Role-Based Access Control for
a Distributed Calculus

Chiara Braghin Daniele Gorla Vladimiro Sassone
Dip. Informatica Dip. di Informatica Dept. of Informatics
Univ. “Ca’ Foscari” di Venezia Univ. di Roma “La Sapienza” University of Sussex
Abstract

Role-based access control (RBAC) is increasingly aftrgattention because
it reduces the complexity and cost of security administraliy interposing the no-
tion of réle in the assignment of permissions to users. In this paper,resept a
formal framework relying on an extension of thecalculus to study the behaviour
of concurrent systems in a RBAC scenario. We define a typesyshsuring that
the specified policy is respected during computations, abdhavioural equiva-
lence to equate systems. We then consider a more soplestieature that can be
easily integrated in our framework, i.e., the possibilifgotomatically adding role
activations and deactivations to processes to be run urgieempolicy (whenever
possible). Finally, we show how the framework can be easilgreded to express
significant extensions of the core RBAC model, such as rilesrchies or con-
straints determining the acceptability of the system camepts.

Keywords: RBAC, Process Calculi, Type Systems, Behavioural Equicde

Introduction

Role-based access control (RBAC) [10, 23] has recentlyrgeteas an alternative to
classical discretionary and mandatory access controlsaralard is currently under
development by the National Institute of Standards and Aeldyy (NIST) [11] and
several commercial applications directly support somenfoof RBAC, e.g., Oracle, In-
formix and Sybase in the field of commercial database manegesystems. Further-
more, the RBAC technology is finding applications in areasyiag from health-care
to defence, in addition to the commerce systems for whictag ariginally designed.
RBAC is a flexible and policy-neutral access control tecbgyi it regulates the
access of users to information and system resources onsrediactivities they need
to execute in the system. The essence of RBAC lies with themsbfuser, réle and
permission users are authorised to use only the permissions assigrikd toles they
belongto. More specifically, RBAC allows for a preliminagsggnment of permissions
to rdles (thus abstracting from which users will play théimas roles at run-time). A
user may then establish multiple sessions, e.g., by sigmintp the system, during
which he activates a subset of réles that he is a member of grbatly simplifies

system management, as it reduces the cost of administeriegscontrol policies, as
well as making the administration process less error-prdndact, by assigning to
users predefined rdles that naturally express the orgam&astructure, the adminis-
trative process of establishing permissions is stream)iaad management time for
reviewing permissions assignment is reduced. Anyway, timeptexity of the models
(e.g., in large systems the number of rdles can exceed bdadr thousands) demands
a structured approach to the analysis and design of suatnsyst

This paper aims at developing a theory for reasoning abatiésybehaviours in a
RBAC scenario; to the best of our knowledge this is the fitgrapt in this direction.
Our reference model is the so-called RBAC96 model, intreduzy Sandhu et al. in
their seminal paper [23]. More advanced RBAC models includde hierarchies and
constraints such as rdle mutual exclusion, separationiésl delegation of authority
and negative permissions. Our starting point is #healculus [24], which provides
well-established mathematical tools for expressing coeci and possibly distributed
systems. Essentially, our idea is to equip thealculus with the notion ofisers we
tag processes with a (not necessarily unique) name repiggéme user that activated
them — this is very similar to the located threads of the[D4]. Moreover, we add
two new constructs, that enable processes to actieaetivate roles in the user ses-
sion where they run, and we include a way to grant permisgsmmndles. Thus, each
process is associated with a name (representing the uséngitihand with a sep
recording the roles activated during the current sessitamce, the term{ P |}, repre-
sents a session of the userunning a procesB with active rélesp. We model role’s
activatiorideactivation by exploiting the following reductions:

riroleRP}, — r{Pl,ur riyieldRP}, — r{P},

Intuitively, when a process activates a r&eluring a sessiorR must be added to the
set of activated roles and the continuatioR will be executed with the segtupdated.
Vice versa for the deactivation &

As an example, the following system

client]role auth_client.port 8Xindexhtmh.P|}, || servef port 80(x).Q}}

models the interaction between a client and an HTTP server.system contains two
usersglientandserver running in parallel. It may evolve as follows. First, uséent
activates the rblauth_client by exercising the&ole action, which in practice would
involve to authenticate himself by means of a secure catdic Then, he sends the
request to the HTTP server along the usual port 80 by perfayran output action
along the channgiort_80.

The introduction of named users immediately suggests thea af a distributed
system. In such systems, as e.g. the Internet, the notidolodilg non-located channels
asport 80 is quite an abstraction over what is realistically achiésalWe therefore
use a notion of localised channél$a Dr [14], where each channel is associated with
a single user. Syntactically, we implement this featuredgging output actions to
specify the user (or location) where the exchange is supptmstake place. On the
other hand, input actions are not tagged with any user nasnhey are supposed to

take place locally. Thus, the example above may be rewriten
clientf role auth_client.port 80°*"*(indexhtml.P|,, || servef port 80(x).Q},

We also allow user names to be exchanged during communiecafithis feature adds
flexibility and realism to the language, since in distriltisystems users have only a
partial and evolving knowledge of their execution enviramn For example, the client
above can be generalised to leave the server identity uifiggeand to dynamically
retrieve it with an input from channehoosea_server

client] role auth_client.choosea_serve(x).port 80*(indexhtm).P|},

More details on the calculus, together with an illustragx@ample, will be given in
Section 1.

The mapping among users, rdles and permissions, whichraterihe access of
subjects to objects, is achieved by a pair of relatictis P), calledRBAC schemaln
(U ; P), the relation is the rdles-to-users association, whiteis the permissions-
to-rbles association. As a first contribution of this paperSection 2 we define a
type system which complements the dynamics of the calcutugrovides us with
static guarantees that systems not respecting a given RBA¢h® are rejected. In the
clieny/server example above, a client not authenticated (i.erdatiag with the server
without having previously performedrale auth_client) would be rejected, if the
RBAC schema enabled only authorised users to perform HTarests.

As a second contribution of this paper, in Section 3 we sthéyttehavioural se-
mantics of the calculus via a standardly defirfggbed) barbed congruenc& he be-
havioural semantics allows us to study the behaviour oesyst concentrating on their
functionalities while abstracting from their syntax. Inrfeular, the barbed congru-
ence allows us to prove some interesting algebraic lawshblatin our framework.
As an example, we show how RBAC schemata may change the algebeory of
then-calculus. Consider the following system, adapted fronctlemtserver example
above:

(v port_80°*"*: R)(client{ port_80°*"*(indexhtml.P |}, || servel port-80(x).Q},)

where ¢ port 80°"V¢": R) is the standard restriction operator of a typechlculus (it de-
claresport 80°¢"V*' at typeR and limits the visibility of the channel tdientandserver
only). By resuming the assumption that only authorisedsusan perform HTTP re-
quests, the above system is blocked because the client tiaseroauthenticated before
performing the output. On the contrary, by removing the agsion that each action
must be authorised by the activation of a proper rble, tha gbove would have been
equivalentto

(v port.8C°*™e R)(client{ P i, || servefj Q[indexhtmiy] |,)

that is the term resulting from the cligsérver exchangeQ[indexhtmly] denotes the
processQ where each occurrence afhas been replaced by the valinelexhtml).

By the way, this is exactly what would have happened in a aint#rm of thezn-
calculus, since the nanpart_80is restricted and no authorisation is needed to perform
inpuyoutput actions.

As highlighted by the example above, the essence of our lcalecasides in the
assumption that each action can be performed only if a pgeikenabling it is available
in the user session where the action is executed. Sincdegged are associated to
roles, it is fundamental to properly program rdle acimas and deactivations within
user sessions. To this aim, in Section 4 we describe an #igoto automatically add
réle activationgleactivations within a system in such a way that the reguliirstem
can be executed under a given schema, whenever possible.

In Section 5, we describe how our simple framework can benebete to express
extensions of the core RBAC model. For example, roles camdrarchically ordered
to reflect in a natural way the fiiérent levels of authority, responsibility and compe-
tency of the employees working in an enterprise. Moreober system administrator
may want to enforce constraints limiting the set of rolest ttan be activated during a
session. Both extensions can be expressed in a uniform atabkeway by enriching
the RBAC schema.

We conclude by comparing our approach with related work iatiSe 6. Ap-
pendix A contains the proofs of some results stated in thempayghile Appendix B
provides a sound proof technique for barbed congruencenmstef a labelled transi-
tion system and a labelled bisimulation.

This paper is an extended and revised version of [4]; witheesto the extended
abstract, in this paper we give all the technical details@odfs, we expand one of the
possible examples of our framework, and we show how advaRBAL features may
be added in a modular way to the general picture.

1 The Language

In this section we formally introduce our calculus. First @efine its syntax and
operational semantics; then, we formalise the RBAC schendggscribe the rbles-to-
users and permissions-to-roles assignments.

1.1 Syntax

Since the calculus is an extension of thealculus [19, 24], we assume the reader to
be somehow acquainted with its basic features. The synttheafalculus is given in
Table 1; we assume two countable and pairwise disjoint $&tsf: rdles ranged over
by R 'S,..., and N of names Names can serve three (logically¥férent purposes:
they can be used as user names (in this case, we prefer tegers), channel names
(in this case, we prefer letteasb, . . .) or input variables (in this case, we prefer letters
XY, ...). As we discussed in the Introduction, channels are agsalwth users. Thus,
the set ofvaluesof our calculus includes not only raw names but also pairsaofies,
written a'; such pairs are callechannelsand include the name of the chanreland
the user it is associated with,

Processesil, P | Q, IP, [m = n]P, (va: R)P, a(x).P, nXn).P are derived from
the corresponding-like constructs. They represent, respectively, the imagrocess,
parallel composition of processes, replication (to mo@eursive processes), value
matching, restriction of channel names and ifputiput actions over channels. Notice

Roles RS,...eR
Names ab,..rs..xy,.ec N
Values mn,...e NUN XN
Processes B = il inactive process
| PIQ parallel composition
| P replication
| (va:RP name restriction
| [m=n]P value matching
| a(x).P input
| mn).P output
| roleRP role activation
| vyieldRP role deactivation
Systems Mm =0 empty system
| r{Pl, user session
| A|lB parallel composition
| (va@:RA channel restriction

Table 1: Syntax of the Calculus

that input channels are not decorated with a user name: sfassyntactic means to
localise them, as input channels implicitly belong to theruhey appear in. The
main novelty of the calculus resides in the actiooke R andyield R that implement
activationgdeactivations of rdles in the user session they belongrid,raodify the
session roles accordingly.

The syntax of processes we have just presented is too pareias it also contains
meaningless terms. For example, when a name representsratiiacannot be trans-
mitted as such, since it makes little sense without the ataia of the user owning it.
Similarly, output channels must indicate the name of the asataining the invoked
channel. For example, a process lie).b*(n).P can be accepted but, in order to be
executed, at run-timg must be assigned a user namehich owns an input channel
b". One of the aims of the type system in Section 2 is to restrecdmissible language
terms, thus rejecting terms that contain any kind of ancesali

Systems consist of the parallel composition of user sesglmat can share private
channels (the latter ones are decorated with a rdle asideddater, in Section 1.3). A
user session{ P, represents a process spawned by a user naneith codeP and
with p € R recording the rbles activated so far. Observe thfiednt sessions of the
same user can run in parallel within a systApeither with the same or with fierent
activated roles: this is the usual notion of sessions in RBAodels.

