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A. An intuitionistic, hybrid modal logic suitable for reasoning about distribution of re-
sources was introduced in [10]. We extend the Kripke semantics of intuitionistic logic, enriching
each possible Kripke state with a set of places, and show that this semantics is both sound and com-
plete for the logic. In the semantics, resources of a distributed system are interpreted as atoms, and
placement of atoms in a possible state corresponds to the distribution of the resources. The modali-
ties of the logic allow us to validate properties in aparticular place, in someplace and inall places.
We extend the logic with disjunctive connectives, and refine our semantics to obtain soundness and
completeness for extended logic. The extended logic can be seen as an instance ofHybrid IS5[2, 18].

1 Introduction

In current computing paradigm, distributed resources spread over and shared
amongst different nodes of a computer system is very common. For example,
printers may be shared in local area networks, or distributed data may store doc-
uments in parts at different locations. The traditional reasoning methodologies
are not easily scalable to these systems as they may lack implicitly trustable ob-
jects such as a central control.

This has resulted in the innovation of several reasoning techniques. A pop-
ular approach in the literature has been the use of algebraic systems such as
process algebra [13, 8, 5]. These algebras have rich theories in terms of seman-
tics [13], logics [7, 15, 4, 3], or types [8]. Another approach is logically-oriented
[9, 10, 19, 14]: intuitionistic modal logics are used as foundations of type sys-
tems by exploiting thepropositions-as-types, proofs-as-programsparadigm [6].
An instance of this was introduced in [9, 10] and the logic introduced there is the
focus of our study.

The formulae in this logic include names, calledplaces. Assertions in the
logic are associated with places, and are validated in places. In addition to con-
sideringwhethera formula is true, we are also interested inwherea formula is
true. The three modalities of the logic allow us to infer whether a property is
validated in a specific place of the system (@p), or in an unspecified place of the
system (♦), or in any part of the system(�). The modality @p internalises the
model in the logic and hence can be classified as a hybrid logic [1, 16, 2]. An
intuitionistic natural deduction for the logic is given in [9, 10], and judgements in
the logic mention the places under consideration. The natural deduction rules for
♦ and� resemble those for existential and universal quantification of first-order
intuitionistic logic.



As noted in [9, 10], the logic can also be used to reason about distribution of
resources in addition to serving as the foundation of a type system. The papers
[9, 10], however, lack a model to match the usage of the logic as a tool to reason
about distributed resources. In this report, we bridge the gap by presenting a
Kripke-style semantics [12] for the logic of [9, 10]. In Kripke-style semantics,
formulae are considered valid if they remain valid when the atoms mentioned in
the formulae change their value from false to true. This is achieved by using a
partially ordered set ofpossible states. Informally, more atoms are true in larger
states.

We extend the Kripke semantics of the intuitionistic logic [12], enriching
possible states with afixedset of places. In each possible state, different places
satisfy different formulae. For the intuitionistic connectives, the satisfaction of
formulae at a place in a possible state follows the standard definition [12]. The
enrichment of the model with places reveals the true meaning of the modalities
in the logic. The modality @p expresses a property in a named place. The
modality� corresponds to a weak form of universal quantification and expresses
a common property, and the modality♦ corresponds to a weak form of existential
quantification and expresses a property valid somewhere in the system.

In the model, we interpret atomic formulae as resources of a distributed sys-
tem, and placement of atoms in a possible state corresponds to the distribution of
resources. As in intuitionistic logic [12], we need not evaluate all the formulae
of the language, since the interpretation follows inductively from the structure of
formulae.

In order to give semantics to a logical judgment, we allow models with more
places than those mentioned in the judgement. This admits the possibility that a
user may be aware of only a certain subset of names in a distributed system. As
we shall see, this is crucial in the proof of soundness and completeness.

In the model, we can duplicate places in a conservative way. This fact is
the key to the proof of soundness of introduction of�, and the elimination of♦.
The proof of completeness follows closely the standard proof of completeness
of intuitionistic logic with one important difference: in addition to witnesses for
the existential (♦), we need witnesses for the universal (�) too.

The logic in [9, 10] did not have disjunctive connectives. We extend the logic
with disjunctive connectives, and refine our Kripke semantics in order to obtain
completeness. In the refined semantics, the set of places in Kripke states are not
fixed. Different possible Kripke states may havedifferentset of places. However,
the set of places vary in a conservative way: larger Kripke states contain larger
set of places.

We show that the refined semantics is both sound and complete for the ex-
tended logic. The proof of soundness once again depends on duplication of
places. The proof of completeness follows closely the standard proofs of com-

2



pleteness of intuitionistic modal logics. The extended logic can be seen as hy-
bridization of the well-known intuitionistic modal systemIS5[2, 18].

The rest of the paper is organised as follows. In Section 2, we present the
logic in [9, 10]. In Section 3 we present the distributed Kripke model used to
interpret the logic, and prove soundness and completeness of the semantics. We
present the extension of logic with logical connectives in Section4. The refined
semantics is given in Section 5, where we also show soundness and completeness
of the refined logic. We discuss related work in Section 6, and we summarise our
results in Section 7.

2 Logic

We now introduce, through examples, the logic presented in [9, 10]. The logic is
used to reason about heterogeneous distributed systems. To gain some intuition,
consider adistributed peer to peer databasewhere the information is partitioned
over multiple communicating nodes (peers).

Informally, the database has a set of nodes, orplaces, and a set of resources
(data) distributed amongst these places. The nodes are chosen from the elements
of a fixed set, denoted byp,q, r, s, . . .. Resources are represented by atomic
formulaeA, B, . . . ∈ Atoms. Intuitively, an atomA is verified in a placep if that
place can access the resource identified byA.

Were we reasoning about a particular place, the logic connectives of the in-
tuitionistic framework would be sufficient. For example, assume that a particular
document,doc, is partitioned in two parts,doc1 anddoc2, and in order to access
to the document a place has to access both of its parts. This can be formally
expressed as the logical formula: (doc1 ∧ doc2) → doc, where∧ and→ are the
logical conjunction and implication. particular place, then the usual intuitionistic
rules allow to infer that the place can access the entire document.

The intuitionistic framework is extended in [10] in order to reason about
different places. An assertion in such a logic takes the form “ϕ at p”, meaning
that formulaϕ is valid at placep. The construct “at ” is a meta-linguistic symbol
and points to the place where the reasoning is located. For example,doc1 at p
anddoc2 at p formalises the notion that the partsdoc1 anddoc2 are located at
the nodep. If in addition, the assertion ((doc1 ∧ doc2) → doc) at p is valid, we
can conclude that the documentdoc is available atp. A formulaϕ may itself use
three modalities to accommodate reasoning about the properties valid at different
locations.

In order to internalise resources at a single location, the modality @p, one
for every place in the system, is used. The modality @ casts the meta-linguistic
“ at ” on the language level, and in fact the two constructs will have the same
interpretation in the semantics. The modal formulaϕ@p means that the property
ϕ is valid at p, and not necessarily anywhere else. An assertion of the form
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ϕ@p at p′ means that in the placep′ we are reasoning about the propertyϕ valid
at the placep. For example, suppose that the placep has got the first half of
the document, i.e.,doc1 at p, andp′ has got the second one, i.e.,doc2 at p′. In
the logic we can formalise the fact thatp′ can send the partdoc2 to p by using
the assertion (doc2 → (doc2@p)) at p′. The rules of the logic will conclude
doc2 at p and sodoc at p.

Knowing exactly where a property holds is a strong ability, and we may only
know that the property holds somewhere without knowing the specific location
where it holds. In order to deal with this, the logic has the♦ modality: ♦ϕ
means that the formulaϕ holds in some place. In the example above, the location
of doc2 is not important as long as we know that this document is located in
some place that can send it top. Formally, this can be expressed by the formula
♦(doc2 ∧ (doc2 → (doc2@p))) at p′. By assuming this formula, we can infer
doc2 at p, and hence the documentdoc is available atp.

Even if we deal with resources distributed in heterogeneous places, we can-
not avoid the fact that certain properties are valid everywhere. For this purpose,
the logic has the� modality: �ϕ means that the formulaϕ is valid everywhere.
In the example above,p can access the documentdoc, if there is a place that
has the partdoc2 and can send it everywhere. This can be expressed by the for-
mula♦(doc2 ∧ (doc2 → �doc2)) at p′. The rules of the logic would allow us to
conclude thatdoc2 is available atp.

We now define the logic in [10] formally. For the rest of the paper, we shall
assume a fixed countable set of atomic formulaeAtomsand we will vary the set
of places. Given a countable set of placesPl, let Frm(Pl) be the set of formulae
built from the following grammar:

ϕ ::= > | A | ϕ ∧ ϕ | ϕ→ ϕ | ϕ@p | �ϕ | ♦ϕ.
Here the syntactic categoryp stands for elements fromPl, and the syntactic cat-
egoryA stands for elements fromAtoms. The elements inFrm(Pl) are saidpure
formulae, and are denoted by small Greek lettersϕ, ψ, µ . . . An assertion of the
form ϕ at p is calledsentence. We denote by capital Greek lettersΓ,Γ1, . . . (pos-
sibly empty) finite sets of pure formulae, and by capital Greek letters∆,∆1, . . .
(possibly empty) finite sets of sentences.

Each judgement in this logic is of the form

Γ; ∆ `P ϕ at p.

where

• the global contextΓ is a (possibly empty) finite set of pure formulae, and
represents the properties assumed to hold at every place of the system;

• the local context∆ is a (possibly empty) finite set of sentences; since a sen-
tence is a pure formula associated to a place,∆ represents what we assume
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to be valid in any particular place.

• the sentenceϕ at p says thatϕ is derived to be valid in the placep by assum-
ing Γ; ∆.

In the judgement, it is assumed that the places mentioned inΓ and∆ are drawn
from the setP. In order to be more formal, we define the functionPL(X), which
denotes the set of places that appear inX, for any syntactic objectX. It is defined
as follow

D 1 (P   ). We define inductively the operatorPL( ) on
any syntactic object of the logic as:

PL(A)
def
= ∅; PL(>)

def
= ∅;

PL(ϕ1 ∧ ϕ2)
def
= PL(ϕ1) ∪ PL(ϕ2); PL(ϕ1→ ϕ2)

def
= PL(ϕ1) ∪ PL(ϕ2);

PL(�ϕ)
def
= PL(ϕ); PL(♦ϕ)

def
= PL(ϕ);

PL(ϕ@p)
def
= PL(ϕ) ∪ {p}; PL(ϕ at p)

def
= PL(ϕ) ∪ {p};

PL(ϕ1, . . . , ϕm)
def
= PL(ϕ1) ∪ . . . ∪ . . .PL(ϕm);

PL(ϕ1 at p1, . . . , ϕn at pn)
def
= PL(ϕ1 at p1) ∪ . . . ∪ PL(ϕn at pn);

PL(Γ; ∆)
def
= PL(Γ) ∪ PL(∆).

