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AsstracT.  An intuitionistic, hybrid modal logic suitable for reasoning about distribution of re-
sources was introduced in [10]. We extend the Kripke semantics of intuitionistic logic, enriching
each possible Kripke state with a set of places, and show that this semantics is both sound and com-
plete for the logic. In the semantics, resources of a distributed system are interpreted as atoms, and
placement of atoms in a possible state corresponds to the distribution of the resources. The modali-
ties of the logic allow us to validate properties iparticular place in someplace and irall places.

We extend the logic with disjunctive connectives, and refine our semantics to obtain soundness and
completeness for extended logic. The extended logic can be seen as an inskdylwédofS5[2, 18].

1 Introduction

In current computing paradigm, distributed resources spread over and shared
amongst dierent nodes of a computer system is very common. For example,
printers may be shared in local area networks, or distributed data may store doc-
uments in parts at fferent locations. The traditional reasoning methodologies
are not easily scalable to these systems as they may lack implicitly trustable ob-
jects such as a central control.

This has resulted in the innovation of several reasoning techniques. A pop-
ular approach in the literature has been the use of algebraic systems such as
process algebra [13, 8, 5]. These algebras have rich theories in terms of seman-
tics [13], logics [7, 15, 4, 3], or types [8]. Another approach is logically-oriented
[9, 10, 19, 14]: intuitionistic modal logics are used as foundations of type sys-
tems by exploiting thg@ropositions-as-types, proofs-as-prograpasadigm [6].

An instance of this was introduced in [9, 10] and the logic introduced there is the
focus of our study.

The formulae in this logic include names, callpldces Assertions in the
logic are associated with places, and are validated in places. In addition to con-
sideringwhethera formula is true, we are also interestedaherea formula is
true. The three modalities of the logic allow us to infer whether a property is
validated in a specific place of the systemg)@or in an unspecified place of the
system §), or in any part of the systemj. The modality @ internalises the
model in the logic and hence can be classified as a hybrid logic [1, 16, 2]. An
intuitionistic natural deduction for the logic is given in [9, 10], and judgements in
the logic mention the places under consideration. The natural deduction rules for
¢ ando resemble those for existential and universal quantification of first-order
intuitionistic logic.



As noted in [9, 10], the logic can also be used to reason about distribution of
resources in addition to serving as the foundation of a type system. The papers
[9, 10], however, lack a model to match the usage of the logic as a tool to reason
about distributed resources. In this report, we bridge the gap by presenting a
Kripke-style semantics [12] for the logic of [9, 10]. In Kripke-style semantics,
formulae are considered valid if they remain valid when the atoms mentioned in
the formulae change their value from false to true. This is achieved by using a
partially ordered set giossible statednformally, more atoms are true in larger
states.

We extend the Kripke semantics of the intuitionistic logic [12], enriching
possible states with fixedset of places. In each possible statéfadent places
satisfy diferent formulae. For the intuitionistic connectives, the satisfaction of
formulae at a place in a possible state follows the standard definition [12]. The
enrichment of the model with places reveals the true meaning of the modalities
in the logic. The modality @ expresses a property in a hamed place. The
modalityo corresponds to a weak form of universal quantification and expresses
a common property, and the modalitgorresponds to a weak form of existential
guantification and expresses a property valid somewhere in the system.

In the model, we interpret atomic formulae as resources of a distributed sys-
tem, and placement of atoms in a possible state corresponds to the distribution of
resources. As in intuitionistic logic [12], we need not evaluate all the formulae
of the language, since the interpretation follows inductively from the structure of
formulae.

In order to give semantics to a logical judgment, we allow models with more
places than those mentioned in the judgement. This admits the possibility that a
user may be aware of only a certain subset of names in a distributed system. As
we shall see, this is crucial in the proof of soundness and completeness.

In the model, we can duplicate places in a conservative way. This fact is
the key to the proof of soundness of introductioropfand the elimination o0§.

The proof of completeness follows closely the standard proof of completeness
of intuitionistic logic with one important diierence: in addition to witnesses for
the existential §), we need witnesses for the universa) {oo.

The logic in [9, 10] did not have disjunctive connectives. We extend the logic
with disjunctive connectives, and refine our Kripke semantics in order to obtain
completeness. In the refined semantics, the set of places in Kripke states are not
fixed. Different possible Kripke states may halgerentset of places. However,
the set of places vary in a conservative way: larger Kripke states contain larger
set of places.

We show that the refined semantics is both sound and complete for the ex-
tended logic. The proof of soundness once again depends on duplication of
places. The proof of completeness follows closely the standard proofs of com-
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pleteness of intuitionistic modal logics. The extended logic can be seen as hy-
bridization of the well-known intuitionistic modal systd®5[2, 18].

The rest of the paper is organised as follows. In Section 2, we present the
logic in [9, 10]. In Section 3 we present the distributed Kripke model used to
interpret the logic, and prove soundness and completeness of the semantics. We
present the extension of logic with logical connectives in Section4. The refined
semantics is given in Section 5, where we also show soundness and completeness
of the refined logic. We discuss related work in Section 6, and we summarise our
results in Section 7.

2 Logic

We now introduce, through examples, the logic presented in [9, 10]. The logic is
used to reason about heterogeneous distributed systems. To gain some intuition,
consider aistributed peer to peer databasgere the information is partitioned
over multiple communicating nodes (peers).

Informally, the database has a set of nodeglaces and a set of resources
(data) distributed amongst these places. The nodes are chosen from the elements
of a fixed set, denoted bp,q,r,s,.... Resources are represented by atomic
formulaeA, B, ... € Atoms Intuitively, an atomA is verified in a placep if that
place can access the resource identified\by

Were we reasoning about a particular place, the logic connectives of the in-
tuitionistic framework would be gficient. For example, assume that a particular
documentdoc, is partitioned in two partsgjoc,; anddoc,, and in order to access
to the document a place has to access both of its parts. This can be formally
expressed as the logical formulaot; A doc,) — doc, whereA and— are the
logical conjunction and implication. particular place, then the usual intuitionistic
rules allow to infer that the place can access the entire document.

The intuitionistic framework is extended in [10] in order to reason about
different places. An assertion in such a logic takes the fasratp”, meaning
that formulayp is valid at placep. The construct ‘at” is a meta-linguistic symbol
and points to the place where the reasoning is located. For exadugleat p
anddoc; at p formalises the notion that the pardec; anddoc, are located at
the nodep. If in addition, the assertiondfc; A doc,) — doc) at p is valid, we
can conclude that the documetufc is available ap. A formulay may itself use
three modalities to accommodate reasoning about the properties valifb e of
locations.

In order to internalise resources at a single location, the modaljty @@e
for every place in the system, is used. The modality @ casts the meta-linguistic
“at” on the language level, and in fact the two constructs will have the same
interpretation in the semantics. The modal formp@p means that the property
¢ is valid at p, and not necessarily anywhere else. An assertion of the form
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¢@p at p’ means that in the plage we are reasoning about the propestyalid
at the placep. For example, suppose that the plgréas got the first half of
the document, i.edoc; at p, andp’ has got the second one, i.dac, at p’. In
the logic we can formalise the fact thglt can send the padoc; to p by using
the assertiondpoc, — (doc,@p)) at p’. The rules of the logic will conclude
doc; at p and sadoc at p.

Knowing exactly where a property holds is a strong ability, and we may only
know that the property holds somewhere without knowing the specific location
where it holds. In order to deal with this, the logic has thenodality: ¢¢
means that the formulaholds in some place. In the example above, the location
of doc, is not important as long as we know that this document is located in
some place that can send itpo Formally, this can be expressed by the formula
¢(doc, A (doc, — (doc,@p))) at p’. By assuming this formula, we can infer
doc; at p, and hence the documettdc is available afp.

Even if we deal with resources distributed in heterogeneous places, we can-
not avoid the fact that certain properties are valid everywhere. For this purpose,
the logic has the modality: op means that the formula is valid everywhere.

In the example abovey can access the documatc, if there is a place that
has the partioc, and can send it everywhere. This can be expressed by the for-
mula¢(doc; A (doc, — Tdocy)) at p’. The rules of the logic would allow us to
conclude thatloc; is available ap.