The constructsifa: R)P, (va' : R)A anda(x).P act as binders foa, a" andx, re-
spectively. Thus, we need to extend the standard notioreefdnd bound names of the
n-calculus to encompass free and bound channels too. Thelfaefinition of func-
tions RR(A) and Bwp(A) is given in Table 2; it exploits the auxiliary functionsP)
and Bup, (P) for processes of user Alpha-conversion, writtege,, is then standardly
defined and it allows the renaming of bound channels and nambsughout the
paper, we always assume that bound channels and namesraris@distinct and dif-

| System || Fr(-) | Bnp(-) |

0 0 0
r{Pl, {r} U Fr((P) Bno, (P)
Al B Fr(A) U Fr(B) Brp(A) U Brp(B)
(va" :R)A Fr(A) \ {8} Bnp(A) U (@'}
| Process|| Fr,(2) | Bno, (L) |
nil 0 0
a(x).P {a'}u Fr.(P) {x} U Bnp,(P)
mgn).P {m,n} U Fr,(P) Bwo, (P)
role R.P Fr, (P) Bnoy (P)
yieldRP Fr,(P) Bwo, (P)
P Fr, (P) Bnoy (P)
PIQ Fr,(P) U Fr(Q) | Bno (P) U Brr(Q)
(va:RP Fr((P) \ {&'} Bno, (P) U {a'}
[m=n]P || {mn}uU Fr,(P) Bwo, (P)

Table 2: Free and Bound Channels

ferent from the free ones; by using alpha-conversion, #dgiirement can be always
satisfied.

Finally, observe that user names cannot be restrictede sireccreation of a new
user is a sensitive operation: it has to be performed onhhbysystem administrator,
as it may #ect the RBAC policy underlying the entire system.

Notation. In this paper, we use_" as a generic placeholder; thus, we denote with

a (possibly empty) tuple of entities of kind Moreover, we write” : Rto denote the
tupled’ : Ry,...,a : R, fork > 0. Sometimes, we shall use tuples as sets (i.e., without
considering the order of their elements) and we write, 8¢, & orbs: Sea : R

We useH!‘zlPi as a shorthand fdp; | - - - | Px. Finally, as usual, we will omit trailing
inactive processes.

1.2 Dynamic Semantics

The dynamics of the calculus is given in the form eéduction relation As customary,
the reduction semantics is based on an auxiliary relatiiaccatructural congruence
which allows to freely re-arrange systems in order to makkicgon rules applica-
ble. The key feature of the structural congruence is to equgams that describe the
same system; indeed, the syntax of the calculus providesyatavdescribe system
behaviours, and the same behaviour can be describeéténatit ways. For example,
A || B describes a system of two parallel components that coiacidin the system
described byB || A. The reason to split reductions and structural rules is seme
reductions for actual computations, i.e., where the systetually performs some ac-
tion, and keep them free of spurious term manipulationaatif. In this way, reductions
reflect at a glance the foundational building blocks of thmpatation, at the chosen
abstraction level.

Axioms for Structural Congruence:

(S-AvLpHA) (S-In)

A=B if A=,B AllO = A

(S-PGM) (S-Ass)

AllB = BJA (AlIB)IIC = AJI(BIIC)

(S-R) (S-LocCn)

r{[n=n]P}, = r{P}, ri(va:RP}, = (va@:Rr{P|, ifasr
(S-Rer) (S-RGom)

r{!P}, = r{P|!P], (va :R)(vb*:S)A = (vb*:S)(va :RA
(S-Sur) (S-Exr)

r{P1QL, = r{Pl, I r{Ql, (a:RA || B = (v@:R(AlIB) ifa ¢ Fr(B)

Rules for Reduction Relation:

(R-RoLE) (R-Com)
riroleRPY, +— r{Plyg rla(X).Pl, Il slam).Ql, — ri P I, Il sIQl,
(R-Y1ELD) (R-Psr)
r{yieldRP}, +— r{P|,\r LA,
AlB+— A B
(R-Res) (R-Srruct)
A A A=A A +— B B=B
(va :RA — (va :RA A B

Table 3: Dynamic Semantics of the Calculus

The structural congruence relation, is the least congruence on systems that is
closed under the rules of the upper part of Table 3. Rule (% equates alpha-
convertible systems. Rules (8} (S-P@wm) and (S-As) state that|’ is a commuta-
tive monoidal operator, with0’ as identity. Rules (S-bcCn), (S-RGwm) and (S-kT)
regulate the scope of restricted names. In particular,d&zk) can be used to turn a re-
striction of a name inside a user into a restriction over tireasponding channel at the
system level; (S-R@wm) allows to swap restrictions; (Sxk) allows to extend the scope
of a bound channel to include further parallel componentsyigded that this does not
cause any name capture. Rule (&-Etates that a satisfied equality test does Iffeich
the behaviour of the continuation process. Rule ¢8e)Rallows to freely foldunfold
a replicated process. Finally, rule (8e8) states that a session of usewith rdlesp
hosting two parallel process®andQ denotes the same system as two parallel ses-
sions ofr with rélesp hostingP andQ in isolation. Indeed, the key issues of a session

are the user owning it and the activated rdles. Rewritingiarthe other represents no
system computation, but only affirent way of describing the same system, exactly
like A || BandB || A.

The reduction relation is defined by the axioms and ruleséndlver part of Ta-
ble 3. Rule (R-RLe) addsR to the rdlesp activated in the current session, while
(R-YieLp) removesR from p. Here and in what follows,J’ and ‘\’ denote the usual
union and diference operations between sets; in particlar{R} is defined even if
R ¢ p. Rule (R-Gwm) regulates the inter-process communication. It states wizen-
ever a process is sends a messagealong channed” and a process inis waiting
for a message on such a channel, an interaction occurs; aslf rereplaces each
occurrence of the input variabkan the proces® prefixed by the input action. Finally,
rules (R-Rr) and (R-R:s) state that reductions are preserved by system contekts; ru
(R-Srrucr) states that structurally equivalent systems have the seduetions.

Notice that, by exploiting rules (SeT), (R-RoLe) and (R-YieLp), the user ses-
sion r{roleRP | yield S.Q}, may evolve intor{ P}, g Il r{Ql,\s). i-€., actions
role/yield only affect the process thread executing them. Moreover, a singkiose
with rdle R activated can later split in two distinct sessions; thusngls role activa-
tion can be “closed” by several rble deactivations.

1.3 RBAC Schema

So far, we discussed the way in which RBAC sessions can belladdte our calculus.
We now present a way to model in our framework the remainiagufes of the core
RBAC96 model. To this aim, we need to define RBAC schema.e., the rbles-to-
users and permissions-to-rdles associations, whereiggams enable the actions a
user can perform within a system (in our framework, input aagbut actions only).
Managing rdles and their interrelationships isfidult and sensitive task that is of-
ten centralised and delegated to a small team of securitynéstrators. Traditionally,
the RBAC schema consists of a pair of partial functions wititdidomains U, ; #),
wherel{,, assigns roles to users aftassigns permissions to roles. Formally,

Uy N —gn 2R PR —gn 27

whereA = R x {1,?} represents the set of performable actions. For notatiamal ¢
venience, we write the pair(!) and R, ?) asR' andR’, respectively. Intuitively,
permissionsk’ andR' determine the possibility of performing input and outptiats
over a channel of rdI&, respectively. Thus, inpldutput permissions are not defined
in terms of channels, but of rdles. To this aim, we assumetiapaunction with finite
domain, 2, assigning a rdle to a chanhgi.e.

7/{(; : NXN_\ﬁnR

In this way, we are flexible enough to model both the permis$to communicate
over a single channel (when the relati®ff maps only one channel to a réle), and

1Since located channels can be considered as functiosgiit@vided by users, it seems reasonable that
each channel is associated with only one rdle.

the permission to communicate over the member of a group afireels (when the
relationU; maps more than one channel to the same rdle). This case mesehd in
situations where more channels can handle the same kindjoéses (cf. Example 1
for a possible situation). Observe that#hno permission represents actionge and
yield. Indeed, we assume that a rdle can be activated if (and frityis assigned by
U, to the user willing to perform the action; a réle can be deatgd if (and only if) it
has been activated before.

For notational convenience, we merlyg and{. together and denote witly their
union. Moreover, we also assume that the roles associatadcthannels (grouped
together inR;) are not included in the domain &, i.e., # matters only for rdles
assigned to users (grouped togetherRi). Clearly, R andR, are assumed to be
disjoint. To sum up, in our framework RBAC schemata are defaefollows.

Definition 1.1 (RBAC Schema). An RBAC schemasS is a pair of partial functions
with finite domains Y;) such that

e U : (N U NxN) —fn (2R U R) such that, for any anda® in the domain of
U, it holds thatid(r) € 2% andU(a%) € R;

e P : Ry —fin 27, whereA = R x {!,?}, Ry U R: € R andR, N R = 0.

To conclude the presentation of our language, we now givexample using the
features introduced so far.

Example 1. Let us now formalise a scenario where a bank client is wattrige served
by one of the branch cashiers available. There are two usensd s, representing
respectively the client and the bank branch, while castdezsmodelled as channels
namedc,, ..., C, located at uses. The roles available arelient andcashier. The
relation?{ assigns rdlelient to usermr andcashier to channelg;, while £ assigns
to client the permission to communicate with any of the cashiers,dashier' €
P(client). In this way,r can indistinctly interact with any of the cashier available
The overall system can be described as follows:

r{role client.signaf(ry.servedz).z(req,). - - - .zreq.).zstop.yieldclientl, |l

s{ (vfree: scheduling)(!signal(x).free(y).served(y) | II, free(c’) |
I, 'ci(X).([x = withdrw_req] <handle withdraw request>
| [x = depreq] <handle deposit request>
| [x = stodfreeXc?)))},

Once the client enters the bank (i.e., he activates ¢dlieent), he signals his pres-
ence to the bank and waits to be served. When one of the caslgieomes available
(information maintained internally by the bank via the rese channefree used for
cashiers’ scheduling), the client is notified and can make@ests along the received
channel, referring to the available cashier. Then, cashiers regdateceive and han-
dle requests. For simplicity, we only assume functioredito handle money withdraw
and deposit. Moreover, we do not consider the order in whielnts arrive; a system
of queues can however be added routinely [24]. o

2 Static Semantics

We now describe a type system that provides us with staticagtees that the set of
actions performed by any user during the computation réspgae RBAC schema.
Moreover, as already discussed when presenting the syhtie @alculus, it is also
used to reject ill-formed terms.

The syntax of types is defined by the following productions:

Value Types T:= pla:Cl|C
Channel Types C:= R(M)

Typep[ay : Ri(T1), ..., an : Ra(Tn)] can be assigned to a ugsebelonging to roles ip

and owning channeb ordinately of typeR(T) TypeR(T) can be assigned to channels
of role R along which values of typ& can be exchanged. Notice that the base case of
the recursive definition of types is when the @etC in a typep[a : C] is empty.

Notation. Here and in the rest of the papeR(o) denotes the setJrc,P(R).
Moreover, we denote withy the union of partial functions with disjoint domains.

A typing environmeri is a partial mapping with finite domain frol into types
and it can be extended as follows:
Ix:T 2TW{x:T}
r'(s) if s#r
r. A TV ’ _ —_ —_ - —_
ra:c =rforI'(s) = { pla:C,b:C] if s=randr(r)=p[b: Clanda¢b

Remarkably, the extension of a typing environment could ibéefined (e.g., ik €
dom(T) in the first case or i € b in the second case). A typing environm&rgan be
used to type a system under a scheia®) only if the réle information il ‘respects’
the associations if{. This intuition is formalised by the following definition.

Definition 2.1. Given a RBAC schem&{; #) and a typing environmeiit, we say that
I' respectsl/ if, for all r e dom(I), it holds thaﬂ"(r) =plag : Ri(T1),...,an : Ra(Tn)]
with U(r) = p andU(af) = R, foralli = 1,.

The primary judgements of the type system are of the fBr¥ A. Such a judge-
ment states thah is well-formed with respect tb andsS; this implies thatA respects
the RBAC schemd@. To infer the main judgement, we rely on two auxiliary judge-
ments, one for values and one for processes. Judgdment: T states that the value
n has typeT in T; judgement; p 7 P states thaP respect§” andS when it is run in
a session of with rblesp activated.