When we write a judgment of the formΓ; ∆ `P ϕ at p, then it must be the
case thatPL(Γ) ∪ PL(∆) ∪ PL(ϕ at p) ⊆ P. Any judgment not satisfying this
condition is assumed to be undefined.

In Fig. 1 we give the natural deduction for the judgements as defined in [10].
The most interesting of these rules are♦E, the elimination of♦, and�I , the
introduction of�. In these rules, we useP + p to denote the disjoint union
P ∪ {p}, and witness the fact that the placep does not occur inΓ and ∆. If
p ∈ P, thenP + p, and any judgment containing such notation, is assumed to be
undefined in order to avoid a side condition stating this requirement.

The rule♦E explains how we can use the formulae validated at some unspeci-
fied location: we introduce a new place and extend the local context by assuming
that the formula is validated there. If any assertion that does not mention the new
place is validated thus, then it is also validated using the old local context. The
rule�I says that if a formula is validated in some new place, without any local
assumption on that new place, then that formula must be valid everywhere.

The rules♦I and�E are reminiscent of the introduction of the existential
quantification, and the elimination of universal quantification in first-order in-
tuitionistic logic. This analogy, however has to be taken carefully. For ex-
ample, if Γ; ∆ `P ♦ψ at p, then we can show using the rules of the logic that
Γ; ∆ `P �♦ψ at p.
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L

Γ; ∆, ϕ at p `P ϕ at p

G

Γ, ϕ; ∆ `P ϕ at p

>I

Γ; ∆ `P > at p

∧I

Γ; ∆ `P ϕ1 at p
Γ; ∆ `P ϕ2 at p
Γ; ∆ `P ϕ1 ∧ ϕ2 at p

∧Ei (i=1,2)

Γ; ∆ `P ϕ1 ∧ ϕ2 at p
Γ; ∆ `P ϕi at p

→I

Γ; ∆, ϕ at p `P ψ at p
Γ; ∆ `P ϕ→ ψ at p

@I

Γ; ∆ `P ϕ at p
Γ; ∆ `P ϕ@p at p′

@E

Γ; ∆ `P ϕ@p at p′

Γ; ∆ `P ϕ at p

→E

Γ; ∆ `P ϕ→ ψ at p
Γ; ∆ `P ϕ at p
Γ; ∆ ` ψ at p

♦I

Γ; ∆ `P ϕ at p
Γ; ∆ `P ♦ϕ at p′

♦E

Γ; ∆ `P ♦ϕ at p′

Γ; ∆, ϕ at q `P+q ψ at p′′

Γ; ∆ `P ψ at p′′

�I

Γ; ∆ `P+q ϕ at q
Γ; ∆ `P �ϕ at p

�E

Γ; ∆ `P �ϕ at p
Γ, ϕ; ∆ `P ψ at p′

Γ; ∆ `P ψ at p′

F 1. Natural deduction.

3 Kripke Semantics

There are a number of semantics for intuitionistic logic and intuitionistic modal
logics that allow for a completeness theorem [2, 11, 18]. In this section we
concentrate on the semantics introduced by Kripke [12, 20], as it is convenient
for applications and fairly simple. This would provide a formalisation of the
intuitive concepts introduced in Section 2.

In Kripke semantics for intuitionistic propositional logic, logical assertions
are interpreted over Kripke models. The validity of an assertion depends on its
behaviour as the truth values of its atoms change from false to true according to
a Kripke model. A Kripke model consists of apartially orderedset ofKripke
states, and aninterpretation, I , that maps atoms into states. The interpretation

6



tells which atoms are true a state. It is required that if an atom is true in a state,
then it must remain true in all larger states. Hence, in a larger state more atoms
may become true. Consider a logical assertion built from the atomsA1, · · · ,An.
The assertion is said to be valid in a state if it continues to remain valid in all
larger state.

In order to express the full power of the logic introduced in Section 2, we
need to enrich the model by introducing places. We achieve this by associating
a fixed set of placesPls to each Kripke state. The interpretation,I , in our model
maps atoms into places in each state. Since we consider atoms to be resources,
the mapI tells how resources are distributed in a Kripke state. We require that if
I maps an atom into a place in a state, then it would map the atom into that place
in all larger states. In terms of resources, it means that places in larger states
have possibly more resources. The addition of places makes the Kripke model
distributedin the obvious sense. We are ready to define Kripke model formally.

D 2 (D K M). A distributed Kripke modelis a qua-
drupleK = (K,≤,Pls, I ), where

• K is a (non empty) set;

• ≤ is a partial order onK;

• Pls is a (non empty) set of places;

• I : Atoms→ Pow(K × Pls) is such that if(k, p) ∈ I (A) then(l, p) ∈ I (A) for
all l ≥ k.

for Pow() the powerset operator.

The setK is the set of Kripke states, whose elements are denoted byk, l, . . .
Relation≤ is the partial order on the states andI is the interpretation of atoms.
The definition tells only how resources, i.e. atoms, are distributed in the system.

In order to give semantics to the whole set of formulaeFrm(Pls), we need to
extendI . The interpretation of a formula depends on its composite parts and if
it is valid in a given state, then it remains valid at the same places in all larger
states. For example, the formulaϕ ∧ ψ is valid in a statek at placep, if both ϕ
andψ are true at placep in all statesl ≥ k.

The introduction of places in the model allows the interpretation of the spatial
modalities of the logic. Formulaϕ@p is satisfied at a place in a statek, if it is
true atp in all statesl ≥ k; ♦ϕ and�ϕ are satisfied at a place in statek, if ϕ is
true respectively at some or at every place in all statesl ≥ k.

We extend now the interpretation of atoms to interpretation of formulae, we
use induction on the structure of the formulae.

D 3 (K S). For K = (K,≤,Pls, I ) a distributed Kripke
model, the relation|= between couples(k, p) and pure formulae is inductively
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defined by

(k, p) |= A iff (k, p) ∈ I (A);
(k, p) |= > for all (k, p) ∈ K × Pls;
(k, p) |= ϕ ∧ ψ iff (k, p) |= ϕ and(k, p) ∈ I ′(ψ);
(k, p) |= ϕ→ ψ iff l ≥ k and(l, p) |= ϕ imply (l, p) |= ψ;
(k, p) |= ϕ@q iff (k,q) |= ϕ;
(k, p) |= �ϕ iff (k,q) |= ϕ for all q ∈ Pls;
(k, p) |= ♦ϕ iff there existsq ∈ Pls such that(q, k) |= ϕ.

We pronounce(k, p) |= ϕ it as (k, p) forcesϕ, or (k, p) satisfiesϕ. We write
k |= ϕ at p if (k, p) |= ϕ.

Please note that in this extension, except for logical implication, we have not
considered larger states in order to interpret a modality or a connective. It turns
out that the satisfaction of a formula in a state implies the satisfaction in all larger
states.

L 1 (K M). GivenK = (K,≤,Pls, I ) distributed Kripke
model, |= preserves the partial order inK, that is for eachp ∈ Pls and each
ϕ ∈ Frm(Pls), if l ≥ k then(k, p) |= ϕ implies(l, p) |= ϕ.

Proof: We proceed by induction on the structure of formulae.
Base case. If ϕ ∈ Atomsor ϕ = >, the lemma holds by Definitions 2 and 3.
Inductive Hypothesis.We consider a formulaϕ ∈ Frm(Pls). We assume that

for every sub-formulaϕi of ϕ and for everyp ∈ Pls: if l ≥ k then (k, p) |= ϕi

implies (l, p) |= ϕi . We refer to Definition 3. Casesϕ = ϕ1∧ϕ2 andϕ = ϕ1→ ϕ2

are treated as in [20]. Casesϕ = ϕ1@q, ϕ = �ϕ1 andϕ = ♦ϕ1 are similar. We
show only the caseϕ = ϕ1@q. Assume (p, k) |= ϕ1@q, then (q, k) |= ϕ1 by
definition, hence (q, l) |= ϕ1 for everyl ≥ k by inductive hypothesis, and so we
conclude that (p, l) |= ϕ1@q. �

Consider now the distributed database described in Section 2. We can express
the same properties that we inferred in Section 2 by using a distributed Kripke
model. Fix a Kripke statek. The assumption that the two parts,doc1, doc2,
can be combined inp in a statek to give the documentdoc can be expressed as
(k, p) |= (doc1∧doc2)→ doc. If the resourcesdoc1 anddoc2 are assigned to the
placep, i.e., (k, p) |= doc1 and (k, p) |= doc2, then, since (k, p) |= doc1 ∧ doc2,
it follows that (k, p) |= doc.

Let us consider a slightly more complex situation. Suppose thatk|= ♦( doc2∧
(doc2 → �doc2) ) at p′. According to the semantics of♦, there is some place
r such that (k, r) |= doc2 ∧ (doc2 → �doc2). The semantics of∧ tells us that
(k, r) |= doc2 and (k, r) |= (doc2 → �doc2). Since (k, r) |= doc2, we know from
the semantics of→ that (k, r) |= �doc2, and from� that (k, p) |= doc2. Therefore,
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if doc1 is placed atp in the statek, then the whole documentdoc would becomes
available at placep in statek.

3.1 Some useful properties

In order to prove soundness of our semantics, we shall need some important
properties of the distributed Kripke models. We state and prove those properties
in this section.

Lemma 2 says that if we add a new place which duplicates a specific place
in all Kripke states, then the set of valid properties does not change. Moreover,
the new place mimics the duplicated place. In order to state this lemma, we first
prove that duplication gives us a distributed Kripke model.

P 1 (p-D E K〈p,q〉). Let K = (K,≤,Pls, I ) be a
distributed Kripke model. Forp ∈ Pls andq < Pls a new place, letK〈〉p,q =

(K′,≤′,Pls′, I ′) where

• K′ is K;

• ≤′ is ≤;

• Pls′ is Pls ∪ {q};
• I ′ : Atoms−→ Pow(K′ × Pls′) is defined as

(k, r) ∈ I ′(A) iff
{

(k, r) ∈ I (A) (r ∈ Pls);
(k, p) ∈ I (A) (r = q).

ThenK〈p,q〉 is a distributed Kripke model, andK〈p,q〉 is said to be ap-
duplicated extension ofK .