We now define the logic in [10] formally. For the rest of the paper, we shall
assume a fixed countable set of atomic formudammsand we will vary the set
of places. Given a countable set of pla&tslet Frm(PI) be the set of formulae
built from the following grammar:

ei=TIAleAele o @ le@p|Dp| 0.
Here the syntactic categopystands for elements frofl, and the syntactic cat-
egoryA stands for elements frodtoms The elements ifrm(Pl) are saicbure
formulae and are denoted by small Greek letterg, u ... An assertion of the
form ¢ at pis calledsentenceWe denote by capital Greek lettdrd 4, . .. (pos-
sibly empty) finite sets of pure formulae, and by capital Greek lefters, . ..
(possibly empty) finite sets of sentences.
Each judgement in this logic is of the form

A patp.
where

e the global contextl” is a (possibly empty) finite set of pure formulae, and
represents the properties assumed to hold at every place of the system;

e thelocal contextA is a (possibly empty) finite set of sentences; since a sen-
tence is a pure formula associated to a pl@cegpresents what we assume
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to be valid in any particular place.

e the sentence at p says that is derived to be valid in the plageby assum-
ingT; A.
In the judgement, it is assumed that the places mentionEdaimd A are drawn
from the sefP. In order to be more formal, we define the functin(X), which
denotes the set of places that appeaf,ifor any syntactic objecX. Itis defined
as follow

DerintTion 1 (PLaces IN A FormuLa).  We define inductively the operatBt.() on
any syntactic object of the logic as:

def def

PL(A) = 0; PL(T) = 0;

PL(¢1 A 02) E PL(¢1) U PL(g2); PL(¢1 — 2) € PL(¢1) U PL(¢2);

PLOy)  E'PL(p); PLOY)  E'PL(p);

PL(e@p) E'PL(p) U Ip); PLpatp) ZE'PL(p)U(p);
PL(¢1,. .-, om) L PL(p1) U... U...PL(¢m);

def
PL(¢1at pu.....¢nat pn) = PL(p1 at p1) U... U PL(gn at pr);
PL(; A) aef

= PL(I) U PL(A).

When we write a judgment of the forify A P ¢ at p, then it must be the
case thaPL(I') U PL(A) U PL(¢ at p) € P. Any judgment not satisfying this
condition is assumed to be undefined.

In Fig. 1 we give the natural deduction for the judgements as defined in [10].
The most interesting of these rules &g, the elimination of¢, andol, the
introduction ofo. In these rules, we use + p to denote the disjoint union
P U {p}, and witness the fact that the plapedoes not occur i andA. If
p € P, thenP + p, and any judgment containing such notation, is assumed to be
undefined in order to avoid a side condition stating this requirement.

The rule¢E explains how we can use the formulae validated at some unspeci-
fied location: we introduce a new place and extend the local context by assuming
that the formula is validated there. If any assertion that does not mention the new
place is validated thus, then it is also validated using the old local context. The
rule ol says that if a formula is validated in some new place, without any local
assumption on that new place, then that formula must be valid everywhere.

The rules¢l andoE are reminiscent of the introduction of the existential
guantification, and the elimination of universal quantification in first-order in-
tuitionistic logic. This analogy, however has to be taken carefully. For ex-
ample, ifT; A +P ¢y at p, then we can show using the rules of the logic that
;AP ooy at p.



G

A patprP patp

Al
AP i atp
AP ppatp

Io;ArP patp
AE (i=1,2)

AP o1 Ao atp

Tl

AP Tatp

-l

;A patprPyatp

LAY o Ao atp
@I

AP patp
;AR p@pat p’

ol

AP patp
AR opatp/

ol

;AP g atq
AP opatp

AP gatp
@E

;AP p@pat pf

AP o s yatp

SE
AP o s yatp
AP patp

AP patp

OE
;AP opat p’
;A @atqrPay atp”

AP yatp”

oE

AP opatp
I, AP yatp
AR yatp

Ficure 1. Natural deduction.
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3 Kripke Semantics

There are a number of semantics for intuitionistic logic and intuitionistic modal
logics that allow for a completeness theorem [2, 11, 18]. In this section we
concentrate on the semantics introduced by Kripke [12, 20], as it is convenient
for applications and fairly simple. This would provide a formalisation of the
intuitive concepts introduced in Section 2.

In Kripke semantics for intuitionistic propositional logic, logical assertions
are interpreted over Kripke models. The validity of an assertion depends on its
behaviour as the truth values of its atoms change from false to true according to
a Kripke model. A Kripke model consists ofgartially orderedset ofKripke
states and aninterpretation |, that maps atoms into states. The interpretation
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tells which atoms are true a state. It is required that if an atom is true in a state,
then it must remain true in all larger states. Hence, in a larger state more atoms
may become true. Consider a logical assertion built from the atams- , A,.

The assertion is said to be valid in a state if it continues to remain valid in all
larger state.

In order to express the full power of the logic introduced in Section 2, we
need to enrich the model by introducing places. We achieve this by associating
a fixed set of placeBlsto each Kripke state. The interpretatidnjn our model
maps atoms into places in each state. Since we consider atoms to be resources,
the mapl tells how resources are distributed in a Kripke state. We require that if
I maps an atom into a place in a state, then it would map the atom into that place
in all larger states. In terms of resources, it means that places in larger states
have possibly more resources. The addition of places makes the Kripke model
distributedin the obvious sense. We are ready to define Kripke model formally.

Derinirion 2 (DistriButep Kripke MobgL). A distributed Kripke modek a qua-
drupleX = (K, <, PIs 1), where

e K is a (non empty) set;
e < s a partial order oiK;
e Plsis a (non empty) set of places;

e | : Atoms— Pow(K x PIs) is such that ifk, p) € [(A) then(l, p) € I(A) for
alll > k.

for Pow() the powerset operator.

The sek is the set of Kripke states, whose elements are denotédlhy .
Relation< is the partial order on the states ani$ the interpretation of atoms.
The definition tells only how resources, i.e. atoms, are distributed in the system.

In order to give semantics to the whole set of formutam(Pls), we need to
extendl. The interpretation of a formula depends on its composite parts and if
it is valid in a given state, then it remains valid at the same places in all larger
states. For example, the formupaa ¢ is valid in a statek at placep, if both ¢
andy are true at place in all stated > k.

The introduction of places in the model allows the interpretation of the spatial
modalities of the logic. Formula@p is satisfied at a place in a statgif it is
true atp in all stated > k; ¢¢ andog are satisfied at a place in stdteif ¢ is
true respectively at some or at every place in all state&.

We extend now the interpretation of atoms to interpretation of formulae, we
use induction on the structure of the formulae.

Dermviion 3 (Kripke Semantics). For K = (K, <,Pls, 1) a distributed Kripke
model, the relatiof= between couplegk, p) and pure formulae is inductively
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defined by

k. p)EA iff (k, p) € I(A);

kpET for all (k, p) € K x Pls;

kpEery iff (kp)E ¢andkp)el’ ()
kpEe—-y iff | >kand(l,p)E ¢imply(l,p) E ¥,
kp)Ee@q iff (KOE ¢

(k, p) E Op iff (k,q)E ¢ forallqe Pls;

k, p) E op iff there existg € Pls such thafq,k) E ¢.

We pronouncédk, p) = ¢ it as(k, p) forcesy, or (k, p) satisfiesp. We write
kE patpif (k,p)E ¢.

Please note that in this extension, except for logical implication, we have not
considered larger states in order to interpret a modality or a connective. It turns
out that the satisfaction of a formula in a state implies the satisfaction in all larger
states.

Lemma 1 (Krreke Monotonicity).  GivenK = (K, <, Pls, 1) distributed Kripke
model, = preserves the partial order K, that is for eachp € Pls and each
¢ € Frm(Pls), if | > k then(k, p) = ¢ implies(l, p) E .

Proof: We proceed by induction on the structure of formulae.

Base caself ¢ € Atomsor ¢ = T, the lemma holds by Definitions 2 and 3.

Inductive Hypothesisie consider a formula € Frm(Pls). We assume that
for every sub-formulay; of ¢ and for everyp € PlIs: if | > kthen k, p) E ¢
implies (, p) E ¢i. We refer to Definition 3. Cases= o1 A2 andy = @1 — @2
are treated as in [20]. Cases= ¢1@0q, ¢ = Ogp; andy = Op; are similar. We
show only the case = ¢;@g. Assume [,K) E ¢1@q, then ,K) E ¢1 by
definition, henced, 1) E ¢, for everyl > k by inductive hypothesis, and so we
conclude thatg, 1) E ¢1@aq. [

Consider now the distributed database described in Section 2. We can express
the same properties that we inferred in Section 2 by using a distributed Kripke
model. Fix a Kripke stat&. The assumption that the two parti&c,, doc,,
can be combined ip in a statek to give the documerdoc can be expressed as
(k, p) E (doc; Adoc,) — doc. If the resourcedoc; anddoc, are assigned to the
placep, i.e., k p) E doc; and k, p) E doc,, then, sincek, p) £ doc; A doc,,
it follows that K, p) = doc.

Let us consider a slightly more complex situation. Supposektaai( doc, A
(doc, — Odocy)) at p’. According to the semantics of there is some place
r such thatk,r) E doc, A (doc, — Odoc,). The semantics of tells us that
(k,r) E doc, and k,r) E (doc, — odoc,). Since k,r) E doc,, we know from
the semantics of> that , r) E odoc,, and fromo that k, p) | doc,. Therefore,
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if doc; is placed ap in the statek, then the whole documedbc would becomes
available at place in statek.

3.1 Some useful properties

In order to prove soundness of our semantics, we shall need some important
properties of the distributed Kripke models. We state and prove those properties
in this section.

