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Abstract. There exists a KZ-doctrine on the 2-category of the locally small
categories whose algebras are exactly the categories which admits all the
colimits indexed by ω-chains. The paper presents a wide survey of this
topic. In addition, we show that this chain cocompletion KZ-doctrine
lifts smoothly to KZ-doctrines on (many variations of) the 2-categories
of monoidal and symmetric monoidal categories, thus yielding a universal
construction of colimits of ω-chains in those categories. Since the pro-
cesses of Petri nets may be axiomatized in terms of symmetric monoidal
categories this result provides a universal construction of the algebra of
infinite processes of a Petri net.

Introduction

The idea of completing a mathematical stucture by adding to it some desirable
limit ‘points’ is indeed a very natural one and it arises in many different fields of
mathematics, particularly in topology and partial order theory. Since categories
are a generalization of the notion of partial orders, the issue of completing cate-
gories for a given class of limits or colimits arose rather early in the development
of the theory (see [21] and references therein).

As far as computer science is concerned, the theory of complete partial orders
and the associated completion techniques have assumed great relevance since the
pioneering work on semantics by Scott [33]. In the last few years, however, many
computing systems have been given a semantics through the medium of category
theory, the general pattern being to look at objects as representing states and at
arrows as representing computations. It is therefore natural to expect that the
theory of cocompletion of categories may play an interesting role in this kind of
semantics. The main purpose of this paper is to illustrate how this theory fits
well with the issue of infinite computations and, therefore, to make it more easily
available to the computer science community. In a sense, by viewing categories as
generalized posets, this view of infinite computations is very natural and indeed
generalizes to categories similar constructions for adding limits to posets [28].
We motivate this further in terms of processes of Petri nets in Section 1.

* Supported by EU Human Capital and Mobility grant ERBCHBGCT920005.
** Supported by Office of Naval Research Contract N00014-92-C-0518, National Science Foun-
dation Grant CCR-9224005, and by the Information Technology Promotion Agency, Japan, as a
part of the R&D of Basic Technology for Future Industries ‘New Models for Software Architec-
ture’ sponsored by NEDO (New Energy and Industrial Technology Development Organization).
*** Partially supported by the EU SCIENCE Programme, Project MASK, and by the Italian
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Petri nets [31] are probably the most clear examplification of the categorical
semantics pattern discussed above. They are unanimously considered among
the most representative models for concurrency, since they are a fairly simple
and natural model of concurrent and distributed computation. Notwithstanding
their ‘naturality’—perhaps because of that—Petri nets are, in our opinion, still
far from being completely understood. In recent works, Degano, Meseguer and
Montanari [30, 5] have shown that the semantics of Petri nets can be understood
in terms of symmetric monoidal categories—where objects are states, arrows
processes, and the tensor product and the arrow composition model respectively
the operations of parallel and sequential composition of processes. This yields an
axiomatization of the causal behaviour of nets as an essentially algebraic theory .

However, when modeling perpetual systems, describing finite processes is not
enough: we need to consider also infinite behaviours. Actually, infinite computa-
tions of Petri nets have occasionally been considered in connection with acceptors
of ω-languages (see [14] and references therein). These approaches, of course,
focus just on sequential computations and treat nets simply as generalized au-
tomata. Our interest, instead, resides on processes, i.e., on structures able to
describe concurrent computations more intensionally, taking into account causal-
ity. More precisely, we aim at defining an algebra of net computations which
includes infinite processes as well. To the best of our knowledge, this issue is
still completely unexplored.

In order to fulfill our programme, we first address the general issue of com-
pletion of categories by colimits of ω-chains. Since ω-chain cocompleteness co-
incides with the completeness by colimits taken over countable filtered index
categories and for technical reasons countable filtered colimits are also needed,
we present the theory of cocompletion of categories by such kind of colimits.
More precisely, for CAT the 2-category of locally small categories, we define a
Kock-Zöberlain (KZ-)doctrine [20, 35] Indω( ):CAT → CAT which associates to
each locally small category its completion by countable filtered colimits, or its
ω-ind-completion (ind standing for inductive), and such that the countable fil-
tered cocomplete categories with functors preserving countable filtered colimits
are exactly the algebras for the doctrine.1 Although related results have already
appeared in several different forms in the literature, e.g. [13, 20, 35, 15], the pre-
sentation here is a rather complete survey which integrates the best features of
the existing approaches and explores the application of these ideas to computer
science.

Then, we show that the completion doctrine, when applied to a symmet-
ric monoidal category, yields a symmetric monoidal category. More precisely,
we show that the KZ-doctrine Indω( ) lifts to a KZ-doctrine on any of the 2-
categories of monoidal categories appearing in Table 1, which, from the technical
point of view, is the main result of paper.