The typing rules are collected in Table 4. Most of them aréesgblanatory; we
only comment below the most significant ones, i.e. thosaeaelto the actions in our
calculus. The idea beyond these rules is that an action caxdxeuted only if the
current session has activated a role enabling the actiale {®-Input) States that, for
typing a(x).P in a session of where rbles are activated, we need to establish that
a" has typeR(T) in T, that inputs over a channel of grofcan be performed when
playing réleso and thatP is typeable once assumed thxdtas typerl. Rule (T-Qurpur)

10

Typing Values:

(T-Ipy) (T-Ipy)

I(r)=p[a:Cl I(r)=p[b:C,a: C,br : C]

Trr:p[a:Cl rra:c
Typing Processes:

(T-Ni) (T-Inpur)

Fra:RT) RePlp) [x:T;prMp

Tip il ;o F4P) a(x).P

(T-Par) (T-Outpur)

Tiprs P Tipr Q Crm:RT) Trn:T RePlp) Tpr?p

TipH P1Q L5 p HUP mn).P

(T-RepL) (T-ROLE)

TiprS P Frr:p[@a:Cl Rep T;pU{RIF P

Tp S 1P [;p S roleRP

(T-Res) (T-YiELD) (T-March)

ra:RT)p+ P Rep Tip\{R+P Tipr P

[p+ (va:R)P [;p+ yieldRP [p S [m=n]P

Typing Systems:

(T-Ewery) (T-Sesston) B

Trr:p[@a:Cl pcp TiprSP

r+5o TSP,

(T-SvsPar) (T-SysRes)

A T+SB r,a:R(T) A

I+SA|B I+ (va :RA

Table 4: Typing Rules

is similar: it checks that an output over a channel of grBup allowed when the rbles
in p are activated; moreover, it also requires that the tratedwaluen is assigned type
T inT. Rule (T-RiLe) states that, for typing processle R.P in a session of where
rblesp are activated, we need to check thaian assume rdlR and thatP is typeable
for r having activategh U {R}. Rule (T-VieLp) states that procesgeld RP is legal for
r only whenR has been previously activated andPiiis typeable for whenR is off.

11

Finally, notice that in rules (T-R) and (T-SsRes) the type of the restricted channel is
not tracked in the restriction construct. Indeed, for typeaking purposes, it $iices
to ensure that the new channel is used coherently by all heepses accessing it. To
this aim, we only need to invent a suitafilevhen applying the rules and verify that all
the accesses to the channel conforrii to

Definition 2.2 (Well-typedness).Given a RBAC schem& = (U; £) and a system,
we say thatA is well-typed inS if there exists a typing environmehtrespectingl{
such thal" +S A

Example 2. Let us consider the banking scenario described in Example illustrate
the type system introduced above, let us give a suitabladyjoir the system. Let

Tesh = cashier({request}(])

be the type of the cashiers, i.e., channels belonging ®aathier and exchang-
ing values of typdrequest}[]. Type {request}[] represents the possible requests of
clients; values of this type are names belonging to rélguest which do not provide
any channel. Moreover, we let

Teo = {client}[served: cashier get(Tcsp)]

be the type of user. This represents users belonging to réleent and owning a
channel namedervedof type cashier_get(T¢sy). Then, a suitable typing environ-
mentr is

r— Ty
s — p'[signal: cashier req(T¢),C1: Tesh---»>Cn ¢ Teshl
withdrw.req — {request}[]
depreq — {request}[]
stop — {request}[].

The system of Example 1 is then well-typed in any schetfigf) such thal respects
U and®P is such that

{cashier_req', cashier_get’, cashier'} C P(client)

AU {cashier_req?, cashier_get!, cashier?,

N

P()

whereA C A is a set of action permissions that allow the handling oitlerequests.
<

schedul ing?, schedul ing!}

Example 3. In the real world, it is unrealistic to allow any bank clientask for any
kind of bank operation. For instance, when a client applesaf credit card, he is
always asked for some credentials. To model this finer sagnae let each avail-
able operation to be modelled as a specific process, whictbeattivated through

12

a specific channel (e.g., chanwedrw handles withdraw requests and activates pro-
cessPydrw, 0pnhandles open account requestshandles credit card requests). The
communication along ffierent channels requiresiirent roles and, thus, it is a way to
control the credentials of the client. In this setting, thstderc; of Example 1 is imple-
mented by the following process (the remaining behaviothebank is implemented
as in Example 1):

Ci(x).([x = withdrw_req] wdrw(y).Pwarw | [x = openreqd] opn(y).Popn |
[x = creditcardreq] cc(y).Pcc | [x = stod freeX(c?))

Let U assign to channekdrw (resp.,opn andcc) the groupwdrw (resp.,opn and
cc), and letP be such thatc' € P(rich_client), wdrw' € P(client) andopn' €
P(user). Under this schema, the following client is not well-typeds he has not
activated the correct role to perform credit card requests

r{role client.signaf(r).servedz).zcreditcard.req).cc(signature.zstop |},

Indeed, the type checking fails when applying the rule (m0r) to ac-

tion ccXsignaturé becausecc' ¢ P({client}). On the contrary, assum-
ing that rich.client € U(r1), client € U(ry) and user € U(r3), and

that {cashier_req', cashier_get? cashier'} C P(user) N P(client) N

P(rich_client), the following clients are well-typed:

ri{ role rich_client.signaf(r).servedz).z(creditcardreq).cc(signature.zstop [,
ro{ role client.signaf(r).servedz).zwithdrw._req).wdrw>sum.z(stop |
rs{ role user.signaf(r).servedz).z(openreq).opn(personaldata).z(stop [,

Indeed, actiongc®(signature, wdrw*(sum and opn®(personaldata) are all enabled
by the rdles previously activated by users, wizch client, client anduser, re-
spectively. o

We now establish the soundness of our type system in theast@dneay, i.e. by
proving subject reduction and type safety. The first redalies that well-typedness
is preserved along reductions; the second result ensuaesitly systems abiding by
the RBAC schema are allowed (i.e., users only perform asti@mmitted by their duly
activated roles). The proofs are in Appendix A.1.

Theorem 2.1 (Subject Reduction).If T +SA and A— A’, thenT +SA'.

To state type safety, we first need to formally define whaasibms our type system
wants to avoid. Thus, in Table 5, we introduce the notioruoftime errorsand prove
that they never arise in any well-typed system. Intuitivelp-time errors are generated
in three possible ways: whenever a session is equipped ®i#ls not assigned to
the user owning that session (see law (issy; whenever a rble is activated (resp.,
deactivated) by a user (resp., by a session) not owning sutle ésee laws (E-RE)
and (E-YieLp), resp.); whenever an ingoutput action is performed in a user session
where no privilege enabling such an action is provided bydles active in that session
(see laws (E«) and (E-Qur)).

13

(E-Sess) (E-RALE) (E-YiELD)

p L Ur) Re¢ U(r) Ré¢p
r{Pl, v @.p) r{role RP}, ».p) r{yield RP]), wg
(E-IN) (E-Our)

Up)=s SeP(p) UDL)=S S e¢P(p)
r{] b(X)P I}p W (UP) r{ bs(n)P I}p MU P)
(E-Par) (E-Res) (E-Srrucr)

Aog A M (Usa:R;P) A=B Bwyg

A || B S (Var : R)A W(’L{;P) A g

Table 5: Run-time Errors

Theorem 2.2 (Type Safety).If A is well-typed inS, then A~sg cannot hold.

We conclude this section remarking that our type system ipawerful enough
to type all legal systems. For example, the syst¢ai(r) |}, is untypeable. Similarly,
we have no notion of subtyping; thus, a channel must alwagry ealues exactly of
the same type. We now sketch how these deficiencies couldvielied, by following
standard techniques; full details are omitted, as they angpéetely well understood
and orthogonal w.r.t. the new ideas of our work.

Recursive Types In order to typer{a'(r)[,, we would need a typing environmeint
assigning to a typeT such thall = p’[a : R(T)], for someo’ 2 p andR. Clearly, such
a typeT is not expressible with our type syntax, as it would requirérdinite nesting
of type constructors, i.ep’[@ : R(’'[@ : R(---)])]. By following [8, 20, 24], this
problem can be solved by using equations between type estpnsswhose solutions
are infinite types, likd above. To this aim, we assume a set of type varigb|eanged
over by¢, and extend the syntax of value types as follows:

Tu=p[@a:Cl | C| & | peT

Intuitively, u&.T stands for the solution of the (recursive) equatfoa T. However,
to avoid nonsensical expressions ljgé, we impose the constraint that . T the
variable¢ occursguardedin T, i.e. it occurs underneath at least one of the other type
constructors. Moreover, we only considdosedtype expressions, i.e. expressions in
which each occurrence of a type variablis underneath a¢._ construct. By exploit-
ing these two assumptions, it can be standardly provedhieatdt of types is a c.p.o.
and, thus, the solution of an equati@AT is unique and can be obtained with a least
fixed-point construction.

If we now represent (the unfolding of) a (possibly recurkiy@e as its (possibly
infinite) parse tree, we can deem two tymeglivalent written T, < T», if and only if
they represent the same tree. A lot of literature on typeesystis devoted to compute

14

=< algorithmically (see, e.qg., [2, 20]); for our purposestiffices to remember thatis
a congruence on types such thatT = T[#E T,
If we now add the rule

I'en: T T=<T
Fen: T
to the type system of Table 4 and modify rule gR)Ito be

(T-Ip-Rec)

I'(r) < p[b: C,a:C,br : C']
rra:c
itis easy to see that P ra’(ry |}, , whenever (r) = ué.pla’ : R¢)]andR' € P(p).

Subtyping Subtyping is a preorder on types that can be thought of assiuwi be-
tween the set of the values of the typesTlfis subtype ofT, then a value of typ@”’
is also of typeT; thus, any expression of typé can always replace an expression of
type T, without compromising well-typedness. In traditional gramming languages,
this feature is used to reduce the size of a program, as thefssttion can be invoked
on parameters of fierent types, without writing a ‘copy’ of the same function éach
subtype. For example, assume, as usual,ithais a subtype ofeal and that there is
a function to multiply two reals. Then, the same function atso be used to multiply
two integers.

In our setting, we can define an ordering on types to allow #esage of values
of different (yet somehow related) types along the same channelskgteh here a
very basic form of subtyping inspired by [14]; for more eladted settings see, e.g.,
[21, 24]. First, we need to define teabtyping relationc, that is the least preorder on
types satisfying the following rules:

pCp h<k Yi=1..,h.GCC/ R=R TCT
plar:Ca,...,an:Cy] C p'lag:Cy,... a1 C] R(T) C R(T")

Then, we need to update rule (Ts@ur) to become
Frm:R(T) Trn:T TCT RePp) Tpr¥? P
T; p H%P) m(n).P

In this framework, we can type the system

rla(x).o<m i, Il sta<ro by, Il thar2)h, Il ralb(y).c@ b, Il r20b(y).c'(2)

Indeed, it stfices to takd™ such that'(n) = T, I'(r1) = po’[b: R(T),c: C], I'(r2) =
P'[b:R(T),c :ClandI(r) =p[a : S(’[b: R(T)])], for someRandsS.

3 Behavioural Semantics

One of the main advantages of process calculi is the poggibfl developing over
them behavioural equivalences, that abstract a term frerayiitax and concentrate

15

on its functionalities. To this aim, we consider a standaddifined typed behavioural

congruence, vizreduction barbed congrueng&5]. This is a touchstone equivalence
defined in terms of the reduction relation and of a notion alwlation, and then closed
under all possible system contexts. The reason to consityged congruence is that

only well-typed contexts guarantee a reduction behavibigtiag by the RBAC policy.

In its typed version, barbed congruence is tagged with am@mwent” and RBAC
schemas, to signify that it equates terms that are typeable uhidendS. Moreover,
only contexts typeable undEandS are considered in the definition of the congruence.
Thus, following the style of [13], we writ€ £° A; = A, to mean thal” +5 A, for
i = 1,2, and tha®\; andA; exhibitthe same behaviour in all environments ‘compatible
with T andsS.

We now formally define barbed congruence. As usual, we demitte —* the
reflexive and transitive closure of the reduction relatier.

