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Abstract

Reputation systems are meta systems that record, aggregate and dis-
tribute information about the past behaviour of principals in an applica-
tion. Typically, these applications are large-scale open distributed systems
where principals are virtually anonymous, and (a priori) have no knowl-
edge about the trustworthiness of each other. Reputation systems serve
two primary purposes: helping principals decide whom to trust, and pro-
viding an incentive for principals to well-behave.

A logical policy-based framework for reputation systems is presented.
In the framework, principals specify policies which state precise require-
ments on the past behaviour of other principals that must be fulfilled in
order for interaction to take place. The framework consists of a formal
model of behaviour, based on event structures; a declarative logical lan-
guage for specifying properties of past behaviour; and efficient dynamic
algorithms for checking whether a particular behaviour satisfies a property
from the language. It is shown how the framework can be extended in
several ways, most notably to encompass parameterized events and quan-
tification over parameters. In an extended application, it is illustrated how
the framework can be applied for dynamic history-based access control for
safe execution of unknown and untrusted programs.
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1 Introduction

Rich opportunities for fraud exist on the Internet. Still, risky interactions like
electronic commerce, involving disclosure of private informations to semi-trusted
parties, are every-day activities in our Internet lives. It seems that in practice,
for most people, the utility of the Internet outweighs its risks. When one tries
to understand better these facts, mathematical models from economic theory
are very appealing. Online interaction can often be seen as a ‘repeated game’
played between selfish (semi) rational principals. Such interaction may result in
utility gains for the involved principals, but often, with interaction comes also an
associated inherent risk; a potential utility-loss. For risk-adverse principals, the
fear of loss may outweigh the expectation of gain, leading to an unwillingness
to participate. For example, one might have expected that an online auctioning
system such as eBay, “a market ripe with the possibility of large-scale fraud and
deceit” [19], would never have reached the more than one million transactions
per day that are presently processed. The liveness on eBay is often attributed to
its so-called Feedback Forum, a simple example of a reputation system. When
principals have transacted, each party may leave feedback on the eBay web-
site, consisting of a rating of ‘positive’, ‘neutral’ or ‘negative’. A principal’s
aggregated rating is then visible to potential buyers or sellers before deciding
whether to interact or not. In general, reputation systems record, aggregate
and (sometimes) distribute information about the past behaviour of principals.
Hence reputation systems may serve as a trust-enabling, or perhaps, more gen-
erally, trust-informing technology. Resnick et al. argue that reputation systems
foster an incentive for principals to well-behave because of “the expectation of
reciprocity or retaliation in future interactions” [28], and reputation itself has
previously been formalized and analyzed by economists in simple game-theoretic
models, leading to similar conclusions (e.g., [6,7,20,36]); it seems that reputation
systems are well etablished, and their is usefulness generally accepted.

Many reputation systems have been proposed in the literature [15], and of-
ten the recorded behavioural information is heavily abstracted. This has the
effect that several quite different concrete behaviours are collapsed in to the
same “equivalence class” of recorded behaviours. For example, the eBay-rating
of ‘negative’ may be the (subjective) result of several distinct seller behaviours:
the seller may never ship the auctioned item, the item may be in a poor condi-
tion, a certain timeliness is expected, credit cards may be overcharged because
of, say, shipping fees, etc. Different users will be interested in the actual mean-
ing of the rating ‘negative’; the concrete behaviour of the seller. There are other
examples: In the EigenTrust system [17], behavioural information is obtained
by counting the number of ‘satisfactory’ and ‘unsatisfactory’ interactions with a
principal. Besides lacking a precise semantics, this information has abstracted
away any notion of time, and is further reduced (by normalization) to a number
in the interval [0, 1]. In the Beta reputation system [14], similar abstractions are
performed, obtaining a numerical value in [—1,1] (with a statistical interpreta-
tion). The only non-example of such crude information abstraction (that we
are aware of) is the framework of Shmatikov and Talcott [31] which we discuss



further in the concluding section.

Abstract representations of behavioural information have their advantages
(e.g., numerical values are often easily comparable, and require little space to
store), but clearly, information is lost in the abstraction process. For example,
in EigenTrust, value ‘0’ may represent both “no previous interaction” and “many
unsatisfactory previous interactions” [17]. Consequently, one cannot verify exact
properties of past behaviour given only the reputation information.

In this paper, the concept of ‘reputation system’ is to be understood very
broadly, simply meaning any system in which principals record and use infor-
mation about past behaviour of principals, when assessing the risk of future
interaction. A principal is simply an identity; it may be the identity of a human
users, a public key, a software program (e.g., an identifiable instance), etc. We
present a formal framework for a class of simple reputation systems in which, as
opposed to most “traditional” systems, behavioural information is represented in
a very concrete form. The advantage of our concrete representation is that suffi-
cient information is present to check precise properties of past behaviour. In our
framework, such requirements on past behaviour are specified in a declarative
policy-language, and the basis for making decisions regarding future interaction
becomes the verification of a behavioural history with respect to a policy. This
enables us to define reputation systems that provide a form of provable “secu-
rity” guarantees, intuitively, of the form: “If principal p gains access to resource
r at time ¢, then the past behaviour of p up until time ¢ satisfies requirement
Pr.”

To get the flavour of such requirements, we preview an example policy from
a declarative language formalized in the following sections. Edjlali et al. [9]
consider a notion of history-based access control in which unknown programs,
in the form of mobile code, are dynamically classified into equivalence classes of
programs according to their behaviour (e.g. “browser-like” or “shell-like”). This
dynamic classification falls within the scope of our very broad understanding
of reputation systems. The following is an example of a policy written in our
language, which specifies a property similar to that of Edjlali et al., used to
classify “browser-like” applications:

Y = —F (modify-file) A
—F~1(create-subprocess) A
G (Va. [open(z) — F~!(create(z))])

Informally, the atoms modify-file, create-subprocess, open(x) and create(x)
are events which are observable by monitoring an entity’s behaviour. The latter
two are parameterized events, and the quantification “Va” ranges over the pos-
sible parameters of these. Operator F~! means ‘at some point in the past,” G~1
means ‘always in the past,” and constructs A and — are conjunction and negation,
respectively. Thus, clauses -F ~!(modify-file) and =F~!(create-subprocess)
require that the application has never modified a file, and has never created a
sub-process. The final, quantified clause G™! (Vz. [open(z) — F~!(create(z))])
requires that whenever the application opens a file, it must previously have cre-
ated that file. For example, if the application has opened the local system-file



"/etc/passwd” (i.e. a file which it has not created) then it cannot access the
network (a right assigned to the “browser-like” class). If, instead, the applica-
tion has previously only read files it has created, then it will be allowed network
access.

1.1 Contributions and Outline

We present a formal model of the behavioural information that principals ob-
tain in our class of reputation systems. This model is based on previous work
using event structures [37] for modelling observations [25], but our treatment
of behavioural information departs from the previous work in that we perform
(almost) no information abstraction. The event-structure model is presented in
Section 2.

We describe our formal declarative language for interaction policies. In the
framework of event structures, behavioural information is modelled as sequences
of sets of events. Such linear structures can be thought of as (finite) models of
linear temporal logic (LTL) [26]. Indeed, our basic policy language is based on
a (pure-past) variant of LTL. We give the formal syntax and semantics of our
language, and provide several examples illustrating its naturality and expres-
siveness. We are able to encode several existing approaches to history-based
access control, e.g. the Chinese Wall security policy [2] and a restricted ver-
sion of so-called ‘one-out-of-k’ access control [9]. The formal description of our
language, as well as examples and encodings, is presented in Section 3.

An interesting new problem is how to re-evaluate policies efficiently when
interaction histories change as new information becomes available. It turns
out that this problem, which can be described as dynamic model-checking, can
be solved very efficiently using an algorithm adapted from that of Havelund
and Rosu, based on the technique of dynamic programming, used for runtime
verification [13]. Interestingly, although one is verifying properties of an entire
interaction history, one needs not store this complete history in order to verify
a policy: old interaction can be efficiently summarized relative to the policy.
In Section 4, two dynamic algorithms for policy checking is described, analysed
and compared.

Our simple policy language can be extended to encompass policies that are
more realistic and practical (e.g., for history-based access control [1,9,11,33],
and within the traditional domain of reputation systems: peer-to-peer- and
online feedback systems [17,28]). More specifically, we present two extensions.
The first is quantification (as is used in the example policy in the introductory
section). We extend the basic language, allowing parameterized events and
quantification over the parameters. An algorithm for checking the extended
language along with complexity analyses is provided. The second extension
covers the two aspects of information sharing, and quantitative properties. We
introduce constructs that allow principals to state properties, not only of their
personally-observed behaviour, but also of the behaviour observed by others (in
the terminology of Mui et al. [22], the first is direct and encounter driven, and
the latter, indirect and propagated). Such information sharing is characteristic



of most existing reputation systems. Another common characteristic is focus
on conveying quantitative information. In contrast, standard temporal logic is
qualitative: it deals with concepts such as before, after, always and eventually.
We show that we can extend our language to include a range of quantitative
aspects, intuitively, operators like ‘almost always,” ‘more than N,” etc. Section
5 illustrates these two extensions, and briefly discusses policy-checking for the
extended languages.

Throughout the paper, we have small examples illustrating the applicability
of our framework within the area of history-based access control. We have taken
this one step further by developing a prototype security manager for Java, based
on our logical framework. The security manager is parameterized by a policy in
our language, and monitors a Java program with respect to this policy, throwing
an exception if a violation is about to happen. In Section 6, we describe this
application of our framework to history-based access control for Java programs.
Related work is discussed in the concluding section.

2 Observations as Events

Agents in a distributed system obtain information by observing events which are
typically generated by the reception or sending of messages. The structure of
these message exchanges are given in the form of protocols known to both parties
before interaction begins. By behavioural observations, we mean observations
that the parties can make about specific runs of such protocols. These include
information about the contents of messages, diversion from protocols, failure to
receive a message within a certain time-frame, etc.

Our goal in this section, is to give precise meaning to the notion of be-
havioural observations. Note that, in the setting of large-scale distributed en-
vironments, often, a particular agent will (concurrently) be involved in several
instances of protocols; each instance generating events that are logically con-
nected. One way to model the observation of events is using a process algebra
with “state”, recording input/output reactions, as is done in the calculus for
trust management, ctm [5]. Here we are not interested in modelling interac-
tion protocols in such detail, but merely assume some system responsible for
generating events.

