member of. This greatly simplifies
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system management, as it reduces the cost of administering access control policies, as
well as making the administration process less error-prone. In fact, by assigning to
users predefined rôles that naturally express the organisation’s structure, the adminis-
trative process of establishing permissions is streamlined, and management time for
reviewing permissions assignment is reduced. Anyway, the complexity of the models
(e.g., in large systems the number of rôles can exceed hundreds or thousands) demands
a structured approach to the analysis and design of such systems.

This paper aims at developing a theory for reasoning about system behaviours in a
RBAC scenario; to the best of our knowledge this is the first attempt in this direction.
Our reference model is the so-called RBAC96 model, introduced by Sandhu et al. in
their seminal paper [23]. More advanced RBAC models includerôle hierarchies and
constraints such as rôle mutual exclusion, separation of duties, delegation of authority
and negative permissions. Our starting point is theπ-calculus [24], which provides
well-established mathematical tools for expressing concurrent and possibly distributed
systems. Essentially, our idea is to equip theπ-calculus with the notion ofusers: we
tag processes with a (not necessarily unique) name representing the user that activated
them – this is very similar to the located threads of the Dπ [14]. Moreover, we add
two new constructs, that enable processes to activate/deactivate rôles in the user ses-
sion where they run, and we include a way to grant permissionsto rôles. Thus, each
process is associated with a name (representing the user owning it) and with a setρ
recording the rôles activated during the current session.Hence, the termr{|P |}ρ repre-
sents a session of the userr, running a processP with active rôlesρ. We model rôle’s
activation/deactivation by exploiting the following reductions:

r{| role R.P |}ρ 7−→ r{|P |}ρ∪ {R} r{| yield R.P |}ρ 7−→ r{|P |}ρ \{R}

Intuitively, when a process activates a rôleR during a session,R must be added to the
set of activated rôlesρ and the continuationP will be executed with the setρ updated.
Vice versa for the deactivation ofR.

As an example, the following system

client{| roleauth client.port 80〈index.html〉.P |}ρ ‖ server{|port 80(x).Q |}ρ′

models the interaction between a client and an HTTP server. The system contains two
users,client andserver, running in parallel. It may evolve as follows. First, userclient
activates the rôleauth client by exercising therole action, which in practice would
involve to authenticate himself by means of a secure certificate. Then, he sends the
request to the HTTP server along the usual port 80 by performing an output action
along the channelport 80.

The introduction of named users immediately suggests the idea of a distributed
system. In such systems, as e.g. the Internet, the notion of global, non-located channels
asport 80 is quite an abstraction over what is realistically achievable. We therefore
use a notion of localised channelsà la Dπ [14], where each channel is associated with
a single user. Syntactically, we implement this feature by tagging output actions to
specify the user (or location) where the exchange is supposed to take place. On the
other hand, input actions are not tagged with any user name, as they are supposed to
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take place locally. Thus, the example above may be rewrittenas:

client{| roleauth client.port 80server〈index.html〉.P |}ρ ‖ server{| port 80(x).Q |}ρ′

We also allow user names to be exchanged during communications. This feature adds
flexibility and realism to the language, since in distributed systems users have only a
partial and evolving knowledge of their execution environment. For example, the client
above can be generalised to leave the server identity unspecified and to dynamically
retrieve it with an input from channelchoosea server:

client{| roleauth client.choosea server(x).port 80x〈index.html〉.P |}ρ

More details on the calculus, together with an illustrativeexample, will be given in
Section 1.

The mapping among users, rôles and permissions, which controls the access of
subjects to objects, is achieved by a pair of relations (U ;P), calledRBAC schema. In
(U ;P), the relationU is the rôles-to-users association, whileP is the permissions-
to-rôles association. As a first contribution of this paper, in Section 2 we define a
type system which complements the dynamics of the calculus:it provides us with
static guarantees that systems not respecting a given RBAC schema are rejected. In the
client/server example above, a client not authenticated (i.e. interacting with the server
without having previously performed aroleauth client) would be rejected, if the
RBAC schema enabled only authorised users to perform HTTP requests.

As a second contribution of this paper, in Section 3 we study the behavioural se-
mantics of the calculus via a standardly defined(typed) barbed congruence. The be-
havioural semantics allows us to study the behaviour of systems, concentrating on their
functionalities while abstracting from their syntax. In particular, the barbed congru-
ence allows us to prove some interesting algebraic laws thathold in our framework.
As an example, we show how RBAC schemata may change the algebraic theory of
theπ-calculus. Consider the following system, adapted from theclient/server example
above:

(ν port 80server:R)(client{| port 80server〈index.html〉.P |}∅ ‖ server{|port 80(x).Q |}ρ′ )

where (νport 80server:R) is the standard restriction operator of a typedπ-calculus (it de-
claresport 80serverat typeRand limits the visibility of the channel toclient andserver
only). By resuming the assumption that only authorised users can perform HTTP re-
quests, the above system is blocked because the client has not been authenticated before
performing the output. On the contrary, by removing the assumption that each action
must be authorised by the activation of a proper rôle, the term above would have been
equivalent to

(ν port 80server:R)(client{|P |}∅ ‖ server{|Q[index.html/x] |}ρ′ )

that is the term resulting from the client/server exchange (Q[index.html/x] denotes the
processQ where each occurrence ofx has been replaced by the valueindex.html).
By the way, this is exactly what would have happened in a similar term of theπ-
calculus, since the nameport 80 is restricted and no authorisation is needed to perform
input/output actions.
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As highlighted by the example above, the essence of our calculus resides in the
assumption that each action can be performed only if a privilege enabling it is available
in the user session where the action is executed. Since privileges are associated to
rôles, it is fundamental to properly program rôle activations and deactivations within
user sessions. To this aim, in Section 4 we describe an algorithm to automatically add
rôle activations/deactivations within a system in such a way that the resulting system
can be executed under a given schema, whenever possible.

In Section 5, we describe how our simple framework can be extended to express
extensions of the core RBAC model. For example, rôles can behierarchically ordered
to reflect in a natural way the different levels of authority, responsibility and compe-
tency of the employees working in an enterprise. Moreover, the system administrator
may want to enforce constraints limiting the set of rôles that can be activated during a
session. Both extensions can be expressed in a uniform and scalable way by enriching
the RBAC schema.

We conclude by comparing our approach with related work in Section 6. Ap-
pendix A contains the proofs of some results stated in the paper, while Appendix B
provides a sound proof technique for barbed congruence in terms of a labelled transi-
tion system and a labelled bisimulation.

This paper is an extended and revised version of [4]; with respect to the extended
abstract, in this paper we give all the technical details andproofs, we expand one of the
possible examples of our framework, and we show how advancedRBAC features may
be added in a modular way to the general picture.

1 The Language

In this section we formally introduce our calculus. First, we define its syntax and
operational semantics; then, we formalise the RBAC schema to describe the rôles-to-
users and permissions-to-rôles assignments.

1.1 Syntax

Since the calculus is an extension of theπ-calculus [19, 24], we assume the reader to
be somehow acquainted with its basic features. The syntax ofthe calculus is given in
Table 1; we assume two countable and pairwise disjoint sets:R of rôles, ranged over
by R,S, . . ., andN of names. Names can serve three (logically) different purposes:
they can be used as user names (in this case, we prefer lettersr, s, . . .), channel names
(in this case, we prefer lettersa, b, . . .) or input variables (in this case, we prefer letters
x, y, ...). As we discussed in the Introduction, channels are associated with users. Thus,
the set ofvaluesof our calculus includes not only raw names but also pairs of names,
written ar ; such pairs are calledchannelsand include the name of the channel,a, and
the user it is associated with,r.

Processesnil , P | Q, !P, [m = n]P, (νa : R)P, a(x).P, m〈n〉.P are derived from
the correspondingπ-like constructs. They represent, respectively, the inactive process,
parallel composition of processes, replication (to model recursive processes), value
matching, restriction of channel names and input/output actions over channels. Notice
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Rôles R,S, ... ∈ R
Names a,b, ..., r, s, ..., x, y, ... ∈ N
Values m,n, ... ∈ N ∪N ×N

Processes P,Q ::= nil inactive process
| P | Q parallel composition
| !P replication
| (νa:R)P name restriction
| [m= n]P value matching
| a(x).P input
| m〈n〉.P output
| role R.P rôle activation
| yield R.P rôle deactivation

Systems A, B ::= 0 empty system
| r{| P |}ρ user session
| A ‖ B parallel composition
| (νar :R)A channel restriction

Table 1: Syntax of the Calculus

that input channels are not decorated with a user name: this is a syntactic means to
localise them, as input channels implicitly belong to the user they appear in. The
main novelty of the calculus resides in the actionsrole R andyield R that implement
activations/deactivations of rôles in the user session they belong to, and modify the
session rôles accordingly.

The syntax of processes we have just presented is too permissive, as it also contains
meaningless terms. For example, when a name represents a channel, it cannot be trans-
mitted as such, since it makes little sense without the indication of the user owning it.
Similarly, output channels must indicate the name of the user containing the invoked
channel. For example, a process likea(x).bx〈n〉.P can be accepted but, in order to be
executed, at run-timex must be assigned a user namer which owns an input channel
br . One of the aims of the type system in Section 2 is to restrict the admissible language
terms, thus rejecting terms that contain any kind of anomalies.

Systems consist of the parallel composition of user sessions that can share private
channels (the latter ones are decorated with a rôle as described later, in Section 1.3). A
user sessionr{|P |}ρ represents a process spawned by a user namedr, with codeP and
with ρ ⊆ R recording the rôles activated so far. Observe that different sessions of the
same user can run in parallel within a systemA, either with the same or with different
activated rôles: this is the usual notion of sessions in RBAC models.

The constructs (νa : R)P, (νar : R)A anda(x).P act as binders fora, ar and x, re-
spectively. Thus, we need to extend the standard notion of free and bound names of the
π-calculus to encompass free and bound channels too. The formal definition of func-
tions F(A) and B(A) is given in Table 2; it exploits the auxiliary functions Fr (P)
and Br (P) for processes of userr. Alpha-conversion, written=α, is then standardly
defined and it allows the renaming of bound channels and names. Throughout the
paper, we always assume that bound channels and names are pairwise distinct and dif-
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S ystem F( ) B( )

0 ∅ ∅

r{|P |}ρ {r} ∪ Fr(P) Br (P)
A ‖ B F(A) ∪ F(B) B(A) ∪ B(B)

(νar :R)A F(A) \ {ar } B(A) ∪ {ar }

Process Fr ( ) Br ( )

nil ∅ ∅

a(x).P {ar } ∪ Fr(P) {x} ∪ Br (P)
m〈n〉.P {m,n} ∪ Fr (P) Br (P)
role R.P Fr (P) Br (P)
yield R.P Fr (P) Br (P)

!P Fr (P) Br (P)
P|Q Fr (P) ∪ Fr (Q) Br (P) ∪ Br (Q)

(νa:R)P Fr(P) \ {ar } Br (P) ∪ {ar }

[m= n]P {m,n} ∪ Fr (P) Br (P)

Table 2: Free and Bound Channels

ferent from the free ones; by using alpha-conversion, this requirement can be always
satisfied.

Finally, observe that user names cannot be restricted, since the creation of a new
user is a sensitive operation: it has to be performed only by the system administrator,
as it may affect the RBAC policy underlying the entire system.

Notation. In this paper, we use ‘’ as a generic placeholder; thus, we denote with˜
a (possibly empty) tuple of entities of kind. Moreover, we writẽar : R̃ to denote the
tuplear

1 : R1, . . . , ar
k : Rk, for k ≥ 0. Sometimes, we shall use tuples as sets (i.e., without

considering the order of their elements) and we write, e.g.,bs ∈ ãr or bs : S ∈ ãr : R̃.
We useΠk

i=1Pi as a shorthand forP1 | · · · | Pk. Finally, as usual, we will omit trailing
inactive processes.