Definition 3.1 (Barbs). Theobservation predicate 4 n holds if
e eitherp = a" andA = (vbs: R)(A || r{ a(x).Pj,) fora’ ¢ bs,
o orp=aandA= (vbS: R(A || s{a(n).P|,) fora" ¢ bs.
The predicaté || n holds if there existg\ such thatA —* A’ andA’ | .

We remark that the chosen barbs only express the abilitytevdnt over channels.
Indeed, observing rble activatigdgactivations is not reasonable, as no context can
determine whether a user performsée/yield: these operations onlyffact the thread
performing them.

Definition 3.2 (Reduction Barbed Congruence).Reduction barbed congruenie
the largest binary and symmetric typed relation over systaumsh that, whenever=>
Aq = Ay, it holds that

1. (Barb preservatiohif Ay | n, thenAx | i
2. (Reduction closupef A; — A7, then there exists a syste&y) such thaty, —*
A, andl S A, = A,
3. (Contextuality let S be {; #); then,
(a) for all £ and n: T such thati n don(%) = O, it holds that
r”ﬁ::f ':(‘uuﬁ:T;PUP’) A=A,
(b) for all systemsB such thaf” +5 B, it holds tha" =S A; | B= Ay || B
(c) foralla" : R(T)suchthal’ =I",a" : R(T) and¥ = U’ w{a" : R}, it holds
thatl” %) (va :R)A; = (va :R)A;.

The less intuitive condition of the above definition is cotmlity. Essentially,
it requires that the equated systedsand A, must be equivalent in any execution
context. An execution context caffect the behaviour of such systems in three ways:
it can extend the RBAC schema, thus enabling more funciitiesbf A; andA,; it can
provide more parallel components that, by interacting withand A,, could change
their behaviours; it can hide channels and, hence, deleteradble behaviours @;
andA,. These aspects are handled by the sub-conditions (a), dicarespectively.

16

The problem with this definition of barbed congruence is thatust be proved
by analysing all the system contexts, which makes it hardigtable. In Appendix B,
we provide a more tractable proof-technique for Since this task requires several
technicalities taken from the field of process calculi, vait to the interested reader;
the other readers should only know that tools for estabigihiarbed congruence in a
simpler way do exist.

To conclude, we now list a few algebraic laws that illustrsdene key features of
our framework. In what follows, we fix an RBAC scher$aand a suitable typing
environmenf'. The first equation states that a terminated session of adossrnot
affect the evolution of a system. Indeed, it holds that

rESrnil}, = 0.

This is diferent from some distributed calculi, like e.g. the Ambiealcalus [7] or
Kram [9], where the presence of a place for computations is rate\Moreover, dif-
ferently from several distributed languages, the useroperihg anoutputaction is
irrelevant; the only relevant aspect is the set of permissaxtivated when performing
the action. This is summarised in the following law:

T ESr{bXn)), = tibXn),.

A similar law holds for theyield action. Notice that only for these two actions the
identity of the user performing them is irrelevant. For epdan relocating an input
action breaks the equivalence between processes, as mgputeals implicitly refer the
user owning them. Indeed, we have that

I ES r{a(®).P}, # tla(X).Pl,.

Similarly, it is possible to move @le R prefix between two users only whehis
assigned to both of them.

By exploiting these observations, we develop in the folloy&xample a relocation
procedure to establish whether a process can be moved fraaraaianother. This
procedure can be exploited to reduce the number of usersystens, while maintain-
ing the overall system behaviour.

Example 4. We now give simple procedure to infer judgements of the foFim=S
r{P}, = s{|P},. This judgement states that procéssan be indiferently executed
by r ands without altering its observable functionalities. Thusssenr{ P, can be
replaced bys{ P|,. If no other session afis left in the system, thenitself has been
removed.

The procedure is very simple. Try to infer bdthp +° P andTl;p +5 P without
using rules (T+kput) and (T-Rss). If you succeed, thenl S rf Pl, = S|P},
otherwise T' ES r{ P}, # slPl,. We cannot use rule (bur) because, as we
have already discussed, we cannot relocate processesnaogtaput prefixes. A
similar problem arises also for restriction (thus, we canrse rule (T-Rs)). Indeed,
the interplay between user names, restricted channel nanterestricted channels is
subtle. For example, consider the syster# (va: R)a (a%), try to run it in users, s

17

andt, and put the resulting session in an arbitrary system canbasthe first caseP
cannot be engaged in any reduction, as it emits a value onrmehknown only byP
itself; in the second casB,sends a bound value; in the third caBesends a free value.
Thus, relocating processes with restrictions breaks etpriees, in general.

It can now be easily proved that this procedure is a sound antpiete proof-
technique for judgementt =5 r{ P, = s{|P},, whenevelP does not contain restric-
tions and input prefixes. o

4 Adding Role Activations and Deactivations

In this section, we show how our framework can be adapted ¢corapass more ad-
vanced features. Usually, the task of properly puttiokg/yield operations within

a system is tedious and error-prone; moreover, it assumali knbwledge of the
RBAC schema at programming time. We now describe a way to aidactiva-
tiongdeactivations within a system in such a way that the regu#tirstem can be exe-
cuted under any given schen#(#), whenever possible, i.e., when users are allowed
to activate the rdles required by the actions they arenglto perform.

A first technique rewrites a systef without actionsrole/yield by activating at
the beginning of each session of a generic usell the rdles inZ(r). Intuitively,
the refined system contains all the legal behaviours afith respect to the RBAC
schema given. However, the fact that all the réles assitmadser are always activated
violates a basilar RBAC design principle: a rdle should ti@/a only when needed.

A second naive algorithm replaces each ipqutiput prefixe.Q occurring in each
session of a generic usewith role R.a.yield R.Q, where roleR belongs tat{(r) and
enables action. The algorithm is very simple but it presents several drakbait al-
ways adds a pair of auxiliary actionsle/yield for every prefixa occurring in the pro-
cess, although it could be that r@Renables also the prefixes following@ Further-
more, when rewriting.Q, it is possible that several rbles enabldn this case, a thor-
ough choice of which réle to activate may minimise the nundfeole/yield actions.

We now present an algorithm that adds a smaller number afrertile/yield. The
algorithm works on a tree-representation of the procesaéh session of a generic user
r: first, the tree is partitioned into subtrees by collectiogether nodes (i.e., actions)
which require the same rdle in order to be executed coyretttén arole R auxiliary
action is added before the root of each subtree requiritgRband dually ayield R
action is added after the leaf of each such subtree.

More specifically, a proced® running inside a session of useis translated into
an annotated binary tree, where nodes represent processtageand each node is
annotated with the set of rbles whose permissions enablediion associated with the
node (if the node is not associated with an ifiputput action, any réle available for
userr will enable it). The tree is expressed in terms of a tupte(V, E, rt,), where
V is a finite set ohodesE C V x V is the set of theedged(i.e., (v, V') € E iff there is
an edge fronvto V'), rt € V is theroot of the tree, ang : V — 2% is the assignment
of rdles to nodes used to annotate each node. The annotageddsociated with a
finite process? (withoutrole/yield actions) running inside a session of usenay be

18

generated by the functionrEer.,(P) described below, with#;) a RBAC schema
andI" a typing environment respectirid. In the definition, we writd’{r} for the sefp
such thal + r : p[@: C]; thus,R e I'{r} is a shortcut fof - r : p[@: C] A Re p.

13

TREE. ,(nil)

TrEEL»(A(X).P)

(v}, 0,v, {vi> I{r}})

VUVLEU{(v. 1)} v, ¢ Ufv - p})
where Reep, 1.»(P) = (V,E, rt,¢),v¢ V,T'+a : S(T)
andp = {ReTir} : S*e P(R)}

(VU{VLEU{(V, 1)}, v, U{v - p})
where Reep.,(P) = (VE, rt,¢),v¢ V, T'+a : S(T),
I'+n:Tandp={ReTir} : S'ePR)

(V]_ UVLoU{V,EiUEU {(V, rtl), (V, rtg)},V,

$1U ¢ U{v i T{r}})
where 'h'zEErr;P(Pi) = (V,, Ei, rti, ¢) fori € {1, 2},
ViNnVo=0andve¢g ViUV,

(VU{VLEU{(v, 1Y)}, v, ¢ U {v > T{r}})
where 'I‘iqur o R(T)p(P) (V,E, rt,¢),ve V
andl,a" : R(T);T{r} +'“*) p

(VU {v},EU{(v, rt)},v,¢ U{ve T{r}})
where Reer.»,(P) = (V, E, rt, ¢) andv ¢ V

1>

13

TREEL.,(M(N).P)

13

TREEL.(P1 | P2)

1>

TreER,((va : R)P)

13

TREEL,([M = N]P)

Example 5. Let us consider a system consisting of a single usenning the following
process
P =a(x).([x=bla(x) | [x = gl(vc: S)(@(x) | a¥c")))

and the RBAC schemal(; ¥) defined as

U :r [{R]_, Rz} P . Rl = {R!, RO}
a ~» R R - ({SY
a® - S

A pictorial representation Of]ill:ZE[u;p(P) is given in Figure 1, where each node is ex-
plicitly named (the name is shown on the left-hand side ohibee), the process oper-
ator associated with the node is written within the node,thadnnotation (i.e., the set
of rdles associated with the node) is depicted on the tigimd side of the node. Notice
that in this case it sices to parameteriserik,.,, only with a roles-to-users assign-
ment{ instead of a (more complex) typing environme&rtespectingl{) because no
received value is used as an output channel. o

Once proces® has been translated into an annotated binary tree, thegmnodbf
finding a minimal refinement d? (in terms of the number of actiomsle/yield added)
for userr under the schemal(; #) can be reformulated as the problem of finding a
partition of nodes such that:

e the partition generates the minimum number of blocks;

19

x=bT J{Ri,R:}

nSGD {R} ne@@ R R}
nv@ {R,Re}

Figure 1: The annotated binary tree for procB$som Example 5

e each block is a subtrée

¢ all the nodew belonging to the same block have in common one of their anno-
tating roles, i.e., there exisR € R such thatR € ¢(v) for all v in the block.

We call such a problem thminimal partition problem

We now describe a way to find a minimal partitiontaind assign to each node
a label taken fromp(v). To this aim, for every node and rdleR, the numbem[v, R]
denotes the minimum number of blocks that can be obtaindtkisubtree rooted
whenv is labelled withR; we letm[v, R] = o if R ¢ ¢(v). An algorithm for calculating
the quantitym[v, R] is given in Table 6. Intuitively, we work in a bottom-up fash
on the tree. When we consider a leadnd a rdleR that authorises it, we can usgo
generate a singleton tree (henegy, R] = 1); if, on the other hand® cannot authorise
the (action associated with) the node, then it can be ignibeeduse it cannot induce
any block in the partition (hencejv, R] = «). When we consider an internal node
with just one childv’ and a rdleR suitable forv, we can either try to includein the

2Here, we use the tersubtreeto refer any connected subgraph of the given tree.

20

Visit t in postorder

When visiting the nod& do

e if visaleafthen

_ | o ifRe&¢(V)
miv, R = { 1 otherwise
e if vhas only one child (and let it b&) then
o0 if R¢ ¢(v)
MV:-R= 0 min(miv. R,

mins.z{mM[V,S]} + 1} otherwise

e if vhas childrens; andv, then
) if R¢ ¢(Vv)

min{ m{vy, Rl + miv,, Rl - 1,
Mins,r{M[vi, S]} + Mins.r{m[vy, S]} + 1
mlvy, R] + mins,r{m[vy, S},
mins,r{mMvy, S]} + Mvo, R] } otherwise

mv,R] =

Table 6: Computing functiom[v, R]

subtree of/ induced byR (hencem[v, R] = m[Vv', R]), or we can put it in a new subtree
(that can possibly grow up when analysivig ancestors). In the latter case, the new
subtree is induced bR, while the subtree fov’ can be induced by any other réte
thus,mv, R] = 1 + minsr{m[V, S]}. Finally, the case for a nodewith two children
is similar, but it requires to examine four possible sitoasi (according to whetheris
included in both, in none, or in just one of the subtrees ieduzyR for v; andvs).