We will use the event-structure framework of Nielsen and Krukow [25] as our
model of behavioural information. The framework is suitable for our purpose
as it provides a generic model for observations that is independent of any spe-
cific programming language. In the framework, the information that an agent
has about the behaviour of another agent p, is information about a number
of (possibly active) protocol-runs with p, represented as a sequence of sets of
events, T1xs - - - X, Where event-set x; represents information about the ith ini-
tiated protocol-instance. Note, in frameworks for history-based access control
(e.g., [1,9,11]), histories are always sequences of single events. Our approach
generalizes this to allow sequences of (finite) sets of events; a generalization
useful for modelling information about protocol runs in distributed systems.



We present the event-structure framework as an abstract interface providing
two operations, new and update, which respectively records the initiation of a
new protocol run, and updates the information recorded about an older run (i.e.
updates an event-set x;). A specific implementation then uses this interface to
notify our framework about events.

2.1 The Event Structure Framework

In order to illustrate the event-structure framework, we use an example comple-
menting its formal definitions. We will use a scenario inspired by the eBay online
auction-house [8], but deliberately over-simplified to illustrate the framework.

On the eBay website, a seller starts an auction by announcing, via the web-
site, the item to be auctioned. Once the auction has started the highest bid is
always visible, and bidders can place bids. A typical auction runs for 7 days,
after which the bidder with the highest bid wins the auction. Once the auction
has ended, the typical protocol is the following. The buyer (winning bidder)
sends payment of the amount of the winning bid. When payment has been
received, the seller confirms the reception of payment, and ships the auctioned
item. Optionally, both buyer and seller may leave feedback on the eBay site,
expressing their opinion about the transaction. Feedback consist of a choice
between ratings ‘positive’, ‘neutral’ and ‘negative’, and, optionally, a comment.

We will model behavioural information in the eBay scenario from the buyers
point of view. We focus on the interaction following a winning bid, i.e. the
protocol described above. After winning the auction, buyer (B) has the option
to send payment, or ignore the auction (possibly risking to upset the seller). If
B chooses to send payment, he may observe confirmation of payment, and later
the reception of the auctioned item. However, it may also be the case that B
doesn’t observe the confirmation within a certain time-frame (the likely scenario
being that the seller is a fraud). At any time during this process, each party may
choose to leave feedback about the other, expressing their degree of satisfaction
with the transaction. In the following, we will model an abstraction of this
scenario where we focus on the following events: buyer pays for auction, buyer
ignores auction, buyer receives confirmation, buyer receives no confirmation
within a fixed time-limit, and seller leaves positive, neutral or negative feedback
(note that we do not model the buyer leaving feedback).

The basis of the event-structure framework is the fact that the observations
about protocol runs, such as an eBay transaction, have structure. Observations
may be in conflict in the sense that one observation may exclude the occurrence
of others, e.g. if the seller leaves positive feedback about the transaction, he
can not leave negative or neutral feedback. An observation may depend on
another in the sense that the first may only occur if the second has already
occurred, e.g. the buyer cannot receive a confirmation of received payment if
he has not made a payment. Finally, if two observations are neither in conflict
nor dependent, they are said to be independent, and both may occur (in any
order), e.g. feedback-events and receiving confirmation are independent. Note
that ‘independent’ just means that the events are not in conflict nor dependent



(e.g., it does not mean that the events are independent in any statistical sense).
These relations between observations are directly reflected in the definition of
an event structure. (For a general account of event structures [37], traditionally
used in semantics of concurrent languages, consult the handbook chapter of
Winskel and Nielsen [38]).

Definition 2.1 (Event Structure). An event structure is a triple ES =
(E, <, #) consisting of a set F, and two binary relations on E: < and #. The
elements e € F are called events, and the relation #, called the conflict relation,
is symmetric and irreflexive. The relation < is called the (causal) dependency
relation, and partially orders E. The dependency relation satisfies the following
axiom, for any e € E:

the set [e] (deh {e¢’ € E| € < e} is finite.

The conflict- and dependency-relations satisfy the following “transitivity” axiom
for any e,e’, e’ € E

(e # ¢ and €’ < €”) implies e # ¢’
Two events are independent if they are not in either of the two relations.

We use event structures to model the possible observations of a single agent
in a protocol, e.g. the event structure in Figure 1 models the events observable
by the buyer in our eBay scenario.

The two relations on event structures imply that not all subsets of events
can be observed in a protocol run. The following definition formalizes exactly
what sets of observations are observable.

Definition 2.2 (Configuration). Let ES = (E, <,#) be an event structure.
We say that a subset of events « C E is a configuration if it is conflict free (C.F.),
and causally closed (C.C.). That is, it satisfies the following two properties, for
any d,d €z and e € E

(CF)d# d;and (CCle<d=ecux

Notation 2.1. Cgg denotes the set of configurations of ES, and C%S C Cgg
the set of finite configurations. A configuration is said to be mazimal if it is
maximal in the partial order (Cgg,C). Also, if e € F and = € Cgg, we write
e # x, meaning that 3¢’ € z.e # ¢’. Finally, for z,2’ € Cgg,e € E, define a
relation — by z 5 2/ iff e & z and 2/ =zU{e}. fyC Fand z € Cgs,e € E
we write z % y to mean that either y & Cgg or it is not the case that = y.

A finite configuration models information regarding a single interaction, i.e.
a single run of a protocol. A maximal configuration represents complete infor-
mation about a single interaction. In our eBay example, sets (), {pay, positive}
and {pay, confirm positive} are examples of configurations (the last configu-
ration being maximal), whereas

{pay, confirm, positive, negative}



and {confirm} are non-examples.

In general, the information that one agent possesses about another will con-
sist of information about several protocol runs; the information about each
individual run being represented by a configuration in the corresponding event
structure. The concept of a local interaction history models this.

Definition 2.3 (Local Interaction History). Let ES be an event structure,
and define a local interaction history in ES to be a sequence of finite configu-
rations, h = x1x9 - T, € CQE s*- The individual components x; in the history h
will be called sessions.

In our eBay example, a local interaction history could be the following:

{pay, confirm, pos}{pay, confirm, neu}{pay}

Here pos and neu are abbreviations for the events positive and neutral.
The example history represents that the buyer has won three auctions with
the particular seller, e.g. in the third session the buyer has (so-far) observed
only event pay.

We assume that the actual system responsible for notification of events will
use the following interface to the model.

Definition 2.4 (Interface). Define an operation new : C%¢" — C%s" by
new(h) = hi). Define also a partial operation update : C%¢" x E x N — C%/"
as follows. For any h = zyxo -+ x; - xp, € C%S*, e € E, i € N, update(h, e, 1)

is undefined if i & {1,2,...,n} or &; /~ z; U {e}. Otherwise
update(h, e, i) = z1z2- - (x; U{e}) -2y

Remarks. The notion of time in the model is based on when sessions are
started. More precisely, in our local interaction histories, h = zixs - - - x,, where
z; € Cggs, the order of the sessions reflects the order in which the corresponding
interaction-protocols are initiated, i.e. x; refers to the observed events in the
1th-initiated session. Different notions of time could just as well be considered,
e.g. if x; precedes z; in sequence h, then it means that x; was updated more
recently than x;.

Note, while the order of sessions is recorded (a local history is a sequence),
in contrast, the order of independent events within a single session is not. For
example, in our eBay scenario we have

update(update({pay},neutral, 1),confirm 1) =
update(update({pay}, confirm, 1),neutral, 1)

Hence independence of events is a choice of abstraction one may make when
designing an event-structure model (because one is not interested in the partic-
ular order of events, or because the exact recording of the order of events is not
feasible). However, note that this is not a limitation of event structures: in a
scenario where this order of events is relevant (and observable), one can always



use a “serialized” event structure in which this order of occurrences is recorded.
A serialization of events consists of splitting the events in question into different
events depending on the order of occurrence, e.g., supposing in the example
one wants to record the order of pay and pos, one replaces these events with
events pay-before-pos,pos-before-pay, pay-after-pos and pos-after-pay
with the obvious causal- and conflict-relations.

When applying our logic (described in the next section) to express policies for
history-based access control (HBAC), we use a special type of event structure in
which the conflict relation is the maximal irreflexive relation on a set E of events.
The reason is that histories in many frameworks for HBAC, are sequences of
single events for a set £. When the conflict relation is maximal on FE, the
configurations of the corresponding event structure are exactly singleton event-
sets, hence we obtain a useful specialization of our model, compatible with the
tradition of HBAC.

3 A Language for Policies

The reason for recording behavioural information is that it can be used to guide
future decisions about interaction. We are interested in binary decisions, e.g.,
access-control and deciding whether to interact or not. In our proposed system,
such decisions will be made according to interaction policies that specify exact
requirements on local interaction histories. For example, in the eBay scenario
from last section, the bidder may adopt a policy stating: “only bid on auctions
run by a seller which has never failed to send goods for won auctions in the
past.” Notice, by the way, that users would have a hard time implementing
such a policy using the current eBay feedback forum.

In this section, we propose a declarative language which is suitable for speci-
fying interaction policies. In fact, we shall use a pure-past variant of linear-time
temporal logic, a logic introduced by Pnueli for reasoning about parallel pro-
grams [26]. Pure-past temporal logic turns out to be a natural and expressive
language for stating properties of past behaviour. Furthermore, linear-temporal-
logic models are linear Kripke-structures, which resemble our local interaction
histories. We define a satisfaction relation =, between such histories and poli-
cies, where judgement h = ¢ means that the history h satisfies the requirements
of policy .

3.1 Formal Description

3.1.1 Syntax.

The syntax of the logic is parametric in an event structure ES = (E, <, #).
There are constant symbols for each e € E (ranged over by meta-variables
e, e’ e;,...). The syntax of our language, which we denote L(ES), is given by
the following BNF.

¥ ou= e el o AYr | | X7 [0 S o



The constructs e and <e are both atomic propositions. In particular, $e is not
the application of the usual modal operator < (with the “temporal” semantics)
to formula e. Informally, the formula e is true in a session if the event e has
been observed in that session, whereas <e, pronounced “e is possible”, is true if
event e may still occur as a future observation in that session. The operators
X~1 (ast time’) and S (‘since’) are the usual past-time operators.

3.1.2 Semantics.

A structure for L(ES), where ES = (E, <,+#) is an event structure, is a non-
empty local interaction history in ES, h € C%S+. We define the satisfaction
relation = between structures and policies, i.e. h = 1) means that the history h
satisfies the requirements of policy 1. We will use a variation of the semantics
in linear Kripke structures: satisfaction is defined from the end of the sequence
“towards” the beginning, i.e. h = ¢ iff (h,|h]) E 9. To define the semantics
of (h,i) = 9, let h = z129---2n € Chs', and i € N. Define (h,i) |= ¢ by
structural induction in .