1.2 Dynamic Semantics

The dynamics of the calculus is given in the form of areduction relation. As customary,
the reduction semantics is based on an auxiliary relation called structural congruence
which allows to freely re-arrange systems in order to make reduction rules applica-
ble. The key feature of the structural congruence is to equate terms that describe the
same system; indeed, the syntax of the calculus provides a way to describe system
behaviours, and the same behaviour can be described in different ways. For example,
A ‖ B describes a system of two parallel components that coincides with the system
described byB ‖ A. The reason to split reductions and structural rules is to reserve
reductions for actual computations, i.e., where the systemactually performs some ac-
tion, and keep them free of spurious term manipulation artifacts. In this way, reductions
reflect at a glance the foundational building blocks of the computation, at the chosen
abstraction level.
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Axioms for Structural Congruence:

(S-A) (S-I)
A ≡ B if A =α B A ‖ 0 ≡ A

(S-PC) (S-A)
A ‖ B ≡ B ‖ A (A ‖ B) ‖ C ≡ A ‖ (B ‖ C)

(S-E) (S-LC)
r{| [n = n]P |}ρ ≡ r{| P |}ρ r{| (νa:R)P |}ρ ≡ (νar :R)r{|P |}ρ if a , r

(S-R) (S-RC)
r{| !P |}ρ ≡ r{|P | !P |}ρ (νar :R)(νbs :S)A ≡ (νbs :S)(νar :R)A

(S-S) (S-E)
r{|P | Q |}ρ ≡ r{| P |}ρ ‖ r{|Q |}ρ (νar :R)A ‖ B ≡ (νar :R)(A ‖ B) if ar

< F(B)

Rules for Reduction Relation:

(R-R) (R-C)
r{| role R.P |}ρ 7−→ r{|P |}ρ∪ {R} r{|a(x).P |}ρ ‖ s{|ar 〈n〉.Q |}ρ′ 7−→ r{| P[n/x] |}ρ ‖ s{|Q |}ρ′

(R-Y) (R-P)

r{| yield R.P |}ρ 7−→ r{| P |}ρ \{R} A 7−→ A′

A ‖ B 7−→ A′ ‖ B

(R-R)

A 7−→ A′

(νar :R)A 7−→ (νar :R)A′

(R-S)

A ≡ A′ A′ 7−→ B′ B′ ≡ B

A 7−→ B

Table 3: Dynamic Semantics of the Calculus

The structural congruence relation,≡, is the least congruence on systems that is
closed under the rules of the upper part of Table 3. Rule (S-A) equates alpha-
convertible systems. Rules (S-I), (S-PC) and (S-A) state that ‘‖’ is a commuta-
tive monoidal operator, with ‘0’ as identity. Rules (S-LC), (S-RC) and (S-E)
regulate the scope of restricted names. In particular, (S-LC) can be used to turn a re-
striction of a name inside a user into a restriction over the corresponding channel at the
system level; (S-RC) allows to swap restrictions; (S-E) allows to extend the scope
of a bound channel to include further parallel components, provided that this does not
cause any name capture. Rule (S-E) states that a satisfied equality test does not affect
the behaviour of the continuation process. Rule (S-R) allows to freely fold/unfold
a replicated process. Finally, rule (S-S) states that a session of userr with rôlesρ
hosting two parallel processesP andQ denotes the same system as two parallel ses-
sions ofr with rôlesρ hostingP andQ in isolation. Indeed, the key issues of a session
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are the user owning it and the activated rôles. Rewriting one in the other represents no
system computation, but only a different way of describing the same system, exactly
like A ‖ B andB ‖ A.

The reduction relation is defined by the axioms and rules in the lower part of Ta-
ble 3. Rule (R-R) addsR to the rôlesρ activated in the current session, while
(R-Y) removesR from ρ. Here and in what follows, ‘∪’ and ‘\’ denote the usual
union and difference operations between sets; in particular,ρ \ {R} is defined even if
R < ρ. Rule (R-C) regulates the inter-process communication. It states that, when-
ever a process ins sends a messagen along channelar and a process inr is waiting
for a message on such a channel, an interaction occurs; as a result, n replaces each
occurrence of the input variablex in the processP prefixed by the input action. Finally,
rules (R-P) and (R-R) state that reductions are preserved by system contexts; rule
(R-S) states that structurally equivalent systems have the samereductions.

Notice that, by exploiting rules (S-S), (R-R) and (R-Y), the user ses-
sion r{| role R.P | yield S.Q |}ρ may evolve into r{|P |}ρ∪ {R} ‖ r{|Q |}ρ \{S}, i.e., actions
role/yield only affect the process thread executing them. Moreover, a single session
with rôle R activated can later split in two distinct sessions; thus, a single rôle activa-
tion can be “closed” by several rôle deactivations.

1.3 RBAC Schema

So far, we discussed the way in which RBAC sessions can be modelled in our calculus.
We now present a way to model in our framework the remaining features of the core
RBAC96 model. To this aim, we need to define theRBAC schema, i.e., the rôles-to-
users and permissions-to-rôles associations, where permissions enable the actions a
user can perform within a system (in our framework, input andoutput actions only).

Managing rôles and their interrelationships is a difficult and sensitive task that is of-
ten centralised and delegated to a small team of security administrators. Traditionally,
the RBAC schema consists of a pair of partial functions with finite domains (Uu ;P),
whereUu assigns rôles to users andP assigns permissions to rôles. Formally,

Uu : N ⇀fin 2R P : R⇀fin 2A

whereA , R × {!, ?} represents the set of performable actions. For notational con-
venience, we write the pairs (R, !) and (R, ?) asR! andR?, respectively. Intuitively,
permissionsR? andR! determine the possibility of performing input and output actions
over a channel of rôleR, respectively. Thus, input/output permissions are not defined
in terms of channels, but of rôles. To this aim, we assume a partial function with finite
domain,Uc, assigning a rôle to a channel1, i.e.

Uc : N ×N ⇀fin R

In this way, we are flexible enough to model both the permission to communicate
over a single channel (when the relationUc maps only one channel to a rôle), and

1Since located channels can be considered as functionalities provided by users, it seems reasonable that
each channel is associated with only one rôle.
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the permission to communicate over the member of a group of channels (when the
relationUc maps more than one channel to the same rôle). This case may beuseful in
situations where more channels can handle the same kind of requests (cf. Example 1
for a possible situation). Observe that inA no permission represents actionsrole and
yield. Indeed, we assume that a rôle can be activated if (and only if) it is assigned by
Uu to the user willing to perform the action; a rôle can be deactivated if (and only if) it
has been activated before.

For notational convenience, we mergeUu andUc together and denote withU their
union. Moreover, we also assume that the rôles associated with channels (grouped
together inRc) are not included in the domain ofP, i.e., P matters only for rôles
assigned to users (grouped together inRu). Clearly,Rc andRu are assumed to be
disjoint. To sum up, in our framework RBAC schemata are defined as follows.

Definition 1.1 (RBAC Schema).An RBAC schemaS is a pair of partial functions
with finite domains (U;P) such that

• U : (N ∪ N×N) ⇀fin (2R ∪ R) such that, for anyr andas in the domain of
U, it holds thatU(r) ∈ 2R andU(as) ∈ R;

• P : Ru ⇀fin 2A, whereA , Rc × {!, ?}, Ru ∪ Rc ⊆ R andRu ∩ Rc = ∅.

To conclude the presentation of our language, we now give an example using the
features introduced so far.

Example 1. Let us now formalise a scenario where a bank client is waitingto be served
by one of the branch cashiers available. There are two users,r and s, representing
respectively the client and the bank branch, while cashiersare modelled as channels
namedc1, . . . , cn located at users. The rôles available areclient andcashier. The
relationU assigns rôleclient to userr andcashier to channelsci , whileP assigns
to client the permission to communicate with any of the cashiers, i.e., cashier! ∈

P(client). In this way,r can indistinctly interact with any of the cashier available.
The overall system can be described as follows:

r{| roleclient.signals〈r〉.served(z).z〈req1〉. · · · .z〈reqk〉.z〈stop〉.yieldclient |}∅ ‖

s{| (ν free : scheduling)(!signal(x).free(y).servedx〈y〉 | Πn
i=1 frees〈cs

i 〉 |

Πn
i=1 !ci(x).( [x = withdrw req] <handle withdraw request>

| [x = depreq] <handle deposit request>
| [x = stop]frees〈cs

i 〉) ) |}ρ′

Once the client enters the bank (i.e., he activates rôleclient), he signals his pres-
ence to the bank and waits to be served. When one of the cashiers becomes available
(information maintained internally by the bank via the reserved channelfreeused for
cashiers’ scheduling), the client is notified and can make requests along the received
channelz, referring to the available cashier. Then, cashiers repeatedly receive and han-
dle requests. For simplicity, we only assume functionalities to handle money withdraw
and deposit. Moreover, we do not consider the order in which clients arrive; a system
of queues can however be added routinely [24]. ⋄
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2 Static Semantics

We now describe a type system that provides us with static guarantees that the set of
actions performed by any user during the computation respects the RBAC schema.
Moreover, as already discussed when presenting the syntax of the calculus, it is also
used to reject ill-formed terms.

The syntax of types is defined by the following productions:

Value Types T ::= ρ[ã : C̃] | C
Channel Types C ::= R(T)

Typeρ[a1 : R1(T1), . . . , an : Rn(Tn)] can be assigned to a userr belonging to rôles inρ
and owning channels̃ar ordinately of typeR̃(T). TypeR(T) can be assigned to channels
of rôleR along which values of typeT can be exchanged. Notice that the base case of
the recursive definition of types is when the setã : C̃ in a typeρ[ã : C̃] is empty.

Notation. Here and in the rest of the paper,P(ρ) denotes the set
⋃

R∈ ρP(R).
Moreover, we denote with⊎ the union of partial functions with disjoint domains.

A typing environmentΓ is a partial mapping with finite domain fromN into types
and it can be extended as follows:

Γ, x : T , Γ ⊎ {x : T}

Γ, ar : C , Γ′, for Γ′(s) =

{
Γ(s) if s, r
ρ[a : C, b̃ : C̃] if s= r andΓ(r) = ρ[b̃ : C̃] anda < b̃

Remarkably, the extension of a typing environment could be undefined (e.g., ifx ∈
dom(Γ) in the first case or ifa ∈ b̃ in the second case). A typing environmentΓ can be
used to type a system under a schema (U;P) only if the rôle information inΓ ‘respects’
the associations inU. This intuition is formalised by the following definition.

Definition 2.1. Given a RBAC schema (U;P) and a typing environmentΓ, we say that
Γ respectsU if, for all r ∈ dom(Γ), it holds thatΓ(r) = ρ[a1 : R1(T1), . . . , an : Rn(Tn)]
withU(r) = ρ andU(ar

i ) = Ri , for all i = 1, . . . , n.

The primary judgements of the type system are of the formΓ ⊢S A. Such a judge-
ment states thatA is well-formed with respect toΓ andS; this implies thatA respects
the RBAC schemaS. To infer the main judgement, we rely on two auxiliary judge-
ments, one for values and one for processes. JudgementΓ ⊢ n : T states that the value
n has typeT in Γ; judgementΓ; ρ ⊢Sr P states thatP respectsΓ andS when it is run in
a session ofr with rôlesρ activated.

The typing rules are collected in Table 4. Most of them are self-explanatory; we
only comment below the most significant ones, i.e. those related to the actions in our
calculus. The idea beyond these rules is that an action can beexecuted only if the
current session has activated a rôle enabling the action. Rule (T-I) states that, for
typing a(x).P in a session ofr where rôlesρ are activated, we need to establish that
ar has typeR(T) in Γ, that inputs over a channel of groupR can be performed when
playing rôlesρ and thatP is typeable once assumed thatx has typeT. Rule (T-O)
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Typing Values:

(T-I1)

Γ(r) = ρ[ã : C̃]

Γ ⊢ r : ρ[ã : C̃]

(T-I2)

Γ(r) = ρ[b̃ : C̃,a : C, b̃′ : C̃′]

Γ ⊢ ar : C

Typing Processes:

(T-N)

Γ; ρ ⊢Sr nil

(T-I)

Γ ⊢ ar : R(T) R?∈ P(ρ) Γ, x : T; ρ ⊢(U;P)
r P

Γ; ρ ⊢(U;P)
r a(x).P

(T-P)

Γ; ρ ⊢Sr P Γ; ρ ⊢Sr Q

Γ; ρ ⊢Sr P | Q

(T-O)

Γ ⊢ m: R(T) Γ ⊢ n: T R!∈ P(ρ) Γ;ρ ⊢(U;P)
r P

Γ; ρ ⊢(U;P)
r m〈n〉.P

(T-R)

Γ; ρ ⊢Sr P

Γ; ρ ⊢Sr !P

(T-R̂)

Γ ⊢ r : ρ′[ã : C̃] R ∈ ρ′ Γ; ρ ∪ {R} ⊢Sr P

Γ; ρ ⊢Sr role R.P

(T-R)

Γ,ar: R(T);ρ ⊢Sr P

Γ; ρ ⊢Sr (νa:R)P

(T-Y)

R ∈ ρ Γ; ρ \ {R} ⊢Sr P

Γ; ρ ⊢Sr yield R.P

(T-M)

Γ;ρ ⊢Sr P

Γ;ρ ⊢Sr [m= n]P

Typing Systems:

(T-E)

Γ ⊢S0

(T-S)

Γ ⊢ r : ρ′[ã : C̃] ρ ⊆ ρ′ Γ; ρ ⊢Sr P

Γ ⊢S r{|P |}ρ

(T-SP)

Γ ⊢SA Γ ⊢S B

Γ ⊢S A ‖ B

(T-SR)

Γ,ar: R(T) ⊢SA

Γ ⊢S (νar :R)A

Table 4: Typing Rules

is similar: it checks that an output over a channel of groupR is allowed when the rôles
in ρ are activated; moreover, it also requires that the transmitted valuen is assigned type
T in Γ. Rule (T-R̂) states that, for typing processrole R.P in a session ofr where
rôlesρ are activated, we need to check thatr can assume rôleR and thatP is typeable
for r having activatedρ ∪ {R}. Rule (T-Y) states that processyield R.P is legal for
r only whenR has been previously activated and ifP is typeable forr whenR is off.
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Finally, notice that in rules (T-R) and (T-SR) the type of the restricted channel is
not tracked in the restriction construct. Indeed, for type checking purposes, it suffices
to ensure that the new channel is used coherently by all the processes accessing it. To
this aim, we only need to invent a suitableT when applying the rules and verify that all
the accesses to the channel conform toT.