Now, we can compute, for every noglea roleLaser(v) which represents the rble
common to all the nodes in the block whiglbelongs to. To this aim, we assume a
standard functiomaraer (V) returning the father of nodein t (if any).

Visit t in preorder
When visiting the nodeg do
m, = {R: mVv,R] = minSe¢(v){ mlv, S]}}
if v =rt or LABEL(FATHER(V)) ¢ M,
thenraser(v) := R, whereR e m,
elseLaBeL(V) := LABEL(FATHER(V))

Notice that the choice dR € m, (in the ‘then’ branch) is totally arbitrary: any such
R can be chosen, sinas, only contains rbles that minimise[v, _]. We can now
formulate the soundness of the algorithm presented so fketeh of the proof is in
Appendix A.2.

Proposition 4.1. FunctionraseL can be used to induce a partition of t's nodes in
subtrees satisfying the requirements of the minimal partit Moreover, the overall

21

procedure takes (V| x K?), where K is the size of the largest set annotating a node of
the tree.

A solution of the original problem of properly putting aat®role/yieldin a pro-
cessP can be then extracted easily frans: TREE’W(P) and from the associated func-
tion LaBeL. Each block of the partition induced lyseL represents the set of process
operators irP that are under the influence of the rdle labelling the bldékhe tree
consists of a single node, th€hmust benil and no auxiliary action is needed. Oth-
erwise, the annotated (and partitioned) tree can be vigit@deorder: depending on
the value ofuaBeL(v) a pair ofrole/yield auxiliary actions are either added or not. In
particular, the operator corresponding to the root is peefiia P with role R, where
R = raBer(rt). Then, no other actions are added umtder(V) # LABEL(FATHER(V)). In
this case, the operator associated with nede prefixed withyield Rrole S, where
R = vaBeL(ratEr(V)) and S = raBer(v). We denote the process resulting from this
procedure as RNEpy..,(P).

Example 6. Consider again Example 5 and the prodesanning inside user:
P =a(x).([x=b'la(x) | [x = s|(vc: S)(@(x) | a¥c")))
In this case, we have that functionjv, R] is

||n1|n2|n3|n4|n5|n6|n7|n8|n9|n10|n11|n12
Rif|f2(21|2]1]2|1|]2|1]|| 1|1
Rl |3|2|2|c0|2|1]|2 || 1 1 1

Thus, a minimal partition of ¥eey,.,,(P) is given by the following two blocks
b1 = {ng, Nz, N3, N4, Ns, N, N7, N, Ng, N1}, b2 = {Nyo, M2},

from which we can extract the refined process

REFINED[.,,(P) = role Ri.a(x).([x = b'Ja’(x) |
[x = ¢](vc: S)(@(x) | yield Ry.role Ry.a%(c")))

The correctness of the approach can be stated as followg; details on the proof
are in Appendix A.2. Recall from the definition of the typetgys thatr can runP if
. (U:P)
L U(r) P.

Proposition 4.2. LetS = (U; P) be a RBAC schema and P be a finite process without
rolefyield to be run by user r. Then

1. T;U(r) /7 P implies thatReren}.,,(P) is defined;

2. symmetricallyl" respectsi{ and REFINED{-;?(P) = P" imply thatl’; 0 +° P’.

22

Intuitively, the first implication ensures that every prsse that can be run by under
the schemaS can be properly annotated with actioride andyield. The second
implication states that the result of the annotation prace@e have just presented is a
well-typed process far in the schema given. Notice thaE]R\IED{-;P(P) is the minimal
typeable process obtained fraby adding actionsole/yield: this is an easy corollary
of Propositions 4.1 and 4.2(2).

Finally, by Proposition 4.1, the overall procedure is lingethe size ofP (i.e., in
the number of its operators). Indedd| is proportional to the size d® andU(r) is
an upper bound to the sets annotating the nodes of the treallju$t{((r)| is a small
constant). This is the best asymptotic performance we cainidat, since we at least
have to parse aP’ to properly add actionsole/yield.

Least Privilege. Example 5 can be easily adapted to enforcdehst privilegeprop-
erty [22, 26]. This is a well-known property requiring thatey program and every
user of the system operate using the least set of privilegesssary to complete their
job2 Primarily, this principle limits the damage that can resudtn an accident or er-
ror. It also reduces the number of potential interactionsr@gprivileged programs to
the minimum for correct operation, so that unintentionalyanted, or improper uses
of privileges are less likely to occur.

In our setting, we can say that a ugesatisfies this property w.rt. a schema
(U; P) while running inA if, wheneverA —* (va : R)(A' | r{ a.P},), it holds
that p is a minimal (w.r.t. |P(})|, i.e. the cardinality of the set of privileges asso-
ciated to -) set of rdles assignable tothat enablesy. The approach presented
in this section can be easily adapted to encompass the leadege. The only
thing we need to modify in the algorithm given above is therdtdin of function
¢ when building the tree for a process prefixed by action Let v be the node
associated ta. By letting enablév) = {R € I'{r} : P(R) enable actiow}, we let
#(v) = {R € enablgv) : [P(R)| = Minscenabigy{ IP(S)I} }.

Example 7. Consider a user that connects to a mail server to read his e-
mail and changes his password before quitting. Suppose(THig®) is such that
{user,admin} C U(r), U(login®>*"®) = login, U(read mail') = read_mail,
U(change pwdFe"Ve) = change_pwd, {login' read_mail’} < P(user) and
P(admin) = P(user) U {change_pwd'}. Remarkably, the roledmin givesr the per-
mission to change his password. The following two systems

A
Ao

r{ login®>*"*{pwd).read. mail(x).change pwd®>*"*{ pwd') } aanin
r{ login®>¢"®{pwd).read. mail(x).role admin.
change pwd™**"*(pwd).yield admin } ey

are both well-typed in/, #). However, they dfer in the auxiliary actions used: sys-
temA, satisfies the least-privilege requirement, since at eagtugbon step userowns

3To be precise, one should use the tenimimal privilegeinstead ofleast privilege Indeed, imagine that
you have only two rdlesR; andRy, such thalR; enables actiongR?, S'} and R, enables actiongR?, S7);
then, it is unclear which one would be the réle giving thestgarivilege to execute an input from a chan-
nel of rdleR. Nevertheless, the current terminology in computer sgcuses the word “least” instead of
“minimal”; we adhere to this trend.

23

a minimal set of permissions required to execute the actibile A; does not, since it
activated the réledmin also to login and read mails. o

5 Possible Extensions of the Core RBAC Model

There is a wide spectrum of RBAC modelsfdiing on the operations supported. For
example, [10, 23] propose various extensions of the core GZ&Amodel we have
used up to now, that ifoc. cit. is referred to aikRBAG. In particular, two variants
are proposedRBAG, adding rdle hierarchies, alRBAG, introducing constraints to
permissions a user can exploit. In this section, we destrivethese extensions can
be easily expressed also in our framework.

5.1 Hierarchical RBAC

Hierarchies are a natural means for structuring rdlesfteaithe organisational struc-
ture of an enterprise. A hierarchy is a partial order defiisgniority relation between
réles, whereby senior rbles acquire the permissionsaif fliniors, and junior rdles ac-
quire the users authorised for their senior réles. For gtann a health-care scenario,
a rdlecardiologist is hierarchically superior to the rdloctor, thus the cardiol-
ogist should have all the permissions of the doctor as wetl, &l the users that are
authorised for theardiologist rble should be authorised also for tiector rdle.
This approach can increase the administratifieiency of the enterprise: rather than
specifying all the permissions of the junior rdle for thenige rdle, the junior role is
specified as a permission of the senior rdle.

Our framework can be easily extended to express rdle luieies by adding a third
components, a partial order orR, to the RBAC schema which becomes a triplet
(U; P; <). More specifically, wherR < S, Ris ajunior rdle of S or, similarly, S
is asenior réleof R. Once a hierarchical RBAC schem&{(#; <) has been fixed, we
can define the set of junior rdles with respect to a giveaRbr to a given set of rbles
p,asjnr(R) £ {S : S < Ryandjnr(p) £ Ure, Jnr(R). Then, we may re-defing(p)
asP(p) = Urejnr(r) P(R) and adapt both the type system and the barbed congruence
take into account the hierarchy relation. In particulabéfinition 3.3.3(a) we can also
extend the partial ordet with all <’ such that< U <’ is still a partial order. These
modifications sffice to let the theory presented in Sections 2 and 3 properlig.wor

Example 8. Consider the health-care scenario again. In a hospita tk@ften a strict
hierarchy establishing which operations are permitteegddmg on the position of the
different employees. For example, the réfgecialist usually contains the rbles
doctor andintern. This means that users activating réfgecialist are implicitly
associated also with the permissions associated withldhe€or andintern roles,
without the administrator having to explicitly list tilector andintern permissions.
This is an example ahultiple inheritancewhich provides us with the ability to inherit
permissions from two or more rble sources. Indeed, a t®mposed from multiple
subordinate rbles with fewer permissions as in the orgaiois and business structure
which these rbles are intended to represent.

24

This hierarchy can be expressed by havingern < specialist anddoctor <
specialist. Moreover, the rblesardiologist andradiologist could each con-
tain thespecialist role. In this case, we also l@pecialist < cardiologist
and specialist =< radiologist, leading to, e.g., jnr(radiologist) =

{radiologist, specialist,doctor, intern}. Now let

U(prescr.aspirinPatent prescr_aspirin

U(use XRay8°sPa) = yse_XRays
prescribe_aspirin' € #P(doctor)
use_XRays' € P(radiologist)

then the user
r{role radiologist. use XRay&°sP"@ patient. prescr. aspirin®®®"(posology J,

is typeable by only assuming thdi/(r) = {radiologist}. o

5.2 Constrained RBAC

The core RBAC model can be further extended by requiriffpdint kinds of con-
straints to be satisfied before allowing a user to activatdley or when defining the
RBAC schema. According to [11], there are two possible foofsonstraints:tatic
anddynamic The first ones deal with the permissions-to-rdles and thighrdles-to-
users assignments. For example, it might be required thaeaaannot be assigned
some specified roles at the same time, or that the same @mis not assigned
to different réles. These constraints are usually enforced glthia definition of the
RBAC schema [1, 16, 17, 25]. On the contrary, dynamic comggaleal with user
sessions. By exploiting this form of constraints, it is pbks e.g., to assign to the
same user two conflicting rdles, although requiring thatérdles are never activated
simultaneously (for most practical purposes, this kindegfuirement stlices).

We can easily extend our framework to deal in a uniform wayp algh different
dynamic constraints. In this case, another compo@estadded to the RBAC schema.
C is afinite set of binary predicates (that in this paper wemassto be first-order logic
formulae built up over the atonf®) relating a rdle and a set of réles. Given a con-
strained RBAC schemal(; #; C), we letC(R, p) be Aconstre c CONSL(R, o). As for the
hierarchy extension, both the type system and the barbegteence must be parame-
terised also with respect . Moreover, in rule (T-RiE), the premis&(R, p) must be
added. With respect to Definition 3.3.3(a), we want to rentlaak extending usually
reduces the set of possible evolutions. Thus, instead ofniag that the equivalence
holds in every extended schema, we now require that the &guiee is preserved when
making the schema more liberal, i.e. wheeducingthe set of constraints.