(h,i) Ee iff 1<i<Nandec€ua,
(h,i) | e iff 1<i<N=e#ua
(hvz)':¢0/\¢l iff - (h,i) = o and (h,i) = ¢
(i) |= - (b i) b 0

(h,i) = X~ 11# iff i>1and(h,i—1)F¢
(hvz)':¢05¢l iff ]S [h] ':¢1and

VE.(j <k <i= (h.k) = vo)]

Remarks. There are two main reasons for restricting ourselves to the pure-
past fragment of temporal logic (PPLTL). Most importantly, PPLTL is an ex-
pressive and natural language for stating requirements over past behaviour, e.g.
history-based access control. Hence in our application one wants to speak about
the past, not the future. We justify this claim further by providing (natural)
encodings of several existing approaches for checking requirements of past be-
haviour (c.f. Example 3.2 and 3.3 in the next section). Secondly, although one
could add future operators to obtain a seemingly more expressive language, a
result of Laroussinie et al. quantifies exactly what is lost by this restriction [21].
Their result states that LTL can be exponentially more succinct than the pure-
future fragment of LTL. It follows from the duality between the pure-future and
pure-past operators, that when restricting to finite linear Kripke structures, and
interpreting h = 1 as (h, |h|) | 1, then our pure-past fragment can express any
LTL formula (up to initial equivalence), though possibly at the cost of an expo-
nential increase in the size of the formula. Another advantage of PPLTL is that,
while Sistla and Clarke proved that the model-checking problem for linear tem-
poral logic with future- and past-operators (LTL) is PSPACE-complete [32],
there are very efficient algorithms for (finite-path) model-checking pure-past
fragments of LTL, and (as we shall see in Section 4) also for the dynamic policy-
checking problem.
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Note that the logic cannot distinguish the empty structure € € Cj 4 from a
structure consisting of any number of empty configurations, e.g., #0@). More gen-
erally, one way of looking at our structures is as infinite sequences x1 22 - - - £, 00 - - -
having only finitely many non-empty configurations.

We define standard abbreviations using syntatic equality: false = e A —e for
some fixed e € E, true = —false, o VY1 = —(—bg A —h1), o — 01 = by V 91,
F~1(y)) = true S ¢, G~1(yp) = —-F~1(—). Note that, F~1(1)) means “formula
1 is true at some time in the past,” whereas G~1(1)) means “¢ is true at all
times in the past.” We also define a non-standard abbreviation ~e = —=Ce
(pronounced ‘conflict e’ or ‘e is impossible’).

3.2 Example Policies

To illustrate the expressive power of our language, we consider a number of
example policies.

Example 3.1 (eBay). Recall the eBay scenario from Section 2, in which a
buyer has to decide whether to bid on an electronic auction issued by a seller.
We express a policy for decision ‘bid’, stating “only bid on auctions run by a
seller that has never failed to send goods for won auctions in the past.”

YPd = —F~!(time-out)

Furthermore, the buyer might require that “the seller has never provided nega-
tive feedback in auctions where payment was made.” We can express this by

YP4 = -F~1(time-out) A G~ !(negative — ignore)

Example 3.2 (Chinese Wall). The Chinese Wall policy is an important com-
mercial security-policy [2], but has also found applications within computer sci-
ence. In particular, Edjlali et al. [9] use an instance of the Chinese Wall policy
to restrict program accesses to database relations. The Chinese Wall security-
policy deals with subjects (e.g. users) and objects (e.g. resources). The objects
are organized into datasets which, in turn, are organized in so-called conflict-
of-interest classes. There is a hierarchical structure on objects, datasets and
classes, so that each object has a unique dataset which, in turn, has a unique
class. In the Chinese-Wall policy, any subject initially has freedom to access
any object. After accessing an object, the set of future accessible objects is
restricted: the subject can no longer access an object in the same conflict-of-
interest class unless it is in a dataset already accessed. Non-conflicting classes
may still be accessed.

We now show how our logic can encode any instance of the Chinese Wall
policy. Following the model of Brewer et al. [2], we let S denote a set of subjects,
O a set of objects, and L a labeling function L : O — C' x D, where C' is a set
of conflict-of-interest classes and D a set of datasets. The interpretation is that
if L(o) = (¢co,d,) for an object o € O, then o is in dataset d,, and this dataset
belongs to the conflict-of-interest class ¢,. The hierarchical structure on objects,

11



datasets and classes amounts to requiring that for any o,0’ € O if L(o) = (¢, d)
and L(o') = (¢/,d) then ¢ = ¢/. The following ‘simple security rule’ defines
when access is granted to an object o: “either it has the same dataset as an
object already accessed by that subject, or, the object belongs to a different
conflict-of-interest class.” [2] We can encode this rule in our logic. Consider an
event structure ES = (E, <,#) where the events are C U D, with (¢,c/) € #
forc#c € C, (d,d) € # ford # d € D, and (¢,d) € # if (¢,d) is not in
the image of L (denoted Img(L)). We take < to be discrete. Then a maximal
configuration is a set {c, d} so that the pair (¢, d) € Img(L), corresponding to an
object access. A history is then a sequence of object accesses. Now stating the
simple security rule as a policy is easy: to access object o with L(o) = (¢, d,),
the history must satisfy the following policy:

P =Ftde v G e,

In this encoding we have one policy per object 0. One may argue that the
policy ¥° only captures Chinese Wall for a single object (0), whereas the “real”
Chinese Wall policy is a single policy stating that “for every object o, the simple
security rule applies.” However, in practical terms this is inessential. Even
if there are infinitely many objects, a system implementing Chinese Wall one
could easily be obtained using our policies as follows. Say that our proposed
security mechanism (intended to implement “real” Chinese Wall) gets as input
the object o and the subject s for which it has to decide access. Assuming
that our mechanism knows function L, it does the following. If object o has
never been queried before in the run of our system, the mechanism generates
“on-the-fly” a new policy ¥° according to the scheme above; it then checks °
with respect to the current history of s.! If o has been queried before it simply
checks 1° with respect to the history of s. Since only finitely many objects can
be accessed in any finite run, only finitely many different policies are generated.
Hence, the described mechanism is operationally equivalent to Chinese Wall.

Example 3.3 (Shallow One-Out-of-k). The ‘one-out-of-k’ (OOok) access-
control policy was introduced informally by Edjlali et al. [9]. Set in the area
of access control for mobile code, the OOok scheme dynamically classifies pro-
grams into equivalence classes, e.g. “browser-like applications,” depending on
their past behaviour. In the following we show that, if one takes the set-based
formalization of OOok by Fong [11], we can encode all OOok policies. Since
our model is sequence-based, it is richer than Fong’s shallow histories which are
sets. An encoding of Fong’s OOok-model thus provides a good sanity-check as
well as a declarative means of specifying OOok policies (as opposed to the more
implementation-oriented security automata).

In Fong’s model of OOok, a finite number of application classes are con-
sidered, say, 1,2,...,k. Fong identifies an application class, i, with a set of
allowed actions C;. To encode OOok policies, we consider an event structure
ES = (E, <, #) with events F being the set of all access-controlled actions. As

IThis check can be done in time linear in the history of subject s.
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in the last example, we take < to be discrete, and the conflict relation to be
the maximal irreflexive relation, i.e. a local interaction history in ES is simply
a sequence of single events. Initially, a monitored entity (originally, a piece of
mobile code [9]) has taken no actions, and its history (which is a set in Fong’s
formalization) is . If S is the current history, then action a € F is allowed
if there exists 1 < i < k so that S U {a} C C;, and the history is updated to
S U {a}. For each action a € E we define a policy ¥* for a, expressing Fong’s
requirement. Assume, without loss of generality, that the sets C; that contain
a are named 1,2, ...,7 for some ¢ < k. We will assume that each set C; is either
finite or co-finite.

Fix a j < 4. If the set C; is co-finite (i.e., its complement E \ Cj is finite),
the following formula ¢ encodes the requirement that S U {a} C C;.

vi=-F*\/ o

If instead Cj is itself finite, we encode

=G\ e)

ecCj

Now we can encode the policy for allowing action a as ¥* = \/;:1 (U

4 Dynamic Model Checking

The problem of verifying a policy with respect to a given observed history is
the model-checking problem: given h € CES and v, does h = 1 hold? However,
our intended scenario requires a more dynamic view. Each entity will make
many decisions, and each decision requires a model check. Furthermore, since
the model h changes as new observations are made, it is not sufficient simply
to cache the answers. This leads us to consider the following dynamic problem.
Devise an implementation of the following interface, ‘DMC”. DMC' is initially
given an event structure ES = (E,<,#) and a policy ¢ written in the ba-
sic policy language. Interface DMC supports three operations: DMC.mnew(),
DMC.update(e,i), and DMC.check(). A sequence of non-‘check’ operations
gives rise to a local interaction history h, and we shall call this the actual his-
tory. Internally, an implementation of DMC' must maintain information about
the actual history h, and operations new and update are those of Section 2,
performed on h. At any time, operation DMC'.check() must return the truth
of h = 9.

In this section, we describe two implementations of interface DMC. The
first has a cheap precomputation, but higher complexity of operations update
and new, whereas the second implementation has a higher time- and space-
complexity for its precomputation, but gains in the long run with a better
complexity of the interface operations. Both implementations are inspired by
the very efficient algorithm of Havelund and Rogu for model checking past-time
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LTL [13]. Their idea is essentially this: because of the recursive semantics,
model-checking 1 in (h,m), i.e. deciding (h,m) = 1, can be done easily if one
knows (1) the truth of (h,m — 1) = #; for all sub-formulas 1; of ¢, and (2)
the truth of (h,m) = v; for all proper sub-formulas ; of ¥ (a sub-formula of
¥ is proper if it is not ¢ itself). The truth of the atomic sub-formulas of ¢
in (h,m) can be computed directly from the state h,,, where h,, is the mth
configuration in sequence h. For example, if 13 = X~y A e, then (h,m) |= 13
iff (h,m — 1) = 14, and e € hy,. This information needed to decide (h,m) = ¢
can be stored efficiently as two boolean arrays Bj,s: and Bey,, indexed by the
sub-formulas of v, so that By, [j] is true iff (h,m —1) |= 9, and Bey,[¢] is true
iff (h,m) = ;. Given array Bjqs: and the current state h,,, one then constructs
array By, starting from the atomic formulas (which have the largest indices),
and working in a ‘bottom-up’ manner towards index 0, for which entry Bey[0]
represents (h,m) = 1. We shall generalize this idea of Havelund and Rosu to
obtain an algorithm for the dynamic problem.