Lemma 2 says that if we add a new place which duplicates a specific place
in all Kripke states, then the set of valid properties does not change. Moreover,
the new place mimics the duplicated place. In order to state this lemma, we first
prove that duplication gives us a distributed Kripke model.

ProposiTioN 1 (p-DupLicatep ExtensioN K(p, ). Let K = (K,<,Pls1) be a
distributed Kripke model. Fop € Pls andq ¢ Pls a new place, IeK(,p,q =
(K, <’,PIS, I”) where
e K'isK;
o <'iS<;
PIs' isPls U {g};
I” : Atoms— Pow(K’ x PIS') is defined as
sons e | (K T) € 1(A) (r € Pls);
k.r)el’(A)iff
(eryel'® {(k,p)e 1A) (r = Q)
ThenK{p,q) is a distributed Kripke model, ari(p,q) is said to be ao-
duplicated extension ok

Proof: We just need to check that satisfies the monotonicity condition on
atoms which follows immediately from definition. [

We show thatp-duplicated extension is conservative over all the formulae that
do not mention the added place. Moreover, for all such formulae, the new place
mimics the duplicated one.

Lemma 2 (K(p, ) 1s coNsERVATIVE). Let K be a distributed Kripke model, and
K{p,q) be itsp-duplicated extension. Lét andkE ' extend the interpretation
of atoms inK and¥X,q respectively. For evetly e K and formulap € Frm(Pls),
we have:

1. ifr € Pls, then(k,r) E ¢ ifand only if(k,r) E ¢, and

2. ifr=q,thenk,q) E "¢ ifandonly if(k, p) E ¢.

Proof: We prove both of the properties simultaneously by induction on the struc-
ture of formulae inFrm(PIs).

Base caseThe two properties are verified on atoms by the definitiotv pf
and onT by Definition 3.



Inductive hypothesisWe consider a formula € Frm(Pls) and we assume
the points hold for each of its sub-formulag In particular we assume that:

1. ifr e Pls, then(k, r) E "¢ if and only if(k,r) E ¢i; and
2. ifr =q,then(k,q) E ‘¢ ifand only if(k, p) E ;.

We consider € Pls and fix it. We prove only property, as the treatment of
point 2 is analogous. Now, we consider several possibilitiegfor

Casep = p1Apz. The assertionk r)E "p1App iff (K, 1)E "¢ and K, 1)E '¢s.
By inductive hypothesis, this is equivalent 1) E ¢1 and K, r) E ¢2, which
is equivalent toK, r) E ¢1 A @2 by Definition 3.

Casep = g1 = ¢2. (KN E "1 = @2 iff (I,r) E "1 implies (,r) E "¢z
for everyl > k. By inductive hypothesis, this is equivalent torf = ¢ implies
(I,r) E ¢o for everyl > h, and this is equivalent tk(r) E ¢1 — ¢2.

Casep = p1@s. (k,1) E '¢1@siff (k,S) E ‘¢1. Moreover, we know that
s e Plsasp; @s € Frm(Pls). By inductive hypothesik(s) E o1 iff (K, ) E ¢1.
By definition, k, ) E ¢1iff (K.r) E ¢1@s.

Caseyp = 0p;. Supposel,r) = 01, then there exists € PIs' = PIsuU {q}
such thatk, s) E ‘¢1. If s € Pls, then we use inductive hypothesis (propetty
to obtain K, 5) E ¢1, and thereforel(;r) E ¢¢1. Otherwise ifs = g, then
we use inductive hypothesis (property2)o obtain k, p) E ¢1, and therefore
(k1) E O¢1.

Vice versa, if K, r)E 0¢1 then there exists € Plssuch thatk, )= ¢1. Hence
by inductive hypothesis (property (k, s) E "¢1, and we concludek(r) £ 'o¢;.

Caseyp = O¢p;. Suppose that(r) £ ‘O¢;. This means thatk(s) E “¢, for
everys € Plsu {gq}. We can conclude thak(r) £ O¢; by considering every
s € Plsand applying inductive hypothesis (propetly

Vice versa, if K, r) E O¢1 then K, S) = ¢ for everys € PIs. By inductive
hypothesis (propert2) (k, s) = '¢1 for everys e Pls. Also, sincek, s) = ¢ for
everys e Pls, we get k, p) E ¢1. Hence by inductive hypothesis (propeBy
(k,q) E ‘¢1. We concludeK,t) = ¢ for everyt € PIs, which implies k,r) E
"O¢p1. |

Another property of distributed Kripke models is the possibility to rename
the places in the model. The property says that if we rename a place in the model,
then we do not modify the set of valid properties not involving the renamed place.
First we prove that the renamed model is still a distributed Kripke model, then
we formalise the property in Lemma 3.

ProposiTion 2 (p-RenaminG K(Q/p)). Given a distributed Kripke modek =
(K, <, PIs 1), wherePls = P + {p}. For a new placq ¢ P, we defineK{q/p) =
(K, <’,PIS, I’) where

e K’ isK;
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o <'is<;
e PIS isPU{q};
e |’ : Atoms— Pow(K’ x PIS) is defined as

[ (kr)el(A) (reP);
(or) € lyp® i {(k, P e 1(A) (r = ).

ThenK{q/p) is a distributed Kripke model, ari{q/p) is said to be ap-
renamingof K.

Proof: We just need to check that satisfies the monotonicity condition on
atoms, which follows immediately from definition and the monotonicity.ol

By mimicking the proof of Lemma 2, we show th&kqg/p) is conservative
with respect toK and the renamed place behaves like the original one.

Lemma 3 (K(Q/p) 1s conservaTIVE). Let K be a distributed Kripke model such
thatPls = P + {p} andkK{q/p) be itsp-renaming. Let andE ’ extend the
interpretation of atoms ifi andK{q/p) respectively. For everk € K and
formulag € Frm(P), we have:

1. ifr € P, then(k,r) E "¢ ifand only if(k,r) E ¢, and
2. ifr=q,thenk,q) E "¢ ifandonly if(k, p) E ¢.

Proof: We proceed as in the proof of Lemma 2, and prove both of the properties
simultaneously by induction on the structure of formula&rim(PIs).

Base caseThe properties are verified on atoms antdy definition.

Inductive hypothesisAs for Lemma 2, we consider a formutae Frm(PIs)
and we assume that the two properties hold for each of its sub-forraulde-
ductive cases deal with connectives and modalities. Here we consider only the
two most significant cases and prove propdrtyThe other cases can be dealt
with easily.

Caseyp = 0¢3. Letr € P and supposek(r) E ’"¢¢1. Then, by definition
there exists € PIS = Pu{q} such thatk, s) £ ’'¢;. If s€ P, we use inductive
hypothesis (propertf) to obtain k, S) = ¢1, and in that casek(r) E ¢¢; by
definition. In the cass = g, we use inductive hypothesis (propeByto obtain
(k, p) E ¢1and sok, r) E ¢p1. The opposite direction is analogous.

Caseyp = O¢py. Supposek, r) £ ‘O¢;. Then the definition says that, ) =
"1 for everys e P U {g}. We get by using inductive hypothesis

e (k9 ¢1foreveryse P, and

e kPkE @
We conclude thati(t) £ ¢, for everyt € P + {p}, and hencekr) £ O¢;. The
opposite direction is analogous. [
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3.2 Soundness

We shall now give a semantics of the judgments introduceglirusing dis-
tributed Kripke models. We shall then show that the semantics is both sound
and complete. In order to introduce the semantics, we extend the definition of
validity for pure formulae to sets of pure formula and sets of sentences.

Derinition 4 (Forcing Extension). Let K = (K, <, Pls, 1) be a distributed Kripke
model. GiverT, a finite set of pure formulae arg a finite set of sentences, such
thatPL(T"; A) € Pls, we say that the Kripke statee K forces the coupl€; A,
(and we writek = T'; A) if

1. (k, p) E ¢ foreveryp e I'andp € Pls;
2. kKE y atqfor everyy atqe A.

A judgment is respected by a distributed Kripke model, if whenever its as-
sumptions are valid in a Kripke state, then its conclusion is also valid in that
state. We are now ready to define the satisfaction of a judgement.

DEFINITION 5 (SaTISFACTION FOR A JupGMENT). We say thal’; A = Pu at p, and we
read itas' T'; A Py at pis valid”, if

e PL(I) UPL(A) U {p} C P; and

o for every distributed Kripke modeK = (K, <, Pls, I) with P C Pls, it is the
case that for ever € K, whenevek = T'; A, then K, p) E u too.

We prove that the semantics is sound for the judgements of the logic. The
proof of soundness depends on Lemma 2 and Lemma 3. We need to show that if
a judgement is provable in the natural deduction system, then it is also valid.

Tueorem 1 (Sounpness). If T; A +P u at p is derivable in the logic, then it is
valid.

Proof: The proof proceeds by induction on the numlneof inference rules
applied in the derivation of the judgemdmntA +" u at p. The most interesting
cases aral, the introduction ofy, andoE, the elimination ok.