By adapting the logic formulae i@ to different situations, we are able to express
the most typical examples of constraints:

1. Mutual exclusionthe same user can activate simultaneously at most onexole i
a mutually exclusive set. For example, if rolR@ndS are mutually exclusive,

25

R cannot be activated in a user session where3Gkalready active, and vice-
versa. This can be formalised as

constrres(R,p) = (R =R =(S¢p) A (R =9)=(R¢p))

2. Prerequisite rdle:a user can activate rdRonly if he has already activated role
S. This can be written as

constsr(R,p) = (R =R) = (Sep)

3. Cardinality constraints (1)at mostn rdles can be activated in each user session.
This can be expressed as

constfj<n(Rp) = |[pU{R} <n

4. Cardinality constraints (2)each user can own at maspermissions simultane-
ously. This can be enforced by requiring that

constipuizn(R.p) £ IP((RIUp) <N

Example 9 (Prerequisite 1©le). The concept oprerequisite roleis based on compe-
tency: in some circumstances, one may want to require aote activated only by
a user already playing a certain rdle. For example, a conmferetnre of a bank policy
is to require an authentication phase to identify clienf®teeany sensible operation,
like money withdrawal. In practice, this amounts to ask feahld identity document
or a secret cogdpassword. In our refined framework, this scenario can be teatiey
letting the RBAC schemal(; #; C) be such thatclient, authenticated} € U(r),
UWArwPa™) = wdrw, wdrw' € P(client) andCoNSthuthenticatedsclient € C. HeNce,
client

r{role client.wdrwP2"amounj |},

cannot be typed, as the activation of réleient is forbidden byC, while client
r{role authenticated.role client.wdrwP®amounj |},

can be typed. o

Example 10 (Mutual Exclusion). For the sake of fairness, sometimes it is desirable
to control the distribution of sensible permissions; eaguser willing to perform a
sensible operation should befdrent from the user in charge of controlling the legality
of such an operation. Consider a scenario where some stgesatibmit a paper to a
journal. Clearly, the reviewers of that paper cannot be eh@mong the authors of
the paper itself. This requirement can be modelled in ounéwaork by having two
rbles,paperP : author andpaperP : reviewer, such thatC contains the constraint

CONSthaperp:author® paperP:reviewer- <

26

6 Related Work

To the best of our knowledge, no previous study building arcpss-calculi has ever
been conducted on RBAC. A number of papers have insteadwligathe formal spec-
ification and verification of RBAC schemata. In [16, 25] folmeethods are used only
to verify the correctness of the schema definition but nohefwhole system. In [25],
the ALLOY language is used to detect possible conflicts in RB&hemata supporting
simultaneously delegation of authority and separationutied. A constraint analyser
allows the schema validation to be computed automatidalljl6, 17], the authors use
a graph transformation which combines an intuitive visuggdliption of the RBAC
schema with solid semantical foundations. In [1], Ahn etfirkoduce a formal lan-
guage for the specification of more sophisticated réleet@sithorisation constraints,
such as prohibition and obligation constraints. These@adres are complementary
to ours: they can be integrated with our technique in ordeetdy the consistency of
a schemasS, but they do not give any hint about the correct execution s§ystem as
our method does.

In [3], Bertino et al. develop a logical framework for reagapnabout access control
models. The framework is general enough to model discratigmandatory and rble-
based access control models. Such a framework is usefubfoparing the expressive
power of the models, but it cannot be used to verify the coerecution of a system
under a given schema.

Probably, the most related work, although not aiming atyshgiRBAC systems,
is [6], insofar as rdles can be understood as (privilegeygs.Groupsare introduced in
loc. cit. as types for channels, and used to limit their visibility. ¢ system ensures
that channels belonging to a fresh group can be only used dgepses within the
initial scope of the group. Thus, processes can access elsaaccording to their
physical distribution (with respect to group restrictipngn our work this feature is
modified so that not only the place where the process runs tfie user running the
process) but also its execution history (i.e., the usei@@sghere the process runs and
the associated activatigideactivations of roles) is relevant to execute an actiag.,E
outputs over" of groupR can be executed only by processes whose usesuch that
R e P(U(r)); moreover, such an action must be enabled by at least otieables
active inr’s session. The set of such sessions changes according torhgutation
and, thus, the processes enabled to access a channel clyaag&ahlly. In this sense,
this work can be seen as a calculuglghamicgroups.

Acknowledgements. This work has been partially supported by EU FET — Global
Computing initiative, projects MIKADO IST-2001-32222 ardyThS IST-2001-
32617, by the MIUR project “Abstract Interpretation: Dasignd Applications”
(AIDA), and by the FIRB project RBAUO18RCRO02. The funding bodies are not
responsible for any use that might be made of the resultepted here.

A first draft of this paper has been improved by following tiaduable suggestions
and comments of the CSFW’04 and of the JCS anonymous refdreesecond author
is very grateful to Angelo Monti for his fundamental supparthe development of the
algorithm of Table 6.

27

A Technical Proofs

In this section, we give details on the proofs omitted fromltlody of the paper.

A.1 Proofs of Section 2

To prove subject reduction, we first need three lemmataateastandard results for a
type system. The first one states that names can be replattedtiver names of the
same type. The second one states that enlarging the asenmjstia type judgement
does not compromise the inference of the judgement itséHally, the third result
states that well-typedness is an invariant of structuragceence. To prove the latter,
we formally define aystem contexais= is closed under all such contexts. Formally,
a contexC[] is a system with an occurrence of a ‘hole’ to be filled with aggtemA,
thus yieldingC[A]. Formally,

Cl1 == [11ClTIIB| (va:RC]

Lemma A.1 (Substitution). If T,x : T,I”;p +® P andT + n: T, thenl,T”;p +%
P[n/x].

Proof. The proof is by induction on the depth of the inference of fheetjudgement
I,x:T,I";p +° P. The proof is quite standard and faithfully rephrases tmeespond-
ing result for the pure-calculus; thus, we omit it. O

Lemma A.2 (Weakening). If T +“? Athen[,7i: T HUMTPUP)A for all £ and
n: T suchthabhndomU) = 0.

Proof. The proof is by induction on the depth of the inferencelfe“")A. O
LemmaA.3. If T+ Aand A= B, thenl' +° B.

Proof. By mutual induction on the depth of the inferencesAoz B andB = A. Let

us consider howA = B has been inferred; the case Br= A is similar. The base
case covers the axioms in Table 3; all the cases are simple.intluctive steps for
symmetry and transitivity follow straightforwardly. Foomtext closure, leA £ C[Aq]
andB = C[By], for someA; = B;. We now work by induction on the structure©f-].
The base case is whelj-] =[] and is trivial. For the inductive case, let us reason by
case analysis on the outermost operataCief. If C[-] £ D[] || A, then, by using (T-
SvsPar), we know by hypothesis th&itrS D[A;] andT” +S A. By induction hypothesis,
asD[-] is smaller tharC[], it holds thatl’ S D[B4]; then, by (T-SsPar), I’ +SB. The
case forC[-] £ (va' :R)D[]is similar, but relies on (T-&Res). O

Theorem 2.1(Subject Reduction)If T S A and A— A’, thenll FS A,

Proof. By induction on the depth of the derivation Af— A’.
Base Step:By case analysis on the axioms of the second part of Table 3.

28

(R-Com) By hypothesis, we have that rS r{ a(x).P, || s{a’(n).Qj,. Due to the
form of the system involved, (TsSPar) is the last rule applied to deduce the
type judgement, hence we also have thaf r{ a(x).P b, andl’ FSsla'(n).Q by
The latter two judgements must have been derived by usirgessien), with
F'rr:p’l[@a:Clandp € o/, T + s : p”[@ : Clandp < p”,
[;p +5 a(X).P andT; o’ +5 a'(ny.Q. Judgemenk;p +¥ a(x).P must have been
derived by using (Taput), with T + & : R(T) andl,x : T;p +¢ P, whereas
judgement; p’ +5 a’(ny.Q must have been derived by using (T#®ut), with
F'ra:RT),T+n:T, andl;p +5 Q. By Lemma A.1, we get that
I;p +° P[n/X]. By a double application of (T+Ssion) and of (T-SrsPar), we
get thatl' +”r{ P[n/x] b, Il | Qb as required.

(R-RoLe) By hypothesis, we have th&t +5 r{role RP],. Due to the form of the
system involved, (T-Ssion) is the last rule applied to deduce the type judge-
ment, hence we also have tHat r : p’[a : Cl,p C p/ andT;p > role RP.
Judgement” + r : p’'[@ : C] must have been derived by using @), with
I'(r) = p’[a : C]; judgementT;p +° role RP has been derived by using (T-
ROLe), withT 1z p'[@ : C], T;p U {R} +° PandR e p”. Then,p U{R} C p’;
by rule (T-Sission), we can derive 51 Pl,ur, as required.

(R-YiELD) By hypothesis, we have thEt-r{ yield R.P l,- Due to the form of the sys-
tem involved, (T-8ssion) is the last rule applied to deduce the type judgement,
hence we also have thBt- r : p’[@: C], T;p +7 yieldRP andp C p’. Judge-
mentT; p +° yield R P has been derived by using (TieYp), withT; p \ (R} +° P
andR € p. By applying rule (T-8ssion) to I';p \ {R} +° P, we can derive
I +5r{ P},), as required.

Inductive Step: By case analysis of the last applied operational rule of ¢cesd part
of Table 3.

(R-Res) By definition,A £ (va" :R)BandA’ £ (va' :R)B’, whereB — B’; moreover,
by hypothesis, we have that+S (va' : R)B. By rule (T-SrsRes), we have that
I',a": R(T) +$ B, for someT. By induction hypothesig;, a": R(T) S B’ that, by
rule (T-SrsRes), impliesT FS A,

(R-Rr) By hypothesisA = A; || B is well-typed; henceA; andB are well-typed too.
Moreover,A; — A} and the induction hypothesis imply thaj is well-typed;
thus,A’ || B = A’ is well-typed too.

(R-Srruct) We now have thaA = A; — A, = A'. By well-typedness ofA and
Lemma A.3, it follows tha#y; is well-typed; by induction hypothesis, it follows
thatA, is well-typed and, again by Lemma A& is well-typed. |

Theorem 2.2(Type Safety) If A is well-typed inS, then A~ s cannot hold.

Proof. We prove the contrapositive, i.6A ~»s implies thatA cannot be well-typed
in S; this is done by induction on the depth of the inferenceAofvs. Let S be
(U; P). For the base case, we consider only one sample, namely tagmdgement

29

has been inferred via (E¥); the other cases are similar. By definitigvis r{ b(x).P |,
andS? ¢ P(p), for S = U(L"). Thus, for anyl" respectingl{, it cannot hold that
T;p =7 b(x).P: indeed, the premises of rule (FruT) (that is the only applicable to
infer the judgement) cannot be satisfied.

For the inductive step, we only consider the case when thedksused is (E-B);
the cases for (E4R) and (E-Srucr) are simpler (the latter one relies on Lemma A.3).
By definition,Ais (va" : R)\B andB ~»qua-ri)- By induction hypothesisB cannot
be well-typed in ¥/ w {&" : R}; P), i.e. for everyl" respectingl{ ¥ {&@" : R}, judgement
I (U@ RP) B cannot be inferred. Since respectsi{ & {a : R}, it must be that
I' = I,a : R; this easily implies that there is ¢ such that” S (va' : R)B, as
desired. O

A.2 Proofs of Section 4

Proposition 4.1. FunctionLager can be used to induce a partition of t's nodes in sub-
trees satisfying the requirements of the minimal patrtitigloreover, the overall proce-
dure takes QV| x K?), where K is the size of the largest set annotating a node of the
tree.

Proof. Having computed functionaseL(-), we proceed in the following way:

Visit t in preorder
When visiting the node do
if v = rt or LABEL(V) # LABEL(FATHER(V))
then addvin a new block
else addr in the block ofrarHer (V)

It should be clear that the output of this procedure is a fi@ntof VV (no block is empty
and each node is inserted in exactly one block); we call itpheition induced by
LAaBerL(-). We have to prove that this partition satisfies the follayvoonditions: &)
each block is a subtree gf(b) each bloclg is such thaHRe RV¥ve B : Re ¢(V) (in
this case, we calRthepivotfor g); (c) it has the minimum number of blocks satisfying
the previous two properties.