Definition 2.2 (Well-typedness).Given a RBAC schemaS = (U;P) and a systemA,
we say thatA is well-typed inS if there exists a typing environmentΓ respectingU
such thatΓ ⊢SA.

Example 2. Let us consider the banking scenario described in Example 1.To illustrate
the type system introduced above, let us give a suitable typing for the system. Let

Tcsh, cashier({request}[])

be the type of the cashiers, i.e., channels belonging to rôle cashier and exchang-
ing values of type{request}[]. Type {request}[] represents the possible requests of
clients; values of this type are names belonging to rôlerequest which do not provide
any channel. Moreover, we let

Tcl , {client}[served: cashier get(Tcsh)]

be the type of userr. This represents users belonging to rôleclient and owning a
channel namedservedof type cashier get(Tcsh). Then, a suitable typing environ-
mentΓ is

r 7→ Tcl

s 7→ ρ′[signal : cashier req(Tcl), c1 : Tcsh, . . . , cn : Tcsh]

withdrw req 7→ {request}[]

depreq 7→ {request}[]

stop 7→ {request}[] .

The system of Example 1 is then well-typed in any schema (U,P) such thatΓ respects
U andP is such that

{cashier req! , cashier get?, cashier!} ⊆ P(client)

A∪ {cashier req?, cashier get! , cashier?,

scheduling?, scheduling!} ⊆ P(ρ′)

whereA ⊆ A is a set of action permissions that allow the handling of client’s requests.
⋄

Example 3. In the real world, it is unrealistic to allow any bank client to ask for any
kind of bank operation. For instance, when a client applies for a credit card, he is
always asked for some credentials. To model this finer scenario, we let each avail-
able operation to be modelled as a specific process, which canbe activated through
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a specific channel (e.g., channelwdrw handles withdraw requests and activates pro-
cessPwdrw, opnhandles open account requests,cc handles credit card requests). The
communication along different channels requires different rôles and, thus, it is a way to
control the credentials of the client. In this setting, the cashierci of Example 1 is imple-
mented by the following process (the remaining behaviour ofthe bank is implemented
as in Example 1):

ci(x).( [x = withdrw req] wdrw(y).Pwdrw | [x = openreq] opn(y).Popn |

[x = creditcard req] cc(y).Pcc | [x = stop] frees〈cs
i 〉 )

Let U assign to channelwdrw (resp.,opn andcc) the groupwdrw (resp.,opn and
cc), and letP be such thatcc! ∈ P(rich client), wdrw! ∈ P(client) andopn! ∈

P(user). Under this schema, the following client is not well-typed, as he has not
activated the correct rôle to perform credit card requests:

r{| roleclient.signals〈r〉.served(z).z〈creditcard req〉.ccs〈signature〉.z〈stop〉 |}∅

Indeed, the type checking fails when applying the rule (T-O) to ac-
tion ccs〈signature〉 becausecc!

< P({client}). On the contrary, assum-
ing that rich client ∈ U(r1), client ∈ U(r2) and user ∈ U(r3), and
that {cashier req! , cashier get?, cashier!} ⊆ P(user) ∩ P(client) ∩
P(rich client), the following clients are well-typed:

r1{| rolerich client.signals〈r〉.served(z).z〈creditcard req〉.ccs〈signature〉.z〈stop〉 |}∅
r2{| roleclient.signals〈r〉.served(z).z〈withdrw req〉.wdrws〈sum〉.z〈stop〉 |}∅
r3{| roleuser.signals〈r〉.served(z).z〈openreq〉.opns〈personaldata〉.z〈stop〉 |}∅

Indeed, actionsccs〈signature〉, wdrws〈sum〉 andopns〈personaldata〉 are all enabled
by the rôles previously activated by users, viz.rich client, client anduser, re-
spectively. ⋄

We now establish the soundness of our type system in the standard way, i.e. by
proving subject reduction and type safety. The first result states that well-typedness
is preserved along reductions; the second result ensures that only systems abiding by
the RBAC schema are allowed (i.e., users only perform actions permitted by their duly
activated rôles). The proofs are in Appendix A.1.

Theorem 2.1 (Subject Reduction).If Γ ⊢SA and A7−→ A′, then Γ ⊢SA′.

To state type safety, we first need to formally define what situations our type system
wants to avoid. Thus, in Table 5, we introduce the notion ofrun-time errorsand prove
that they never arise in any well-typed system. Intuitively, run-time errors are generated
in three possible ways: whenever a session is equipped with rôles not assigned to
the user owning that session (see law (E-S)); whenever a rôle is activated (resp.,
deactivated) by a user (resp., by a session) not owning such arôle (see laws (E-Rˆ)
and (E-Y), resp.); whenever an input/output action is performed in a user session
where no privilege enabling such an action is provided by therôles active in that session
(see laws (E-I) and (E-O)).
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(E-S)
ρ * U(r)

r{|P |}ρ  (U;P)

(E-R̂)
R < U(r)

r{| role R.P |}ρ  (U;P)

(E-Y)
R < ρ

r{| yield R.P |}ρ  S

(E-I)

U(br ) = S S?
< P(ρ)

r{|b(x).P |}ρ  (U;P)

(E-O)

U(bs) = S S!
< P(ρ)

r{|bs〈n〉.P |}ρ  (U;P)

(E-P)
A S

A ‖ B S

(E-R)
A (U⊎{ar :R};P)

(νar :R)A (U;P)

(E-S)
A ≡ B B S

A S

Table 5: Run-time Errors

Theorem 2.2 (Type Safety).If A is well-typed inS, then A S cannot hold.

We conclude this section remarking that our type system is not powerful enough
to type all legal systems. For example, the systemr{|ar〈r〉 |}ρ is untypeable. Similarly,
we have no notion of subtyping; thus, a channel must always carry values exactly of
the same type. We now sketch how these deficiencies could be remedied, by following
standard techniques; full details are omitted, as they are completely well understood
and orthogonal w.r.t. the new ideas of our work.

Recursive Types In order to typer{|ar〈r〉 |}ρ, we would need a typing environmentΓ
assigning tor a typeT such thatT = ρ′[ar : R(T)], for someρ′ ⊇ ρ andR. Clearly, such
a typeT is not expressible with our type syntax, as it would require an infinite nesting
of type constructors, i.e.ρ′[ ar : R(ρ′[ar : R(· · · )]) ]. By following [8, 20, 24], this
problem can be solved by using equations between type expressions whose solutions
are infinite types, likeT above. To this aim, we assume a set of type variablesΞ, ranged
over byξ, and extend the syntax of value types as follows:

T ::= ρ[ã : C̃] | C | ξ | µξ.T

Intuitively, µξ.T stands for the solution of the (recursive) equationξ = T. However,
to avoid nonsensical expressions likeµξ.ξ, we impose the constraint that inµξ.T the
variableξ occursguardedin T, i.e. it occurs underneath at least one of the other type
constructors. Moreover, we only considerclosedtype expressions, i.e. expressions in
which each occurrence of a type variableξ is underneath aµξ. construct. By exploit-
ing these two assumptions, it can be standardly proved that the set of types is a c.p.o.
and, thus, the solution of an equationµξ.T is unique and can be obtained with a least
fixed-point construction.

If we now represent (the unfolding of) a (possibly recursive) type as its (possibly
infinite) parse tree, we can deem two typesequivalent, writtenT1 ≍ T2, if and only if
they represent the same tree. A lot of literature on type systems is devoted to compute
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≍ algorithmically (see, e.g., [2, 20]); for our purposes, it suffices to remember that≍ is
a congruence on types such thatµξ.T ≍ T[µξ.T/ξ].

If we now add the rule

(T-I-R)
Γ ⊢ n : T T ≍ T′

Γ ⊢ n : T′

to the type system of Table 4 and modify rule (T-I2) to be

Γ(r) ≍ ρ[b̃ : C̃, a : C, b̃′ : C̃′]

Γ ⊢ ar : C

it is easy to see thatΓ ⊢(U;P) r{|ar〈r〉 |}ρ , wheneverΓ(r) , µξ.ρ[ar : R(ξ)] andR! ∈ P(ρ).

Subtyping Subtyping is a preorder on types that can be thought of as inclusion be-
tween the set of the values of the types. IfT′ is subtype ofT, then a value of typeT′

is also of typeT; thus, any expression of typeT′ can always replace an expression of
typeT, without compromising well-typedness. In traditional programming languages,
this feature is used to reduce the size of a program, as the same function can be invoked
on parameters of different types, without writing a ‘copy’ of the same function for each
subtype. For example, assume, as usual, thatint is a subtype ofreal and that there is
a function to multiply two reals. Then, the same function canalso be used to multiply
two integers.

In our setting, we can define an ordering on types to allow the passage of values
of different (yet somehow related) types along the same channel. Wesketch here a
very basic form of subtyping inspired by [14]; for more elaborated settings see, e.g.,
[21, 24]. First, we need to define thesubtyping relation, ⊑, that is the least preorder on
types satisfying the following rules:

ρ ⊆ ρ′ h ≤ k ∀ i = 1, ..., h . Ci ⊑ C′i

ρ[a1 : C1, . . . , ah : Ch] ⊑ ρ′[a1 : C′1, . . . , ak : C′k]

R= R′ T ⊑ T′

R(T) ⊑ R′(T′)

Then, we need to update rule (T-O) to become

Γ ⊢ m: R(T) Γ ⊢ n: T′ T ⊑ T′ R!∈ P(ρ) Γ; ρ ⊢(U;P)
r P

Γ; ρ ⊢(U;P)
r m〈n〉.P

In this framework, we can type the system

r{|a(x).bx〈n〉 |}ρ ‖ s{|ar〈r1〉 |}ρ1
‖ t{|ar〈r2〉 |}ρ2

‖ r1{| b(y).c(z) |}ρ′ ‖ r2{|b(y).c′(z) |}ρ′

Indeed, it suffices to takeΓ such thatΓ(n) = T, Γ(r1) = ρ′[b : R(T), c : C], Γ(r2) =
ρ′[b : R(T), c′ : C′] andΓ(r) = ρ[ a : S(ρ′[b : R(T)]) ], for someRandS.

3 Behavioural Semantics

One of the main advantages of process calculi is the possibility of developing over
them behavioural equivalences, that abstract a term from its syntax and concentrate

15



on its functionalities. To this aim, we consider a standardly defined typed behavioural
congruence, viz.reduction barbed congruence[15]. This is a touchstone equivalence
defined in terms of the reduction relation and of a notion of observation, and then closed
under all possible system contexts. The reason to consider atyped congruence is that
only well-typed contexts guarantee a reduction behaviour abiding by the RBAC policy.

In its typed version, barbed congruence is tagged with an environmentΓ and RBAC
schemaS, to signify that it equates terms that are typeable underΓ andS. Moreover,
only contexts typeable underΓ andS are considered in the definition of the congruence.
Thus, following the style of [13], we writeΓ |=S A1 � A2 to mean thatΓ ⊢S Ai , for
i = 1, 2, and thatA1 andA2 exhibit the same behaviour in all environments ‘compatible’
with Γ andS.

We now formally define barbed congruence. As usual, we denotewith 7−→∗ the
reflexive and transitive closure of the reduction relation7−→.

Definition 3.1 (Barbs). Theobservation predicate A↓ η holds if

• eitherη = ar andA ≡ (ν b̃s: R̃)(A′ ‖ r{| a(x).P |}ρ) for ar
< b̃s,

• or η = ar andA ≡ (ν b̃s: R̃)(A′ ‖ s′{|ar〈n〉.P |}ρ) for ar
< b̃s.