Base Casén = 1). Suppose the judgment is proved by using axigror the
axiomG, or the axiomr|. We consider a modeK( <, Pls, I) such thatP C Pls.
We need to show that for evekye K if k= T; Athen K, p) E u.

Suppose the derivation consists of just the axlarthen the assertiomat p
is in A. Hence, by definition, for everye K if kK| T; Athen , p) E u.

If the derivation consists of just the axioB) then the formula: is in T, and
sokE T; Aimplies k, r) E u for everyr € Pls. In particular k, p) E u.

Finally If the derivation is the application ofl, thenu is T and the result
holds by definition.
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Inductive hypothesié > 1). We assume the theorem holds for any judgment
thatis deducible by applying less thamstances of inference rules. In particular
we assume that:

If the judgment; A +" y at p is deducible in the logic by using less than
instances of the rules, thdhA £ Pu at p.

We consider a judgmerit; A +P u at p which is derivable in the logic by
using exactlyn instances of inference rules. We fix a mo@él= (K, <, PIs, I)
such thatP C Pls, and letE be the extension df on Frm(Pls). We fixk € K
such thatk = T'; A. We need to provek(p) E u. We consider the last rule
applied to obtail; A +P u at p, and proceed by cases. In most cases, we apply
the inductive hypothesis on the mod&lonly. However, foral andoE we will
use inductive hypothesis on an extensiorkof

Cases\l andAE follow from Definition 3 and are treated as in [20].

Case— |. Thenu = ¢ — y and we can deriv&; A, g atp +” y at p by
applyingn — 1 instances of the rules. The inductive hypothesis says that for
everyl e K: I E T; A, p at pimpliesl E y at p.

Letl > k. Thenl = T'; A by Kripke Monotonicity (Lemma 1). If we assume
(I, p) E ¢, then the inductive hypothesis says tHap) E  too. Hence, we have
that for alll > k, if | E ¢ thenl = ¢ also. We conclude thak(p) £ ¢ — v by
definition of= .

Case— E. Then, we have that; A +P ¢ — p andr’, A +-P ¢ for someyp. The
inductive hypothesis says th&, ) E ¢ — uand k, p) E ¢. Hence, we get
(k, p) E u according to Definition 3.

Case@I|. Theny is of the forme@q, andT; A 7 ¢ atg. The inductive
hypothesis says thak,(@) E ¢, and hencek p) E ¢@q.

Case@E. Then we have thal;A +° u@p atq for someq € P. The
inductive hypothesis says that §) = ¢@p, and thereforel( p) £ .

Casenl. Theny is of the formog. MoreoverT’; A +P+9 ¢ at p; for some
p: ¢ P by usingn — 1 instances of the inference rules. By inductive hypothesis
we know thatl; A £ P*Pip atg. Please note that sinde A +° patp, we also
havePL(T; A) U PL(p) C P. LetPIsbeP + p;.

First, consider the case when ¢ Pls. We need to show th&tl= oy at p.
According to semantics af, it suffices to show that = ¢ atr, for allr € Pls.
Fix oner € Pls, and consider the-duplicated extensio. Letl= ) be the
extension ol ;). We getk = ¢»I'; A by using Lemma 2 (sincel= T'; A).

Now, we have thak; A +P*9 ¢ at p; .andP + py € Plsyy). Sincekl= oI A,
we get by using inductive hypothesis 8y that K, p1) E qre. Now, we can
concludek,r) E ¢ atr by using Lemma 2.

Sincer was arbitrary, we dedude= oy at p.

If pp € Pls, thenPls = PIS + {py} with PL(T'; A) U PL(¢) € P C PIS.
We choosd ¢ Pls and considefi,, to be thep;-renaming of, as defined
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in Proposition 2. Let= y/p, be the extension of,,,. By following the above
reasoning we derive = 1/, 0O¢ at p, hencek = Og at p by Lemma 3.

CasenE. Then we have that there is some formylasuch thatl; A +P
Op at p; andT’, ¢; A P Oy at p by using less than instances of inference rules.
The inductive hypothesis diy A P oy at pimplies &, p1)E Og, and this means
that K, q) = ¢ for everyq € Pls. By definition, we obtairk = T, ¢; A and using
inductive hypothesis of, ¢; A +° Ou at pwe concludek, p) £ .

Case¢l. Then we have that is of the form¢e for some formulap, and
I'; A +P ¢ at p; for somep;. The inductive hypothesis says th&i ;) £ ¢, so
we concludek, p) E ¢¢.

Case¢E. Then for somep’ € P andy € Frm(P) we can derive’; A +7
op atp’ andl; A, ¢ atq +7+9 4 at p by using less than instances of the rules.
Hence by inductive hypothesik; A £ Pogp at p’ andT'; A, ¢ atql= P*9u at p.

As in the case fonl, first assume] ¢ Pls. We need to show thak(p) E u.
SincekE T;Awe getk, p') E 0¢, and this means that there exists Pls such
that K, r) E ¢.

Consider now the-duplicated extensiofy) of K. Let o) be the exten-
sion oflgy). By Lemma 2 we havek(q) £ qne, andkE oI A. Hence, we
getkE oI A ¢ atq. Sincel; A,patqlE P9uatp, we getk, p) E qnu. As
PL(u) € P c Plsandp € P C PIs, we obtain k, p) £ u by Lemma 2.

In the case thal( is such that € Pls, we can renamg by a fresh as we did
in al, and obtain the desired result. [

3.3 Completeness

We shall show that our semantics is complete for the natural deduction in Section
2. First, we extend the notion of provability to possible non-finite et
sentences by saying thBfX +P ¢ atq, if and only if, there exists a finite set

A C X such thal; A P g atq.

As in standard proofs of completeness of intuitionistic logics[20, 18, 2], the
proof of completeness is based on the construction of a particular distributed
Kripke model: thecanonical modelWe will prove that a sequent is valid in the
canonical model if and only if it is derivable in the logic. In the construction of
the canonical model, we consider particular kinds of sets of formulae.

Derinition 6 (Prive SeT).  Given a set of placeBls and a finite sel” of pure
formulae inFrm(PIs), a (possibly non-finite) s&t of sentences witRL(X) C Pls,
is said to bdT", Pls)-primeif for every formulay € Frm(Pls):

1. T; X +PS ¢ at p, implies that there existse Plss.t.T;Z P g at g;
2. ;X P patr for allr € Pls, impliesT; £ +F'S oy at p for all p € Pls.

The canonical model will be built by choosing the prime sets of formulae
as Kripke states. We would show that givErand A, we can construct a set
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of placesPIs and a prime seE 2 A such that is ([, Pls)-prime. Before we
proceed, we first state a proposition proved in [9]:

ProposiTion 3. LetP € P’ and supposeL(I') U PL(A) U PL(p at p) € P, then
;AW gatpifandonly ifT; AP g at p.

Now, we show the existence of prime extensions:

Lemma 4 (Prive ExTension). LetP be a set of places afitbe a finite set of pure
formulae inFrm(P). For every finite seh of sentences such that.(A) c P,
there exists a set of places extendingP and a(l’, P’)-prime set of sentencés
containingA, such that givep € Frm(P) andp € P:

;AP g at pifand only ifT; = 7 ¢ at p.

Proof: We enrich the set of places by introducing two kind of plaagswhich
will be the witnesses for the formulagp, andp;, which will be the new places
used to introducewy in the casey is provable for every place.

The set of place$” is obtained by a series of extensioAs= Py C P; C
P, ... The setd,,; are constructed &,,1 = P,U{Qn:1, Pns1}, Where the places
On+1, Pni1 @re NEW, i.e.0ni1, Prs1 € Pn. AlSO, gn.1 is different frompn.1. The
setP’ is taken a®’ = Upso Ph.

Before we proceed with the construction, we pick up an enumeration of the
pure formulagFrm(P’), and fix it. The sek is obtained by series of extensions
A=%XyC X CIX,...that verify the following:

Property 1. For evenn > 0O:
1. PL(Z,) € Pp.

2. Giveny € Frm(P,) andp € P,, we havel';A +P ¢ at p if and only if
I;2, P g at p.

The series is constructed inductively. In the induction, we will create withesses
for the formulae of the typeyw. We shall also construct a séteated,, of for-
mulae of the sorty. This set, initialised to be the empty set, will be the set of
the formulae for which we have already created witnesses.

We puttreated) = 0, Po = P andXy = A. Itis clear thatPL(X) < Po, and
;AP patpifand only if I Zo -7 ¢ at p.

Now, we proceed inductively. Lét, (n > 0) extendA and satisfying Prop-
erty 1. In stem + 1, we pick the first formulay in the enumeration such that

e Oy isin Frm(Py), i.e., all the places ik are taken fronPy;
* Oy ¢ treated,; and
o I;X, P oy at g, for someq € Py,
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We defineX,,; = X, U {¢ atgn1} andtreated,,; = treated, U {0y}. The
placeqn.; witnesses the existential ClearlyPL(Zn.1) € Pni1. Now we prove
the following:

Claim. For anyg € Frm(P,) andp € P,, I;Z, +™ patp if and only if
[;3n, Ko g at p.