Proof: We just need to check thatI ′ satisfies the monotonicity condition on
atoms which follows immediately from definition. �

We show thatp-duplicated extension is conservative over all the formulae that
do not mention the added place. Moreover, for all such formulae, the new place
mimics the duplicated one.

L 2 (K〈p,q〉  ). Let K be a distributed Kripke model, and
K〈p,q〉 be its p-duplicated extension. Let|= and |= ′ extend the interpretation
of atoms inK andKp,q respectively. For everyk ∈ K and formulaϕ ∈ Frm(Pls),
we have:

1. if r ∈ Pls, then(k, r) |= ′ϕ if and only if (k, r) |= ϕ; and

2. if r = q, then(k,q) |= ′ϕ if and only if (k, p) |= ϕ.

Proof: We prove both of the properties simultaneously by induction on the struc-
ture of formulae inFrm(Pls).

Base case.The two properties are verified on atoms by the definition ofI ′,
and on> by Definition 3.
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Inductive hypothesis.We consider a formulaϕ ∈ Frm(Pls) and we assume
the points hold for each of its sub-formulaeϕi . In particular we assume that:

1. if r ∈ Pls, then(k, r) |= ′ϕi if and only if(k, r) |= ϕi ; and

2. if r = q, then(k,q) |= ′ϕi if and only if(k, p) |= ϕi .

We considerr ∈ Pls and fix it. We prove only property1, as the treatment of
point2 is analogous. Now, we consider several possibilities forφ.

Caseϕ = ϕ1∧ϕ2. The assertion (k, r)|= ′ϕ1∧ϕ2 iff (k, r)|= ′ϕ1 and (k, r)|= ′ϕ2.
By inductive hypothesis, this is equivalent to (k, r) |= ϕ1 and (k, r) |= ϕ2, which
is equivalent to (k, r) |= ϕ1 ∧ ϕ2 by Definition 3.

Caseϕ = ϕ1 → ϕ2. (k, r) |= ′ϕ1 → ϕ2 iff (l, r) |= ′ϕ1 implies (l, r) |= ′ϕ2

for everyl ≥ k. By inductive hypothesis, this is equivalent to (l, r) |= ϕ1 implies
(l, r) |= ϕ2 for everyl ≥ h, and this is equivalent to (k, r) |= ϕ1→ ϕ2.

Caseϕ = ϕ1@s. (k, r) |= ′ϕ1@s iff (k, s) |= ′ϕ1. Moreover, we know that
s ∈ Plsasϕ1@s ∈ Frm(Pls). By inductive hypothesis (k, s) |= ′ϕ1 iff (k, s) |= ϕ1.
By definition, (k, s) |= ϕ1 iff (k, r) |= ϕ1@s.

Caseϕ = ♦ϕ1. Suppose (k, r) |= ′♦ϕ1, then there existss ∈ Pls′ = Pls∪ {q}
such that (k, s) |= ′ϕ1. If s ∈ Pls, then we use inductive hypothesis (property1)
to obtain (k, s) |= ϕ1, and therefore (k, r) |= ♦ϕ1. Otherwise ifs = q, then
we use inductive hypothesis (property 2)2 to obtain (k, p) |= ϕ1, and therefore
(k, r) |= ♦ϕ1.

Vice versa, if (k, r)|= ♦ϕ1 then there existss ∈ Plssuch that (k, s)|= ϕ1. Hence
by inductive hypothesis (property1) (k, s) |= ′ϕ1, and we conclude (k, r) |= ′♦ϕ1.

Caseϕ = �ϕ1. Suppose that (k, r) |= ′�ϕ1. This means that (k, s) |= ′ϕ1 for
every s ∈ Pls∪ {q}. We can conclude that (k, r) |= �ϕ1 by considering every
s ∈ Pls and applying inductive hypothesis (property1).

Vice versa, if (k, r) |= �ϕ1 then (k, s) |= ϕ1 for everys ∈ Pls. By inductive
hypothesis (property2) (k, s) |= ′ϕ1 for everys ∈ Pls. Also, since (k, s) |= ϕ1 for
everys ∈ Pls , we get (k, p) |= ϕ1. Hence by inductive hypothesis (property2),
(k,q) |= ′ϕ1. We conclude (k, t) |= ′ϕ1 for everyt ∈ Pls′, which implies (k, r) |=
′�ϕ1. �

Another property of distributed Kripke models is the possibility to rename
the places in the model. The property says that if we rename a place in the model,
then we do not modify the set of valid properties not involving the renamed place.
First we prove that the renamed model is still a distributed Kripke model, then
we formalise the property in Lemma 3.

P 2 (p-R K〈q/p〉). Given a distributed Kripke modelK =

(K,≤,Pls, I ), wherePls = P + {p}. For a new placeq < P, we defineK〈q/p〉 =

(K′,≤′,Pls′, I ′) where

• K′ is K;

10



• ≤′ is ≤;

• Pls′ is P∪{q};
• I ′ : Atoms−→ Pow(K′ × Pls′) is defined as

(k, r) ∈ Iq/p)(A) iff
{

(k, r) ∈ I (A) (r ∈ P);
(k, p) ∈ I (A) (r = q).

ThenK〈q/p〉 is a distributed Kripke model, andK〈q/p〉 is said to be ap-
renamingof K .

Proof: We just need to check thatI ′ satisfies the monotonicity condition on
atoms, which follows immediately from definition and the monotonicity ofI . �

By mimicking the proof of Lemma 2, we show thatK〈q/p〉 is conservative
with respect toK and the renamed place behaves like the original one.

L 3 (K〈q/p〉  ). Let K be a distributed Kripke model such
that Pls = P + {p} andK〈q/p〉 be its p-renaming. Let|= and |= ′ extend the
interpretation of atoms inK andK〈q/p〉 respectively. For everyk ∈ K and
formulaϕ ∈ Frm(P), we have:

1. if r ∈ P, then(k, r) |= ′ϕ if and only if (k, r) |= ϕ; and

2. if r = q, then(k,q) |= ′ϕ if and only if (k, p) |= ϕ.

Proof: We proceed as in the proof of Lemma 2, and prove both of the properties
simultaneously by induction on the structure of formulae inFrm(Pls).

Base case.The properties are verified on atoms and> by definition.
Inductive hypothesis.As for Lemma 2, we consider a formulaϕ ∈ Frm(Pls)

and we assume that the two properties hold for each of its sub-formulaeϕi . In-
ductive cases deal with connectives and modalities. Here we consider only the
two most significant cases and prove property1. The other cases can be dealt
with easily.

Caseϕ = ♦ϕ1. Let r ∈ P and suppose (k, r) |= ′♦ϕ1. Then, by definition
there existss ∈ Pls′ = P∪{q} such that (k, s) |= ′ϕ1. If s ∈ P, we use inductive
hypothesis (property1) to obtain (k, s) |= ϕ1, and in that case (k, r) |= ♦ϕ1 by
definition. In the cases = q, we use inductive hypothesis (property2) to obtain
(k, p) |= ϕ1 and so (k, r) |= ♦ϕ1. The opposite direction is analogous.

Caseϕ = �ϕ1. Suppose (k, r) |= ′�ϕ1. Then the definition says that (k, s) |=
′ϕ1 for everys ∈ P∪ {q}. We get by using inductive hypothesis

• (k, s) |= ϕ1 for everys ∈ P, and

• (k, p) |= ϕ1

We conclude that (k, t) |= ϕ1 for everyt ∈ P + {p}, and hence (k, r) |= �ϕ1. The
opposite direction is analogous. �
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3.2 Soundness

We shall now give a semantics of the judgments introduced in§2 using dis-
tributed Kripke models. We shall then show that the semantics is both sound
and complete. In order to introduce the semantics, we extend the definition of
validity for pure formulae to sets of pure formula and sets of sentences.

D 4 (F E). LetK = (K,≤,Pls, I ) be a distributed Kripke
model. GivenΓ, a finite set of pure formulae and∆, a finite set of sentences, such
thatPL(Γ; ∆) ⊆ Pls, we say that the Kripke statek ∈ K forces the coupleΓ; ∆,
(and we writek |= Γ; ∆) if

1. (k, p) |= ϕ for everyϕ ∈ Γ andp ∈ Pls;

2. k |= ψ at q for everyψ at q ∈ ∆.

A judgment is respected by a distributed Kripke model, if whenever its as-
sumptions are valid in a Kripke state, then its conclusion is also valid in that
state. We are now ready to define the satisfaction of a judgement.

D 5 (S   J). We say thatΓ; ∆ |= Pµ at p, and we
read it as“ Γ; ∆ `P µ at p is valid” , if

• PL(Γ) ∪ PL(∆) ∪ {p} ⊆ P; and

• for every distributed Kripke modelK = (K,≤,Pls, I ) with P ⊆ Pls, it is the
case that for everyk ∈ K, wheneverk |= Γ; ∆, then (k, p) |= µ too.

We prove that the semantics is sound for the judgements of the logic. The
proof of soundness depends on Lemma 2 and Lemma 3. We need to show that if
a judgement is provable in the natural deduction system, then it is also valid.

T 1 (S). If Γ; ∆ `P µ at p is derivable in the logic, then it is
valid.

Proof: The proof proceeds by induction on the numbern of inference rules
applied in the derivation of the judgementΓ; ∆ `P µ at p. The most interesting
cases are�I , the introduction of�, and♦E, the elimination of♦.

Base Case(n = 1). Suppose the judgment is proved by using axiomL, or the
axiomG, or the axiom>I . We consider a model (K,≤,Pls, I ) such thatP ⊆ Pls.
We need to show that for everyk ∈ K if k |= Γ; ∆ then (k, p) |= µ.

Suppose the derivation consists of just the axiomL, then the assertionµ at p
is in ∆. Hence, by definition, for everyk ∈ K if k |= Γ; ∆ then (k, p) |= µ.

If the derivation consists of just the axiomG, then the formulaµ is in Γ, and
sok |= Γ; ∆ implies (k, r) |= µ for everyr ∈ Pls. In particular (k, p) |= µ.

Finally If the derivation is the application of>I , thenµ is > and the result
holds by definition.
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Inductive hypothesis(n > 1). We assume the theorem holds for any judgment
that is deducible by applying less thann instances of inference rules. In particular
we assume that:
If the judgmentΓ; ∆ `P µ at p is deducible in the logic by using less thann

instances of the rules, thenΓ; ∆ |= Pµ at p.
We consider a judgmentΓ; ∆ `P µ at p which is derivable in the logic by

using exactlyn instances of inference rules. We fix a modelK = (K,≤,Pls, I )
such thatP ⊆ Pls, and let|= be the extension ofI on Frm(Pls). We fix k ∈ K
such thatk |= Γ; ∆. We need to prove (k, p) |= µ. We consider the last rule
applied to obtainΓ; ∆ `P µ at p, and proceed by cases. In most cases, we apply
the inductive hypothesis on the modelK only. However, for�I and♦E we will
use inductive hypothesis on an extension ofK .