We need some preliminary terminology. Initially, the actual interaction his-
tory h is empty, but after some time, as observations are made, the history
can be written h = 21 - o+ Zpr - Ymr+1 -+ - YM+ K, consisting of a longest prefix
x1---xp of maximal configurations, followed by a suffix of K possibly non-
maximal configurations yyr4+1 - - - Ynm+ i, called the active sessions (since we con-
sider the longest prefix, yas4+1 must be non-maximal). A maximal configuration
represents complete information about a protocol-run, and has the property that
it will never change in the future, i.e. cannot be changed by operation update.
This property will be essential to our dynamic algorithms as it implies that the
maximal prefix needs not be stored to check h = ¢ dynamically.

In the following, the number M will always refer to the size of the maximal
prefix, and K to the size of the suffix.

4.1 An Array-based Implementation

We describe an implementation of the DMC' interface based on a data structure
DS maintaining the active sessions and a collection of boolean arrays. Under-
standing the data structure is understanding the invariant it maintains, and we
will describe this in the following.

The data structure DS has a vector, accessed by variable DS.h, storing
configurations of E'S, which we denote DS.h = (y1,y2,...,yx). Part of the
invariant is that DS.h stores only the suffix of active configurations, i.e. the
actual history h can be written h = x1 - k2 - - - xpr - (DS.h), where the z; are all
maximal.

Initialization. The data structure is initialized with (a representation of) an
event structure ES = (F, <,#) and a policy ¥. We assume that the represen-
tation of the configurations of ES, z € Cgg, is so that the membership e € x,
conflict e # z, singleton union z U {e} and maximality (i.e. is ¢ € Cgpg maxi-
mal?) can be computed in constant time. Initialization starts by enumerating
the sub-formulas of ¢, denoted Sub(v), such that the following property holds.
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Let there be n 4+ 1 sub-formulas of 1, and let ¥g = 1. The sub-formula enumer-
ation o, Y1, e, ..., Y, satisfies that if 9; is a proper sub-formula of ¢; then
1> 7.

Invariance. As mentioned, part of the invariant is that DS.h stores exactly
the active configurations of the actual history h. In particular, this means that
DS.h; is non-maximal, since otherwise there was a larger longest prefix of h.2 In
addition to DS.h, the data structure maintains a boolean array DS.B; for each
entry y; in the vector DS.h. The boolean arrays are indexed by the sub-formulas
of ¢ (more precisely, by the integers 0, 1, . .., n, corresponding to the sub-formula
enumeration). The following invariant will be maintained: DS.By[j] is true iff
(h, M +k) |= v;, that is, if-and-only-if the actual history h = x1 ---axp - DS.h is
a model of sub-formula %; at time M + k. Additionally, once the longest prefix
of maximal configurations becomes non-empty, we allocate a special array By,
which maintains a “summary” of the entire maximal prefix of h with respect to
¥, meaning that it will satisfy the invariant: By[j] is true iff (h, M) = ¢;.

Operations. The invariants above imply that the model-checking problem
h E 1 can be computed simply by looking at entry 0 of array DS.Bg, i.e.
DS.Bk|0] is true iff (h, M + K) = ¢ iff h = 4. This means that operation
DS.check() can be implemented in constant time O(1). Operation DS.new
is also easy: the vector DS.h is extended by adding a new entry consisting of
the empty configuration. We must also allocate a new boolean array DS.Bg 41,
which is initialized using the recursive semantics, consulting the array DS.Bg,
and the current state (). This can be done in linear time in the number of
sub-formulas of v, O(|¢]).

The final and most interesting operation, is DS.update(e, ). It is assumed
as a pre-condition, that 1 < ¢ < K, and that e is not in conflict with DS.h;. First
we must add event e to configuration DS.h;, i.e. DS.h; becomes DS.h; U {e}.
This is simple, but it may break the invariant. In particular, arrays DS.By, (for
k > i) may no longer satisfy (h, M + k) |=v¢; <= DS.By[j| = true. Note,
however, that for any 0 < k < ¢, the array DS.Bj still maintains its invariant.
This is due to the fact that all (sub) formulas are pure-past, and so their truth
in A at time k does not depend on configurations later than k. In particular,
since i > 1, the special array DS.By always maintains its invariant. This means
that we can always assume that DS.B;_1[j] is true iff (b, M +1¢—1) = ;.
This information can be used to correctly fill-in array 4, in time linear in [¢],
using the recursive semantics. In turn, this can be used to update array i + 1,
and so forth until we have correctly updated array K, and the invariants are
restored. Finally, in the case that ¢ = 1 and the updated session DS.h; has
become maximal, the updated actual history A now has a larger longest prefix
of maximal configurations. We must now find the largest £ < K so that for all
1 <k <k, DS.hy is maximal. All arrays DS.By and configurations DS.hy for
k' < k may then be deallocated (configuration DS.hj may also be deallocated),

2We do not consider, here, the case where DS.h is empty.
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and the new “summarizing” array DS.Bgy becomes DS.Bjy. We summarize the
result of this section as a theorem.

Theorem 4.1 (Array-based DMC). The array-based data structure (DS)
implements the DMC' interface correctly. More specifically, assume that DS is
initialized with a policy v and an event structure ES, then initialization of DS is
O(|]). At any time during execution, the complexity of the interface operations
is:

e DMC'.check() is O(1).
e DMC .mew() is O(|¢]).

e DMC .update(e,i) is O((K —i+1)-|¢|) where K is the current number
of active configurations in h (h is the current actual history).

Furthermore, the space requirement of DS is O(K + |E| - |Cgs]).

4.2 An Automata-based Implementation

In this section, we describe an alternative implementation of the DMC interface.
The implementation uses a finite automaton to improve the dynamic complex-
ity of the algorithm at the cost of a one-time computation, constructing the
automaton.

We consider the problem of model-checking 1 in a history h = x125 - - - zpr4
as the string-acceptance problem for an automaton, A, reading symbols from
an alphabet consisting of the finite configurations of E'S. The language {h €
Crg | h =1} turns out to be regular for all ¢ in our policy language.

The states of the automaton Ay, will be boolean arrays of size |1|, i.e. indexed
by the sub-formulas of /. Thinking slightly more abstractly about the Havelund-
Rosu algorithm, filling the array By, using Bj,s+ and the current configuration
x € Cpg can be seen as an automaton transition from state Bj,s to state Bey,
performed when reading symbol z. We need some preliminary notation.

Let us identify a boolean array B indexed by the sub-formulas of ¢ with
aset s € 25U ie B[j] = true iff 1; € s. The recursive semantics for a
fixed formula 1, can be seen as an algorithm, denoted RecSem, taking as input
the array Bjas € 25%°(¥) and the current configuration x € Cpg, and giving as
output By, € 25%0(¥) Furthermore, the base-case of the recursive semantics
can be seen as an algorithm taking only a configuration as input and giving
a subset s € 25%0(¥) a5 output. The input-output behaviour of the recursive-
semantics algorithm is exactly the transition function of our automaton.

Definition 4.1 (Automaton Ay). Let ¢ be a formula in the pure-past policy
language L(ES), where ES is an event structure. Define a deterministic finite
automaton Ay = (S, %, s, F, 8y), where S = 25%(¥) {54} is the set of states,
so & 25%0(¥) being a special initial state, and ¥ = Cgg is the alphabet. The
final states F' consist of the set {s € S | ¢ € s}, and if € = ¢ then the initial
state is also final, i.e. sp € F iff ) |= ¢b. The transition function restricted to the

16



non-initial states, dy : 2% x Cpg — 2V, is given by the recursive semantics, i.e.
5y(s,2) = RecSem(s,z) for all s € 2540(¥) 2 € 3. The transition function on
the initial state, d,(s0,—), is given by the base-case of the recursive semantics.

Since we have identified the empty structure e € Cpg with the singleton
sequence (), we take the initial state to be a final state if-and-only-if () |= 1. The
additional accepting states are those that contain formula .

Let &, denote the canonical extension of function 8y to strings h € Chg-

Lemma 4.1 (Automaton Invariant). Let h € CES be any non-empty history,
and ; be any sub-formula of . Then 5¢(30,h) # so and furthermore, v; €
0y (s0, h) if-and-only-if h = ;.

Proof. Simple induction in h. O
Theorem 4.2. L(Ay) ={heChs | h =1}
Proof. Immediate from Lemma 4.1 and the definition of sy and F'. O

In the abstract setting of automaton A, we can now give a very simple and
concise description of an alternative data structure DS’ for implementing the
interface for dynamic model checking, DMC'. The basic idea is to pre-construct
the automaton during initialization, and basically replacing the dynamic filling
of the arrays DS.B; of DS with automaton-transitions.

Initialization. Just as with DS, the data structure DS’ is initialized with
an event structure FS and formula . Initialization now simply consists of
constructing the automaton A,. More specifically, we construct the transition-
matrix of §y, so that dy (s, ) can be computed in time O(1) by a matrix-lookup.3
DS’ maintains a variable DS’.ssumm of type S (the automaton states) which is
initialized to sp. In addition to Ssumm, DS’ will store a vector of pairs DS’.h =
[(y1,51), (Y2, 82), -, (YK, SK)], where the y;’s are configurations representing
active sessions, and the s;’s are corresponding automaton-states where s; is the
state that Ay is in after reading y;. Initially this vector is empty.

Invariance. Let h = x1x9---xr - Ymrv1 - Ym+x be the actual interaction
history, i.e. (x;)}, is the longest prefix of maximal configurations. The data-
structure invariant of DS’ is that, if DS".h = [(y1,s1), (y2,52), - -, (YK, SK))]
then (y1,...,yx) are the active configurations of h, and s; is the state of
the automaton after reading the string x1axo -z - y1 -+ - ¥5, when started in
state sg. The invariant regarding the special variable DS’ .5qumm is simply that
DS’ Ssumm = 0y (S0, 122 - - - Tpr), 1.6. DS’ Ssumm “summarizes” the history up to
time M with respect to formula . Notice that the invariant is satisfied after
initialization.

3We choose a transition-matrix representation of 0y for simplicity. In practice, any repre-
sentation allowing efficient computations of d,(s, ) could be used.
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Operations. Let DS".h = [(y1,51), (y2,82),--., (YK, Sk)]. Then operation
DMC'.check() returns true iff s € F'. By the invariant and Lemma 4.1 this is
equivalent to h |= 1. For operation DMC .new(), extend DS’.h with the pair
(0,04 (sk,0)). Finally, for operation DMC .update(e, i), add e to configuration
y; of DS’.h, then update the table DS’.h by starting the automaton in state s;_1
(or Ssumm if 4 = 1), and setting s; := dy(si—1,¥:), and then s; 1 = 0y (si, Yit1),
and so on until the entire table DS’.h satisfies the invariant. If i = 1 and y; U{e}
is maximal, we must, as in DS, recompute the largest longest prefix, and we
may deallocate the corresponding part of the table DS’.h (taking care to update
DS’ 5summ appropriately).
Since dy, can be evaluated in time O(1), we get the following theorem.