The predicateA ⇓ η holds if there existsA′ such thatA 7−→∗ A′ andA′ ↓ η.

We remark that the chosen barbs only express the ability to interact over channels.
Indeed, observing rôle activations/deactivations is not reasonable, as no context can
determine whether a user performs arole/yield: these operations only affect the thread
performing them.

Definition 3.2 (Reduction Barbed Congruence).Reduction barbed congruenceis
the largest binary and symmetric typed relation over systems such that, wheneverΓ |=S

A1 � A2, it holds that

1. (Barb preservation) if A1 ↓ η, thenA2 ⇓ η

2. (Reduction closure) if A1 7−→ A′1, then there exists a systemA′2 such thatA2 7−→
∗

A′2 andΓ |=S A′1 � A′2
3. (Contextuality) letS be (U;P); then,

(a) for all P′ and ñ: T̃ such that ñ ∩ dom(U) = ∅, it holds that
Γ, ñ: T̃ |=(U∪ ñ: T̃;P∪P′) A1 � A2

(b) for all systemsB such thatΓ ⊢S B, it holds thatΓ |=S A1 ‖ B � A2 ‖ B

(c) for all ar : R(T) such thatΓ = Γ′, ar : R(T) andU = U′ ⊎ {ar : R}, it holds
thatΓ′ |=(U′;P) (νar :R)A1 � (νar :R)A2.

The less intuitive condition of the above definition is contextuality. Essentially,
it requires that the equated systemsA1 and A2 must be equivalent in any execution
context. An execution context can affect the behaviour of such systems in three ways:
it can extend the RBAC schema, thus enabling more functionalities ofA1 andA2; it can
provide more parallel components that, by interacting withA1 andA2, could change
their behaviours; it can hide channels and, hence, delete observable behaviours ofA1

andA2. These aspects are handled by the sub-conditions (a), (b) and (c), respectively.
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The problem with this definition of barbed congruence is thatit must be proved
by analysing all the system contexts, which makes it hardly tractable. In Appendix B,
we provide a more tractable proof-technique for� . Since this task requires several
technicalities taken from the field of process calculi, we leave it to the interested reader;
the other readers should only know that tools for establishing barbed congruence in a
simpler way do exist.

To conclude, we now list a few algebraic laws that illustratesome key features of
our framework. In what follows, we fix an RBAC schemaS and a suitable typing
environmentΓ. The first equation states that a terminated session of a userdoes not
affect the evolution of a system. Indeed, it holds that

Γ |=S r{| nil |}ρ � 0.

This is different from some distributed calculi, like e.g. the Ambient calculus [7] or
K [9], where the presence of a place for computations is relevant. Moreover, dif-
ferently from several distributed languages, the user performing anoutputaction is
irrelevant; the only relevant aspect is the set of permissions activated when performing
the action. This is summarised in the following law:

Γ |=S r{| bs〈n〉 |}ρ � t{| bs〈n〉 |}ρ.

A similar law holds for theyield action. Notice that only for these two actions the
identity of the user performing them is irrelevant. For example, relocating an input
action breaks the equivalence between processes, as input channels implicitly refer the
user owning them. Indeed, we have that

Γ |=S r{| a(x).P |}ρ 6� t{| a(x).P |}ρ.

Similarly, it is possible to move arole R prefix between two users only whenR is
assigned to both of them.

By exploiting these observations, we develop in the following example a relocation
procedure to establish whether a process can be moved from a user to another. This
procedure can be exploited to reduce the number of users in a system, while maintain-
ing the overall system behaviour.

Example 4. We now give simple procedure to infer judgements of the formΓ |=S

r{|P |}ρ � s{|P |}ρ. This judgement states that processP can be indifferently executed
by r ands without altering its observable functionalities. Thus, sessionr{|P |}ρ can be
replaced bys{|P |}ρ. If no other session ofr is left in the system, thenr itself has been
removed.

The procedure is very simple. Try to infer bothΓ; ρ ⊢Sr P andΓ; ρ ⊢Ss P without
using rules (T-I) and (T-R). If you succeed, thenΓ |=S r{|P |}ρ � s{|P |}ρ,
otherwise Γ |=S r{|P |}ρ 6� s{|P |}ρ. We cannot use rule (T-I) because, as we
have already discussed, we cannot relocate processes containing input prefixes. A
similar problem arises also for restriction (thus, we cannot use rule (T-R)). Indeed,
the interplay between user names, restricted channel namesand restricted channels is
subtle. For example, consider the systemP , (νa : R)ar〈as〉, try to run it in usersr, s
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andt, and put the resulting session in an arbitrary system context. In the first case,P
cannot be engaged in any reduction, as it emits a value on a channel known only byP
itself; in the second case,P sends a bound value; in the third case,P sends a free value.
Thus, relocating processes with restrictions breaks equivalences, in general.

It can now be easily proved that this procedure is a sound and complete proof-
technique for judgementΓ |=S r{|P |}ρ � s{|P |}ρ, wheneverP does not contain restric-
tions and input prefixes. ⋄

4 Adding Rôle Activations and Deactivations

In this section, we show how our framework can be adapted to encompass more ad-
vanced features. Usually, the task of properly puttingrole/yield operations within
a system is tedious and error-prone; moreover, it assumes a full knowledge of the
RBAC schema at programming time. We now describe a way to add rôle activa-
tions/deactivations within a system in such a way that the resulting system can be exe-
cuted under any given schema (U;P), whenever possible, i.e., when users are allowed
to activate the rôles required by the actions they are willing to perform.

A first technique rewrites a systemA without actionsrole/yield by activating at
the beginning of each session of a generic userr all the rôles inU(r). Intuitively,
the refined system contains all the legal behaviours ofA with respect to the RBAC
schema given. However, the fact that all the rôles assignedto a user are always activated
violates a basilar RBAC design principle: a rôle should be active only when needed.

A second naı̈ve algorithm replaces each input/output prefixα.Q occurring in each
session of a generic userr with role R.α.yield R.Q, where rôleR belongs toU(r) and
enables actionα. The algorithm is very simple but it presents several drawbacks: it al-
ways adds a pair of auxiliary actionsrole/yield for every prefixα occurring in the pro-
cess, although it could be that rôleRenables also the prefixes following inQ. Further-
more, when rewritingα.Q, it is possible that several rôles enableα: in this case, a thor-
ough choice of which rôle to activate may minimise the number of role/yield actions.

We now present an algorithm that adds a smaller number of actionsrole/yield. The
algorithm works on a tree-representation of the process in each session of a generic user
r: first, the tree is partitioned into subtrees by collecting together nodes (i.e., actions)
which require the same rôle in order to be executed correctly; then arole R auxiliary
action is added before the root of each subtree requiring rôle R, and dually ayield R
action is added after the leaf of each such subtree.

More specifically, a processP running inside a session of userr is translated into
an annotated binary tree, where nodes represent process operators and each node is
annotated with the set of rôles whose permissions enable the action associated with the
node (if the node is not associated with an input/output action, any rôle available for
userr will enable it). The tree is expressed in terms of a tuplet = (V,E, rt, φ), where
V is a finite set ofnodes, E ⊆ V × V is the set of theedges(i.e., (v, v′) ∈ E iff there is
an edge fromv to v′), rt ∈ V is theroot of the tree, andφ : V −→ 2R is the assignment
of rôles to nodes used to annotate each node. The annotated tree associated with a
finite processP (without role/yield actions) running inside a session of userr may be
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generated by the function Tr
Γ;P(P) described below, with (U;P) a RBAC schema

andΓ a typing environment respectingU. In the definition, we writeΓ{r} for the setρ
such thatΓ ⊢ r : ρ[ã : C̃]; thus,R ∈ Γ{r} is a shortcut forΓ ⊢ r : ρ[ã : C̃] ∧ R ∈ ρ.

Tr
Γ;P(nil ) , ({v}, ∅, v, {v 7→ Γ{r}})

Tr
Γ;P(a(x).P) , (V ∪ {v},E ∪ {(v, rt)}, v, φ ∪ {v 7→ ρ})

where Tr
Γ,x:T;P(P) = (V,E, rt, φ), v < V, Γ ⊢ ar : S(T)

andρ = {R ∈ Γ{r} : S? ∈ P(R)}

Tr
Γ;P(m〈n〉.P) , (V ∪ {v},E ∪ {(v, rt)}, v, φ ∪ {v 7→ ρ})

where Tr
Γ;P(P) = (V,E, rt, φ), v < V, Γ ⊢ ar : S(T),

Γ ⊢ n : T andρ = {R ∈ Γ{r} : S! ∈ P(R)}

Tr
Γ;P(P1 | P2) , (V1 ∪ V2 ∪ {v},E1 ∪ E2 ∪ {(v, rt1), (v, rt2)}, v,

φ1 ∪ φ2 ∪ {v 7→ Γ{r}})
where Tr

Γ;P(Pi) = (Vi ,Ei, rt i , φi) for i ∈ {1, 2},
V1 ∩ V2 = ∅ andv < V1 ∪ V2

Tr
Γ;P((νa : R)P) , (V ∪ {v},E ∪ {(v, rt)}, v, φ ∪ {v 7→ Γ{r}})

where Tr
Γ,ar :R(T);P(P) = (V,E, rt, φ), v < V

andΓ, ar : R(T); Γ{r} ⊢(U;P)
r P

Tr
Γ;P([m= n]P) , (V ∪ {v},E ∪ {(v, rt)}, v, φ ∪ {v 7→ Γ{r}})

where Tr
Γ;P(P) = (V,E, rt, φ) andv < V

Example 5. Let us consider a system consisting of a single userr running the following
process

P = a(x).([x = br ]ar〈x〉 | [x = s](νc : S)(ar〈x〉 | as〈cr〉))

and the RBAC schema (U;P) defined as

U : r 7→ {R1,R2} P : R1 7→ {R! ,R?}

ar 7→ R R2 7→ {S!}

as 7→ S

A pictorial representation of TrU;P(P) is given in Figure 1, where each node is ex-
plicitly named (the name is shown on the left-hand side of thenode), the process oper-
ator associated with the node is written within the node, andthe annotation (i.e., the set
of rôles associated with the node) is depicted on the right-hand side of the node. Notice
that in this case it suffices to parameterise TrU;P only with a rôles-to-users assign-
mentU instead of a (more complex) typing environmentΓ (respectingU) because no
received value is used as an output channel. ⋄

Once processP has been translated into an annotated binary tree, the problem of
finding a minimal refinement ofP (in terms of the number of actionsrole/yield added)
for userr under the schema (U;P) can be reformulated as the problem of finding a
partition of nodes such that:

• the partition generates the minimum number of blocks;
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n8         |         {R1 , R2 } 

n1       a(x)       {R1 } 

n2         |         {R1 , R2 } 

n3     [x=br]    {R1 , R2 } 

n5       a
rx       {R1 } 

n4     [x=s]     {R1 , R2 } 

n6     (νc:S)     {R1 , R2 } 

n7       nil       {R1 , R2 } 

n9        a
rx       { R1 } n10       a

scr      {R2 } 

n11        nil       {R1 , R2 } n12        nil       {R1 , R2 } 

Figure 1: The annotated binary tree for processP from Example 5

• each block is a subtree2;

• all the nodesv belonging to the same block have in common one of their anno-
tating rôles, i.e., there existsR ∈ R such thatR ∈ φ(v) for all v in the block.

We call such a problem theminimal partition problem.
We now describe a way to find a minimal partition oft and assign to each nodev

a label taken fromφ(v). To this aim, for every nodev and rôleR, the numberm[v,R]
denotes the minimum number of blocks that can be obtained in the subtree rooted inv
whenv is labelled withR; we letm[v,R] = ∞ if R < φ(v). An algorithm for calculating
the quantitym[v,R] is given in Table 6. Intuitively, we work in a bottom-up fashion
on the tree. When we consider a leafv and a rôleR that authorises it, we can useR to
generate a singleton tree (hence,m[v,R] = 1); if, on the other hand,Rcannot authorise
the (action associated with) the node, then it can be ignoredbecause it cannot induce
any block in the partition (hence,m[v,R] = ∞). When we consider an internal nodev
with just one childv′ and a rôleR suitable forv, we can either try to includev in the

2Here, we use the termsubtreeto refer any connected subgraph of the given tree.
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Visit t in postorder

When visiting the nodev do

• if v is a leaf then

m[v,R] ≔

{
∞ if R < φ(v)
1 otherwise

• if v has only one child (and let it bev′) then

m[v,R] ≔



∞ if R < φ(v)

min{m[v′,R] ,
minS,R{m[v′,S]} + 1 } otherwise

• if v has childrenv1 andv2 then

m[v,R] ≔



∞ if R < φ(v)

min{m[v1,R] +m[v2,R] − 1 ,
minS,R{m[v1,S]} +minS,R{m[v2,S]} + 1
m[v1,R] +minS,R{m[v2,S]} ,
minS,R{m[v1,S]} +m[v2,R] } otherwise

Table 6: Computing functionm[v,R]

subtree ofv′ induced byR (hence,m[v,R] = m[v′,R]), or we can put it in a new subtree
(that can possibly grow up when analysingv’s ancestors). In the latter case, the new
subtree is induced byR, while the subtree forv′ can be induced by any other rôleS;
thus,m[v,R] = 1+ minS,R{m[v′,S]}. Finally, the case for a nodev with two children
is similar, but it requires to examine four possible situations (according to whetherv is
included in both, in none, or in just one of the subtrees induced byR for v1 andv2).