Cases∧I and∧E follow from Definition 3 and are treated as in [20].
Case→ I . Thenµ = ϕ → ψ and we can deriveΓ; ∆, ϕ at p `P ψ at p by

applying n − 1 instances of the rules. The inductive hypothesis says that for
everyl ∈ K: l |= Γ; ∆, ϕ at p implies l |= ψ at p.

Let l ≥ k. Thenl |= Γ; ∆ by Kripke Monotonicity (Lemma 1). If we assume
(l, p) |= ϕ, then the inductive hypothesis says that (l, p) |= ψ too. Hence, we have
that for all l ≥ k, if l |= ϕ thenl |= ψ also. We conclude that (k, p) |= ϕ → ψ by
definition of |= .

Case→ E. Then, we have thatΓ; ∆ `P ϕ→ µ andΓ,∆ `P ϕ for someϕ. The
inductive hypothesis says that (k, p) |= ϕ → µ and (k, p) |= ϕ. Hence, we get
(k, p) |= µ according to Definition 3.

Case@I . Thenµ is of the formϕ@q, andΓ; ∆ `P ϕ at q. The inductive
hypothesis says that (k,q) |= ϕ, and hence (k, p) |= ϕ@q.

Case@E. Then we have thatΓ; ∆ `P µ@p at q for someq ∈ P. The
inductive hypothesis says that (k,q) |= ϕ@p, and therefore (k, p) |= ϕ.

Case�I . Thenµ is of the form�ϕ. MoreoverΓ; ∆ `P+q ϕ at p1 for some
p1 < P by usingn− 1 instances of the inference rules. By inductive hypothesis
we know thatΓ; ∆ |= P+p1ϕ at q. Please note that sinceΓ; ∆ `P µatp, we also
havePL(Γ; ∆) ∪ PL(ϕ) ⊆ P. Let Pls beP + p1.

First, consider the case whenp1 < Pls. We need to show thatk |= �ϕ at p.
According to semantics of�, it suffices to show thatk |= ϕ at r, for all r ∈ Pls.
Fix oner ∈ Pls, and consider ther-duplicated extensionKq(r). Let |= q(r) be the
extension ofIq(r). We getk |= q(r)Γ; ∆ by using Lemma 2 (sincek |= Γ; ∆).

Now, we have thatΓ; ∆ `P+q ϕ at p1 .andP+ p1 ⊆ Plsq(r). Sincek |= q(r)Γ; ∆,
we get by using inductive hypothesis onKq(r) that (k, p1) |= q(r)ϕ. Now, we can
conclude (k, r) |= ϕ at r by using Lemma 2.

Sincer was arbitrary, we deducek |= �ϕ at p.
If p1 ∈ Pls, thenPls = Pls′ + {p1} with PL(Γ; ∆) ∪ PL(ϕ) ⊆ P ⊆ Pls′.

We chooset < Pls and considerKt/p1 to be thep1-renaming ofK , as defined
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in Proposition 2. Let|= t/p1 be the extension ofIt/p1. By following the above
reasoning we derivek |= t/p1�ϕ at p, hencek |= �ϕ at p by Lemma 3.

Case�E. Then we have that there is some formulaϕ such thatΓ; ∆ `P
�ϕ at p1 andΓ, ϕ; ∆ `P �µ at p by using less thann instances of inference rules.
The inductive hypothesis onΓ; ∆ `P �ϕ at p implies (k, p1)|= �ϕ, and this means
that (k,q) |= ϕ for everyq ∈ Pls. By definition, we obtaink |= Γ, ϕ; ∆ and using
inductive hypothesis onΓ, ϕ; ∆ `P �µ at p we conclude (k, p′) |= ψ.

Case♦I . Then we have thatµ is of the form♦ϕ for some formulaϕ, and
Γ; ∆ `P ϕ at p1 for somep1. The inductive hypothesis says that (k, p1) |= ϕ, so
we conclude (k, p) |= ♦ϕ.

Case♦E. Then for somep′ ∈ P andϕ ∈ Frm(P) we can deriveΓ; ∆ `P
♦ϕ at p′ andΓ; ∆, ϕ at q `P+q µ at p by using less thann instances of the rules.
Hence by inductive hypothesis:Γ; ∆ |= P♦ϕ at p′ andΓ; ∆, ϕ at q |= P+qµ at p.

As in the case for�I , first assumeq < Pls. We need to show that (k, p) |= µ.
Sincek |= Γ; ∆ we get (k, p′) |= ♦ϕ, and this means that there existsr ∈ Plssuch
that (k, r) |= ϕ.

Consider now ther-duplicated extensionKq(r) of K . Let |= q(r) be the exten-
sion of Iq(r). By Lemma 2 we have (k,q) |= q(r)ϕ, andk |= q(r)Γ; ∆. Hence, we
getk |= q(r)Γ; ∆, ϕ at q. SinceΓ; ∆, ϕ at q |= P+qµ at p, we get (k, p) |= q(r)µ. As
PL(µ) ⊆ P ⊆ Pls andp ∈ P ⊆ Pls, we obtain (k, p) |= µ by Lemma 2.

In the case thatK is such thatq ∈ Pls, we can renameq by a fresh as we did
in �I , and obtain the desired result. �

3.3 Completeness

We shall show that our semantics is complete for the natural deduction in Section
2. First, we extend the notion of provability to possible non-finite setsΣ of
sentences by saying thatΓ; Σ `P ϕ at q, if and only if, there exists a finite set
∆ ⊆ Σ such thatΓ; ∆ `P ϕ at q.

As in standard proofs of completeness of intuitionistic logics[20, 18, 2], the
proof of completeness is based on the construction of a particular distributed
Kripke model: thecanonical model. We will prove that a sequent is valid in the
canonical model if and only if it is derivable in the logic. In the construction of
the canonical model, we consider particular kinds of sets of formulae.

D 6 (P S). Given a set of placesPls and a finite setΓ of pure
formulae inFrm(Pls), a (possibly non-finite) setΣ of sentences withPL(Σ) ⊆ Pls,
is said to be(Γ,Pls)-primeif for every formulaϕ ∈ Frm(Pls):

1. Γ; Σ `Pls ♦ϕ at p, implies that there existsq ∈ Pls s.t. Γ; Σ `Pls ϕ at q;

2. Γ; Σ `Pls ϕ at r for all r ∈ Pls, impliesΓ; Σ `Pls �ϕ at p for all p ∈ Pls.

The canonical model will be built by choosing the prime sets of formulae
as Kripke states. We would show that givenΓ and∆, we can construct a set
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of placesPls and a prime setΣ ⊇ ∆ such thatΣ is (Γ,Pls)-prime. Before we
proceed, we first state a proposition proved in [9]:

P 3. Let P ⊆ P′ and supposePL(Γ) ∪ PL(∆) ∪ PL(ϕ at p) ⊆ P, then
Γ; ∆ `P′ ϕ at p if and only if Γ; ∆ `P ϕ at p .

Now, we show the existence of prime extensions:

L 4 (P E). Let P be a set of places andΓ be a finite set of pure
formulae inFrm(P). For every finite set∆ of sentences such thatPL(∆) ⊆ P,
there exists a set of placesP′ extendingP and a(Γ,P′)-prime set of sentencesΣ
containing∆, such that givenϕ ∈ Frm(P) andp ∈ P:

Γ; ∆ `P ϕ at p if and only if Γ; Σ `P′ ϕ at p.

Proof: We enrich the set of places by introducing two kind of places:qi , which
will be the witnesses for the formulae♦ϕ, andp j , which will be the new places
used to introduce�ψ in the caseψ is provable for every place.

The set of placesP′ is obtained by a series of extensionsP = P0 ⊆ P1 ⊆
P2 . . . The setsPn+1 are constructed asPn+1 = Pn∪{qn+1,pn+1}, where the places
qn+1,pn+1 are new, i.e.,qn+1,pn+1 < Pn. Also, qn+1 is different frompn+1. The
setP′ is taken asP′ =

⋃
n≥0 Pn.

Before we proceed with the construction, we pick up an enumeration of the
pure formulaeFrm(P′), and fix it. The setΣ is obtained by series of extensions
∆ = Σ0 ⊆ Σ1 ⊆ Σ2 . . . that verify the following:

Property 1. For everyn ≥ 0:

1. PL(Σn) ⊆ Pn.

2. Given ϕ ∈ Frm(Pn) and p ∈ Pn, we haveΓ; ∆ `P ϕ at p if and only if
Γ; Σn `Pn ϕ at p.

The series is constructed inductively. In the induction, we will create witnesses
for the formulae of the type♦ψ. We shall also construct a set,treatedn, of for-
mulae of the sort♦ψ. This set, initialised to be the empty set, will be the set of
the formulae for which we have already created witnesses.

We puttreated0 = ∅, P0 = P andΣ0 = ∆. It is clear thatPL(Σ0) ⊆ P0, and
Γ; ∆ `P ϕ at p if and only if Γ; Σ0 `P0 ϕ at p.

Now, we proceed inductively. LetΣn (n ≥ 0) extend∆ and satisfying Prop-
erty 1. In stepn + 1, we pick the first formula♦ψ in the enumeration such that

• ♦ψ is in Frm(Pn), i.e., all the places in♦ψ are taken fromPn;

• ♦ψ < treatedn; and

• Γ; Σn `Pn ♦ψ at q, for someq ∈ Pn.
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We defineΣn+1 = Σn ∪ {ψ at qn+1} and treatedn+1 = treatedn ∪ {♦ψ}. The
placeqn+1 witnesses the existential♦. ClearlyPL(Σn+1) ⊆ Pn+1. Now we prove
the following:

Claim. For anyϕ ∈ Frm(Pn) and p ∈ Pn, Γ; Σn `Pn ϕ at p if and only if
Γ; Σn+1 `Pn+1 ϕ at p.

The direction from left to right is a consequence of inference ruleL, and Propo-
sition 3. In order to prove the converse, assumeΓ; Σn+1 `Pn+1 ϕ at p. Now letψ
be the formula chosen at stepn + 1. We have by construction,Γ; Σn `Pn ♦ψ at q.
Also sinceΓ; Σn+1 `Pn+1 ϕ at p, we get by using the inference ruleL and Propo-
sition 3 thatΓ; Σn, ψ at qn `Pn+qn+1 ϕ at p. Hence, we getΓ; Σn `Pn ϕ at p by
application of the inference rule♦E.