Theorem 4.3 (Automata-based DMC). The automata-based data structure
(DS’) implements the DMC' interface correctly. More specifically, assume that
DS’ is initialized with a policy v and an event structure ES = (E,<,#), then
initialization of DS is O(21¥! - |Cps| - [¥]). At any time during execution, the
complezity of the interface operations is:

e DMC .check() is O(1).
o DMC.new() is O(1).

e DMC .update(e,i) is O(K —i+1) where K is the current number of active
configurations in h (h is the current actual history).

Furthermore, the space requirement of DS is O(K + |E| - |Cgs| + 2/Y! - |Crs|).

4.3 Remarks

The array- and automata-based implementations are very similar. The automata-
based implementation simply precomputes a matrix of transitions B = B’ in-
stead of recomputing from scratch the array B’ from B and z, every time it
is needed. This reduces the complexity of operations DMC.update(e,i) and
DMC .new() by a factor of |¢|. The cost of this is in terms of storage and time for
pre-computation, where, in the worst case, the transition matrix is exponential
in 1 (of size 2/¥! x [Crs|). One important advantage with the automata-based
implementation (besides being conceptually simpler) is that we can apply the
standard technique for constructing the minimal finite automaton equivalent to
Ay. We believe that, in practice, this minimization will give significant time
and space reductions. Note that minimization can be run several times, and not
just during initialization. In particular, one could run minimization each time
state ssymm is updated in order to obtain optimizations, e.g. removing states
that are unreachable in the future.

Recall, that one might be interested in different notions of “time” in our
temporal logic. Consider the following. Redefine update(): for h = x1 - -z,
1<i<N,e€F, define

update(h,e,i) = 1T Tj_1Tip1Tipa -2y (2 U {e})
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This definition implements the idea that x; precedes z; in sequence h if z;
was updated more recently than z;. Notice that our algorithms (as well as
complexity analyses) can be easily adapted to this time concept: the update
operation simply swaps the indexes of configurations ¢ and N in the vector of
configurations before updating the boolean arrays (or automata-states in case
of the automata-based algorithm).

5 Language Extensions

In this section, we consider two extensions of the basic policy language to include
more realistic and practical policies. The first is parameters and quantification.
For example, consider the OOok policy for classifying “browser-like” applications
(Section 3). We could use a clause like G™!(open-f — F~lcreate-f) for two
events open-f and create-f, representing respectively the opening and creation
of a file with name f. However, this only encodes the requirement that for a
fized f, file f must be created before it is opened. Ideally, one would want to
encode that for any file, this property holds, i.e., a formula similar to

Gt (V. [open(z) — Ffl(create(x))])

where x is a variable, and the universal quantification ranges over all possible
file-names. The first language extension allows this sort of quantification, and
considers an accompanying notion of parameterized events.

The second language extension covers two aspects: quantitative properties
and referencing. Pure-past temporal logic is very useful for specifying qualitative
properties. For instance, in the eBay example, “the seller has never provided
negative feedback in auctions where payment was made,” is directly expressible
as G~ !(negative — ignore). However, sometimes such qualitative properties
are too strict to be useful in practice. For example, in the policy above, a single
erroneous negative feedback provided by the seller will lead to the property being
irrevocably unsatisfiable. For this reason, our first extension to the usual past-
time temporal-logic is the ability to express also quantitative properties, e.g.
“in at least 98% of the previous interactions, seller has not provided negative
feedback in auctions where payment was made.” The second extension is the
ability, to not only refer to the locally observed behaviour, but also to require
properties of the behaviour observed by others. As a simple example of this,
suppose that b; and by are two branches of the same network of banks. When a
client ¢ wants to obtain a loan in b1, the policy of b; might require not only that
¢’s history in by satisfy some appropriate criteria, but also that ¢ has always
payed his mortgage on time in his previous loans with bs. Thus we allow local
policies, like that of by, to refer to the global behaviour of an entity.

5.1 Quantification

We introduce a notion of parameterized event structure, and proceed with an
extension of the basic policy language to include quantification over param-

19



eters. A parameterized event structure is like an ordinary event structure,
but where events occur with certain parameters (e.g. open(”/etc/passwd”) or
open(”./tmp.txt")).

5.1.1 Parameterized Event Structures

We define parameterized event structures and an appropriate notion of config-
uration.

Definition 5.1 (Parameterized Event Structure). A parameterized event
structure is a tuple pES = (E, <, #, P, p) where (E, <, #) is an (ordinary) event
structure, component P, called the parameters, is a set of countable parameter
sets, P ={P. | e € E}, and p : E — P is a function, called the parameter-set
asstgnment.

Definition 5.2 (Configuration). Let pES = (E,<,#,P,p) be a parame-
terized event structure. A configuration of pES is a partial function x : £ —
U.cr ple) satisfying the following two properties. Let dom(x) C E be the set
of events on which z is defined. Then

dom(x) € Cgs

Ve € dom(z).x(e) € p(e)

When z is a configuration, and e € dom(x), then we say that e has occurred
in z. Further, when z(e) = p € p(e), we say that e has occurred with parameter
p in z. So a configuration is a set of event occurrences, each occurred event
having exactly one parameter.

Notation 5.1. We write C,gs for the set of configurations of pE.S, and CSES
for the set of finite configurations of pES (a configuration x is finite of dom(x)
is finite). If z,y are two partial functions z : A — B and y : C' — D we write
(x/y) (pronounced x over y) for the partial function (z/y) : AUB — CUD
given by dom(z/y) = dom(x) U dom(y), and for all e € dom(z/y) we have
(x/y)(e) = x(e) if e € dom(z) and otherwise (x/y)(e) = y(e). Finally we write
() for the totally undefined configuration (when the meaning is clear from the
context).

Here we are not interested in the theory of parameterized event structures,
but mention only that they can be explained in terms of ordinary event struc-
tures by expanding a parameterized event e of type p(e) in to a set of conflicting
events {(e,p) | p € p(e)}. However, the parameters give a convenient way of
saying that the same event can occur with different parameters (in different
runs).

Definition 5.3 (Histories). A local (interaction) history h in a parameterized
event structure pES is a finite sequence h € CSES*.
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Definition 5.4 (Extended Interface). Overload operation new : CSES* —
CSES* by new(h) = h{). Overload also partial operation update : CSES* x B x
(Ueep p(€)) xN — CSES* as follows. For any h = x1x0 -2 -+ - T, € CSES*, ee
E,p € U.cpprle), and i € N, update(h, e, p,i) is undefined if i ¢ {1,2,...,n},
dom(x;) A dom(z;) U {e} or p & p(e). Otherwise

update(h7 €, D, 7’) =X1T2 - ((6 = p)/xl) T n

Throughout the following sections, we let pES = (E, <,#,P,p) be a pa-
rameterized event structure, where P = {P; | i € N}.

5.1.2 Quantified Policies

We extend the basic language from Section 3 to parameterized event structures,
allowing quantification over parameters.

Syntax. Let Var denote a countable set of variables (ranged over by

d
Z,Yy,...). Let the meta-variables v,u range over Val (def) Var U U?;Pi,

and metavariable p range over Ji-, P;.
The quantified policy language is given by the following BNF.

You=e(v) | Ce(v) [ o Ay | ¢ |
X_1¢|w05¢1|Vxle

We need some terminology.

Write fu(1)) for the set of free variables in 1 (defined in the usual way).

A policy of the quantified language is a closed formula.

Let ¢ be any formula. Say that a variable x has type P; in ¥ if it occurs
in a sub-formula e(z) of ¥ and p(e) = P;.

We use the syntactic abbreviations of Section 3, and additionally the ex-
istential quantification Jx : P;.2) = =V : P;.—).

We impose the following static well-formedness requirement on formulas . All
free variables have unique type, and, if x is a bound variable of type P; in 1,
then z is bound by a quantifier of the correct type (e.g., by Va : P;.¢). Further,
for each occurrence of e(p), p is of the correct type: p € p(e).

Semantics. A (generalized) substitution is a function o : Val — ;= P; so
that o is the identity on each of the parameter sets P;. Let h =x1 -+ -z, € CSES*
be a history, and ¢ € N. We define a satisfaction relation (h,i) =% ¥ by
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structural induction on .

(h,i) E=7 e(v) iff 1<i¢< N and e € dom(z;) and z;(e) = o(v)
(h,i) E° Ce(v) iff 1<i<N= (e# dom(z;) and
(e € dom(z;) = z;(e) = o(v)))

) 'ZU wo 1A\ 1#1 iff (hﬂ,) ’:U ’(/JQ and (h, Z) ':U 1#1
i) 7 it (h,i) 7 ¢

Vo XYy iff i>1and (hyi—1) =7 4
) T o Sy it 37 <id((h,§) 7 1) and

Vj <4’ <i.(h,j") E7 vo])

(h,i) EO Vo : Py iff Vp € Pj.(h,i) E(@=P)/9) )

Example 5.1 (True OOok). Recall the ‘one-out-of-k’ policy (Example 3.3).
Edjlali et al. give, among others, the following example of an OOok policy
classifying “browser-like” applications: “allow a program to connect to a remote
site if and only if it has neither tried to open a local file that it has not created,
nor tried to modify a file it has created, nor tried to create a sub-process.” Since
this example implicitly quantifies over all possible files (for any file f, if the
application tries to open f then it must have previously have created f), it
cannot be expressed directly in our basic language. Note also that this policy
cannot be expressed in Fong’s set-based model [11]. This follows since the above
policy essentially depends on the order in which events occur (i.e. create before
open).

Now consider a parameterized event structure with two conflicting events:
create and open, each of type String (representing file-names). Consider the
following quantified policy:

G~ (Va : String.(open(z) — F~lcreate(x)))

This faithfully expresses the idea of Edjlali et al. that the application “can only
open files it has previously created.”

5.1.3 Model Checking the Quantified Language

We can extend the array-based algorithm to handle the quantified language. The
key idea is the following. Instead of having boolean arrays Bj[j], we associate
with each sub-formula ¢; of a formula ¢, a constraint Cj[j] on the free variables
of 1. The invariant will be that the sub-formula v; is true for a substitution o at
time (h, k) if-and-only-if o “satisfies” the constraint C[j], i.e., Ci[j] represents
the set of substitutions o so (h, k) =7 ¥;.