Condition @) is proved by induction on the size of the generic bigckrhe base
case is fop = {v} and is trivial, as a single node is a subtreé dfor the inductive step,
letg = B’ U{v}, wherev is the last node added by the above procedure. By constnyctio
it must be thataruer(v) € 8/ and, by induction hypothesig; is a subtree of. Thus,
easily, als@3 is a subtree of. Condition) is simple: by construction, it holds that
LAaBEL(V) = LABEL(V') andraBeL(V) € ¢(V), for everyv andv’ belonging tg3. Condition
(c) easily follows, once we prove the following Lemma.

Lemma A.4 (Soundness of the algorithm in Table 6).1f m[v,R] = h #
o0, then there exists a partition of the subtree rooted in v Wwithocks such
that it satisfies condition@) and(b) above, and R is the pivot of v's block;
moreover, each partition satisfying these properties hdsast h blocks.

30

Proof. By induction on the height of the tree rootedvn For notational
convenience, we denote the subtred ofoted inv ast,. The base case
is whenv is a leaf and is trivial. For the inductive step, we only cdesi
the case when has just one childy’; the case wher has two children
is similar. Sincem[v, R] # oo, it holds thatR € ¢(v); thus,R can be the
pivot of v's block. SincerLaseL(-) is defined (by the hypothesis of Propo-
sition 4.1), there must exi8 € ¢(V'); thus,m[v’,S] # o. By induction
hypothesis, there exists a partitiontpfwith m[v’, S] blocks that satisfies
conditions &) and @), and withS as pivot ofv'’s block; moreover, each
partition satisfying these properties has at legst, S] blocks. IfRis not
one of sucl, then a minimal partition of, with R as pivot ofv's block
can be obtained by puttingis a block on its own and by considering the
partition oft,, induced by & that minimisesmv’, _]. Otherwise, adding

to the block ofv’ in the partition oft,, induced byR could generate a min-
imal partition oft, or not. In the first case, the partition gfthasm[v’, R]
blocks; in the second case, we puh a block on its own and the resulting
partition hasmv’, R] + 1 blocks. In both cases, it is easy to prove that no
partition with less blocks can exist. m]

Now, letraseL(rt) = R. Trivially, the partition induced by functiomser(-) hasm[rt, R]
blocks; thus, by Lemma A.4, each partition satisfyiaygnd @) has at least[rt, R]
blocks. This provesd).

We conclude with the complexity of the overall algorithm efddgorithm in Table 6
to computen[_, _] works inO(|V|x K?). Indeed, matrixm has|V| rows andK columns,
and each element of this matrix is written exactly once. Mueg, to write a generic
elemenim(v, R], we have to check wheth&e ¢(v) (this requireO(K), as|¢(v)| < K)
and to analyse the rows associated to the childran(iffany); the latter task requires
O(K), that leads the overall complexity @(V| x K?). The algorithm for computing
functiontaser works inO(|V| x K). Indeed, for each nodg it has to computen,: this
requiresO(K), as it has to scan all the row of associated te. Finally, the partition
induced byLaseL(+) is derived by a preorder visit, that is linear|\. O

We now consider Proposition 4.2 and prove its two claims isgply; for both of
them, we only present a key sample, leaving the other cdsasdte similar) to the
interested reader.

1. LetS = (U; P) be a RBAC schema and P be a finite process wittagtyield to
be run by user r. TheR; U(r) +° P implies thaiRerNeD[.,,,(P) is defined.

Proof. The proof is by structural induction dh The base step is triviaP is nil and,
by definition, F&pmao}?(nil) = nil. For the inductive step, we only consider the case
for P = a(x).Q. By hypothesis and by rule (Tbut), we have that
Fra:RT) RePUr) Tx:T;Ur)Q
LU P

31

By induction hypothesis, RiNepy. . 1.,(Q) is defined; this implies thatrEe. ,.1.,(Q)
is defined and is equipped with the matni-, -]. Now, by construction, ®egr.,(P)
is defined; moreover, it can be equipped with a matrik-, -] such that

m[x, R] if xis not the root of Rekr.,(P)
MR =1 i mv.R .
mins:r{M[V',S]} +1} otherwise

where, in the second caseé;s the root of Rek[. ,1.,(Q). By the premise of (Tapur),
we know that there exists a rd®e U(r) such thaR’e P(S). This fact, together with
the fact that Reivenr., 1., (Q) is defined, implies that there exis$se 2/(r) such that
m[v,S] # oo, wherev is the root of Ree.,(P). This fact sifices to conclude that
Rervepy.,(P) is defined. o

2. LetS = (U;P) be a RBAC schem&,be a typing environment respectifigand
P be a finite process withoutle/vield to be run by user r. TheREFINED{-;P(P) =P

implies thatl; 0 +° P’.

Proof. Again, the proof is by structural induction dd The base step is trivial:
P = P’ £ nil andT;0 +’ nil. For the inductive step, we only consider the case for
P = a(x).Q. By construction, we have th& = role Ra(x).Q’, whereR s the label of
the root of ey, (P), that exists by hypothesis. By construction, this lateeat im-
plies that Reg. ,.1.,(Q) exists and thal + a": S(T), for some roleS and typeT. Let

us now consider the matrixt[-, -] obtained from the matrix -, -] for TREElI:;p(P)

by deleting the row associated with the root @.ﬁﬁ’r;p(P). We can now say that there
exists a roleR’ such thahv[v,R] # co, whereV' is the root of Reg[. ,.1.,(Q).* This
suffices to conclude thatdRepy. , 1.,(Q) is defined; let us say that it returns the pro-
cessQ”. By induction hypothesig;, x: T;0 +° Q”. Again, by construction it must be
thatQ” = role R”.Q; we now consider the only possible cases:

e if LaBEL(V) = LABEL(V), i.e. R= R, then@ = Q. In this case, we have that
rra:S(M) S%ePR ILx:T,(R+HQ
R e I'{r} [(R a(x).Q’
L0 P

This inference holds by using rules (TeR2) and (T-Nput). Moreover, notice
thatR € I'{r} andS’e P(R) must hold, otherwiseageL(v) cannot beR. Finally,
I, x:T;{R} v’ Q is implied by the induction hypothesis.

e if LaBEL(V) # LABEL(V'), thenQ’ = yield R.Q”. This case is similar to the previous
one, butl", x : T;{R} +° Q' is inferred from the induction hypothesis, by using
rule (T-YiELp). O

4To see this, proceed by contradiction. Assume that, fdRali[v', R'] = co; thenm[v, R’] = oo, where

v is the root of T{EE’W,(P), for every roleR’ (see Table 6, second item). ThU$FREDlL_¢(P) would be
undefined, as functiomaseL would be. Contradiction.

32

B Alternative Characterisation of Barbed Congruence

As pointed out in Section 3, barbed congruence is hard togdrecause of its universal
quantification over language contexts. A standard way toamree this problem is
to reformulate the semantics of the language vialzelled transition systendL. TS
for short), that makes apparent the external interactitered, and build up over it a
bisimulation, adequate for barbed congruence. In thid@gctve present a possible
way to adapt known techniques to our framework; however, aeerthe presentation
lighter, most of the proofs in this section are only sketchtbe interested reader is
referred to a technical report [5] for full details.

The LTS allows to study system components in isolation antpasitionally.
Thus, in general, we cannot assume such components to béypedl, as this would
require a full knowledge of the system. Hence, we embodyen S some dynamic
policy checks. In this way, the LTS also provides a tight agienal specification for
the minimal engine underlying any implementation of a RBA&Sed run-time system.

The standard way to describe the interactions a system ffanexternally is by
labelling the system evolution with this information. Thuge define a labelled tran-

sition system,i> , that makes apparent the action performed (and, thus, teenex
interaction dfered). In order to account for systems’ rbles varying oieef the LTS
relatesconfigurationsi.e. pairsS » A made up of a RBAC schenand a systera.
Configurations are ranged over By E, The labels of the LTS are derived from
those of ther-calculus and can be described as follows.

u = 7 | an | @an:R | an | an:R

Labelr represents an internal computation of the system. Labelanda’n describe
the intention to serfdeceive valuen, known to the environment, ¢ghnom channel'.

Labelsa'n : Randa'n : R are similar to but the value s¢raceived is ‘fresh’ (i.e.
unknown to the environment) and has grdepWe now extend functions®f_) and
Bnp(L) to labels.

| Label || Fr(.) | Bnp(L) |

T 0 0
an {a", n} 0
an | {a,n) 0

an:R| {a} {n}
an:R || {a} {n}

The definition of = is given in Tables 7 and 8. The overall structure of the LTS
is similar tonr-calculus’ early-style one (see, e.g., [24]) and implicassumes alpha-
conversion. The premises of rules (LTS-kedt), (LTS-F-Ineutr), (LTS-Outpur),
(LTS-RoLe) and (LTS-YieLp) adapt respectively the premises of the typing rules (T-
Ineut), (T-Outrur), (T-ROLE) and (T-YieLp), and block the evolution of ill-typed sys-
tems. Rule (LTS-K4pur) can be applied when the received value is known to the
schema, while (LTS-Fxbur) is used when a fresh value (i.e. unknown to the schema)
is received. In this case, the schema is extended to recemrtiup of the fresh value.
Similarly, when extruding a restricted chanhé] rule (LTS-Qen) enlarges the rela-
tion U of the current configuration by recording thathas the rdle declared in the

33

Re U(r)
(U;P) » r{roleRP), = (U;P) » 1{Plug

(LTS-R4LE)

Rep
(LTS-YiELD)

S » riyieldRP), — S » r{Pl,_g

U@)=R ReP(p)

(LTS-Ourpur) -
(‘U;P) > 1] a5<n>.P|}p — (U;P) > 1 P,

U@E)=R RePp) nedom)

(LTS-K-Inpur) o
(U;P) » r{a(¥).Pl, — (U;P) » r{ P[],
U@)=R RePp) n¢domU)

an:s

(U;P) > r{a(x).Ph, —— (U W {n:S;P) » r{P[],

(LTS-F-InxpuT)

Table 7: Axioms for the Labelled Transition System

restriction. The information about a frgsktruded channel is deleted from the schema
when the channel is communicated: indeed, the restrictsipnshed back in the system
and closes the scope of the channel — cf. rule (LT8s€). Notice that a bound output
can synchronise only with a fresh input (and vice versa),taedb6le declared for the
extrudedfresh channel must be the same. Also observertimadves do not modify the
schemas.

The semantics given in Table 3 and the LTS just presentecetated by the fol-
lowing Proposition.

Proposition B.1. If S » A 5 8> A, then A— A, Conversely, if A is well-typed in
S, then A— A impliesS » A—5 S » B, for some B= A'.

Proof. The first statement is proved by a simple induction over thathdef the in-

ference for— . The second statement is proved by induction over the deptieo
shortest inference for—. The only complicate case is when the last rule applied to
infer the reduction is (R-fucr), i.e. A = B, andB +— B’ andB’ = A’. We proceed

by mutual induction on the depth of the inferencesAat B andB = A; notice that we
can assume that the last rule to inBee— B’ is not (R-Srucr), otherwise the original
inference ofA — A’ could be shortened, thanks to transitivity=of O

Next, we build upon this LTS a standard bisimulation. As lis#a denotes the

. L. H H . Ho.
reflexive and transitive closure 6f> , and = denotes= - = . Finally, = is
. H .
= if u = 7, and = otherwise.

Definition B.1 (Bisimilarity). A bisimulationis a binary symmetric relatiolR be-
tween configurations such that, B(E) € R andD £, D/, there exists a configuration

E’ such thaE = E’ and ©’,E’) € R. Bisimilarity, =, is the largest bisimulation.