Suppose now thatϕ ∈ Frm(P) and p ∈ P. We can assert using the claim
above thatΓ; ∆ `P ϕ at p if and only if Γ; Σn+1 `Pn+1 ϕ at p. We have just proved
Property 1 for the inductive stepn.

Finally, we defineΣ =
⋃

n≥0 Σn. Clearly Γ; ∆ `P ϕ at p implies Γ; Σ `P′
ϕ at p, by definition and Proposition 3.

In the other direction, supposeΓ; Σ `P′ ϕ at p with ϕ ∈ Frm(P) and p ∈
P. According to the definition, there exists a finite sequenceΛ ⊆ Σ such that
Γ; Λ `P′ ϕ at p. We can then choosen ≥ 0 big enough to haveΛ ⊆ Σn and so
Γ; Σn `P′ ϕ at p by the inference ruleL. Using Proposition 3 once again, we have
Γ; Σn `Pn ϕ at p. SincePL(Γ),PL(ϕ), {p} ⊆ P ⊆ Pn, we concludeΓ; ∆ `P ϕ at p
using Proposition 1.

All we need to prove now is thatΣ is (Γ,P′)-prime.

1. If Γ; Σ `P′ ♦ϕ at p, let n be the least such that♦ϕ ∈ PL(Pn) andp ∈ Pn. By
construction, there is somem≥ n, such that♦ϕ is picked in the construction
of Σm. Henceϕ at qm ∈ Σm ⊆ Σ, and we conclude thatΓ; Σ `P′ ϕ at qm.

2. Let ψ ∈ Frm(P′) and supposeΓ; Σ `P′ ψ at p for all p ∈ P′. In particular,
consider the placepn, with n such thatψ ∈ Frm(Pn). We have thatΓ; Σ `P′
ψ at pn.

Using Proposition 3, we can findm ≥ 0 such thatΓ; Σm `Pm ψ at pn. If
m > n then we use the above claim iteratively to concludeΓ; Σn `Pn ψ at pn.
In the casem≤ n we obtain the same conclusion by the inference ruleL.

Sincepn < PL(Σn) by construction, we can infer thatΓ; Σn `Pn\{pn} �ψ at p
for all p ∈ Pn by the inference rule�I . HenceΓ; Σ `P′ �ψ at p for all
p ∈ Pn \ {pn} by Proposition 3.

We conclude by extendingΓ; Σ `P′ �ψ at r to anyr ∈ (P′ \ Pn) ∪ {pn} in
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the following way (herez′ is chosen to be a place< P′):

Γ; Σ `P′ �ψ at p
Γ, ψ; Σ `P′+z ψ at z

Γ, ψ; Σ `P′ �ψ at r
�I

G

Γ; Σ `P′ �ψ at r
�E

�

We are ready to define the canonical model for a finite set of pure formulaeΓ

and placesPls. In this model, the worlds will be (Γ,Pls)-prime sets. The partial
order will be subset inclusion, and the atoms will be placed in a specific placep
in a worldΣ if Γ; Σ `Pls A at p.

D 7 (C M). Given a set of placesPls and a finite setΓ of
pure formulae inFrm(Pls), we define the(Γ,Pls)-canonicalto be the quadruple
M(Γ,Pls) = (M,⊆,Pls, IΓ), where:

- M is composed by all the(Γ,Pls)-prime sets;

- ⊆ is set inclusion;

- IΓ : Atoms−→ Pow(M×Pls) is defined by:(Σ, p) ∈ IΓ(A) iff Γ; Σ `Pls A at p.

We now show that the model is a distributed Kripke model. We will also
demonstrate that the extension ofIΓ to interpretation of formulae corresponds
exactly to the provability in the logic, i.e., (Σ,q) |= ψ in the canonical model if
and only ifΓ; Σ `Pls ψ at q.

L 5 (C E). Given a set of placesPlsand a finite setΓ of
pure formulae inFrm(Pls), we have:

1. the(Γ,Pls)-canonical modelM(Γ,Pls) = (M,⊆,Pls, IΓ) is a distributed Kripke
model;

2. for all ϕ ∈ Frm(Pls), Σ ∈ M andq ∈ Pls: (Σ,q) |= ϕ if and only if Γ; Σ `Pls

ϕ at q.

Proof: Clearly the inclusion among sets⊆ is a partial order onM and IΓ is
monotone onM, since ifΣ1 ⊆ Σ2 thenΓ; Σ1 `Pls A at p impliesΓ; Σ2 `Pls A at p
by definition. All we have to prove is the part2 of the proposition. We proceed
by induction on the structure of the formulaϕ and we prove that for everyΣ ∈ M
andq ∈ Pls: (Σ,q) |= ϕ if and only if Γ; Σ `Pls ϕ at q.

Base Case.The property is verified onAtoms, by the definition ofIΓ, and on
>, by Definition 3.

Inductive hypothesis.We assume the property holds for any sub-formula of
the formulaϕ we are considering. In particular we assume that:
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Givenϕi sub-formula ofϕ ∈ Frm(Pls), then for everyΣ ∈ M and q ∈ Pls:
(Σ,q) |= ϕi if and only ifΓ; Σ `Pls ϕi at q.

We need to show that (Σ,q) |= ϕ if and only if Γ; Σ `Pls ϕ at q. We proceed
by cases on structure ofϕ. The cases in whichϕ is ϕ1∧ϕ2, andϕ is ϕ1→ ϕ2 are
fairly standard. We just consider the three modalities.

Caseϕ1@p. Suppose that (Σ,q) |= ϕ1@p. By definition, we have (Σ, p) |= ϕ1.
We getΓ; Σ `Pls ϕ1 at p by inductive hypothesis. We can concludeΓ; Σ `Pls

ϕ1@p at q by using the inference rule @I .
In the other direction, the factΓ; Σ `Pls ϕ1@p at q impliesΓ; Σ `Pls ϕ1 at p

by using the inference rule @E. Hence (Σ, p) |= ϕ1 by inductive hypothesis, and
therefore (Σ,q) |= ϕ1@p.

Case�ϕ1. (Σ,q) |= �ϕ1 implies (Σ, p) |= ϕ1 for all p ∈ Pls. By inductive
hypothesis, this isΓ; Σ `Pls ϕ1 at p for all p ∈ Pls. SinceΣ is (Γ,Pls) prime, we
can concludeΓ; Σ `Pls �ϕ1 at q

In the other direction, let us assume thatΓ; Σ `Pls �ϕ1 at q. We apply the
inference rule�E to obtainΓ; Σ `Pls ϕ1 at p for everyp ∈ Pls. Hence (Σ, p) |= ϕ1

for everyp ∈ Pls, and therefore (Σ,q) |= �ϕ1.
Case♦ϕ1. (Σ,q) |= ♦1ϕ says that there existsp ∈ Pls such that (Σ, p) |= ϕ1.

Using inductive hypothesis, we getΓ; Σ `Pls ϕ1 at p. We concludeΓ; Σ `Pls

♦ϕ1 at q by ♦I .
In the other direction, assumeΓ; Σ `Pls ♦ϕ1 at q. SinceΣ is (Γ,Pls) prime,

there existsp ∈ Pls such thatΓ; Σ `Pls ϕ1 at p. Using inductive hypothesis, we
obtain (Σ, p) |= ϕ1. We get (Σ,q) |= ♦ϕ1 according to Definition 3. �

Finally we use the canonical model to prove completeness.

T 2 (C). Γ; ∆ |= Pµ at p =⇒ Γ; ∆ `P µ at p.

Proof: AssumeΓ; ∆ |= Pϕ at p. This means that

• PL(Γ) ∪ PL(∆) ∪ {p} ⊆ P; and

• for every distributed Kripke modelK = (K,≤,Pl, I ) with P ⊆ Pl, it is the
case that for everyk ∈ K, wheneverk |= Γ; ∆ then (k, p) |= µ also.

We need to show thatΓ; ∆ `P ϕ at p.
Using Lemma 4, construct a set of placesPls⊇ P, and a (Γ,Pls)-prime set of

sentenceΣ such that:for everyϕ ∈ Frm(P) and p ∈ P Γ; ∆ `P ϕ at p if and only
if Γ; Σ `Pls ϕ at p.

Consider now the (Γ,Pls)-canonical model, as stated in Definition 7. In the
canonical model, the worlds are the (Γ,Pls)-prime sets and the set of places is
Pls. We focus our attention on the worldΣ.

First we claim that in the canonical modelΣ |= Γ; ∆. In order to show this,
we need the following:
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• For everyψ ∈ Γ,q ∈ Pls , we need to show thatΣ |= ψ at q. Givenψ ∈ Γ,
an application of inference ruleG (see figure 1) gives usΓ; Σ `Pls ψ at q. By
Lemma 5,Σ |= ψ at q if and only if Γ; Σ `Pls ψ at q. Hence, we getΣ |= ψ at q.

• For everyψ at q ∈ ∆, we need to show thatΣ |= ψ at q. Givenψ at q ∈ ∆,
an application of theL rule (see figure 1), gives us thatΓ; ∆ `Pls ψ at q. Σ

extends∆, and hence we getΓ; Σ `Pls ψ at q. By Lemma 5 once again, we
getΣ |= ψ at q.

So we have a model in whichΣ |= Γ; ∆. By assumption, this impliesΣ |=
µ at p. Using Lemma 5, we get thatΓ,Σ `Pls µ at p. SinceΣ is a prime extension
of ∆ constructed through Lemma 4, we concludeΓ; ∆ `P µ at p. �

4 Hybrid IS5

We now extend the logic in [9, 10] with disjunctive connectives, thus achieving
the full set of intuitionistic connectives. Given a set of places,Pl, the new set
of pure formulae (see section 2),Frm(Pl), is the set of formulae built from the
following grammar:

ϕ ::= > | ⊥ | A | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ@p | �ϕ | ♦ϕ.
To account for the new connectives, we extend the natural deduction pre-

sented in Figure 1 with rules for the disjunctive connectives. These rules are
given in Figure 2. Please note that the rule⊥E as stated has a local flavour: from
⊥ at p, we can infer any other property in the same place,p. However, the rule
has a ”global” consequence. If we have⊥ at p, then we can infer⊥@q at p.
Using @E, we can then infer⊥ at q. Hence if a set of assumptions make a place
to be inconsistent, then it will make all places to be inconsistent.

As we shall see in section 5, the Kripke semantics of this extended logic
would be similar to the one given for intuitionistic systemS5 [18]. Hence this
logic can be seen as an instance ofHybrid IS5[2].