Constraints. Fix a quantified formula % and a history h = z129--- 2, €
CSES*. We assume for simplicity that all m variables of v, say vars(y) =
{y1,y2, ..., Ym}, have the same type P (this restriction is inessential). Let P}, C
P denote the set of distinct parameter occurrences in h (i.e., P, = {qg € P |
Jde € EFi < |h|.e € dom(z;) and x;(e) = q}). For a finite set V of variables, let
Yy denote the set of substitutions for the variables V', i.e., ¥y =V — P. Let
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us define an equivalence =p, on substitutions Xy, by

_ /s olx) =0c'(x) ifo(x)e Py
0=p, 0 1ffo€V.{U/(x)¢Ph fo(r) & Py

Let E{j’z = Yy / =p, be the set of equivalence classes for =p,. Let x & P
be arbitrary but fixed. Note that an equivalence class [0] can be uniquely
represented as a function s : V. — P, U {x}, i.e,, by s(z) = o(z) if o(z) € Py
and s(x) = * otherwise. This is clearly independent of the class representative
. For the rest of this paper we shall identify 3¢ with V' — P, U {x}. The
following lemma establishes that with respect to model checking, substitutions
are only distinguished up to =p, -equivalence.

Lemma 5.1. For all quantified formulas v, all histories h, and all substitutions
0,0" € Zju(y)
ifo=p, o then h =" ¢ < hE"

Proof. Let h = x1 -+ -xy, be fixed, and recall P, = {¢ € P | Je € EJi < |h|.e €
dom(x;) and z;(e) = ¢q}. Let 0 =p, o’. Our proof is by structural induction in
1. For the base case we need only consider the atomic formulas of form e(z)
or <Ce(x) (if ¥ doesnt have a free variable then its truth is independent of the
substitution). If o(z) € P, then since 0 =p, o', we have ¢'(x) = o(z) and the
result is obvious. If o(x) ¢ P then since 0 =p, o', we also have o/(z) & P.
Hence h 7 e(x) and h £ e(z). If e is in conflict with z, or e € x, then
h 7 Ce(x) and h =7 Oe(z), otherwise h =7 Ge(x) and h =7 Oe(x).

For the inductive step, all cases follow trivially from the inductive hypothesis.
For example, for ¢y = Vx : P;.4) then since h =7 ¢ <= h ’:0' 1, clearly
h =7 Va : P iff for all p € Pj.h @0/ 4 iff p e Py.h =@—p)/o’ g,
(because for any fixed p € P; we have (z — p)/o =p, (x — p)/d’). O

A function ¢ : £ — {T, L} is called a (V-) constraint (in h). A substitution
o € Yy satisfies constraint ¢ if ¢([o]) = T. In this case we write o |= c¢. We write

Constrainty for the set of V-constraints (in some fixed history h which is clear

def
from the context), and if ¢ : ©4* — {T, L} is a constraint, then vars(c) (@D y.

Notice that when fv(¢) = () then Xz ) ~ 1 (ie., a singleton set), hence a
constraint is simply a boolean. In this sense, constraints generalize booleans.
In the array-based algorithm, sub-formula v; will be associated with a ;-
constraint Cy[j] in h, i.e., on the free variables of ¢; (where C}, will correspond
to time k in a history h). Notice that replacing the boolean arrays By[j] with
constraint arrays C[j] can be seen as a proper generalization of the array-based
algorithm. We generalize the (main) invariant of the algorithm from

h,k |=v; <= Bg[j] = true
to

Vo € Spuyy)- [Pk E7 ¥ <= o | Crlj]]
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Notice that for closed 1;, the invariants are equivalent. It is also important
to notice that constraints can be viewed as functions taking as input an m’ary
vector of (Py U {x})-values (where m is the number of variables) and giving
a boolean value as output. Hence constraints are finite objects. Notice also
that since constraints are boolean valued, it makes sense to consider logical
operators on constraints, e.g., the conjunction (¢ A ¢')([o]) = ¢([o]) A ¢([o]) of
two constraints ¢ and ¢’ (even if they are not on the same variables).* For a
variable = and a parameter p € Pj, we will use notation « € {p} to denote the
constraint given by (z € {p})([o]) = T <= o(z) = p. Further T and L denote
respectively the two constant constraints.

Constructing constraints. Let h = z; -- -z, be a history and 1 < k < n.
Define a translation [H]’,’EL from the quantified language to constraints, associating
with each formula in the quantified language 1, a constraint [¢)]F on the free
variables of ¢. The function [-]¥ is defined relative to index k and history h,
and we assume (inductively) that when defining [¢]5, we have access to [¢']F
for all proper sub-formulas 1’ of 1, and also [¢']¥~* for all sub-formulas ¢’ of ).
In the model-checking algorithm, the constraint [[wjﬂfl will correspond to entry
j in array Cj. Recall that the invariant we aim to maintain is the following.

Vo € Spuy,)-[hk E7 ¥ <= o | Crlj]]
We define function [-]§ as follows.

y€{p} ifv=yandee dom(zy)and

zp(e) =p
[e)]F = T if v =p and e € dom(xy) and
xp(e) =p
1 otherwise

ye{p} ifv=yandee dom(zy)and
zp(e) =p
T if (v=p and e € dom(xy) and
xi(e) = p) or if
e & dom(zxy) and e # dom(xy)
1 otherwise

[oe@)]} =

We proceed inductively in .

[o Aaly = [woli Alnly

=15 e
X7ly = W
[o Svall = [walf v ([vbo S valy ™" A [tbo]f)

Vz : Py = elim.([¥]F)

4If A C B then an A-constraint can be seen as a B-constraint by imposing no additional
requirements on the extra variables.
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All the clauses are straightforward except for Vx : P.t), which is handled by
auxiliary function elim,. We define this function now. Assuming we have access
to ¢ = [¢]§ so that o = ¢ <= (h,k) =7 1, we must produce a new constraint
" of type Constraint , )\ {z}, SO that

clEd < [VWeP(x—p)lo) k=] (for all o)

The function elim, does this; it transforms a constraint ¢ into a constraint
¢ = elimg(c) with vars(c’) = vars(c) \ {z}, satisfying the above equivalence.
Since Py, is finite we can build ¢’ as one large conjunction: for all o € ¥, (y)\ {2}

(o) = ( N\ ell(@— a)/o]) Ac((z = %)/[0])

qEP,

Notice that we would obtain a function for existential quantification by taking
a disjunction instead of a conjunction.

Array-based Model Checking. In the light of function [-] there is a
straightforward extension of data-structure DS into a similar data-structure
DSY for array-based dynamic model-checking of the quantified language. Struc-
ture DS” will maintain a history DSY.h=z29 - Ty, and a collection of n + 1
constraint-arrays DS”.Cy[j] (for 0 < k < n), each array indexed by the sub-
formulas of ¢. The constraint in Cy[j] will be C[j] = [1;]} for k& > 0 (Cp is
the special summary constraint). The invariant implies that for any closed %,

(h,n) =9y <= E DS".C,[0]

(we write = ¢, and say that ¢ is walid, if ¢ = T). Hence operation check is
a validity check, which is easy since wvars(DS".C,,[0]) =  when % is closed.
Operation new is essentially as in DS (with the generalization from booleans
to constraints).

For operation update(e,p,i) there are two cases. In the first case p € Py,
and update works as usual (again generalizing to constraints). In the case where
p € Py, we update history h to h’ appropriately, and thus obtain a new, larger
P, = P,U{p}. Notice that constraints in h can be easily extended to constraints
in A’ if ¢ : ©i* — {T, L} then we can think of ¢ as a constraint in h’ by the
following. For all o € Xy, let [o]n be the =p, ,-equivalence class for o, and let
[c]r be the =p, -equivalence class for o, then

c(lo]p;) = c(lo]p,)

This means that we can use the logical operators on constraints ¢ in the history
h and constraints ¢’ in the history A/, by first extending ¢ to a constraint in
h', and then performing the logical operation. Hence update(e,p,i) can be
implemented as usual, except that we may need to dynamically extend some
constraints in h to constraints in h’.

Complexity. The above paragraphs show that dynamic model-checking for
the quantified language is decidable in spite of the fact that we allow quantifica-
tion over infinite parameter sets. This is essentially due to the fact that in any
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history, only a finite portion of the parameters can actually occur. However, we
do have the following hardness result.

Proposition 5.1 (PSPACE Hardness). Even for single element models, the
model-checking problem for the quantified policy language is PSPACE hard.

Proof. Fix a parameterized event structure ES. A quantified model-checking
(QMC) instance (for ES) consists of a history h = x1 - - - z,, and a closed formula
¥ of the quantified language (over ES). Say that a QMC instance (h,) is in
QMC if h = 9. A single element model is a model, h € CEES*7 with h = z,
where z € C'SES.

The quantified boolean formula (QBF) problem is the problem of deciding
the truth of quantified formulas of the form

Q171Q2x2 - - Qnn. (1, ..., Ty)

where each Q; is a quantifier (V or 3), and ¢ is a quantifier-free boolean formula
(i.e., a propositional formula) with fv(¢) C {z1,...,2,}. The QBF problem is
known to be PSPACE complete [34]. Given a QBF f = Q121Qax2 - - - Qnn.0,
construct an MC-instance as follows. Use a parameterized event structure with
a single event x having two possible parameters L and T. Let h = [x — T] be
a single element history. Construct formula ¢ as ¥ = Q1x1Qaxs - - - Qpxyn.y,
where z1, ..., x, are the variables of f, and 1’ is ¢ with each variable x; replaced
by *(z;). Then f is satisfiable if-and-only-if (h, |h|) = . O

While the general problem is PSPACE hard, we are able to obtain the fol-
lowing quantitative result which bounds the complexity of our algorithm. Sup-
pose we are to check a formula v = Q121Q2ws - - - Qny.1), where the Q; are
quantifiers and x; variables. We can obtain a bound on the running time of
our proposed algorithm in terms of the number of quantifiers n. This is of
practical relevance since many useful policies have few quantifiers. Clearly the
complexity depends on the representation of constraints ¢ : 25*‘ — {T,Ll}.
One efficient representation of constraints is using multiple-valued decision di-
agrams [16]. With this representation, constraints ¢ can be efficiently stored in
space O((|P| 4+ 1)™) and the logical operations can all be computed in linear
time O((|Py| +1)™). Further a constraint in & can be extended to a constraint
in A’ = update(h, e, p,4) in linear time O((| Py | + 1)™).