The direction from left to right is a consequence of inference kykend Propo-
sition 3. In order to prove the converse, assUiig, 1 ™ ¢ at p. Now lety
be the formula chosen at step- 1. We have by constructioii; Z, - ¢y at q.
Also sincer’; 2,1 "t ¢ at p, we get by using the inference ruleand Propo-
sition 3 thatl; 2, ¢ atq, FPr*91 o at p. Hence, we gef; X, +™ ¢ atp by
application of the inference rukeE.

Suppose now thap € Frm(P) andp € P. We can assert using the claim
above thal"; A +P ¢ at pif and only if I'; 2,1 F7™1 @ at p. We have just proved
Property 1 for the inductive step

Finally, we defineX = (Jys0Zn. ClearlyT;A +P g atp impliesT; T +F
w at p, by definition and Proposition 3.

In the other direction, suppodex P ¢ at p with ¢ € Frm(P) and p €
P. According to the definition, there exists a finite sequefce X such that
I;A +7 @ atp. We can then choose > 0 big enough to hava C X, and so
I; X, +7 ¢ at p by the inference rulé. Using Proposition 3 once again, we have
[; 2, +P g at p. SincePL(T), PL(y), {p} € P € Py, we concludd; A +P g at p
using Proposition 1.

All we need to prove now is that is ([, P’)-prime.

1. If T; X P op at p, let n be the least such that € PL(P,) andp € P,. By
construction, there is sonme > n, such thaby is picked in the construction
of . Henceyp at gy, € Iy C X, and we conclude that X 7 ¢ at gp,.

2. Lety e Frm(P’) and suppos&; X +7 yatp for all p € P’. In particular,

consider the placp,, with n such thaiy € Frm(P,). We have thaf; * +
Y atpn.

Using Proposition 3, we can finth > 0 such thaf; X, " y atp,. If
m > nthen we use the above claim iteratively to concliigig,, -  at py,.
In the casem < n we obtain the same conclusion by the inference tule

Sincep, ¢ PL(Z,) by construction, we can infer thBf X,, -P\P} oy at p
for all p € P, by the inference rulel. Hencel;X +F oy atp for all
p € P, \ {pn} by Proposition 3.

We conclude by extending; £ +7 oy atr to anyr € (P’ \ P,) U {pn} in
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the following way (hereZ’ is chosen to be a plageP’):

2+ oy at .
yatp Ly, P2y atz
Iy X+ oy atr o
v oE
2+ oy atr

We are ready to define the canonical model for a finite set of pure forriulae
and place®Is. In this model, the worlds will bel{ Pls)-prime sets. The partial
order will be subset inclusion, and the atoms will be placed in a specific place
inaworldX if I'; = +P's Aat p.

Derinition 7 (Canonicar. MopeL).  Given a set of placeBls and a finite sef of
pure formulae irFrm(Pls), we define thdl', Pls)-canonicalto be the quadruple
Mrpis = (M, S, Pls, Ir), where:

- M is composed by all th@', Pls)-prime sets;
- Cis setinclusion;
- Ir : Atoms— Pow(M x PIs) is defined by(Z, p) € I-(A) iffT; X +P's Aat p.

We now show that the model is a distributed Kripke model. We will also
demonstrate that the extensionlgfto interpretation of formulae corresponds
exactly to the provability in the logic, i.e.£(q) E y in the canonical model if
and only ifT; = P y at q.

Lemma 5 (Canonicar Evaruation). Given a set of placeBls and a finite sef of
pure formulae irrrm(Pls), we have:

1. the(T, Pls)-canonical modeMpigy = (M, C, PIs, It) is a distributed Kripke
model;

2. for all ¢ € Frm(Pls), £ € M andq € Pls: (Z,0) E ¢ if and only ifT; P

patq.
Proof: Clearly the inclusion among setsis a partial order orM and Iy is
monotone orM, since ifX; C X, thenI'; 21 +7'S Aat pimpliesT; X, +P'S Aat p
by definition. All we have to prove is the pattof the proposition. We proceed
by induction on the structure of the formupaand we prove that for evedy e M
andge Pls: (Z,0)  ¢ifand only ifI; X +PS g at g

Base CaseThe property is verified oAtoms by the definition ofi, and on
T, by Definition 3.

Inductive hypothesisWe assume the property holds for any sub-formula of
the formulay we are considering. In particular we assume that:
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Given ¢; sub-formula ofy € Frm(Pls), then for everyx € M andq € PlIs:
(Z,0) E ¢ ifand only if[; X +P'S ¢ at q.

We need to show thaE(q) = ¢ if and only if T'; X +P'S ¢ at g. We proceed
by cases on structure of The cases in whicl is ¢1 A @2, andy is g1 — ¢, are
fairly standard. We just consider the three modalities.

Casep1 @p. Suppose that], q)= ¢1@p. By definition, we haveX, p)E ¢1.
We getl'; T +P's o, at p by inductive hypothesis. We can conclubgz +P's
p1@p at g by using the inference rule @

In the other direction, the fadt; = 7' p,@p at q impliesT; X 'S ¢, at p
by using the inference rule @ Hence £, p) = ¢1 by inductive hypothesis, and
therefore £, q) E ¢1@p.

Casedyps. (£,0) E O¢; implies &, p) E ¢1 for all p € Pls. By inductive
hypothesis, this i§; % +P'S ¢, at p for all p € Pls. SinceX is (I, Pls) prime, we
can concludd’; X +F's oy, atq

In the other direction, let us assume tihag +F'S op; atq. We apply the
inference ruleE to obtainl’; X +7'S ¢, at p for everyp € Pls. Hence £, p)E ¢1
for everyp € Pls, and thereforeX, q) £ O¢;.

Casedyp:. (Z,09) E 014 says that there exisfse Plssuch thatX, p) E ¢;.
Using inductive hypothesis, we gBtS +'s o, at p. We concludel; +P's
o1 atqby ol.

In the other direction, assunieX +F's ¢, atq. SinceX is (I, Pls) prime,
there existg € Pls such thafl’; = 7'S ¢, at p. Using inductive hypothesis, we
obtain €, p) = ¢1. We get &, g) E ¢¢1 according to Definition 3. [

Finally we use the canonical model to prove completeness.
Tueorem 2 (CompLETENESS). A E Puatp=T;A+P patp.
Proof: Assumel’; A = Py at p. This means that

e PL(I") UPL(A) U {p} C P; and

o for every distributed Kripke modekK = (K, <, Pl 1) with P C PI, it is the
case that for everlg € K, whenevek = T'; A then K, p) = u also.

We need to show that, A P ¢ at p.

Using Lemma 4, construct a set of plagds 2 P, and a [, Pls)-prime set of
sentenc& such thatfor everyy € Frm(P) andp € PT; A +-P ¢ at pif and only
if ;2 P g at p.

Consider now thel{, PIs)-canonical model, as stated in Definition 7. In the
canonical model, the worlds are the Pls)-prime sets and the set of places is
Pls. We focus our attention on the world

First we claim that in the canonical modgk I'; A. In order to show this,
we need the following:
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e Foreveryy € I',q € Pls, we need to show th& ¢ atqg. Giveny € T,
an application of inference rul@ (see figure 1) gives us, > +F'S y at . By
Lemma5X v atqifand only if I'; = ' y at g. Hence, we gell= y atq.

e For everyy atq € A, we need to show tha&t E ¢ atqg. Giveny atq € A,
an application of theé rule (see figure 1), gives us thEtA 7' y atq. =
extendsA, and hence we gdt; = +7'S y atg. By Lemma 5 once again, we
getXE y atq.

So we have a model in which = T'; A. By assumption, this implies =
u at p. Using Lemma 5, we get th&it = +"'s 4 at p. SinceX is a prime extension
of A constructed through Lemma 4, we conclage +" y at p. [ ]

4 Hybrid IS5

We now extend the logic in [9, 10] with disjunctive connectives, thus achieving
the full set of intuitionistic connectives. Given a set of pladels,the new set

of pure formulae (see section Zrm(PI), is the set of formulae built from the
following grammar:

pu=T|ILIAleA@leVele—¢|e@p]|Op]| op.

To account for the new connectives, we extend the natural deduction pre-
sented in Figure 1 with rules for the disjunctive connectives. These rules are
given in Figure 2. Please note that the rulé as stated has a local flavour: from
1 at p, we can infer any other property in the same plazetiowever, the rule
has a "global” consequence. If we haveat p, then we can inferL@q at p.
Using @E, we can then infer at . Hence if a set of assumptions make a place
to be inconsistent, then it will make all places to be inconsistent.

As we shall see in section 5, the Kripke semantics of this extended logic
would be similar to the one given for intuitionistic syst& [18]. Hence this
logic can be seen as an instanceHybrid 1S5[2].