34

(LTS-Comm)
SrALSEA S»BALSeB

S>AlBSS»A|B

(LTS-Res)
(UWEREP) » A (Uw{@R;P) » A a ¢ Frw)

(U:P) » (va:RAS (U;P) » (va :RA

(LTS-OreN)
(U BSEP) » A UW(b%SEP) » A d#b°

ab

U:P) > (% S)A25, (U (b2 Sy P) » A

(LTS-CrosE)

Sy A5 g o 5B 9B B¢ RA)

S>AIBSS > (Wb%:S)A || B)

(LTS-Pxr)
S>AL S »A B n Fr(B)=0

S»AIBLS »A|B

(LTS-RerL) (LTS-ExT)

S»r{P['P}, 58 » A S» (va:RrPl, -8 »>A azr
S»rP), 58 »A S r{(a:RP), 58 » A
(LTS-Eq) (LTS-SeLt)

S>rﬂPﬂpi>S’>A Ser{Pl, Il r{IQI}pi>S’>A
Seriln=nP), 58 » A S»>riP|Ql, 58 > A

plus the symmetric version of rules of (LTS#9, (LTS-Comm) and (LTS-G.osE)

Table 8: Inference Rules for the Labelled Transition System

We now state and prove some properties~of First, we consider the congruence
properties of ~ ; then, we prove that it is a sound proof technique for barkmetou-

Theorem B.2 (Congruence Properties o). The following facts hold.

1. |fS]_ > AL~ So >A2and81 >B~So > B,thenSl I>A1|| B~ S, I>A2|| B.
2. f(U1w{@ :R;P1) » At = (U2 W {@ R} P2) > A, then(Uy; P1) » (va':

R)A]_ R ((le;Pz) > (Var:R)Az.

35

Proof. Both the clauses of the theorem are proved once shown tlaéibrel

R 2 {((UsP) » (va - ﬁ)(Alj B), (U P2) » (va : E)(AEH B)) :
(Upwa : B; P1) > Ay = (U wa Z~R; Po) > Ap A
(Urwa :RP1) > Bx(Urwa : RP,) » B}
is a bisimulation. O

To prove that~ is a sound proof technique foz, we must only consider well-
typed configurations, i.e. configuratioSs> A such thatA is well-typed inS. Indeed,
as already said, ill-typed systems are not considered iddfirition of barbed congru-
ence. Given a typing environmehit we letUr be the rbles-to-users assignment ex-
tracted fronT’, that is the least assignment such that, for any associatipfa : RTf)]
in T, it holds thatUr(r) = p andUr(a") = R, foranya : R(T) € a: R(T). For
notational convenience, we write> A = S » BasS » A~ B.

The proof relies on the following lemma.

Lemma B.3 (Weakening for ~). If (U;P) » A~ B and A and B are well-typed in
(U;P), then(Uw U ;PUP) » A= Bforall U and®’.

Proof. We have to prove that the relation
R 2 {(UYU;PUP) > A, USU;PUP) > B) : (U;P) » A= B}
is a bisimulation. O

Theorem B.4 (Soundness of). LetS = (U;P), T +5 Aandl' +5 B. If (Ur; P)» A~
B, thenl’ 5 A= B.

Proof. It suffices to prove that the relation
R £ (TESAB) : T+HSAAT B A (Ur;P) » Ax B)
is barb preserving, reduction closed and contextual.

1. LetA | a". By Definition 3.1 and well-typedness, it holds thaf() > A may
perform an input frond"; then, Ur; P) » B may perform an input from', pos-
sibly together with some-steps. Then, by Proposition B.1 and Definition 3.1, it
is easy to prove tha || a'. The case foA | a is similar.

2. LetA+— A’. By Proposition B.1 and well-typedness, this implies tH#t;(P) >
AS (UsP) » A.Thus, Ur; P) » B= (Ur;P) » B and Ur; P) » A ~ B'.
Again by Proposition B.1B —* B’ andl’ ¥ A’ R B'. Indeed, by Theorem 2.1,
it holds thatl" +* A’ andI’ +* B’. Moreover, it is easy to prove that is
an equivalence relation and that it contains all the conéigoms formed with
structurally equivalent systems; so, we have thi#t;®) ~ A’ ~ A” and, thus,
(Ur;P) » A = B.

3. We pick upl’ ¥ AR B and analyse the three clauses defining the contextuality
property.

36

(a) Let? be a permissions-to-réles assignment and T be such thah n
dom(U) = 0; sincel respects, this implies thal’,n : T is defined. By
Lemma A.2, we know that, i : T HUNTPUPIA andl, i ; T (UeRTPUP)

B. Moreover, we letlf.+ to be the roles-to-users assignment such that
nT(r) = p, whenever : p[@: C] e 1: T, and¥/-+(a") = R, whenever
R(T) e M: T. Itis easy to check thal/. 7 = Ur W Uy (indeed,

F, n: T is defined if and only if names i do not occur in the domain of
I'; thus,Ur and 7+ have disjoint domains, and their union coincides with
Urw7)- Thus, by Lemma B~.3,fl(lr,-ﬁ:f; PUP) » A~ B. This sufices to
conclude thaf, i : T EWUNTPUP) AR B,

(b) LetAbe a system such that+S A. By Theorem B.2(1), we can state that

(Ur;P) » AllA~ B A. Moreover, by rule (T-8sPar), it holds that
F+S A Aandl +S B|| A ThusT ES Al AR B|| A, as required.

(c) Letl' = I",a:R(T) andU = U w{a :R(T)}. Itis easy to check that
Ur = Upr wa"Rand, thus, Ur v a"R; P) » A~ B. By Theorem B.2(2),
this implies that Ur; P) » (va : RA ~ (va : R)B; moreover, by rule
(T-SysRes), I H¥P) (va' : R)A andIl” - (va' : R)B. Thus,I” £#" 7’)
(va":RAR (va':R)B, as required.

We remark that~ is used as a proof-technique for barbed congruence. Indeed,
while the former is easy to use, the latter is very hard to leahdcause of the con-
textual closure requirement. ThisfBaes for our purpose in the present paper, whose
intention is to present the calculus and lay out its main ertigs. Nevertheless, for
theoretical reasons, it is often important to know whethés a complete character-
isation of=. This is a laborious question to answer. We leave it as fuliok to
follow well-known paths towards the answer (as, e.g. [13) iBprove the converse
of Theorem B.4, i.e. that bisimilarity is complete for badlngruence.

To conclude, we now briefly discuss some possible use of gimblation, apart
from proving barbed congruence. Mainly, its distinctivatigres are the possibility of
relating ill-typed systems apar systems under flerent schemata. For example, by
letting @ to range over action prefixes (i.e. inpfastputs andole/yield), it holds that

SeriaPl,~

whenever is not legal for a sessior{ - |}, with respect taS, that is, if the premises
of rules (LTS-RiE), (LTS-YieLp), (LTS-K-Input), (LTS-F-Ineut) and (LTS-Qitpur)
are not satisfied. This law stresses that LTS and types bdtincenthe same require-
ments (compare the run-time checks of the LTS with the rometerrors in Table 5
and, consequently, the results in Proposition B.1). As asequence, the following
law differentiates our language from thecalculus. Indeed, it holds that

S » (v :R)(rla(9.Pl, | sla (n).Ql,) ~ 0

wheneveR’ ¢ P(p) or R ¢ P(o’).
Finally, we can use the bisimulation to find a ‘minimal schémsarun a given
system without altering its functionalities. LAtbe a system well-typed in a RBAC

37

schemasS. Potentially, there are many schemata under which thersysaé® run cor-
rectly; thus, it seems reasonable to look for a ‘minimal’fsukccording to the metrics
chosen, several properties can be associated to this eleroe®xample, if the metrics
is the size of the schema (seen as a pair of sets), the miniemaéat would be one of
the smallest; thus, its storage and handling would be cliedfgenow define the set of
configurations whose second componer# &s follows:

CONFy ={S8" » A : 8§ isa RBAC schema

We now partitionCONF, with respect to~ and consider the equivalence class con-
tainingS » A, calledCONF;. By fixing a metrics over schemata, the minimal schema
to run the systenf\ will be a minimal element o€ONF;. Indeed, such an element
behaves likeS » A, because they both belong to the same equivalence Casi-y;,
but its schema is smaller, as its is a minimal eleme@ONF;. Clearly, the existence
of such a minimal element and the way in which it is chosen ddmm the chosen
metrics. Possible metrics could be based on the memoryrestjia store the schema,
on the number of réles used to define the schema, on the weiighé permissions
associated with some users (once assumed a weight funotitisdriminate sensible
permissions from common ones), on the average number ofiggoms associated
with each rdle, and so on.

References

[1] G.-J. Ahn and R. Sandhu. Rdle-based authorisationtrzings specificationACM Trans-
actions on Information and System Secur@4):207-226, 2000.

[2] R. Amadio and L. Cardelli. Subtyping recursive typA€M Transactions on Programming
Languages and Systeni$(4):575-631, 1993.

[3] E.Bertino, B. Catania, E. Ferrari, and P. Perlasca. Adaldramework for reasoning about
access control models. Rroc. of 6th SACMATpages 41-52. ACM Press, 2001.

[4] C.Braghin, D. Gorla, and V. Sassone. A distributed clistior rdle-based access control.
In Proc. of 17th Computer Security Foundations Workshop (C8E)\pages 48—60. IEEE
Computer Society, 2004.

[5] C.Braghin, D. Gorla, and V. Sassone. A distributed clistior rdle-based access control.
Technical Report 2004, Dip. di Informatica, Univ. di Roma “La Sapienza”, 2004

[6] L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and goatreation. Information and
Computation196(2):127-155, 2005.

[7] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science
240(1):177-213, 2000.

[8] F. Cardone and M. Coppo. Two extensions of Curry’s tyderience system. lhogic and
Computer Scien¢gages 19-75. Academic Press, 1990.

[9] R.De Nicola, G. Ferrari, and R. PuglieseLAfu: a Kernel Language for Agents Interaction
and Mobility. IEEE Transactions on Software Engineeri2g(5):315-330, 1998.

[10] D. Ferraiolo and D. Kuhn. Rdle-based access controPrbc. of the NIST-NSA National
Computer Security Conferengeages 554-563, 1992.

38

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]
(21]

(22]

(23]

(24]

(25]

(26]

D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Giramouli. Proposed NIST stan-
dard for role-based access contr@CM Transactions on Information and System Security
4(3):224-274, 2001.

C. Fournet and C. Laneve. Bisimulations for the joiteodus. Theoretical Computer
Science266(1-2):569-603, 2001.

M. Hennessy and J. Rathke. Typed behavioural equicakefor processes in the presence
of subtyping.Mathematical Structures in Computer Scient4(5):651-684, 2004.

M. Hennessy and J. Riely. Resource access control temsgsof mobile agentdnforma-
tion and Computation173:82—120, 2002.

K. Honda and N. Yoshida. On reduction-based processstos. Theoretical Computer
Science152(2):437-486, 1995.

M. Koch, L. Mancini, and F. Parisi-Presicce. A formal deb for rdle-based access control
using graph transformation. Proc. of 5th ESORICSolume 1895 oL NCS pages 122—
139. Springer, 2000.

M. Koch, L. Mancini, and F. Parisi-Presicce. Decidaibf safety in graph-based models
for access control. IfProc. of 7th ESORICSrolume 2502 ofLNCS pages 229-243.
Springer, 2002.

M. Merro and D. Sangiorgi. On asynchrony in name-pagseilculi. Mathematical Struc-
tures in Computer Scieng@4(5):715-767, 2004.

R. Milner. The polyadicr-calculus: a tutorial. IrLogic and Algebra of Specificatipn
volume 94 ofSeries F: Computer and System Scienb&s O Advanced Study Inst., 1993.

B. C. Pierce Types and programming languagedIT Press, 2002.

B. C. Pierce and D. Sangiorgi. Typing and subtyping fahife processesMathematical
Structures in Computer Sciend5):409-454, 1996.

J. H. Saltzer and M. D. Schroeder. The protection of rimfation in computer systems.
Proceedings of the IEEE3(9):1278-1308, 1975.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Réked access control models.
IEEE Computer29(2):38-47, 1996.

D. Sangiorgi and D. WalkerThe r-calculus: a theory of mobile processe€ambridge
University Press, 2001.

A. Schaad and J. MEett. A lightweight approach to specification and analysisodé-
based access control extensionsPtac. of 7th SACMA]pages 13-22. ACM Press, 2002.

F. B. Schneider. Least privilege and mo&ecurity and Privacyl(3):55-59, 2003.

39