Now, we can compute, for every nodev, a rôle(v) which represents the rôle
common to all the nodes in the block whichv belongs to. To this aim, we assume a
standard function(v) returning the father of nodev in t (if any).

Visit t in preorder
When visiting the nodev do

mv ≔ {R : m[v,R] = minS∈ φ(v){m[v,S] } }
if v = rt or ((v)) < mv

then(v) ≔ R, whereR ∈ mv

else(v) ≔ ((v))

Notice that the choice ofR ∈ mv (in the ‘then’ branch) is totally arbitrary: any such
R can be chosen, sincemv only contains rôles that minimisem[v, ]. We can now
formulate the soundness of the algorithm presented so far; asketch of the proof is in
Appendix A.2.

Proposition 4.1. Function  can be used to induce a partition of t’s nodes in
subtrees satisfying the requirements of the minimal partition. Moreover, the overall
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procedure takes O(|V| × K2), where K is the size of the largest set annotating a node of
the tree.

A solution of the original problem of properly putting actions role/yield in a pro-
cessP can be then extracted easily fromt = Tr

Γ;P(P) and from the associated func-
tion . Each block of the partition induced by represents the set of process
operators inP that are under the influence of the rôle labelling the block.If the tree
consists of a single node, thenP must benil and no auxiliary action is needed. Oth-
erwise, the annotated (and partitioned) tree can be visitedin preorder: depending on
the value of(v) a pair ofrole/yield auxiliary actions are either added or not. In
particular, the operator corresponding to the root is prefixed in P with role R, where
R = (rt). Then, no other actions are added until(v) , ((v)). In
this case, the operator associated with nodev is prefixed withyield R.role S, where
R = ((v)) andS = (v). We denote the process resulting from this
procedure as Rr

Γ;P(P).

Example 6. Consider again Example 5 and the processP running inside userr:

P = a(x).([x = br ]ar〈x〉 | [x = s](νc : S)(ar〈x〉 | as〈cr〉))

In this case, we have that functionm[v,R] is

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

R1 2 2 1 2 1 2 1 2 1 ∞ 1 1
R2 ∞ 3 2 2 ∞ 2 1 2 ∞ 1 1 1

Thus, a minimal partition of TrU;P(P) is given by the following two blocks

b1 = {n1, n2, n3, n4, n5, n6, n7, n8, n9, n11} , b2 = {n10, n12},

from which we can extract the refined process

Rr
Γ;P(P) = role R1.a(x).( [x = br ]ar〈x〉 |

[x = s](νc : S)(ar〈x〉 | yield R1.role R2.as〈cr〉) )
⋄

The correctness of the approach can be stated as follows; some details on the proof
are in Appendix A.2. Recall from the definition of the type system thatr can runP if
Γ;U(r) ⊢(U;P)

r P.

Proposition 4.2. LetS = (U;P) be a RBAC schema and P be a finite process without
role/yield to be run by user r. Then

1. Γ;U(r) ⊢Sr P implies thatRr
Γ;P(P) is defined;

2. symmetrically,Γ respectsU andRr
Γ;P(P) = P′ imply thatΓ; ∅ ⊢Sr P′.
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Intuitively, the first implication ensures that every processP that can be run byr under
the schemaS can be properly annotated with actionsrole andyield. The second
implication states that the result of the annotation procedure we have just presented is a
well-typed process forr in the schema given. Notice that Rr

Γ;P(P) is the minimal
typeable process obtained fromP by adding actionsrole/yield: this is an easy corollary
of Propositions 4.1 and 4.2(2).

Finally, by Proposition 4.1, the overall procedure is linear in the size ofP (i.e., in
the number of its operators). Indeed,|V| is proportional to the size ofP andU(r) is
an upper bound to the sets annotating the nodes of the tree (usually, |U(r)| is a small
constant). This is the best asymptotic performance we couldaim at, since we at least
have to parse allP to properly add actionsrole/yield.

Least Privilege. Example 5 can be easily adapted to enforce theleast privilegeprop-
erty [22, 26]. This is a well-known property requiring that every program and every
user of the system operate using the least set of privileges necessary to complete their
job.3 Primarily, this principle limits the damage that can resultfrom an accident or er-
ror. It also reduces the number of potential interactions among privileged programs to
the minimum for correct operation, so that unintentional, unwanted, or improper uses
of privileges are less likely to occur.

In our setting, we can say that a userr satisfies this property w.r.t. a schema
(U;P) while running inA if, wheneverA 7−→∗ (νãr : R̃)(A′ ‖ r{|α.P |}ρ), it holds
that ρ is a minimal (w.r.t. |P(·)|, i.e. the cardinality of the set of privileges asso-
ciated to · ) set of rôles assignable tor that enablesα. The approach presented
in this section can be easily adapted to encompass the least privilege. The only
thing we need to modify in the algorithm given above is the definition of function
φ when building the tree for a process prefixed by actionα. Let v be the node
associated toα. By letting enable(v) = {R ∈ Γ{r} : P(R) enable actionα}, we let
φ(v) = {R ∈ enable(v) : |P(R)| = minS∈enable(v){ |P(S)| } }.

Example 7. Consider a userr that connects to a mail server to read his e-
mail and changes his password before quitting. Suppose that(U;P) is such that
{user, admin} ⊆ U(r), U(logine−server) = login, U(read mailr ) = read mail,
U(change pwde−server) = change pwd, {login! , read mail?} ⊆ P(user) and
P(admin) = P(user) ∪ {change pwd!}. Remarkably, the rôleadmin givesr the per-
mission to change his password. The following two systems

A1 = r{| logine−server〈pwd〉.read mail(x).changepwde−server〈pwd′〉 |}{admin}
A2 = r{| logine−server〈pwd〉.read mail(x).roleadmin.

changepwde−server〈pwd′〉.yieldadmin |}{user}

are both well-typed in (U,P). However, they differ in the auxiliary actions used: sys-
temA2 satisfies the least-privilege requirement, since at each execution step userr owns

3To be precise, one should use the termminimal privilegeinstead ofleast privilege. Indeed, imagine that
you have only two rôles,R1 andR2, such thatR1 enables actions{R?,S!} andR2 enables actions{R?,S?};
then, it is unclear which one would be the rôle giving the least privilege to execute an input from a chan-
nel of rôleR. Nevertheless, the current terminology in computer security uses the word “least” instead of
“minimal”; we adhere to this trend.
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a minimal set of permissions required to execute the action,while A1 does not, since it
activated the rôleadmin also to login and read mails. ⋄

5 Possible Extensions of the Core RBAC Model

There is a wide spectrum of RBAC models differing on the operations supported. For
example, [10, 23] propose various extensions of the core RBAC96 model we have
used up to now, that inloc. cit. is referred to asRBAC0. In particular, two variants
are proposed:RBAC1, adding rôle hierarchies, andRBAC2, introducing constraints to
permissions a user can exploit. In this section, we describehow these extensions can
be easily expressed also in our framework.

5.1 Hierarchical RBAC

Hierarchies are a natural means for structuring rôles to reflect the organisational struc-
ture of an enterprise. A hierarchy is a partial order defininga seniority relation between
rôles, whereby senior rôles acquire the permissions of their juniors, and junior rôles ac-
quire the users authorised for their senior rôles. For example, in a health-care scenario,
a rôlecardiologist is hierarchically superior to the rôledoctor, thus the cardiol-
ogist should have all the permissions of the doctor as well, and all the users that are
authorised for thecardiologist rôle should be authorised also for thedoctor rôle.
This approach can increase the administrative efficiency of the enterprise: rather than
specifying all the permissions of the junior rôle for the senior rôle, the junior rôle is
specified as a permission of the senior rôle.

Our framework can be easily extended to express rôle hierarchies by adding a third
component�, a partial order onR, to the RBAC schema which becomes a triplet
(U;P;�). More specifically, whenR � S, R is a junior rôle of S or, similarly, S
is asenior rôleof R. Once a hierarchical RBAC schema (U;P;�) has been fixed, we
can define the set of junior rôles with respect to a given rôleR, or to a given set of rôles
ρ, as jnr(R) , {S : S � R} and jnr(ρ) ,

⋃
R∈ ρ jnr(R). Then, we may re-defineP(ρ)

asP(ρ) ,
⋃

R∈ jnr(ρ)P(R) and adapt both the type system and the barbed congruence
take into account the hierarchy relation. In particular, inDefinition 3.3.3(a) we can also
extend the partial order� with all �′ such that� ∪ �′ is still a partial order. These
modifications suffice to let the theory presented in Sections 2 and 3 properly work.

Example 8. Consider the health-care scenario again. In a hospital there is often a strict
hierarchy establishing which operations are permitted depending on the position of the
different employees. For example, the rôlespecialist usually contains the rôles
doctor andintern. This means that users activating rôlespecialist are implicitly
associated also with the permissions associated with thedoctor andintern rôles,
without the administrator having to explicitly list thedoctor andintern permissions.
This is an example ofmultiple inheritance, which provides us with the ability to inherit
permissions from two or more rôle sources. Indeed, a rôle is composed from multiple
subordinate rôles with fewer permissions as in the organisation and business structure
which these rôles are intended to represent.
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This hierarchy can be expressed by havingintern � specialist anddoctor �
specialist. Moreover, the rôlescardiologist andradiologist could each con-
tain thespecialist rôle. In this case, we also letspecialist � cardiologist
and specialist � radiologist, leading to, e.g., jnr(radiologist) =

{radiologist, specialist, doctor, intern}. Now let

U(prescr aspirinpatient) = prescr aspirin

U(use XRayshospital) = use XRays

prescribe aspirin! ∈ P(doctor)
use XRays! ∈ P(radiologist)

then the user

r{| roleradiologist. use XRayshospital〈patient〉. prescr aspirinpatient〈posology〉 |}∅

is typeable by only assuming thatU(r) = {radiologist}. ⋄

5.2 Constrained RBAC

The core RBAC model can be further extended by requiring different kinds of con-
straints to be satisfied before allowing a user to activate a rôle, or when defining the
RBAC schema. According to [11], there are two possible formsof constraints:static
anddynamic. The first ones deal with the permissions-to-rôles and withthe rôles-to-
users assignments. For example, it might be required that a user cannot be assigned
some specified rôles at the same time, or that the same permission is not assigned
to different rôles. These constraints are usually enforced during the definition of the
RBAC schema [1, 16, 17, 25]. On the contrary, dynamic constraints deal with user
sessions. By exploiting this form of constraints, it is possible, e.g., to assign to the
same user two conflicting rôles, although requiring that these rôles are never activated
simultaneously (for most practical purposes, this kind of requirement suffices).

We can easily extend our framework to deal in a uniform way also with different
dynamic constraints. In this case, another componentC is added to the RBAC schema.
C is a finite set of binary predicates (that in this paper we assume to be first-order logic
formulae built up over the atomsR) relating a rôle and a set of rôles. Given a con-
strained RBAC schema (U;P;C), we letC(R, ρ) be

∧
constr∈C constr(R, ρ). As for the

hierarchy extension, both the type system and the barbed congruence must be parame-
terised also with respect toC. Moreover, in rule (T-Rˆ), the premiseC(R, ρ) must be
added. With respect to Definition 3.3.3(a), we want to remarkthat extendingC usually
reduces the set of possible evolutions. Thus, instead of requiring that the equivalence
holds in every extended schema, we now require that the equivalence is preserved when
making the schema more liberal, i.e. whenreducingthe set of constraints.