5 Refined Kripke Semantics

We were unable to prove completeness for the extended logic using the seman-
tics defined in Section 3. We had to change the semantics in order to obtain a
completeness result, and we present the semantics in this section. ffere di
ence from the model of Section 3, is that the set of places in Kripke states are
not fixed and may vary. However, they change in a conservative way in that the
set of places in a Kripke state is always contained in larger Kripke states. We
now present the extended Kripke models which we shallRafined Distributed
Kripke models
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FiGure 2. Disjunctive rules

DerintTioN 8 (RerINED DistriBUTED KRIPKE MODEL). A quadrupleKes = (K, <
, {PiJkeks {1k}kek) is calledrefined distributed Kripke modéf

e K is a (non empty) set;

e < s a partial order oiK;

e Py, is anon-emptyset of places for alt € K;

e PrCPhifk<l;

e |, : Atoms— Pow(Py) is such that ifp € Ix(A) thenp € | (A) foralll > k.
LetPls = Uk Px. We shall say thals is the set of places OKes.

We extend the forcing relation of Def. 3. Thefdrence from that relation is
that the interpretation fan changes. This is because larger Kripke states may
have more places. Hence when interpretigat a place in particular Kripke
state, we have to account for places that may exist in a larger Kripke state. If
we stick to the old interpretation, then Kripke monotonicity would fail. The

interpretation ofa is similar to those used for modal intuitionistic logic [2, 18].

DerintTioN 9 (ReFINED SEMANTICS).  Let Kot = (K, <, {Pxlkek, {Iklkek) b€ a re-
fined distributed Kripke model with set of placéds. Givenk € K, p € Py, a
pure formulap with PL(¢) C PIs, we defingk, p) E ¢ inductively as:
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k,p) A iff p e I(A);

KpET iff pe Py,

k,pEL never;

kpEery iff (kpE ¢andk pkE ¢;

kpEevy iff (kp)kE gor(kp)E ¢,

kP Ee—-y iff I >kand(l,p)E ¢ imply (I, p) E ¥,

(k’ p) ': ‘P@q iff qe Pk and(k’ q) |= @,

(k, p) E Op iff | >kandqe P, imply(,9) E ¢;

k, p) E op iff there existg) € Py such thatq, k) = .
We pronouncék, p) E ¢ as(k, p) ref-forcesy, or(k, p) ref-satisfiesp. We write
ke patpif (k. p)E ¢.

It is clear from the definition that K= ¢ at p, thenPL(yp at p) € Px. More-

over, the usual Kripke monotonicity still holds.

Lemma 6 (KripkeE MoNotonicrty).  Let Kt = (K, <, {Pilkek, {Iklkek) be a re-
fined distributed Kripke model with set of plac&3s. The relatior= preserves
the partial order oK, i.e., for eachk,| € K, p € Py, andy € Frm(Py), if | > k
then(k, p) = ¢ implies(l, p) E .

Proof: By induction on the structure of formulae, and is similar to the proof for
Lemmal. ]

Now, we are ready to extend the definition of forcing to judgements. First,
we extend the definition to contexts.

Derinirion 10 (ForciNGg oN ConTexTs).  Let Kt = (K, <, {Pilkek, {Iklkex) be @
refined distributed Kripke model. Givdne K, a finite set of pure formulag,
and a finite set of sentencas such thaPL(I"; A) C Py, we say thak ref-forces
the context; A (and we writek = T'; A) if

1. foreveryp € T and anyp € Px: (k, p) E Ogp;
2. foreveryy atqe A: qe Pcand(k,q) E y.
Finally, we extend the definition of forcing to judgements.

DeriNiTION 11 (SATISFACTION FOR A JUDGMENT). LetKiet = (K, <, {Pi}keks {1k}kek)
be a refined distributed Kripke model. We say that the judgefight-" 1 at p
is valid in K, if

e PL(NUPLA)U{p}cP;
o foreveryk € K such thaP C Py, if k= T'; A thenk = p at p.

Moreover we say thdt; A +7 u at pis ref-valid (and we writd; A = p at p) if
it is valid in every refined distributed Kripke model.
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5.1 Soundness

In this section we shall prove the soundness of the extended logic in refined
distributed Kripke models. The proof of soundness will follow the proof of the
soundness in section 3.2. We start by defining gkduplicated extension of a
refined distributed Kripke model.

ProposiTioN 4 (p-DupLicatep ExTensioN Kret(p, Q)). Consider a refined distribu-
ted modelKier = (K, <, {Pxlkek, {IkJkek), With Pls as set of places. Choose two
placesp, q such thap € Pls, andq ¢ Pls. DefineX.:{p, ) to be the quadruple
(K", <, {Pikek» {1 Jkek’), where

e K'isK;

o <'is<;

e P, isPcU{q} if p € P, andPy otherwise;
I, - Atoms— Pow(P)) is defined as

Lo (1 e l(A) (fort € PyY);
re Ik(A) Iﬁ‘{pelkk(A) (fOrr:q;

ThenK:{p, Q) is a refined distributed Kripke model, and is said to bp-a
duplicated extension oK.

Proof: We just need to check thé®, Jxek: and{l}kek- satisfy the monotonicity
conditions of Def. 8. They follow immediately from the definitionkff andl,.
[

We now show that the refinep-duplicated extension is conservative over
all the formulae that do not mention the added place. Moreover, for all such
formulae, the new place mimics the duplicated one.

Lemma 7 (Fet(P, Q) 1s CONSERVATIVE). Let Kt be a refined distributed Kripke
model with set of places}ls, and¥K.:{p, q) be itsp-duplicated extension. Let
E andkE’ extend the interpretation of atomsd and¥.:(p, q) respectively.
For evenk € K and formulap € Frm(Pls), we have:

1. for everyr € Py, (k,r) E’g ifand only if(k,r) E ¢, and
2. ifqe P, then(k,q) =’y ifand only if (K, p) E ¢.

Proof: The proofis similar to the proof of Lemma 2 and we prove both properties
simultaneously by induction on the structure of formula&tim(PIs).

Base caseThe two properties are easily verified on atoms andrduy the
definition of p-duplicated extension.

Inductive hypothesisWe consider a formula € Frm(Pls) and assume that
the two properties hold for every sub-formulagfin particular, we assume that
if ¢; is a subformula o thenfor everyk € K:
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1. if r € Py, then(k,r) E’¢; if and only if(k,r) E ¢;; and
2. ifqe Py, then(k,q) E’¢; if and only if(k, p) E ¢i.

The inductive cases for the connectives and modality @ have the same treatment

asinLemma 2. Here we show the most interesting casasd¢, by considering
only propertyl. The treatment of proper®is analogous. Pick € K andr € P,
and fix them.

Casey = 0p1. Supposek,r) E "0¢1, then there is soms € P, such that
(K, ) E¢1. In the cases € P we use induction to obtairk(s) = ¢, and therefore
(k,r) E ¢¢1. In the cases = q we use induction to obtairk(p) E ¢; and
therefore k,r) E 0¢1. Vice versa, if K, r) E 01 then there exists € Py such
that k, S) E ¢1. Hencek, s) E’¢1 by induction and we concludd,() ' 0¢;.

Casep = O¢p;. Suppose thatk(r) E 'O¢;. This means thatl(s) E "¢ for
everyl > kand everys € P|. SinceP; containsP;, we obtain [, s) =’¢; for every
| > kand everys € P;. Hence, by inductionl(s) E ¢; for everyl > k and every
se Pj, and we conclude thak(r) E O¢;.

Vice versa if K, r) E O¢1 then (,s) E ¢4 for everyl > kand everys € P.
By inductive hypothesis, we get that for evdry kands e P}, (I,9) E '¢;. If
q ¢ PK forall | > k, thenP, = P|. In this case we conclude th&, () = 'O¢.
On the other hand, ifj € P| for somel > k, then it means that € P, and hence
(I, p) E ¢1. By induction (see property 2 of the propositioh)y) | ’¢1, and we
conclude K, r) E’O¢;. [

We now show that by renaming a place in a Kripke model, we do not change
the set of valid formulae as long as the formulae do not mention renamed place

or the fresh name.

ProposITION 5 (p-RENAMING Kiet{(qQ/P)). Let Kier = (K, <, {Plkeks {Iklkek) be a
refined distributed Kripke model with set of pladels. For a placay ¢ Kes,
defineXKret(a/p) = (K', <, {Pilkek’» {1 Jkek’) Where

e K'isK;

e <'is<;

PLis (P« \ {p}) U {q} if p € Py, andPy otherwise,
I, : Atoms— Pow(P;) is defined as

Lo (relA) (if r e Py);
r el (A lff{pe |kk(A) (ifr =q|)(-

Kiet{Q/p) is a refined distributed Kripke model, and is said to ber@naming
Of?(ref.