5 Refined Kripke Semantics

We were unable to prove completeness for the extended logic using the seman-
tics defined in Section 3. We had to change the semantics in order to obtain a
completeness result, and we present the semantics in this section. The differ-
ence from the model of Section 3, is that the set of places in Kripke states are
not fixed and may vary. However, they change in a conservative way in that the
set of places in a Kripke state is always contained in larger Kripke states. We
now present the extended Kripke models which we shall callRefined Distributed
Kripke models.
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⊥E

Γ; ∆ `P ⊥ at p
Γ; ∆ `P ψ at p

∨I (i=1,2)

Γ; ∆ `P ϕi at p
Γ; ∆ `P ϕ1 ∨ ϕ2 at p

∨E

Γ; ∆, ϕ1 at p `P ψ at p
Γ; ∆, ϕ2 at p `P ψ at p Γ; ∆ `P ϕ1 ∨ ϕ2 at p
Γ; ∆ `P ψ at p

F 2. Disjunctive rules

D 8 (R D K M). A quadrupleKref = (K,≤
, {Pk}k∈K , {Ik}k∈K) is calledrefined distributed Kripke modelif

• K is a (non empty) set;

• ≤ is a partial order onK;

• Pk is a non-emptyset of places for allk ∈ K;

• Pk ⊆ Pl if k ≤ l;

• Ik : Atoms→ Pow(Pk) is such that ifp ∈ Ik(A) thenp ∈ I l(A) for all l ≥ k.

Let Pls = ∪k∈KPk. We shall say thatPls is the set of places ofKref .

We extend the forcing relation of Def. 3. The difference from that relation is
that the interpretation for� changes. This is because larger Kripke states may
have more places. Hence when interpreting�φ at a place in particular Kripke
state, we have to account for places that may exist in a larger Kripke state. If
we stick to the old interpretation, then Kripke monotonicity would fail. The
interpretation of� is similar to those used for modal intuitionistic logic [2, 18].

D 9 (R S). Let Kref = (K,≤, {Pk}k∈K , {Ik}k∈K) be a re-
fined distributed Kripke model with set of places,Pls. Givenk ∈ K, p ∈ Pk, a
pure formulaϕ with PL(ϕ) ⊆ Pls, we define(k, p) |= ϕ inductively as:
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(k, p) |= A iff p ∈ Ik(A);
(k, p) |= > iff p ∈ Pk;
(k, p) |= ⊥ never;
(k, p) |= ϕ ∧ ψ iff (k, p) |= ϕ and(k, p) |= ψ;
(k, p) |= ϕ ∨ ψ iff (k, p) |= ϕ or (k, p) |= ψ;
(k, p) |= ϕ→ ψ iff l ≥ k and(l, p) |= ϕ imply (l, p) |= ψ;
(k, p) |= ϕ@q iff q ∈ Pk and(k,q) |= ϕ;
(k, p) |= �ϕ iff l ≥ k andq ∈ Pl imply (l,q) |= ψ;
(k, p) |= ♦ϕ iff there existsq ∈ Pk such that(q, k) |= ϕ.

We pronounce(k, p) |= ϕ as(k, p) ref-forcesϕ, or (k, p) ref-satisfiesϕ. We write
k |= ϕ at p if (k, p) |= ϕ.

It is clear from the definition that ifk |= ϕ at p, thenPL(ϕ at p) ⊆ Pk. More-
over, the usual Kripke monotonicity still holds.

L 6 (K M). Let Kref = (K,≤, {Pk}k∈K , {Ik}k∈K) be a re-
fined distributed Kripke model with set of places,Pls. The relation|= preserves
the partial order onK, i.e., for eachk, l ∈ K, p ∈ Pk, andϕ ∈ Frm(Pk), if l ≥ k
then(k, p) |= ϕ implies(l, p) |= ϕ.

Proof: By induction on the structure of formulae, and is similar to the proof for
Lemma1. �

Now, we are ready to extend the definition of forcing to judgements. First,
we extend the definition to contexts.

D 10 (F  C). Let Kref = (K,≤, {Pk}k∈K , {Ik}k∈K) be a
refined distributed Kripke model. Givenk ∈ K, a finite set of pure formulaeΓ,
and a finite set of sentences∆, such thatPL(Γ; ∆) ⊆ Pk, we say thatk ref-forces
the contextΓ; ∆ (and we writek |= Γ; ∆) if

1. for everyϕ ∈ Γ and anyp ∈ Pk: (k, p) |= �ϕ;

2. for everyψ at q ∈ ∆: q ∈ Pk and(k,q) |= ψ.

Finally, we extend the definition of forcing to judgements.

D 11 (S   J). LetKref = (K,≤, {Pk}k∈K , {Ik}k∈K)
be a refined distributed Kripke model. We say that the judgementΓ; ∆ `P µ at p
is valid inKref , if

• PL(Γ) ∪ PL(∆) ∪ {p} ⊆ P;

• for everyk ∈ K such thatP ⊆ Pk, if k |= Γ; ∆ thenk |= µ at p.

Moreover we say thatΓ; ∆ `P µ at p is ref-valid(and we writeΓ; ∆ |= µ at p) if
it is valid in every refined distributed Kripke model.
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5.1 Soundness

In this section we shall prove the soundness of the extended logic in refined
distributed Kripke models. The proof of soundness will follow the proof of the
soundness in section 3.2. We start by defining thep-duplicated extension of a
refined distributed Kripke model.

P 4 (p-D E Kref 〈p,q〉). Consider a refined distribu-
ted modelKref = (K,≤, {Pk}k∈K , {Ik}k∈K), with Pls as set of places. Choose two
placesp,q such thatp ∈ Pls, andq < Pls. DefineKref 〈p,q〉 to be the quadruple
(K′,≤′, {P′k}k∈K′ , {I ′k}k∈K′), where

• K′ is K;

• ≤′ is ≤;

• P′k is Pk ∪ {q} if p ∈ Pk, andPk otherwise;

• I ′k : Atoms→ Pow(P′k) is defined as

r ∈ I ′k(A) iff
{

r ∈ Ik(A) (for r ∈ Pk);
p ∈ Ik(A) (for r = q).

ThenKref 〈p,q〉 is a refined distributed Kripke model, and is said to be ap-
duplicated extension ofK .

Proof: We just need to check that{P′k}k∈K′ and{I ′k}k∈K′ satisfy the monotonicity
conditions of Def. 8. They follow immediately from the definition ofP′k andI ′k.
�

We now show that the refinedp-duplicated extension is conservative over
all the formulae that do not mention the added place. Moreover, for all such
formulae, the new place mimics the duplicated one.

L 7 (Kref 〈p,q〉  ). Let Kref be a refined distributed Kripke
model with set of places,Pls, andKref 〈p,q〉 be its p-duplicated extension. Let
|= and |= ′ extend the interpretation of atoms inK andKref 〈p,q〉 respectively.
For everyk ∈ K and formulaϕ ∈ Frm(Pls), we have:

1. for everyr ∈ Pk, (k, r) |= ′ϕ if and only if (k, r) |= ϕ; and

2. if q ∈ P′k, then(k,q) |= ′ϕ if and only if (k, p) |= ϕ.

Proof: The proof is similar to the proof of Lemma 2 and we prove both properties
simultaneously by induction on the structure of formulae inFrm(Pls).

Base case.The two properties are easily verified on atoms and on> by the
definition of p-duplicated extension.

Inductive hypothesis.We consider a formulaϕ ∈ Frm(Pls) and assume that
the two properties hold for every sub-formula ofϕ. In particular, we assume that
if ϕi is a subformula ofϕ thenfor everyk ∈ K:
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1. if r ∈ Pk, then(k, r) |= ′ϕi if and only if(k, r) |= ϕi ; and

2. if q ∈ P′k, then(k,q) |= ′ϕi if and only if(k, p) |= ϕi .

The inductive cases for the connectives and modality @ have the same treatment
as in Lemma 2. Here we show the most interesting cases,� and♦, by considering
only property1. The treatment of property2 is analogous. Pickk ∈ K andr ∈ Pk,
and fix them.

Caseϕ = ♦ϕ1. Suppose (k, r) |= ′♦ϕ1, then there is somes ∈ P′k such that
(k, s) |=ϕ1. In the cases ∈ Pk we use induction to obtain (k, s) |= ϕ1 and therefore
(k, r) |= ♦ϕ1. In the cases = q we use induction to obtain (k, p) |= ϕ1 and
therefore (k, r) |= ♦ϕ1. Vice versa, if (k, r) |= ♦ϕ1 then there existss ∈ Pk such
that (k, s) |= ϕ1. Hence (k, s) |= ′ϕ1 by induction and we conclude (k, r) |= ′♦ϕ1.

Caseϕ = �ϕ1. Suppose that (k, r) |= ′�ϕ1. This means that (l, s) |= ′ϕ1 for
everyl ≥ k and everys ∈ P′l . SinceP′l containsPl , we obtain (l, s) |=′ϕ1 for every
l ≥ k and everys ∈ Pl . Hence, by induction (l, s) |= ϕ1 for everyl ≥ k and every
s ∈ Pl , and we conclude that (k, r) |= �ϕ1.

Vice versa if (k, r) |= �ϕ1 then (l, s) |= ϕ1 for everyl ≥ k and everys ∈ Pl .
By inductive hypothesis, we get that for everyl ≥ k ands ∈ Pl , (l, s) |= ′ϕ1. If
q < Pk′l for all l ≥ k, thenPl = P′l . In this case we conclude that (k, r) |= ′�ϕ.
On the other hand, ifq ∈ P′l for somel ≥ k, then it means thatp ∈ Pl and hence
(l, p) |= ϕ1. By induction (see property 2 of the proposition) (l,q) |= ′ϕ1, and we
conclude (k, r) |= ′�ϕ1. �

We now show that by renaming a place in a Kripke model, we do not change
the set of valid formulae as long as the formulae do not mention renamed place
or the fresh name.

P 5 (p-R Kref 〈q/p〉). Let Kref = (K,≤, {Pk}k∈K , {Ik}k∈K) be a
refined distributed Kripke model with set of placesPls. For a placeq < Kref ,
defineKref 〈q/p〉 = (K′,≤, {P′k}k∈K′ , {I ′k}k∈K′) where

• K′ is K;

• ≤′ is ≤;

• P′k is (Pk \ {p}) ∪ {q} if p ∈ Pk, andPk otherwise;

• I ′k : Atoms→ Pow(P′k) is defined1 as

r ∈ I ′k(A) iff
{

r ∈ Ik(A) (if r ∈ Pk);
p ∈ Ik(A) (if r = q).