By adapting the logic formulae inC to different situations, we are able to express
the most typical examples of constraints:

1. Mutual exclusion:the same user can activate simultaneously at most one rôle in
a mutually exclusive set. For example, if rôlesR andS are mutually exclusive,
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R cannot be activated in a user session where rôleS is already active, and vice-
versa. This can be formalised as

constrR⊕S(R′, ρ) , ((R′ = R)⇒ (S < ρ)) ∧ ((R′ = S)⇒ (R< ρ))

2. Prerequisite rôle:a user can activate rôleR only if he has already activated rôle
S. This can be written as

constrS→R(R′, ρ) , (R′ = R)⇒ (S ∈ ρ)

3. Cardinality constraints (1):at mostn rôles can be activated in each user session.
This can be expressed as

constr|·| ≤ n(R, ρ) , | ρ ∪ {R} | ≤ n

4. Cardinality constraints (2):each user can own at mostn permissions simultane-
ously. This can be enforced by requiring that

constr|P(·)| ≤ n(R, ρ) , |P({R} ∪ ρ)| ≤ n

Example 9 (Prerequisite r̂ole). The concept ofprerequisite rôleis based on compe-
tency: in some circumstances, one may want to require a rôleto be activated only by
a user already playing a certain rôle. For example, a commonfeature of a bank policy
is to require an authentication phase to identify clients before any sensible operation,
like money withdrawal. In practice, this amounts to ask for avalid identity document
or a secret code/password. In our refined framework, this scenario can be modelled by
letting the RBAC schema (U;P;C) be such that{client, authenticated} ∈ U(r),
U(wdrwbank) = wdrw, wdrw! ∈ P(client) andconstrauthenticated→client ∈ C. Hence,
client

r{| roleclient.wdrwbank〈amount〉 |}∅

cannot be typed, as the activation of rôleclient is forbidden byC, while client

r{| roleauthenticated.roleclient.wdrwbank〈amount〉 |}∅

can be typed. ⋄

Example 10 (Mutual Exclusion). For the sake of fairness, sometimes it is desirable
to control the distribution of sensible permissions; e.g.,a user willing to perform a
sensible operation should be different from the user in charge of controlling the legality
of such an operation. Consider a scenario where some scientists submit a paper to a
journal. Clearly, the reviewers of that paper cannot be chosen among the authors of
the paper itself. This requirement can be modelled in our framework by having two
rôles,paperP : author andpaperP : reviewer, such thatC contains the constraint
constrpaperP:author⊕ paperP:reviewer. ⋄
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6 Related Work

To the best of our knowledge, no previous study building on process-calculi has ever
been conducted on RBAC. A number of papers have instead dealtwith the formal spec-
ification and verification of RBAC schemata. In [16, 25] formal methods are used only
to verify the correctness of the schema definition but not of the whole system. In [25],
the ALLOY language is used to detect possible conflicts in RBAC schemata supporting
simultaneously delegation of authority and separation of duties. A constraint analyser
allows the schema validation to be computed automatically.In [16, 17], the authors use
a graph transformation which combines an intuitive visual description of the RBAC
schema with solid semantical foundations. In [1], Ahn et al.introduce a formal lan-
guage for the specification of more sophisticated rôle-based authorisation constraints,
such as prohibition and obligation constraints. These approaches are complementary
to ours: they can be integrated with our technique in order toverify the consistency of
a schemaS, but they do not give any hint about the correct execution of asystem as
our method does.

In [3], Bertino et al. develop a logical framework for reasoning about access control
models. The framework is general enough to model discretionary, mandatory and rôle-
based access control models. Such a framework is useful for comparing the expressive
power of the models, but it cannot be used to verify the correct execution of a system
under a given schema.

Probably, the most related work, although not aiming at studying RBAC systems,
is [6], insofar as rôles can be understood as (privilege) groups.Groupsare introduced in
loc. cit. as types for channels, and used to limit their visibility. A type system ensures
that channels belonging to a fresh group can be only used by processes within the
initial scope of the group. Thus, processes can access channels according to their
physical distribution (with respect to group restrictions). In our work this feature is
modified so that not only the place where the process runs (i.e., the user running the
process) but also its execution history (i.e., the user session where the process runs and
the associated activations/deactivations of rôles) is relevant to execute an action. E.g.,
outputs overar of groupRcan be executed only by processes whose userr is such that
R! ∈ P(U(r)); moreover, such an action must be enabled by at least one ofthe rôles
active in r ’s session. The set of such sessions changes according to thecomputation
and, thus, the processes enabled to access a channel change dynamically. In this sense,
this work can be seen as a calculus ofdynamicgroups.
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A Technical Proofs

In this section, we give details on the proofs omitted from the body of the paper.

A.1 Proofs of Section 2

To prove subject reduction, we first need three lemmata, thatare standard results for a
type system. The first one states that names can be replaced with other names of the
same type. The second one states that enlarging the assumptions in a type judgement
does not compromise the inference of the judgement itself. Finally, the third result
states that well-typedness is an invariant of structural congruence. To prove the latter,
we formally define asystem context, as≡ is closed under all such contexts. Formally,
a contextC[·] is a system with an occurrence of a ‘hole’ to be filled with anysystemA,
thus yieldingC[A]. Formally,

C[·] ::= [·] | C[·] ‖ B | (νar :R)C[·]

Lemma A.1 (Substitution). If Γ, x : T, Γ′; ρ ⊢Sr P andΓ ⊢ n : T, thenΓ, Γ′; ρ ⊢Sr
P[n/x].

Proof. The proof is by induction on the depth of the inference of the type judgement
Γ, x : T, Γ′; ρ ⊢Sr P. The proof is quite standard and faithfully rephrases the correspond-
ing result for the pureπ-calculus; thus, we omit it. �

Lemma A.2 (Weakening). If Γ ⊢(U;P) A thenΓ, ñ : T̃ ⊢(U∪ñ:T̃;P∪P′)A for all P′ and
ñ : T̃ such that̃n∩ dom(U) = ∅.

Proof. The proof is by induction on the depth of the inference forΓ ⊢(U;P)A. �

Lemma A.3. If Γ ⊢S A and A≡ B, thenΓ ⊢S B.

Proof. By mutual induction on the depth of the inferences forA ≡ B andB ≡ A. Let
us consider howA ≡ B has been inferred; the case forB ≡ A is similar. The base
case covers the axioms in Table 3; all the cases are simple. The inductive steps for
symmetry and transitivity follow straightforwardly. For context closure, letA , C[A1]
andB , C[B1], for someA1 ≡ B1. We now work by induction on the structure ofC[·].
The base case is whenC[·] , [·] and is trivial. For the inductive case, let us reason by
case analysis on the outermost operator ofC[·]. If C[·] , D[·] ‖ Ā, then, by using (T-
SP), we know by hypothesis thatΓ ⊢SD[A1] andΓ ⊢S Ā. By induction hypothesis,
asD[·] is smaller thanC[·], it holds thatΓ ⊢SD[B1]; then, by (T-SP), Γ ⊢S B. The
case forC[·] , (νar :R)D[·] is similar, but relies on (T-SR). �

Theorem 2.1(Subject Reduction). If Γ ⊢SA and A7−→ A′, thenΓ ⊢SA′.

Proof. By induction on the depth of the derivation ofA 7−→ A′.
Base Step:By case analysis on the axioms of the second part of Table 3.
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(R-C) By hypothesis, we have thatΓ ⊢S r{|a(x).P |}ρ ‖ s{| ar〈n〉.Q |}ρ′ . Due to the
form of the system involved, (T-SP) is the last rule applied to deduce the
type judgement, hence we also have thatΓ ⊢S r{|a(x).P |}ρ andΓ ⊢S s{| ar〈n〉.Q |}ρ′ .
The latter two judgements must have been derived by using (T-S), with
Γ ⊢ r : ρ′′[ã : C̃] and ρ ⊆ ρ′′, Γ ⊢ s : ρ′′′[ã′ : C̃′] and ρ′ ⊆ ρ′′′,
Γ; ρ ⊢Sr a(x).P andΓ; ρ′ ⊢Ss ar〈n〉.Q. JudgementΓ; ρ ⊢Sr a(x).P must have been
derived by using (T-I), with Γ ⊢ ar : R(T) andΓ, x : T; ρ ⊢Sr P, whereas
judgementΓ; ρ′ ⊢Ss ar〈n〉.Q must have been derived by using (T-O), with
Γ ⊢ ar : R(T), Γ ⊢ n : T, andΓ; ρ′ ⊢Ss Q. By Lemma A.1, we get that
Γ; ρ ⊢Sr P[n/x]. By a double application of (T-S) and of (T-SP), we
get thatΓ ⊢P r{|P[n/x] |}ρ ‖ s{|Q |}ρ′ , as required.

(R-R) By hypothesis, we have thatΓ ⊢S r{| role R.P |}ρ. Due to the form of the
system involved, (T-S) is the last rule applied to deduce the type judge-
ment, hence we also have thatΓ ⊢ r : ρ′[ã : C̃], ρ ⊆ ρ′ andΓ; ρ ⊢Sr role R.P.
JudgementΓ ⊢ r : ρ′[ã : C̃] must have been derived by using (T-I1), with
Γ(r) = ρ′[ã : C̃]; judgementΓ; ρ ⊢Sr role R.P has been derived by using (T-
R̂), with Γ ⊢ r : ρ′[ã′ : C̃′], Γ; ρ ∪ {R} ⊢Sr P andR ∈ ρ′′. Then,ρ ∪ {R} ⊆ ρ′;
by rule (T-S), we can deriveΓ ⊢S r{|P |}ρ∪{R}, as required.

(R-Y) By hypothesis, we have thatΓ ⊢S r{| yield R.P |}ρ. Due to the form of the sys-
tem involved, (T-S) is the last rule applied to deduce the type judgement,
hence we also have thatΓ ⊢ r : ρ′[ã : C̃], Γ; ρ ⊢Sr yield R.P andρ ⊆ ρ′. Judge-
mentΓ; ρ ⊢Sr yield R.P has been derived by using (T-Y), with Γ; ρ \ {R} ⊢Sr P
and R ∈ ρ. By applying rule (T-S) to Γ; ρ \ {R} ⊢Sr P, we can derive
Γ ⊢S r{|P |}ρ\{R}, as required.

Inductive Step: By case analysis of the last applied operational rule of the second part
of Table 3.

(R-R) By definition,A , (νar :R)B andA′ , (νar :R)B′, whereB 7−→ B′; moreover,
by hypothesis, we have thatΓ ⊢S (νar : R)B. By rule (T-SR), we have that
Γ, ar: R(T) ⊢S B, for someT. By induction hypothesis,Γ, ar: R(T) ⊢S B′ that, by
rule (T-SR), impliesΓ ⊢SA′.

(R-P) By hypothesis,A , A1 ‖ B is well-typed; hence,A1 andB are well-typed too.
Moreover,A1 7−→ A′1 and the induction hypothesis imply thatA′1 is well-typed;
thus,A′1 ‖ B , A′ is well-typed too.

(R-S) We now have thatA ≡ A1 7−→ A2 ≡ A′. By well-typedness ofA and
Lemma A.3, it follows thatA1 is well-typed; by induction hypothesis, it follows
thatA2 is well-typed and, again by Lemma A.3,A′ is well-typed. �

Theorem 2.2(Type Safety). If A is well-typed inS, then A S cannot hold.

Proof. We prove the contrapositive, i.e.A  S implies thatA cannot be well-typed
in S; this is done by induction on the depth of the inference forA  S. Let S be
(U;P). For the base case, we consider only one sample, namely whenthe judgement

29



has been inferred via (E-I); the other cases are similar. By definition,A is r{| b(x).P |}ρ
andS?

< P(ρ), for S = U(br ). Thus, for anyΓ respectingU, it cannot hold that
Γ; ρ ⊢Sr b(x).P: indeed, the premises of rule (T-I) (that is the only applicable to
infer the judgement) cannot be satisfied.

For the inductive step, we only consider the case when the last rule used is (E-R);
the cases for (E-P) and (E-S) are simpler (the latter one relies on Lemma A.3).
By definition,A is (νar : R)B andB (U⊎{ar :R};P). By induction hypothesis,B cannot
be well-typed in (U ⊎ {ar : R};P), i.e. for everyΓ respectingU ⊎ {ar : R}, judgement
Γ ⊢(U⊎{a

r :R};P) B cannot be inferred. SinceΓ respectsU ⊎ {ar : R}, it must be that
Γ = Γ′, ar : R; this easily implies that there is noΓ′ such thatΓ′ ⊢S (νar : R)B, as
desired. �

A.2 Proofs of Section 4

Proposition 4.1. Function can be used to induce a partition of t’s nodes in sub-
trees satisfying the requirements of the minimal partition. Moreover, the overall proce-
dure takes O(|V| × K2), where K is the size of the largest set annotating a node of the
tree.