INote that it cannot be the case that p, sincep ¢ P
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Proof: As for Proposition 4, we just need to check thBf}xex: and {1} }kek:
satisfy the monotonicity conditions. They follow immediately by definitiom

LemmA 8 (Ker(Q/ P) 18 CONSERVATIVE). LetKer = (K, <, {Pilkek, {Ik}kex) be @ re-
fined distributed Kripke model ofe:(q/p) be itsp-renaming. Lee andE’
extend the interpretation of atomsHes and¥.e:(q/p) respectively. For every
k € K, formulay € Frm(Pls), andr € Pk, we have:

1. ifr # p, thenk,r) E ¢ ifand only(k,r) E’¢ ; and
2. ifr = p, then(k, p) E ¢ ifand only if(k,q) E’¢.

Proof: The proof is by induction on the structure of formulaglm(Pls), and
is similar to the proof for Lemma 7. [

We are now ready to prove that the semantics is sound for the judgements
of the logic. We need to show that if a judgement is provable in the extended
natural deduction system, then it is also valid with respect to refined distributed
Kripke models.

Tueorem 3 (Sounpness).  If T; A +P u at p is derivable in the logic, then it is
ref-valid.

Proof: The proof is by induction on the numbeiof inference rules used in the
derivation of the judgement df; A P 4 at p. The proof is similar to the proof
of Theorem 1.

Base casd€n = 1). If the derivation consists of either the axidm or the
axiomG, or rule Tl we use the same argument as in the proof of Theorem 1.
The caseLE follows by definition of the forcing relation.

Inductive hypothesign > 1). We assume that the theorem holds for any
judgment that is deducible by applying less theimstances of inference rules.
We consider a judgmerit A " 4 at p which is derivable in the logic by using
exactlyn instances of inference rules.

We fix a modelKer = (K, <, {Pilkek, {Ik}kex) With set of placesPls such
thatP C Pls, and letE be the extension df;. Letk € K be an arbitrary state
such thak = T; A. Fix k. We need to showk(p) £ u. For this we consider
the last inference rule used to obtdipA +P u at p and proceed by cases. The
treatment of logical connectives is standard. The modalities @y amnd teated
as in Theorem 1. If the last inference rule usediis then the result follows
from a simple application of the definition. The most interesting case is when
is the last inference used, and we discuss this case below.

Casenl. It must be case thatis of the formog. MoreoverT; A P9 g at g
for someq ¢ P by usingn—1 instances of the rules, ard.(I"; A)UPL(¢) C P. By
induction we know thal; A +P*9 ¢ at g is ref-valid. Without loss of generality,
we can assume thgt¢ Pls (otherwise, we can renangen Pls, using Lemma 8).
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We prove thak = Og at p. The semantics afi says that we need to show
thatlE ¢ atr, foralll > kandr € P,. Fixonel > kand ona € P;, and consider
the refinedr-duplicated extensiofiGe(r, Q). Kes(r,q) is a refined distributed
Kripke model with set of place?IsU {g}. Let’ be the forcing relation on
7<ref<r’ Q)

From the hypothesisE T'; A and by Kripke monotonicity (Lemma 6) we get
| E T; A. Therefore, sinc&e:(r, Q) is ar-duplicated extension, we gele 'T'; A
by using Lemma 7. Now, sinde+q C PIsu{g} we can use inductive hypothesis
on K (r, q) to obtaink "¢ at g. Using Lemma 7 once again, we conclude that
| = ¢ atr. Sincel andr are arbitrary, we conclude thiat= oy at p. [

5.2 Completeness

In this section, we will show that the refined semantics is complete for the natural
deduction presented in Section 4. The proof will follow the standard proofs of
completeness for intuitionistic modal logic [18]. In the proof, we construct a
canonical model. If a judgement is not provable, then it will be invalidated in
one of the Kripke states of the canonical model.

Please note that the notion of provability can be extended on possible non-
finite setsE of sentences, as in Section 3.3. We say ihat P ¢ at p, if and
only if, there exists a finite subsatc = such thal"; A +P ¢ at p. Also, note that
Proposition 3 stated in Section 3.3 can be extended to the logic with disjunctive
connectives. The canonical model is defined by considering a particular kind of
set of sentences.

DermviTion 12 (Rerinep PrivE SeT).  Let P be a set of places aridbe a set of
pure formulae ifFfrm(P). A (possibly non-finite) set of sentences witRL(X) C
P, is said to bdr’, P)-refined primef it satisfies the following four propetrties.

1. IfT; 2 +P ¢ at p theny at p € X (Deductive Closure)
2. T; X ¥P 1 at p for anyp € P (Consistency)

3. If ;X +P ¢ v yat p then eitherpatp € X ory atp € X (Disjunction
Property)

4. If T; X +P ¢y at p then there existg € P such thatp at q € X (Diamond
Property)

As in [18, 2] we first show that every set of sentences can be extended to a
prime set, that respects the non-provability with respect to a particular sentence.

Lemma 9 (ReriNep PriME ExTENsION). Let P be a set of places afitlbe a finite
set of pure formulae iBrm(P). Lety be a pure formulap be a place, and be
a set of sentences such that

e PL(pat p) UPL(A) C P, and
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e I;ArP patp.

Then there is a set of plac®s extendingP and a(T’, P')- refined prime set of
sentencel containingA, such that'; X ¥” ¢ at p.

Proof: We enrich the set of places by introducing a denumerable set of new
places:qi, Qy, . ... They will be the witnesses for the formulag and are intro-
duced in order to satisfy the diamond property.

The set of place$” is obtained by a series of extensioRs= Py C P; C
P,.... Before we proceed with the construction, we pick up an enumeration of
the pure formula&rm(P’) and fix it. The sek is obtained by series of extensions
A=3%yCZX C3X,...that verify the following:

Property 2. For everyn > 0O:

1. PL(Zn) C Py

2. T2, P g at p.

The series is constructed inductively. In the induction, at an odd step we will

create a witness for a formula of the type. At an even step we deal with
disjunction property. We shall also construct two sets:

o treated, that will be the set of the formulagp for which we have already
created a witness.

o treated;, that will be the set of the formulag v  at p which satisfy the
disjunction property.

We starttreatecg = 0, treateq = 0, Pp = P andX, = A. Itis clear that
PL(Zo) C Po, andT’; Zo ¥ ¢ at p.

Then we proceed inductively, and assume tRatz, (n > 0) have been
constructed satisfying Property 2. In step 1, we consider two cases:

1. If n+ 1is odd, pick the first formulg; Vv ¢, in the enumeration such that
e Y1 Vi isin Frm(Py), i.e., all the places i1 V i are taken fronPy;
o I; X, +Pr yy v 4y at q, for someq € Py,
e Y1 Vypatq¢ treated.

Please note that if botf; =, 1 at q +™ ¢ at pandI’; 2, ¥, atq - ¢ at p,
then we can dedudg X, +P ¢ at p. However, we have tha,, P, satisfy
Property 2. Hence, it must be the case that eifh&h, v, at q ™ ¢ at p, or
[;Xn, Yo atqe™ p atp.

We defineXn,; = X, U {yq atq} if T;Z,, 41 atq ¥ g atp, andZ, =
>, U {7 at q} otherwise. We defin®,,; = P,. We get by construction that
Pni1, Zns1 Satisfy Property 2. Finally, we ldteated,, = treated U {y; Vv
Y atq} andtreated, , = treated,.
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2.

P/

If n+ 1is even, pick the first formulay in the enumeration such that
e Oy isin Frm(Py), i.e., all the places iny are taken fronP,;
e T; X, +Pn oy atq, for someq € Py;
e Oy ¢ treated.

Let Pni1 = Pn + One1)y/2, Znet = Zn U (Y At Qne1y2), treated,,, = treated, U
{0y} andtreated, , = treated,. We claim thaf’; Zn,1 ¥P»t ¢ at p.

If [;Z01 F7 patp, thenT; 2, ¢ atqpeyy2 FoH9002 patp. Since
I;X, 7 oy atqg, we getl'; =, +™ ¢ at p by the inference rul®E. This
contradicts the hypothesis @, X,. Hencel’; X1 ¥71 ¢ at p.

Therefore, we get by construction thaf, X, satisfy Property 2. We define

= Unso Pn, @NdZ = (Jps0Zn. ClearlyP € P’, andA C X. Moreover, using

Property 2, we can easily show tHa& ¥P ¢ at p. Finally, we show thak is a
(T, P")-refined prime set.

1.

(Disjunction Property) IT; X 7 1 Vv y» at g, then letn be the least num-
ber such thal’; £, +™ 1 v yp atq. Clearly,y; v ¢, atq ¢ treated/, and
[;Zm FPm g Vg, atq for everym > n. Eventuallyy; Vv » atq has to be
treated at some stadre> n. Hence, eithey; atq € X1 Ory, atq € Zn,1.
Thereforey, atqe T ory, atqe .

. (Diamond Property) IT'; X 7 ¢y at g, then letn be the least number such

thatT'; X, +P oy atqg. As in the previous case, we assert thatat q is
treated for some even number n. We gety at gn,2 € X by construction.