Theorem 5.1 (Complexity Bound). Let formulay = Q121Q2x2 « - - Qnayn.1)’
where the Q; are quantifiers, z; variables all of type P, and v’ is a quantifier-free
formula from the quantified language with fv(¢)’) C {z1,...,2,}. Let h € CSES*
and |Py| be the number of parameter occurrences in history h. The constraint-
based algorithm for dynamic model checking has the following complexity.

o DMC .check() is O(1).
e DMC.new() is O(|¢| - (|1Pn| +1)™).
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e DMC.update(e,p,i) when p € P, and K is the current number of active
configurations in h, is
O((K —i+1) - [¢ - (|1Pu| +1)")

e DMC.update(e,p,i) when p € P, and K is the current number of active
configurations in h, is
O((K —i+1) - [¢f - (|Pu| +2)")

Furthermore, the space requirement of DS’ is O(K - (|E| + || - (|Pu| + 1)™)).

5.2 References and Quantitative Properties

In this section, we briefly illustrate another way to extend the core policy-
language to a more practical one. As mentioned, we consider two aspects:
referencing and quantitative properties. For referencing we introduce a construct
p : 1, where p is a principal-identity and 1 is a basic policy. The construct is
intended to mean that principal p’s observations (about a subject) must satisfy
past-time 1. For quantitative properties, we introduce a counting operator
#, used e.g. in formula p : #1 which counts the number of p-observed sessions
satisfying ¢ (we use # to avoid confusion with the conflict relation, often denoted
by #).

To express referencing, we extend the basic syntax to include a new syntactic
category 7 (for policy). Let Prin be a collection of principal identities.

Tou= piY|moAm | ow p € Prin

The policy p : ¥ means that the observations that p has made should satisfy
1. Note that in this extended language, models are no longer local interaction
histories, but, instead, global interaction histories, represented as a principal-
indexed collection of local histories (i.e., functions of type Prin — Cjg).

The quantitative extension is given by extending the category ¢. Let (R; )?’;1
be a countable collection of k’ary relation-symbols for each k € N, representing
computable relations [R;] C N*.

¢ = |RJ(¥’¢17¥¢277¥¢]€)

The denotation of the construct #1 is the number of sessions in the past
which satisfy formula 1, e.g., #negative counts the number of states in the past
satisfying negative. So the denotation of #1) is a number, and the semantics
of R;(#v1,#a, ..., #y) is true iff (n1,na,...,n) € [R;], where n; is the
denotation of #1);. Finally, we extend also category m:

T ou= o Ri(pr FEL, - DE ) p; € Prin
The construct R;(p1 : #1,..., Pk : #¢k) means that, letting n; denote the

number of sessions observed by principal p; satisfying ;, then the relation [R;]
on numbers must have (n1,...,n) € [R;].
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We do not provide a formal semantics as the meaning of our constructs should
be intuitively clear, and our purpose is simply to illustrate how the core language
can be extended to encompass more realistic policies. To further illustrate the
constructs, we consider a number of example policies. In the following examples,
P, P1,P2,---,Dn € Prin are principal identities.

Example 5.2 (eBay revisited). Consider the eBay scenario again. The policy
of Example 3.1 could be extended with referencing, e.g. principal p might use
policy: _
ngd = p:G l(negative — ignore) A

Nactppr,pny 4 ~F~*(time-out)

Intuitively, this policy represents a requirement by principal p: “seller has never
provided negative feedback about me, regarding auctions where I made payment,
and, furthermore, seller has never cheated me or any of my friends.”

Example 5.3 (P2P File-sharing). This example is inspired by the example
used in the license-based system of Shmatikov and Talcott [31]. Consider a sce-
nario where a P2P file-servent has two resources, dl (download), and ul (upload).
Suppose this is modelled by an event structure with two independent events d1
and ul, so that in each session, a peer-client either uploads, downloads or both.
We express a policy used by server p for granting download, stating that “the
number of uploads should be at least a third of the number of downloads.”
ﬂglie“t‘dl =p: (#d1 <3 #ul)

This refers only to the local history with p. Supposing we instead want to
express a more “global” policy on the behaviour, stating that globally, p has
uploaded at least a third of its downloads (e.g. locally this may be violated).

71_;:)Iient—dl = (p : #di) + (Z?:l Pi: #ﬁ') <
3 (p: Ful + (X7, pi : #ul))

Example 5.4 (“Probabilistic” policy). Consider an arbitrary event structure
ES = (E,<,#). We express a policy ensuring that “statistically, event ev € F
occurs with frequency at least 75%.”

qProbab — ). #_ev
P H#ev+ Hr~ev+ 1

3
> 2
—4

Here # ~ev counts the number of sessions in which ev has not occurred and
cannot occur in the future.
5.2.1 Implementation remarks.

Dynamic model checking for the extended policy language can done by extending
the array-based algorithm from the previous section. Note that the value of #1)
can easily be defined in the style of the recursive semantics. To handle the
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construct R(#1), one maintains a number of integer variables which denote
the values of sub-formula #1 at each active session. The integers are then
updated using the recursive semantics in a way similar to the array-updates in
Section 4. We have the following result, assuming that the relations can be
evaluated in constant time, and that numbers can be stored/manipulated in
constant space/time.

Theorem 5.2. Let formula ¢ be from the basic language extended with the
quantitative constructs. Let h € C%¢" be a history. The dynamic model check-
ing can be implemented with the following complexity.

e DMC .check() is O(1).
e DMC .mew() is O(|¢]).

e DMC.update(e,i) is O((K —i+ 1) - [¢|) where K is the current number
of active configurations in h.

Note, that the automata-based algorithm does not easily extend: the (seman-
tics of the) extended language is no-longer regular, e.g. illustrated by formula
Yp =p (F#dL < F#ul).

The construct p : 1, where p is a principal identity, requires that p’s inter-
action history (with the subject in question) satisfies ¢. This is handled simply
by “sending formula ” to p. Principal p maintains the truth of ¢ with respect
to its interaction history using the algorithms of last section, and sends the re-
quired value to the requesting principal when needed.® Another approach is for
p to send its entire interaction history so that the verification can be performed
locally, e.g., as is done with method exportEvents in the license-based frame-
work of Shmatikov and Talcott [31]. It does not make sense to consider the
algorithmic complexity of referencing. The message complexity of referencing,
however, is linear in the number of principals to be contacted (one query and
one reply).

6 A Java Security Manager

In this section we describe an application of our logical framework to the area
of history-based access control for untrusted code. We have designed and im-
plemented a prototype Java Security Manager which is able to monitor a Java
program with respect to a “history-based” policy, written in our logic. If the se-
curity manager detects a violation of policy, a Java security exception is thrown
and the violating action is aborted. We describe briefly the Java security model,

50One might argue that this leads to problems of timing: at what point in time is 1) then
to be evaluated? But such timing-issues are inherent in distributed systems. Formula p : v is
a relative temporal specification that is interpreted by the sender as referring to the current
history of p, when p decides to evaluate it. The sender of ¥ thus knows that received valuation
(true or false) reflects an evaluation of ¢ with respect to some recent view of p’s history.
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and proceed with a more detail description of the design and implementation of
our history-based security manager.

The Java Programming Language supports the concept of a security man-
ager: an object that supervises another Java application with respect to security
sensitive operations, e.g., file or network access.® Java programs that run other
Java programs, e.g., a browser running a Java applet, can install a security
manager that mediates the untrusted program’s security sensitive operations.
Operations, like connecting to a socket on a remote site, are performed by Java
applications via the Java API, e.g., class Socket of the java.net library provides
an appropriate abstraction for “sockets.” API classes make calls to the security
manager’s checkPermission(java.lang.Permission) method whenever a se-
curity sensitive operation is requested, e.g., the Socket class calls checkPerms-
sion with an appropriate instance of the java.net.SocketPermission (con-
taining information about which remote site and port is being accessed). The se-
curity manager then inspects the java.lang.Permission object (possibly con-
sulting a user-specified security policy) and throws a java.lang.SecurityException
if access should not be granted.

The Java security architecture allows users to write their own security man-
agers by extending the java.lang.SecurityManager class. We have written a
security manager that decides access by checking conformance to policies from
our history-based framework. The application is a simple prototype, used only
for testing the validity of our approach to history-based access control, and
consequently, the current version supports only a small subset of the security
relevant operations available in Java.”

6.1 Design

We have designed two versions of the HBAC application, a basic and a pa-
rameterized version, corresponding to the basic and parameterized languages
described previously. The basic events in our event structure correspond to the
Java security events, e.g., java.io.FilePermission for representing file-access.
For simplicity, the current version supports only the events corresponding to file
and network access, corresponding to the java classes java.io.FilePermission
and java.net.SocketPermission, however it would be simple to extend this to
all the security relevant events. The basic event structure thus consists of con-
flicting events FilePermission(read),FilePermission(write),FilePermis-
sion(delete),FilePermission(execute);and SocketPermission(connect),
SocketPermission(listen), SocketPermission(accept), SocketPermission(resolve).
Note that since there are only four types of operations for each event-type (e.g.
‘read’ for the ‘FilePermission’) these “finitely parameterized” events can be rep-
resented in the basic model. In the parameterized model, the parameterized
events include also information about filenames/hostnames, e.g., event Socket-

6More information about the Java security architecture, and security managers can be
found at http://java.sun.com/security/index. jsp.

"The prototype source code is available as an open-source project, hosted at SourceForge,
https://sourceforge.net/projects/javahbac.
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Permission(connect) has further string-type parameters specifying a port and
hostname, and FilePermission(read) has a parameter specifying the filename.

We have provided DSD2.0 [18,24] descriptions of XML languages for both
the basic and parameterized policies. A policy consists of a list of actions, e.g.,
java.net.SocketPermission(connect), followed by a formula from one of the
two logics. An example policy is provided in Figure 7; it describes the policy
requiring that for the application to perform the actions of connecting a socket
or accepting a socket connection, the history must satisfy the property

G *(Vx : String.(java.lang.FilePermission(read)(z) —

F~!java.lang.FilePermission(write)(z)))

We have implemented a SAX parser which reads a policy file from the disk and
generates an internal data-structure representing the policy. This parser can be
used by an application that wishes to install a security manager implementing
a policy.

We have defined two security managers: an automata-based security man-
ager (SecMan.java) for the basic language, using the efficient Java package
dk.brics.automaton [23]; and an array-based security manager for the quan-
tified language (QSecMan. java), using the JavaBDD binary decision diagram
package for implementing constraints [35]. The input for both security man-
agers is an XML representation of a policy, and both override the method
checkPermission of the SecurityManager class to check whether a specific ac-
tion is allowed. The basic security manager uses the automata-based algorithm
from Section 4, whereas the quantified security manager uses the array-based
algorithm from the same section, but extending the booleans to the constraints

of Section 5.