Proof. Having computed function(·), we proceed in the following way:

Visit t in preorder
When visiting the nodev do

if v = rt or (v) , ((v))
then addv in a new block
else addv in the block of(v)

It should be clear that the output of this procedure is a partition of V (no block is empty
and each node is inserted in exactly one block); we call it thepartition induced by
(·). We have to prove that this partition satisfies the following conditions: (a)
each block is a subtree oft; (b) each blockβ is such that∃R∈ R ∀v ∈ β : R ∈ φ(v) (in
this case, we callR thepivot for β); (c) it has the minimum number of blocks satisfying
the previous two properties.

Condition (a) is proved by induction on the size of the generic blockβ. The base
case is forβ = {v} and is trivial, as a single node is a subtree oft. For the inductive step,
let β = β′∪{v}, wherev is the last node added by the above procedure. By construction,
it must be that(v) ∈ β′ and, by induction hypothesis,β′ is a subtree oft. Thus,
easily, alsoβ is a subtree oft. Condition (b) is simple: by construction, it holds that
(v) = (v′) and(v) ∈ φ(v), for everyv andv′ belonging toβ. Condition
(c) easily follows, once we prove the following Lemma.

Lemma A.4 (Soundness of the algorithm in Table 6).If m[v,R] = h ,
∞, then there exists a partition of the subtree rooted in v withh blocks such
that it satisfies conditions(a) and(b) above, and R is the pivot of v’s block;
moreover, each partition satisfying these properties has at least h blocks.
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Proof. By induction on the height of the tree rooted inv. For notational
convenience, we denote the subtree oft rooted inv as tv. The base case
is whenv is a leaf and is trivial. For the inductive step, we only consider
the case whenv has just one child,v′; the case whenv has two children
is similar. Sincem[v,R] , ∞, it holds thatR ∈ φ(v); thus,R can be the
pivot of v’s block. Since(·) is defined (by the hypothesis of Propo-
sition 4.1), there must existS ∈ φ(v′); thus,m[v′,S] , ∞. By induction
hypothesis, there exists a partition oftv′ with m[v′,S] blocks that satisfies
conditions (a) and (b), and withS as pivot ofv′’s block; moreover, each
partition satisfying these properties has at leastm[v′,S] blocks. If R is not
one of suchS, then a minimal partition oftv with R as pivot ofv’s block
can be obtained by puttingv is a block on its own and by considering the
partition oftv′ induced by aS that minimisesm[v′, ]. Otherwise, addingv
to the block ofv′ in the partition oftv′ induced byRcould generate a min-
imal partition oftv or not. In the first case, the partition oftv hasm[v′,R]
blocks; in the second case, we putv in a block on its own and the resulting
partition hasm[v′,R] + 1 blocks. In both cases, it is easy to prove that no
partition with less blocks can exist. �

Now, let(rt) = R. Trivially, the partition induced by function(·) hasm[rt,R]
blocks; thus, by Lemma A.4, each partition satisfying (a) and (b) has at leastm[rt,R]
blocks. This proves (c).

We conclude with the complexity of the overall algorithm. The algorithm in Table 6
to computem[ , ] works inO(|V|×K2). Indeed, matrixmhas|V| rows andK columns,
and each element of this matrix is written exactly once. Moreover, to write a generic
elementm[v,R], we have to check whetherR∈ φ(v) (this requiresO(K), as|φ(v)| ≤ K)
and to analyse the rows associated to the children ofv (if any); the latter task requires
O(K), that leads the overall complexity toO(|V| × K2). The algorithm for computing
function works inO(|V| × K). Indeed, for each nodev, it has to computemv: this
requiresO(K), as it has to scan all the row ofm associated tov. Finally, the partition
induced by(·) is derived by a preorder visit, that is linear in|V|. �

We now consider Proposition 4.2 and prove its two claims separately; for both of
them, we only present a key sample, leaving the other cases (that are similar) to the
interested reader.

1. LetS = (U;P) be a RBAC schema and P be a finite process withoutrole/yield to
be run by user r. ThenΓ;U(r) ⊢Sr P implies thatRr

Γ;P(P) is defined.

Proof. The proof is by structural induction onP. The base step is trivial:P is nil and,
by definition, Rr

Γ;P(nil ) = nil . For the inductive step, we only consider the case
for P = a(x).Q. By hypothesis and by rule (T-I), we have that

Γ ⊢ ar : R(T) R?∈ P(U(r)) Γ, x : T;U(r) ⊢Sr Q

Γ;U(r) ⊢Sr P
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By induction hypothesis, Rr
Γ,x:T;P(Q) is defined; this implies that Tr

Γ,x:T;P(Q)
is defined and is equipped with the matrixm[ · , · ]. Now, by construction, Tr

Γ;P(P)
is defined; moreover, it can be equipped with a matrixm′[ · , · ] such that

m′[x,R] =



m[x,R] if x is not the root of Tr
Γ;P(P)

min{m[v′,R] ,
minS,R{m[v′,S]} + 1 } otherwise

where, in the second case,v′ is the root of Tr
Γ,x:T;P(Q). By the premise of (T-I),

we know that there exists a rôleS ∈ U(r) such thatR?∈ P(S). This fact, together with
the fact that Rr

Γ,x:T;P(Q) is defined, implies that there existsS ∈ U(r) such that
m′[v,S] , ∞, wherev is the root of Tr

Γ;P(P). This fact suffices to conclude that
Rr

Γ;P(P) is defined. �

2. LetS = (U;P) be a RBAC schema,Γ be a typing environment respectingU and
P be a finite process withoutrole/yield to be run by user r. ThenRr

Γ;P(P) = P′

implies thatΓ; ∅ ⊢Sr P′.

Proof. Again, the proof is by structural induction onP. The base step is trivial:
P = P′ , nil andΓ; ∅ ⊢Sr nil . For the inductive step, we only consider the case for
P = a(x).Q. By construction, we have thatP′ = role R.a(x).Q′, whereR is the label of
the root of Tr

Γ;P(P), that exists by hypothesis. By construction, this latter fact im-
plies that Tr

Γ,x:T;P(Q) exists and thatΓ ⊢ ar : S(T), for some rôleS and typeT. Let
us now consider the matrixm′[ · , · ] obtained from the matrixm[ · , · ] for Tr

Γ;P(P)
by deleting the row associated with the root of Tr

Γ;P(P). We can now say that there
exists a rôleR′ such thatm′[v′,R′] , ∞, wherev′ is the root of Tr

Γ,x:T;P(Q).4 This
suffices to conclude that Rr

Γ,x:T;P(Q) is defined; let us say that it returns the pro-
cessQ′′. By induction hypothesis,Γ, x : T; ∅ ⊢Sr Q′′. Again, by construction it must be
thatQ′′ = role R′′.Q̂; we now consider the only possible cases:

• if (v) = (v′), i.e. R= R′′, thenQ′ = Q̂. In this case, we have that

R ∈ Γ{r}

Γ ⊢ ar : S(T) S?∈ P(R) Γ, x : T; {R} ⊢Sr Q′

Γ; {R} ⊢Sr a(x).Q′

Γ; ∅ ⊢Sr P′

This inference holds by using rules (T-Rˆ) and (T-I). Moreover, notice
thatR ∈ Γ{r} andS?∈ P(R) must hold, otherwise(v) cannot beR. Finally,
Γ, x : T; {R} ⊢Sr Q′ is implied by the induction hypothesis.

• if (v) , (v′), thenQ′ = yield R.Q′′. This case is similar to the previous
one, butΓ, x : T; {R} ⊢Sr Q′ is inferred from the induction hypothesis, by using
rule (T-Y). �

4To see this, proceed by contradiction. Assume that, for allR′, m′[v′,R′] = ∞; thenm[v,R′] = ∞, where
v is the root of Tr

Γ;P(P), for every rôleR′ (see Table 6, second item). Thus, Rr
Γ;P(P) would be

undefined, as function would be. Contradiction.
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B Alternative Characterisation of Barbed Congruence

As pointed out in Section 3, barbed congruence is hard to prove because of its universal
quantification over language contexts. A standard way to overcome this problem is
to reformulate the semantics of the language via alabelled transition system(LTS
for short), that makes apparent the external interaction offered, and build up over it a
bisimulation, adequate for barbed congruence. In this section, we present a possible
way to adapt known techniques to our framework; however, to make the presentation
lighter, most of the proofs in this section are only sketched; the interested reader is
referred to a technical report [5] for full details.

The LTS allows to study system components in isolation and compositionally.
Thus, in general, we cannot assume such components to be well-typed, as this would
require a full knowledge of the system. Hence, we embody in the LTS some dynamic
policy checks. In this way, the LTS also provides a tight operational specification for
the minimal engine underlying any implementation of a RBAC-based run-time system.

The standard way to describe the interactions a system can offer externally is by
labelling the system evolution with this information. Thus, we define a labelled tran-

sition system,
µ
−−→ , that makes apparent the action performed (and, thus, the external

interaction offered). In order to account for systems’ rôles varying over time, the LTS
relatesconfigurations, i.e. pairsS ⊲ A made up of a RBAC schemaS and a systemA.
Configurations are ranged over byD,E, . . . . The labels of the LTS are derived from
those of theπ-calculus and can be described as follows.

µ ::= τ | arn | arn : R | arn | arn : R

Labelτ represents an internal computation of the system. Labelsarn andarn describe
the intention to send/receive valuen, known to the environment, on/from channelar .
Labelsarn : R andarn : R are similar to but the value sent/received is ‘fresh’ (i.e.
unknown to the environment) and has groupR. We now extend functions F( ) and
B( ) to labels.

Label F( ) B( )

τ ∅ ∅

arn {ar , n} ∅

arn {ar , n} ∅

arn : R {ar } {n}
arn : R {ar } {n}

The definition of
µ
−−→ is given in Tables 7 and 8. The overall structure of the LTS

is similar toπ-calculus’ early-style one (see, e.g., [24]) and implicitly assumes alpha-
conversion. The premises of rules (LTS-K-I), (LTS-F-I), (LTS-O),
(LTS-R̂) and (LTS-Y) adapt respectively the premises of the typing rules (T-
I), (T-O), (T-R̂) and (T-Y), and block the evolution of ill-typed sys-
tems. Rule (LTS-K-I) can be applied when the received value is known to the
schema, while (LTS-F-I) is used when a fresh value (i.e. unknown to the schema)
is received. In this case, the schema is extended to record the group of the fresh value.
Similarly, when extruding a restricted channelbs, rule (LTS-O) enlarges the rela-
tion U of the current configuration by recording thatbs has the rôle declared in the
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(LTS-R̂)
R ∈ U(r)

(U;P) ⊲ r{| role R.P |}ρ
τ
−→ (U;P) ⊲ r{|P |}ρ∪{R}

(LTS-Y)
R ∈ ρ

S ⊲ r{| yield R.P |}ρ
τ
−→ S ⊲ r{| P |}ρ−{R}

(LTS-O)
U(as) = R R! ∈ P(ρ)

(U;P) ⊲ r{|as〈n〉.P |}ρ
asn
−−−→ (U;P) ⊲ r{| P |}ρ

(LTS-K-I)
U(ar ) = R R? ∈ P(ρ) n ∈ dom(U)

(U;P) ⊲ r{|a(x).P |}ρ
ar n
−−−→ (U;P) ⊲ r{| P[n/x] |}ρ

(LTS-F-I)
U(ar ) = R R? ∈ P(ρ) n < dom(U)

(U;P) ⊲ r{|a(x).P |}ρ
ar n:S
−−−−→ (U ⊎ {n : S};P) ⊲ r{|P[n/x] |}ρ

Table 7: Axioms for the Labelled Transition System

restriction. The information about a fresh/extruded channel is deleted from the schema
when the channel is communicated: indeed, the restriction is pushed back in the system
and closes the scope of the channel – cf. rule (LTS-C). Notice that a bound output
can synchronise only with a fresh input (and vice versa), andthe rôle declared for the
extruded/fresh channel must be the same. Also observe thatτ-moves do not modify the
schemaS.

The semantics given in Table 3 and the LTS just presented are related by the fol-
lowing Proposition.

Proposition B.1. If S ⊲ A
τ
−→ S ⊲ A′, then A7−→ A′. Conversely, if A is well-typed in

S, then A7−→ A′ impliesS ⊲ A
τ
−→ S ⊲ B, for some B≡ A′.