. (Deductive Closure) IET; X +7 y atq, thenl'; X +7 y v y atg. The first

case then gives us thatat g € X.

. (Consistency) IE;T 7 1 atq, thenZ;T 7 ¢@p at q by the inference rule

LE. ThereforeI'; X 7 ¢ at p by @E, which contradicts our construction.
HenceX;T ¥” 1 atq.

We conclude thak is a (T, P')- refined prime extending such thaf; = ¥”

patp. ]

Now, we define the refined canonical model. In the refined canonical model,

Kripke states are prime sets of sentences.

Dermvition 13 (Rerinep Canonical Mobper).  Given a finite sel” of pure formu-
lae, we define thE-refined canonical modéb be the quadrupldirges = (M, <
s {Pihem, {lihiem), where:

- M s set of all pairdZ, P) such thatP is a set of places, arilis a(I’, P)-

refined prime set.
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- (Z1,P1) < (2, Py) ifand only if¥, C X, andP; C Ps.

def
- Pep) = P.

- lz.p) : Atoms— PoWP p)) is defined byp € Iz p)(A) iff Aat p e X.

We now show that in the canonical model a sentence is forced by a Kripke
state [, X) if and only if it is contained irk.

Lemma 10 (Rerinep CaNonicaL EvavLuarion). LetT be a finite set of pure formu-
lae.

1. TheT-refined canonical modeWrret = (M, <, {Pi}iem, {lihem) is a refined
distributed Kripke model.

2. LetPlsbe the set of places dlrres, and= be the forcing relation iMrget.
For every(X,P) € Mrret, every formulap € Frm(Pls), and every place
pePls (X, P)E patpifandonlyifo atp e X.

Proof: Clearly all the properties required for a refined distributed Kripke model
are verified. All we have to prove is the p&tof the proposition. The proof

is standard, and we proceed by induction on the structure of the fornala
Frm(Pls). Here, we just illustrate the inductive case in whigls op;. In the
inductive hypothesis, we assume that pastvalid on all subformulae ap.

Casedp;. Assume thatX, P) E O¢; at p. By definition, this means that
for every &', P’) greater than, P) and for everyr € P, it is the case that
(¥, P) E ¢atr (and therefore atr € X’ by inductive hypothesis).

Chose a new placg¢ P. We claim thal"; = 79 ¢; atq. Supposd’; T P+d
¢1atg. Then by Lemma 4, there is a set of plac@extendingP + q and a
(', Q)-refined prime sek’ extendingE such thai; X’ ¥Q ¢, atg. That means
pratp ¢ Y. Since £/, Q) is greater than3{, P), we obtain a contradiction.
Therefore we conclude that X P9 ¢, at q.

Using the inference rulal, we getl’; = +P oy, p. SinceX is a [, P)-prime
set, we get that meamsp; atp € X.

Vice-versa, lethp; at p € X. Pick &', Q) greater thanX, P). We need to
show &', Q) £ O¢; at p. We have thak C ¥’, and thereforep; at p € ¥’. We
can applyoE to prove thaf, X’ +Q ¢ at g for everyq € Q. By definition of the
canonical modelyY’ is (I, Q)-prime set. Therefore, we obtain atq € ¥’ for
everyg € Q. Hence by inductive hypothesi&’(Q) E ¢; atq for everyg € Q.
SinceP C Q, we get &, Q) E O¢; at p. [ |

We are now ready to prove completeness.
Tueorem 4 (RerNep CompLETENEss). T AE Ppatp=T;A+Ppatp
Proof: Assume thal’; A E Py atp = T'; A +P ¢ at p. We have:
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1. PL(T) U PL(A) U {p} C P.

2. If Kt = (K, <, {Pilkexs {lklkex) IS @ refined distributed Kripke model, then
for everyk € K such thatP C Py, k= ¢ at pwhenevek = T; A.

We need to show that, A +P ¢ at p.

Assume thafl;A ¥P g atp. Then by Lemma 9, there is a set of places
P” 2 P, and a [, P")-refined prime set of sentencEscontainingA such that
;X eP patp. Wegetpatp ¢ .

Now consider th&-canonical modeMrges, and let= be the forcing relation
in Mrret. Consider the Kripke stat&(P’). A is contained ir2, and therefore
(%,P) E T;A by Lemmal0. By our assumption, we g&tP’) = ¢ atp. By
Lemma 10, we gep at p € . We have just reach a contradiction. Therefore, we
can conclude thdt; A 7 g at p. ]

6 Related Work

The logic studied in Section 2 was introduced in [9, 10], where it was used as
the foundation of a type system for a distributedalculus in thegropositions-
as-typesparadigm. Although the authors of [9, 10] do discuss how the logic
could be useful in distribution of resources, they have no corresponding model.
The proof terms corresponding to modalities have computational interpretation
in terms of remote procedure calls ( commands to broadcast computations
to all nodes 1), and commands to use portable codg (n [9], the authors also
introduce a sequent calculus for the logic and prove that it enjoys cut elimination.

From a logical point of view, this logic can be viewed as a hybrid modal logic
[16, 1]. A hybrid logic internalises the model in the logic by using modalities
built from pure names [16, 1]. In [9, 10], the modality p@jives the logic a
hybrid flavour. Work on hybrid logics has been usually carried out in a classi-
cal setting, see the hybrid logics web papet(p://hylo.loria.fr/). More
recently, a first intuitionistic version of hybrid logics were investigated in [2].

There are several intuitionistic modal logics in the literature, and [18] is a
good source on them. The modalities in [18] have a temporal flavour, and the
spatial interpretation was not recognised then. There are no places in the Kripke
states, and there is an accessibility relation on states that expresses the next step
of a computation.

The work in [2] introduces the first intuitionistic version of hybrid logics. It
investigates how to add names in constructive logics resulting in hybrid versions.
A modal logic is hybridised by adding a new kind of propositional symbols:
nominals The nominals are the names in the logic. The authors extend the modal
system of [18] by introducing nominals. They give a natural deduction system
and a Kripke semantics for this logic. They prove soundness and completeness
for the semantics, and also give a normalisation result for the natural deduction.
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The extension given in Section 4 is a hybrid version of the intuitionistic
modal systemiS5[18]. In the modal systen$5, the accessibility relation among
places is total. Hence, the logic in Section 4 can be seen as an instance of the
hybrid modal logic in [2]. The only dierence is that names in our logic only
occur in the modality @. In [2], names also occur as propositions.

Other work on logics in resources can be related to the separation logics [17],
or the logic of bunched implications [15]. In [15], the authors give a Kripke
model founded on a monoidal structure. In the logic, the formulae are the re-
sources, and are interpreted as elements of the monoid. The focus of this work is
the sharing of resources and not their distribution. There is no notion of places,
and the logic has no modalities.

In the classical setting, there are also a number of logics used to study spatial
properties. In [4, 3], for example, the authors use process calculi as their mod-
els. They have a classical modal logic to study spatial, temporal and security
properties of the processes.

7 Conclusions and Future Work

We study the hybrid modal logic presented in [9, 10]. Formulae in the logic con-
tain names, also called places. The logic may be used to reason about placement
of resources in a distributed system. An intuitionistic natural deduction for this
logic is presented in [10], and judgements mention the places under considera-
tion.

We interpret the judgements in the logic in Kripke-style models [12]. Typi-
cally Kripke models [12] consists of partially ordered Kripke states. In our case
the models are obtained from the Kripke models by adding a fixed set of places
to each possible Kripke state. In each Kripke statffedint places may satisfy
different formulae. The satisfaction of atoms corresponds to placement of re-
sources. The modalities of the logic allow formulae to be satisfied in a named
place (@p), some placey) and every placex). We show that the interpretation
of judgments in these models is both sound and complete.

We add disjunctive connectives to the modal logic in [9, 10], and refine our
semantics to obtain soundness and completeness results. In the new Kripke mod-
els, larger Kripke states may contain bigger set of places. The refined semantics
can be seen as an instance of hytb88[2, 18].

As future work, we are currently investigating decidability of the extended
logic. The intuitionistic modal systems in [18] are decidable. In order to prove
decidability of those systems, [18] uskeiselational models These models are
sound and complete, and enjoy finite model property: if a judgement is not valid
in the logic, then there is a finite birelational model which invalidates the judge-
ment. The finite model property is not enjoyed by the Kripke models in [18]. We
are investigating if we can adapts the proofs in [18].

30



We are also considering other extensions of the logic. A major limitation of
the logic presented in [10] is that if a formujds validated at some named place,
sayp, then the formula@p can be inferred at every other place. Similarlygf
or Op can be inferred at one place, then they can be inferred at any other place.
In a large distributed system, we may want to restrict the rights of accessing
information in a place. This can be done by adding an accessibility relation as
in [18, 2]. We are currently investigating the computational interpretation of
this extended logic. This would result in an extension-@flculus presented in
[9, 10].
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