Kref 〈q/p〉 is a refined distributed Kripke model, and is said to be ap-renaming
of Kref .

1Note that it cannot be the case thatr = p, sincep < P′k.
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Proof: As for Proposition 4, we just need to check that{P′k}k∈K′ and {I ′k}k∈K′
satisfy the monotonicity conditions. They follow immediately by definition.�

L 8 (Kref 〈q/p〉  ). LetKref = (K,≤, {Pk}k∈K , {Ik}k∈K) be a re-
fined distributed Kripke model onKref 〈q/p〉 be its p-renaming. Let|= and |=′
extend the interpretation of atoms inKref andKref 〈q/p〉 respectively. For every
k ∈ K, formulaϕ ∈ Frm(Pls), andr ∈ Pkk we have:

1. if r , p, then(k, r) |= ϕ if and only(k, r) |= ′ϕ ; and

2. if r = p, then(k, p) |= ϕ if and only if (k,q) |= ′ϕ.

Proof: The proof is by induction on the structure of formulae inFrm(Pls), and
is similar to the proof for Lemma 7. �

We are now ready to prove that the semantics is sound for the judgements
of the logic. We need to show that if a judgement is provable in the extended
natural deduction system, then it is also valid with respect to refined distributed
Kripke models.

T 3 (S). If Γ; ∆ `P µ at p is derivable in the logic, then it is
ref-valid.

Proof: The proof is by induction on the numbern of inference rules used in the
derivation of the judgement ofΓ; ∆ `P µ at p. The proof is similar to the proof
of Theorem 1.

Base case(n = 1). If the derivation consists of either the axiomL, or the
axiomG, or rule>I we use the same argument as in the proof of Theorem 1.
The case⊥E follows by definition of the forcing relation.

Inductive hypothesis(n > 1). We assume that the theorem holds for any
judgment that is deducible by applying less thann instances of inference rules.
We consider a judgmentΓ; ∆ `P µ at p which is derivable in the logic by using
exactlyn instances of inference rules.

We fix a modelKref = (K,≤, {Pk}k∈K , {Ik}k∈K) with set of placesPls such
that P ⊆ Pls, and let|= be the extension ofIk. Let k ∈ K be an arbitrary state
such thatk |= Γ; ∆. Fix k. We need to show (k, p) |= µ. For this we consider
the last inference rule used to obtainΓ; ∆ `P µ at p and proceed by cases. The
treatment of logical connectives is standard. The modalities @ and♦ are teated
as in Theorem 1. If the last inference rule used is�E, then the result follows
from a simple application of the definition. The most interesting case is when�I
is the last inference used, and we discuss this case below.

Case�I . It must be case thatµ is of the form�ϕ. MoreoverΓ; ∆ `P+q ϕ at q
for someq < P by usingn−1 instances of the rules, andPL(Γ; ∆)∪PL(ϕ) ⊆ P. By
induction we know thatΓ; ∆ `P+q ϕ at q is ref-valid. Without loss of generality,
we can assume thatq < Pls (otherwise, we can renameq in Pls, using Lemma 8).
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We prove thatk |= �ϕ at p. The semantics of� says that we need to show
thatl |= ϕ at r, for all l ≥ k andr ∈ Pl . Fix onel ≥ k and oner ∈ Pl , and consider
the refinedr-duplicated extensionKref 〈r,q〉. Kref 〈r,q〉 is a refined distributed
Kripke model with set of places,Pls∪ {q}. Let |= ′ be the forcing relation on
Kref 〈r,q〉.

From the hypothesisk |= Γ; ∆ and by Kripke monotonicity (Lemma 6) we get
l |= Γ; ∆. Therefore, sinceKref 〈r,q〉 is ar-duplicated extension, we getl |= ′Γ; ∆

by using Lemma 7. Now, sinceP+q ⊆ Pls∪{q} we can use inductive hypothesis
onKref 〈r,q〉 to obtaink |= ′ϕ at q. Using Lemma 7 once again, we conclude that
l |= ϕ at r. Sincel andr are arbitrary, we conclude thatk |= �ϕ at p. �

5.2 Completeness

In this section, we will show that the refined semantics is complete for the natural
deduction presented in Section 4. The proof will follow the standard proofs of
completeness for intuitionistic modal logic [18]. In the proof, we construct a
canonical model. If a judgement is not provable, then it will be invalidated in
one of the Kripke states of the canonical model.

Please note that the notion of provability can be extended on possible non-
finite setsΣ of sentences, as in Section 3.3. We say thatΓ; Σ `P ϕ at p, if and
only if, there exists a finite subset∆ ⊆ Σ such thatΓ; ∆ `P ϕ at p. Also, note that
Proposition 3 stated in Section 3.3 can be extended to the logic with disjunctive
connectives. The canonical model is defined by considering a particular kind of
set of sentences.

D 12 (R P S). Let P be a set of places andΓ be a set of
pure formulae inFrm(P). A (possibly non-finite) setΣ of sentences withPL(Σ) ⊆
P, is said to be(Γ,P)-refined primeif it satisfies the following four properties.

1. If Γ; Σ `P ϕ at p thenϕ at p ∈ Σ (Deductive Closure).

2. Γ; Σ 0P ⊥ at p for any p ∈ P (Consistency).

3. If Γ; Σ `P ϕ ∨ ψ at p then eitherϕ at p ∈ Σ or ψ at p ∈ Σ (Disjunction
Property).

4. If Γ; Σ `P ♦ϕ at p then there existsq ∈ P such thatϕ at q ∈ Σ (Diamond
Property).

As in [18, 2] we first show that every set of sentences can be extended to a
prime set, that respects the non-provability with respect to a particular sentence.

L 9 (R P E). Let P be a set of places andΓ be a finite
set of pure formulae inFrm(P). Let ϕ be a pure formula,p be a place, and∆ be
a set of sentences such that

• PL(ϕ at p) ∪ PL(∆) ⊆ P, and
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• Γ; ∆ 0P ϕ at p.

Then there is a set of placesP′ extendingP and a(Γ,P′)- refined prime set of
sentencesΣ containing∆, such thatΓ; Σ 0P′ ϕ at p.

Proof: We enrich the set of places by introducing a denumerable set of new
places:q1,q2, . . .. They will be the witnesses for the formulae♦ϕ and are intro-
duced in order to satisfy the diamond property.

The set of placesP′ is obtained by a series of extensionsP = P0 ⊆ P1 ⊆
P2 . . .. Before we proceed with the construction, we pick up an enumeration of
the pure formulaeFrm(P′) and fix it. The setΣ is obtained by series of extensions
∆ = Σ0 ⊆ Σ1 ⊆ Σ2 . . . that verify the following:

Property 2. For everyn ≥ 0:

1. PL(Σn) ⊆ Pn;

2. Γ; Σn 0
Pn ϕ at p.

The series is constructed inductively. In the induction, at an odd step we will
create a witness for a formula of the type♦ψ. At an even step we deal with
disjunction property. We shall also construct two sets:

• treated♦n, that will be the set of the formulae♦ϕ for which we have already
created a witness.

• treated∨n , that will be the set of the formulaeϕ ∨ ψ at p which satisfy the
disjunction property.

We starttreated♦0 = ∅, treated∨0 = ∅, P0 = P andΣ0 = ∆. It is clear that
PL(Σ0) ⊆ P0, andΓ; Σ0 0

P0 ϕ at p.
Then we proceed inductively, and assume thatPn,Σn (n ≥ 0) have been

constructed satisfying Property 2. In stepn + 1, we consider two cases:

1. If n + 1 is odd, pick the first formulaψ1 ∨ ψ2 in the enumeration such that

• ψ1 ∨ ψ2 is in Frm(Pn), i.e., all the places inψ1 ∨ ψ2 are taken fromPn;

• Γ; Σn `Pn ψ1 ∨ ψ2 at q, for someq ∈ Pn;

• ψ1 ∨ ψ2 at q < treated∨n .

Please note that if bothΓ; Σn, ψ1 at q `Pn ϕ at p andΓ; Σn, ψ2 at q `Pn ϕ at p,
then we can deduceΓ; Σn `Pn ϕ at p. However, we have thatΣn,Pn satisfy
Property 2. Hence, it must be the case that eitherΓ; Σn, ψ1 at q 0Pn ϕ at p, or
Γ; Σn, ψ2 at q 0Pn ϕ at p.

We defineΣn+1 = Σn ∪ {ψ1 at q} if Γ; Σn, ψ1 at q 0Pn ϕ at p, andΣn+1 =

Σn ∪ {ψ2 at q} otherwise. We definePn+1 = Pn. We get by construction that
Pn+1,Σn+1 satisfy Property 2. Finally, we lettreated∨n+1 = treated∨n ∪ {ψ1 ∨
ψ2 at q} andtreated♦n+1 = treated♦n.
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2. If n + 1 is even, pick the first formula♦ψ in the enumeration such that

• ♦ψ is in Frm(Pn), i.e., all the places in♦ψ are taken fromPn;

• Γ; Σn `Pn ♦ψ at q, for someq ∈ Pn;

• ♦ψ < treated♦n.

Let Pn+1 = Pn + q(n+1)/2, Σn+1 = Σn ∪ {ψ at q(n+1)/2}, treatedn+1 = treatedn ∪
{♦ψ} andtreated∨n+1 = treated∨n . We claim thatΓ; Σn+1 0

Pn+1 ϕ at p.
If Γ; Σn+1 `Pn+1 ϕ at p, then Γ; Σ, ψ at q(n+1)/2 `P+q(n+1)/2 ϕ at p. Since

Γ; Σn `Pn ♦ψ at q, we getΓ; Σn `Pn ϕ at p by the inference rule♦E. This
contradicts the hypothesis onPn,Σn. HenceΓ; Σn+1 0

Pn+1 ϕ at p.

Therefore, we get by construction thatPn,Σn satisfy Property 2. We define
P′ =

⋃
n≥0 Pn, andΣ =

⋃
n≥0 Σn. ClearlyP ⊆ P′, and∆ ⊆ Σ. Moreover, using

Property 2, we can easily show thatΓ; Σ 0P′ ϕ at p. Finally, we show thatΣ is a
(Γ,P′)-refined prime set.

1. (Disjunction Property) IfΓ; Σ `P′ ψ1 ∨ ψ2 at q, then letn be the least num-
ber such thatΓ; Σn `Pn ψ1 ∨ ψ2 at q. Clearly,ψ1 ∨ ψ2 at q < treated∨n , and
Γ; Σm `Pm ψ1 ∨ ψ2 at q for everym ≥ n. Eventuallyψ1 ∨ ψ2 at q has to be
treated at some stageh ≥ n. Hence, eitherψ1 at q ∈ Σh+1 or ψ2 at q ∈ Σh+1.
Therefore,ψ1 at q ∈ Σ or ψ2 at q ∈ Σ.