Proof. The first statement is proved by a simple induction over the depth of the in-

ference for
τ
−→ . The second statement is proved by induction over the depth of the

shortest inference for7−→. The only complicate case is when the last rule applied to
infer the reduction is (R-S), i.e. A ≡ B, andB 7−→ B′ andB′ ≡ A′. We proceed
by mutual induction on the depth of the inferences forA ≡ B andB ≡ A; notice that we
can assume that the last rule to inferB 7−→ B′ is not (R-S), otherwise the original
inference ofA 7−→ A′ could be shortened, thanks to transitivity of≡. �

Next, we build upon this LTS a standard bisimulation. As usual, =⇒ denotes the

reflexive and transitive closure of
τ
−→ , and

µ
==⇒ denotes=⇒

µ
−−→=⇒ . Finally,

µ̂
==⇒ is

=⇒ if µ = τ, and
µ
==⇒ otherwise.

Definition B.1 (Bisimilarity). A bisimulationis a binary symmetric relationℜ be-

tween configurations such that, if (D,E) ∈ ℜ andD
µ
−−→ D′, there exists a configuration

E′ such thatE
µ̂
==⇒ E′ and (D′,E′) ∈ ℜ. Bisimilarity, ≈, is the largest bisimulation.
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(LTS-C)

S ⊲ A
ar n
−−−→ S ⊲ A′ S ⊲ B

ar n
−−−→ S ⊲ B′

S ⊲ A ‖ B
τ
−→ S ⊲ A′ ‖ B′

(LTS-R)

(U ⊎ {ar:R};P) ⊲ A
µ
−−→ (U ⊎ {ar:R};P) ⊲ A′ ar

< F(µ)

(U;P) ⊲ (νar:R)A
µ
−−→ (U;P) ⊲ (νar :R)A′

(LTS-O)

(U ⊎ {bs:S};P) ⊲ A
ar bs

−−−−→ (U ⊎ {bs:S};P) ⊲ A′ ar
, bs

(U;P) ⊲ (νbs:S)A
ar bs:S
−−−−−→ (U ⊎ {bs:S};P) ⊲ A′

(LTS-C)

S ⊲ A
ar bs:S
−−−−−→ S′ ⊲ A′ S ⊲ B

ar bs:S
−−−−−→ S′ ⊲ B′ bs

< F(A)

S ⊲ A ‖ B
τ
−→ S ⊲ (νbs :S)(A′ ‖ B′)

(LTS-P)

S ⊲ A
µ
−−→ S′ ⊲ A′ B(µ) ∩ F(B) = ∅

S ⊲ A ‖ B
µ
−−→ S′ ⊲ A′ ‖ B

(LTS-R)

S ⊲ r{|P | !P |}ρ
µ
−−→ S′ ⊲ A

S ⊲ r{| !P |}ρ
µ
−−→ S′ ⊲ A

(LTS-E)

S ⊲ (νar :R)r{|P |}ρ
µ
−−→ S′ ⊲ A a, r

S ⊲ r{| (νa:R)P |}ρ
µ
−−→ S′ ⊲ A

(LTS-E)

S ⊲ r{|P |}ρ
µ
−−→ S′ ⊲ A

S ⊲ r{| [n = n]P |}ρ
µ
−−→ S′ ⊲ A

(LTS-S)

S ⊲ r{|P |}ρ ‖ r{|Q |}ρ
µ
−−→ S′ ⊲ A

S ⊲ r{|P | Q |}ρ
µ
−−→ S′ ⊲ A

plus the symmetric version of rules of (LTS-P), (LTS-C) and (LTS-C)

Table 8: Inference Rules for the Labelled Transition System

We now state and prove some properties of≈ . First, we consider the congruence
properties of≈ ; then, we prove that it is a sound proof technique for barbed congru-
ence.

Theorem B.2 (Congruence Properties of≈). The following facts hold.

1. IfS1 ⊲ A1 ≈ S2 ⊲ A2 andS1 ⊲ B ≈ S2 ⊲ B, thenS1 ⊲ A1 ‖ B ≈ S2 ⊲ A2 ‖ B .

2. If (U1 ⊎ {ar : R};P1) ⊲ A1 ≈ (U2 ⊎ {ar : R};P2) ⊲ A2, then(U1;P1) ⊲ (νar :
R)A1 ≈ (U2;P2) ⊲ (νar :R)A2.
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Proof. Both the clauses of the theorem are proved once shown that relation

ℜ , { ((U1;P1) ⊲ (ν ãr : R̃)(A1 ‖ B) , (U2;P2) ⊲ (ν ãr : R̃)(A2 ‖ B)) :
(U1 ⊎ ãr : R̃;P1) ⊲ A1 ≈ (U2 ⊎ ãr : R̃;P2) ⊲ A2 ∧

(U1 ⊎ ãr : R̃;P1) ⊲ B ≈ (U2 ⊎ ãr : R̃;P2) ⊲ B }

is a bisimulation. �

To prove that≈ is a sound proof technique for� , we must only consider well-
typed configurations, i.e. configurationsS ⊲ A such thatA is well-typed inS. Indeed,
as already said, ill-typed systems are not considered in thedefinition of barbed congru-
ence. Given a typing environmentΓ, we letUΓ be the rôles-to-users assignment ex-
tracted fromΓ, that is the least assignment such that, for any associationr : ρ[ã : R̃(T)]
in Γ, it holds thatUΓ(r) = ρ andUΓ(ar) = R, for any a : R(T) ∈ ã : R̃(T). For
notational convenience, we writeS ⊲ A ≈ S ⊲ B asS ⊲ A ≈ B.

The proof relies on the following lemma.

Lemma B.3 (Weakening for ≈ ). If (U;P) ⊲ A ≈ B and A and B are well-typed in
(U;P), then(U ⊎U′;P ∪ P′) ⊲ A ≈ B for allU′ andP′.

Proof. We have to prove that the relation

ℜ , {((U ⊎U′;P ∪ P′) ⊲ A , (U ⊎U′;P ∪ P′) ⊲ B) : (U;P) ⊲ A ≈ B}

is a bisimulation. �

Theorem B.4 (Soundness of≈). LetS = (U;P), Γ ⊢S A andΓ ⊢S B. If (UΓ;P) ⊲ A ≈
B, thenΓ |=S A � B.

Proof. It suffices to prove that the relation

ℜ , { Γ |=S (A, B) : Γ ⊢SA ∧ Γ ⊢SB ∧ (UΓ;P) ⊲ A ≈ B}

is barb preserving, reduction closed and contextual.

1. LetA ↓ ar . By Definition 3.1 and well-typedness, it holds that (UΓ;P) ⊲ A may
perform an input fromar ; then, (UΓ;P) ⊲ B may perform an input fromar , pos-
sibly together with someτ-steps. Then, by Proposition B.1 and Definition 3.1, it
is easy to prove thatB ⇓ ar . The case forA ↓ ar is similar.

2. LetA 7−→ A′. By Proposition B.1 and well-typedness, this implies that (UΓ;P) ⊲

A
τ
−→ (UΓ;P) ⊲ A′. Thus, (UΓ;P) ⊲ B=⇒ (UΓ;P) ⊲ B′ and (UΓ;P) ⊲ A′ ≈ B′.

Again by Proposition B.1,B 7−→∗ B′ andΓ |=P A′ℜ B′. Indeed, by Theorem 2.1,
it holds thatΓ ⊢P A′ andΓ ⊢P B′. Moreover, it is easy to prove that≈ is
an equivalence relation and that it contains all the configurations formed with
structurally equivalent systems; so, we have that (UΓ;P) ⊲ A′ ≈ A′′ and, thus,
(UΓ;P) ⊲ A′ ≈ B′.

3. We pick upΓ |=S Aℜ B and analyse the three clauses defining the contextuality
property.
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(a) LetP′ be a permissions-to-rôles assignment andñ : T̃ be such that̃n ∩
dom(U) = ∅; sinceΓ respectsU, this implies thatΓ, ñ : T̃ is defined. By
Lemma A.2, we know thatΓ, ñ : T̃ ⊢(U⊎ñ:T̃;P∪P′)A andΓ, ñ : T̃ ⊢(U⊎ñ:T̃;P∪P′)

B. Moreover, we letUñ:T̃ to be the rôles-to-users assignment such that
Uñ:T̃ (r) = ρ, wheneverr : ρ[ã : C̃] ∈ ñ : T̃, andUñ:T̃(ar) = R, whenever
ar : R(T) ∈ ñ : T̃. It is easy to check thatU

Γ,̃n:T̃ = UΓ ⊎ Uñ:T̃ (indeed,

Γ, ñ : T̃ is defined if and only if names iñn do not occur in the domain of
Γ; thus,UΓ andUñ:T̃ have disjoint domains, and their union coincides with
U
Γ,̃n:T̃ ). Thus, by Lemma B.3, (U

Γ,̃n:T̃ ;P ∪ P′) ⊲ A ≈ B. This suffices to

conclude thatΓ, ñ : T̃ |=(U∪ ñ:T̃;P∪P′) Aℜ B.

(b) Let Ā be a system such thatΓ ⊢S Ā. By Theorem B.2(1), we can state that
(UΓ;P) ⊲ A ‖ Ā ≈ B ‖ Ā. Moreover, by rule (T-SP), it holds that
Γ ⊢S A ‖ Ā andΓ ⊢S B ‖ Ā. Thus,Γ |=S A ‖ Āℜ B ‖ Ā, as required.

(c) Let Γ = Γ′, ar :R(T) andU = U′ ⊎ {ar :R(T)}. It is easy to check that
UΓ = UΓ′ ⊎ ar:R and, thus, (UΓ′ ⊎ ar:R;P) ⊲ A ≈ B. By Theorem B.2(2),
this implies that (UΓ′ ;P) ⊲ (νar : R)A ≈ (νar : R)B; moreover, by rule
(T-SR), Γ′ ⊢(U

′;P) (νar : R)A andΓ′ ⊢(U
′;P) (νar : R)B. Thus,Γ′ |=(U′;P)

(νar :R)Aℜ (νar :R)B, as required. �

We remark that≈ is used as a proof-technique for barbed congruence. Indeed,
while the former is easy to use, the latter is very hard to handle because of the con-
textual closure requirement. This suffices for our purpose in the present paper, whose
intention is to present the calculus and lay out its main properties. Nevertheless, for
theoretical reasons, it is often important to know whether≈ is a complete character-
isation of�. This is a laborious question to answer. We leave it as futurework to
follow well-known paths towards the answer (as, e.g. [12, 18]) to prove the converse
of Theorem B.4, i.e. that bisimilarity is complete for barbed congruence.

To conclude, we now briefly discuss some possible use of the bisimulation, apart
from proving barbed congruence. Mainly, its distinctive features are the possibility of
relating ill-typed systems and/or systems under different schemata. For example, by
lettingα to range over action prefixes (i.e. inputs/outputs androle/yield), it holds that

S ⊲ r{|α.P |}ρ ≈ 0

wheneverα is not legal for a sessionr{| · |}ρ with respect toS, that is, if the premises
of rules (LTS-R̂), (LTS-Y), (LTS-K-I), (LTS-F-I) and (LTS-O)
are not satisfied. This law stresses that LTS and types both enforce the same require-
ments (compare the run-time checks of the LTS with the run-time errors in Table 5
and, consequently, the results in Proposition B.1). As a consequence, the following
law differentiates our language from theπ-calculus. Indeed, it holds that

S ⊲ (νar :R)(r{|a(x).P |}ρ ‖ s{| ar〈n〉.Q |}ρ′) ≈ 0

wheneverR?
< P(ρ) or R!

< P(ρ′).
Finally, we can use the bisimulation to find a ‘minimal schema’ to run a given

system without altering its functionalities. LetA be a system well-typed in a RBAC

37



schemaS. Potentially, there are many schemata under which the system can run cor-
rectly; thus, it seems reasonable to look for a ‘minimal’ such. According to the metrics
chosen, several properties can be associated to this element. For example, if the metrics
is the size of the schema (seen as a pair of sets), the minimal element would be one of
the smallest; thus, its storage and handling would be cheaper. We now define the set of
configurations whose second component isA as follows:

CONFA = {S
′ ⊲ A : S′ is a RBAC schema}

We now partitionCONFA with respect to≈ and consider the equivalence class con-
tainingS ⊲ A, calledCONFSA. By fixing a metrics over schemata, the minimal schema
to run the systemA will be a minimal element ofCONFSA. Indeed, such an element
behaves likeS ⊲ A, because they both belong to the same equivalence classCONFSA,
but its schema is smaller, as its is a minimal element ofCONFSA. Clearly, the existence
of such a minimal element and the way in which it is chosen depend on the chosen
metrics. Possible metrics could be based on the memory required to store the schema,
on the number of rôles used to define the schema, on the weightof the permissions
associated with some users (once assumed a weight function to discriminate sensible
permissions from common ones), on the average number of permissions associated
with each rôle, and so on.
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