We illustrate, by means of example, how one might use our security man-
agers. Consider the following Java program which tries to read the file "secret . txt”
and then send the contents to a location on the Internet.

import java.io.*;
import java.net.*;
public class Evil {
public static void main(String[] args) throws Exception {
System.out.println("begin");
BufferedReader buf = new BufferedReader(new FileReader("secret.txt"));
String line = null;
StringBuffer sbuf = new StringBuffer();
System.out.println("reading password");
while ((line = buf.readLine())!=null) {
System.out.println(line);
sbuf .append(line) ;
}
System.out.println("opening connection");
Socket s = new Socket("www.microsoft.com",80);
Writer out = new BufferedWriter(new OutputStreamWriter(s.getOutputStream()));
out.write(sbuf.toString(),0,sbuf.toString().length());

System.out.println("done!");

}

Suppose we want to run this program under the above example security policy.
An application class for installing a security manager and running the program
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could be the following.

import java.util.*;
import java.security.Permission;

public class TestQSecMan {
public static void main(String[] args) throws Exception {
QPolicyParser pp = new QPolicyParser();
pp.parse(args[0]);

QSecMan sec = setupSecurityManager (pp);
System.out.println("Setting Security Manager");
System.setSecurityManager (sec) ;
System.out.println("Starting Program");
Evil.main(null);

}

private static QSecMan setupSecurityManager (QPolicyParser pp) {
// initialize security manager

First, the policy is specified as an argument to the program. The program
parses the policy using our SAX parser. Then it constructs a quantified se-
curity manager object, using the setup-method (the specifics are simple and
not relevant here). Once the security manager is constructed, it uses the Sys-
tem.setSecurityManager Java method, to install the monitor. After this, the
program can be run, and the security manager ensures that the policy is not
violated.
Specifically, the output of running the above looks as follows.

[krukow@smeagol: .. .HBAC-Security/test]$ java TestQSecMan file-quant-example.xml
Setting Security Manager

Starting Program

check: (java.util.PropertyPermission user.dir read)
check: (java.io.FilePermission secret.txt read)
reading password
thesecretpassWord
opening connection
check: (java.util.PropertyPermission java.net.preferIPv6Addresses read)
check: (java.lang.RuntimePermission loadLibrary.net)
check: (java.io.FilePermission /home/java/Linux-jdk1.5.0_04/jre/1ib/i386/1libnet.so read)
check: (java.util.PropertyPermission java.net.preferIPv4Stack read)
check: (java.util.PropertyPermission impl.prefix read)
check: (java.lang.reflect.ReflectPermission suppressAccessChecks)
check: (java.util.PropertyPermission sun.net.spi.nameservice.provider.1l read)
check: (java.net.SocketPermission www.microsoft.com resolve)
Exception in thread "main" java.lang.SecurityException: Execution History Exception: Neg(QSince(QTrue, Neg(QF
orall x.(Neg(Conj(Event((java.io.FilePermission x read) (x)), Neg(QSince(QTrue, Event((java.io.FilePermission
x write) (x))))))))))
at QSecMan.checkPermission(QSecMan. java:37)
at java.lang.SecurityManager.checkConnect(SecurityManager.java:1031)
at java.net.InetAddress.getAllByNameO(InetAddress.java:1117)
at java.net.InetAddress.getAllByNameO(InetAddress.java:1098)
at java.net.InetAddress.getAllByName(InetAddress.java:1061)
at java.net.InetAddress.getByName(InetAddress.java:958)
at java.net.InetSocketAddress.<init>(InetSocketAddress.java:124)
at java.net.Socket.<init>(Socket.java:178)
at Evil.main(Evil.java:15)
at TestQSecMan.main(TestQSecMan.java:16)
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We see that a security exception is thrown, not when the programs accesses the
password, but when it tries to open a socket connection. We see also that there
are a number of additional operations that are necessary for opening sockets,
e.g., (java.io.FilePermission, /home/java/Linux-jdk1.5.0_04/jre/1ib/i386/
libnet.so,read).

We have not yet done further experimentation with the framework, but our
initial impression is good. Finally, we would like to compare our proposed
framework to the similar system Deeds, of Edjlali et al. [9]. The Deeds system
is similar to our prototype system in that Deeds also seeks to do history-based
access control for Java (infact, Deeds was the main source of inspiration for this
application). First, Deeds is more general than our system because “the set of
security events is not fixed.” In our system, the set of security-relevant events is
restricted to what Java considers security events (this may change with future
releases of Java). Secondly, Deeds is more low-level than our system: in Deeds,
the programmer explicitly must maintain the event history (performing opti-
mizations as he sees fit), and the programmer explicitly programs the security
monitor (using full Java). This has the advantage that it is more flexible, but
the disadvantage that such programming is error-prone, and highly security sen-
sitive. In contrast, specifying an XML policy which is automatically monitored
is less error-prone as the policy is declarative, and domain-specific. Further-
more, we're using standard algorithms that can efficiently handle all policies in
the XML language, and which performs optimizations automatically, e.g., event
history maintainance (and deallocation) and automata minimization. Finally,
Deeds is much more fully developed while our approach is still at the proto-
type and evalutation level. We encourage interested readers to download the
source code at https://sourceforge.net/projects/javahbac, and develop it
further.

7 Conclusion

Our approach to reputation-systems differs from most existing systems in that
reputation information has an exact semantics, and is represented in a very con-
crete form. In our view, the novelty of our approach is that our instance systems
can verifiably provide a form of exact security guarantees, albeit non-standard,
that relate a present authorization to a precise property of past behaviour. We
have presented a declarative language for specifying such security properties,
and the applications of our technique extends beyond the traditional domain of
reputations systems in that we can explain, formally, several existing approaches
to “history based” access control.

We have given two efficient algorithms for the dynamic model-checking prob-
lem, supporting the feasibility of running implementations of our framework on
devices of limited computational and storage capacity; a useful property in
global computing environments. In particular, it is noteworthy that principals
need not store their entire interaction histories, but only the so-called active
sessions.
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Related Work. Many reputation-based systems have been proposed in the
literature (Jgsang et al. [15] provide many references), so we choose to mention
only a few typical examples and closely related systems. Kamvar et al. present
EigenTrust [17], Shmatikov and Talcott propose a license-based framework [31],
and the EU project ‘SECURE’ [3,4] (which also uses event structures for mod-
elling observations) can be viewed as a reputation-based system, to name a
notable few.

The framework of Shmatikov and Talcott is the most closely related in that
they deploy also a very concrete representation of behavioural information (“evi-
dence” [31]). This representation is not as sophisticated as in the event-structure
framework (e.g., as histories are sets of time-stamped events there is no concept
of a session, i.e., a logically connected set of events), and their notion of reputa-
tion is based on an entity’s past ability to fulfill so-called licenses. A license is a
contract between an issuer and a licensee. Licenses are more general than inter-
action policies since they are mutual contracts between issuer and licensee, which
may permit the licensee to perform certain actions, but may also require that
certain actions are performed. The framework does not have a domain-specific
language for specifying licenses (i.e. for specifying license-methods permits and
violated), and the use of reputation information is not part of their formal
framework (i.e. it is up to each application programmer to write method useOk
for protecting a resource). We do not see our framework as competing, but,
rather, compatible with theirs. We imagine using a policy language, like ours,
as a domain-specific language for specifying licenses as well as use-policies. We
believe that because of the simplicity of our declarative policy language and its
formal semantics, this would facilitate verification and other reasoning about
instances of their framework.

Pucella and Weissman use a variant of pure-future linear temporal logic for
reasoning about licenses [27]. They are not interested in the specific details of
licenses, but merely require that licenses can be given a trace-based semantics;
in particular, their logic is illustrated for licenses that are regular languages.
As our basic policies can be seen (semantically) as regular languages (Theorem
4.2), and policies can be seen as a type of license, one could imagine using their
logic to reason about our policies.

Roger and Goubault-Larreq [29] have used linear temporal logic and associ-
ated model-checking algorithms for log auditing. The work is related although
their application is quite different. While their logic is first-order in the sense of
having variables, they have no explicit quantification. Our quantified language
differs (besides being pure-past instead of pure-future) in that we allow explicit
quantification (over different parameter types) Va : P;.¢p and 3z : P;.1, while
their language is implicitly universally quantified.

The notion of security automata, introduced by Schneider [30], is related to
our policy language. A security automaton runs in parallel with a program, mon-
itoring its execution with respect to a security policy. If the automata detects
that the program is about to violate the policy, it terminates the program. A
policy is given in terms of an automata, and a (non-declarative) domain-specific
language for defining security automata (SAL) is supported but has been found
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awkward for policy specification [10]. One can view the finite automaton in
our automata-based algorithm as a kind of security automaton, declaratively
specified by a temporal-logic formula.

Security automata are also related, in a technical sense [11], to the notion of
history-based access control (HBAC). HBAC has been the subject of a consid-
erable amount of research (e.g., papers [1,9,11,12,30,33]). There is a distinction
between dynamic HBAC in which programs are monitored as they execute, and
terminated if about to violate policy [9,11,12,30]; and static HBAC in which
some preliminary static analysis of the program (written in a predetermined
language) extracts a safe approximation of the programs’ runtime behaviour,
and then (statically) checks that this approximation will always conform to
policy (using, e.g., type systems or model checking) [1,33]. Clearly, our ap-
proach has applications to dynamic HBAC. It is noteworthy to mention that
many ad-hoc optimizations in dynamic HBAC (e.g., history summaries relative
to a policy in the system of Edjlali [9]) are captured in a general and optimal
way by using the automata-based algorithm, and exploiting the finite-automata
minimization-theorem. Thus in the automata based algorithm, one gets “for
free,” optimizations that would otherwise have to be discovered manually.
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confirm ~~~ time-out
e

positive ~~~ neutral ~ negative

ignore

Figure 1: An event structure modelling the buyer’s observations in the eBay
scenario. (Immediate) Conflict is represented by ~, and dependency by —.
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<?7xml version="1.0" encoding="IS0-8859-1"7>
<7dsd href="http://www.brics.dk/ krukow/dsd/quantifiedjavapolicies.dsd"?>

<policy xmlns:xi="http://www.w3.org/2001/XInclude"
xmlns="http://www.brics.dk/ krukow/dsd/quantifiedjavapolicies">

<actions>
<java.net.SocketPermission host="*">
connect
</java.net.SocketPermission>
<java.net.SocketPermission host="*">
accept
</java.net.SocketPermission>
</actions>
<behaviour>
<always>
<forall var="x">
<implication>
<premise>
<event>
<java.io.FilePermission path="x">
read
</java.io.FilePermission>
</event>
</premise>
<conclusion>
<sometime>
<event>
<java.io.FilePermission path="x">
write
</java.io.FilePermission>
</event>
</sometime>
</conclusion>
</implication>
</forall>
</always>
</behaviour>
</policy>

Figure 2: Example xml quantified HBAC policy.
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