2. (Diamond Property) IfΓ; Σ `P′ ♦ψ at q, then letn be the least number such
that Γ; Σn `Pn ♦ψ at q. As in the previous case, we assert that♦ψ at q is
treated for some even numberh ≥ n. We getψ at qh/2 ∈ Σ by construction.

3. (Deductive Closure) IfΣ Γ; Σ `P′ ψ at q, thenΓ; Σ `P′ ψ ∨ ψ at q. The first
case then gives us thatψ at q ∈ Σ.

4. (Consistency) IfΣ; Γ `P′ ⊥ at q, thenΣ; Γ `P′ ϕ@p at q by the inference rule
⊥E. Therefore,Γ; Σ `P′ ϕ at p by @E, which contradicts our construction.
Hence,Σ; Γ 0P′ ⊥ at q.

We conclude thatΣ is a (Γ,P′)- refined prime extending∆ such thatΓ; Σ 0P′

ϕ at p. �

Now, we define the refined canonical model. In the refined canonical model,
Kripke states are prime sets of sentences.

D 13 (R C M). Given a finite setΓ of pure formu-
lae, we define theΓ-refined canonical modelto be the quadrupleMΓRef = (M,≤
, {Pl}l∈M , {I l}l∈M), where:

- M is set of all pairs(Σ,P) such thatP is a set of places, andΣ is a (Γ,P)-
refined prime set.
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- (Σ1,P1) ≤ (Σ2,P2) if and only if Σ1 ⊆ Σ2 andP1 ⊆ P2.

- P(Σ,P)
def
= P.

- I(Σ,P) : Atoms−→ Pow(P(Σ,P)) is defined by:p ∈ I(Σ,P)(A) iff A at p ∈ Σ.

We now show that in the canonical model a sentence is forced by a Kripke
state (Γ,Σ) if and only if it is contained inΣ.

L 10 (R C E). Let Γ be a finite set of pure formu-
lae.

1. The Γ-refined canonical modelMΓRef = (M,≤, {Pl}l∈M , {I l}l∈M) is a refined
distributed Kripke model.

2. Let Plsbe the set of places ofMΓRef, and|= be the forcing relation inMΓRef.
For every(Σ,P) ∈ MΓRef, every formulaϕ ∈ Frm(Pls), and every place
p ∈ Pls, (Σ,P) |= ϕ at p if and only if ϕ at p ∈ Σ.

Proof: Clearly all the properties required for a refined distributed Kripke model
are verified. All we have to prove is the part2 of the proposition. The proof
is standard, and we proceed by induction on the structure of the formulaϕ ∈
Frm(Pls). Here, we just illustrate the inductive case in whichϕ is �ϕ1. In the
inductive hypothesis, we assume that part2 is valid on all subformulae ofϕ.

Case�ϕ1. Assume that (Σ,P) |= �ϕ1 at p. By definition, this means that
for every (Σ′,P′) greater than (Σ,P) and for everyr ∈ P′, it is the case that
(Σ′,P′) |= ϕ at r (and thereforeϕ at r ∈ Σ′ by inductive hypothesis).

Chose a new placeq < P. We claim thatΓ; Σ `P+q ϕ1 at q. SupposeΓ; Σ 0P+q

ϕ1 at q. Then by Lemma 4, there is a set of placesQ extendingP + q and a
(Γ,Q)-refined prime setΣ′ extendingΣ such thatΓ; Σ′ 0Q ϕ1 at q. That means
ϕ1 at p < Σ′. Since (Σ′,Q) is greater than (Σ,P), we obtain a contradiction.
Therefore we conclude thatΓ; Σ `P+q ϕ2 at q.

Using the inference rule�I , we getΓ; Σ `P �ϕ1p. SinceΣ is a (Γ,P)-prime
set, we get that means�ϕ1 at p ∈ Σ.

Vice-versa, let�ϕ1 at p ∈ Σ. Pick (Σ′,Q) greater than (Σ,P). We need to
show (Σ′,Q) |= �ϕ1 at p. We have thatΣ ⊆ Σ′, and therefore�ϕ1 at p ∈ Σ′. We
can apply�E to prove thatΓ,Σ′ `Q ϕ at q for everyq ∈ Q. By definition of the
canonical model,Σ′ is (Γ,Q)-prime set. Therefore, we obtainϕ1 at q ∈ Σ′ for
everyq ∈ Q. Hence by inductive hypothesis, (Σ′,Q) |= ϕ1 at q for everyq ∈ Q.
SinceP ⊆ Q, we get (Σ′,Q) |= �ϕ1 at p. �

We are now ready to prove completeness.

T 4 (R C). Γ; ∆ |= Pϕ at p =⇒ Γ; ∆ `P ϕ at p

Proof: Assume thatΓ; ∆ |= Pϕ at p =⇒ Γ; ∆ `P ϕ at p. We have:
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1. PL(Γ) ∪ PL(∆) ∪ {p} ⊆ P.

2. If Kref = (K,≤, {Pk}k∈K , {Ik}k∈K) is a refined distributed Kripke model, then
for everyk ∈ K such thatP ⊆ Pk, k |= ϕ at p wheneverk |= Γ; ∆.

We need to show thatΓ; ∆ `P ϕ at p.
Assume thatΓ; ∆ 0P ϕ at p. Then by Lemma 9, there is a set of places

P′ ⊇ P, and a (Γ,P′)-refined prime set of sentencesΣ containing∆ such that
Γ; Σ 0P′ ϕ at p. We getϕ at p < Σ.

Now consider theΓ-canonical modelMΓRef, and let|= be the forcing relation
inMΓRef. Consider the Kripke state (Σ,P′). ∆ is contained inΣ, and therefore
(Σ,P′) |= Γ; ∆ by Lemma10. By our assumption, we get (Σ,P′) |= ϕ at p. By
Lemma 10, we getϕ at p ∈ Σ. We have just reach a contradiction. Therefore, we
can conclude thatΓ; ∆ `P ϕ at p. �

6 Related Work

The logic studied in Section 2 was introduced in [9, 10], where it was used as
the foundation of a type system for a distributedλ-calculus in thepropositions-
as-typesparadigm. Although the authors of [9, 10] do discuss how the logic
could be useful in distribution of resources, they have no corresponding model.
The proof terms corresponding to modalities have computational interpretation
in terms of remote procedure calls (@p), commands to broadcast computations
to all nodes (�), and commands to use portable code (♦). In [9], the authors also
introduce a sequent calculus for the logic and prove that it enjoys cut elimination.

From a logical point of view, this logic can be viewed as a hybrid modal logic
[16, 1]. A hybrid logic internalises the model in the logic by using modalities
built from pure names [16, 1]. In [9, 10], the modality @p gives the logic a
hybrid flavour. Work on hybrid logics has been usually carried out in a classi-
cal setting, see the hybrid logics web page (http://hylo.loria.fr/). More
recently, a first intuitionistic version of hybrid logics were investigated in [2].

There are several intuitionistic modal logics in the literature, and [18] is a
good source on them. The modalities in [18] have a temporal flavour, and the
spatial interpretation was not recognised then. There are no places in the Kripke
states, and there is an accessibility relation on states that expresses the next step
of a computation.

The work in [2] introduces the first intuitionistic version of hybrid logics. It
investigates how to add names in constructive logics resulting in hybrid versions.
A modal logic is hybridised by adding a new kind of propositional symbols:
nominals. The nominals are the names in the logic. The authors extend the modal
system of [18] by introducing nominals. They give a natural deduction system
and a Kripke semantics for this logic. They prove soundness and completeness
for the semantics, and also give a normalisation result for the natural deduction.
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The extension given in Section 4 is a hybrid version of the intuitionistic
modal systemIS5[18]. In the modal systemIS5, the accessibility relation among
places is total. Hence, the logic in Section 4 can be seen as an instance of the
hybrid modal logic in [2]. The only difference is that names in our logic only
occur in the modality @p. In [2], names also occur as propositions.

Other work on logics in resources can be related to the separation logics [17],
or the logic of bunched implications [15]. In [15], the authors give a Kripke
model founded on a monoidal structure. In the logic, the formulae are the re-
sources, and are interpreted as elements of the monoid. The focus of this work is
the sharing of resources and not their distribution. There is no notion of places,
and the logic has no modalities.

In the classical setting, there are also a number of logics used to study spatial
properties. In [4, 3], for example, the authors use process calculi as their mod-
els. They have a classical modal logic to study spatial, temporal and security
properties of the processes.

7 Conclusions and Future Work

We study the hybrid modal logic presented in [9, 10]. Formulae in the logic con-
tain names, also called places. The logic may be used to reason about placement
of resources in a distributed system. An intuitionistic natural deduction for this
logic is presented in [10], and judgements mention the places under considera-
tion.

We interpret the judgements in the logic in Kripke-style models [12]. Typi-
cally Kripke models [12] consists of partially ordered Kripke states. In our case
the models are obtained from the Kripke models by adding a fixed set of places
to each possible Kripke state. In each Kripke state, different places may satisfy
different formulae. The satisfaction of atoms corresponds to placement of re-
sources. The modalities of the logic allow formulae to be satisfied in a named
place (@p), some place (♦) and every place (�). We show that the interpretation
of judgments in these models is both sound and complete.

We add disjunctive connectives to the modal logic in [9, 10], and refine our
semantics to obtain soundness and completeness results. In the new Kripke mod-
els, larger Kripke states may contain bigger set of places. The refined semantics
can be seen as an instance of hybridIS5[2, 18].

As future work, we are currently investigating decidability of the extended
logic. The intuitionistic modal systems in [18] are decidable. In order to prove
decidability of those systems, [18] usesbirelational models. These models are
sound and complete, and enjoy finite model property: if a judgement is not valid
in the logic, then there is a finite birelational model which invalidates the judge-
ment. The finite model property is not enjoyed by the Kripke models in [18]. We
are investigating if we can adapts the proofs in [18].
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We are also considering other extensions of the logic. A major limitation of
the logic presented in [10] is that if a formulaϕ is validated at some named place,
sayp, then the formulaϕ@p can be inferred at every other place. Similarly if♦ϕ
or �ϕ can be inferred at one place, then they can be inferred at any other place.
In a large distributed system, we may want to restrict the rights of accessing
information in a place. This can be done by adding an accessibility relation as
in [18, 2]. We are currently investigating the computational interpretation of
this extended logic. This would result in an extension ofλ-calculus presented in
[9, 10].
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