Finally, we discuss how this result generalizes the algebraic approach to the

1 We mention that, for any infinite cardinal ℵ (respectively with no cardinality restrictions),
there exists a similar KZ-doctrine of completion by colimits taken over filtered categories (or
equivalently over chains) of cardinality ℵ (respectively of arbitrary cardinality). The details
can be found, e.g., in [32].
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small locally small
monoidal strict monoidal monoidal strict monoidal

S
T
R
I
C
T

non
symmetric

MonCat sMonCat MonCAT sMonCAT

symmetric
SMonCat SsMonCat SMonCAT SsMonCAT

strictly
symmetric

sSMonCat sSsMonCat sSMonCAT sSsMonCAT

S
T
R
O
N
G

non
symmetric

MonCat? sMonCat? MonCAT? sMonCAT?

symmetric
SMonCat? SsMonCat? SMonCAT? SsMonCAT?

strictly
symmetric

sSMonCat? sSsMonCat? sSMonCAT? sSsMonCAT?

M
O
N
O
I
D
A
L

non
symmetric

MonCat?? sMonCat?? MonCAT?? sMonCAT??

symmetric
SMonCat?? SsMonCat?? SMonCAT?? SsMonCAT??

strictly
symmetric

sSMonCat?? sSsMonCat?? sSMonCAT?? sSsMonCAT??

Legenda: The data in the definition of monoidal categories and functors (see Sec-
tion 5 for the relevant definitions) give rise to many combinations according to
whether the monoidality and the symmetry are strict or not and so on. To fix
notation, we propose the nomenclature above. The idea is that, since we consider
the categories with strict monoidal functors as the ‘normal’ categories, we explicitly
indicate with simple and double superscripted ?’s the categories with, respectively,
strong monoidal functors and simply monoidal functors. This is indicated by the
leftmost column in the table. Clearly, the categories of symmetric monoidal cate-
gories consists always of symmetric monoidal functors. Moreover, sS means strictly
symmetric while sMon means monoidal strict. We distinguish between categories
of locally small and of small categories by using uppercase letters in the first case.
Of course, there is an analogous table for the categories above considered as one-
dimensional categories. As usual, we use a single underline in order to distinguish
the two situations.

Table 1: A nomenclature for categories of monoidal categories
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process semantics of Petri nets given in [30, 5] to the case in which infinite pro-
cesses and composition operations on them are considered. In particular, the
infinite processes of a Petri net can in this way be given an algebraic presenta-
tion which combines the essentially algebraic presentation of monoidal categories
with the monadic presentation of their completion in terms of KZ-doctrines.
However, the correspondence between infinite net processes obtained via the co-
completion doctrine and the algebraic theory of net processes is not as ‘precise’
as one would like. In fact, in addition to the symmetric monoidality, the cate-
gories of processes of Petri nets satisfy further axioms which are, in general, not
preserved by Indω( ). Therefore, although the arrows of the cocomplete cate-
gory correspond precisely to infinite computations, they do not enjoy the global
structural properties of finite net processes, i.e., Indω( ) does not restrict to an
endofunctor on the category of categories of net processes. It is still an open
problem whether a more satisfactory solution to this problem can be found.

Concerning the organization of this paper, in Section 2 we briefly recall that
the category SetCop

of all presheaves on C may be considered as the ‘free’ co-
completion of C under all small colimits. This suggests immediately a strategy
for identifying the cocompletion of C for countable filtered colimits, i.e., to look
for (a suitable representation of) an appropriate subcategory of SetCop

. In Sec-
tion 3 we recall that countable filtered cocompletion and ω-chain cocompletion
are equivalent notions. Then Section 4 gives the functors Indω( ) bulding on
the theory of KZ-doctrines, whose basic definition and results are summarized
in Appendix A. Getting back to our original motivation, namely the process
semantics of Petri nets, in Section 5 we study the extension of this inductive
completion functor to monoidal categories, and in Section 6 we bring back these
results to Petri nets.

Acknowledgements. We thank Andrea Corradini, Anders Kock, Narciso Mart́ı-Oliet
and Pino Rosolini for useful suggestions.

1 Motivations from Net Theory

In order to appreciate the discussion in this section, it is not necessary to know
in detail what Petri nets are. Indeed, the relevant facts are, as already stressed
in the introduction, that we have a category C whose objects represent the states
and whose arrows represent the finite processes of a computational device, say
a net N . To make the situation more interesting, we assume that, in addition,
there is a notion of parallel composition of transitions, expressed by the fact that
C is a monoidal category.

Building on such a formalization of its processes, it looks conceptually very
simple to describe the infinite computations of N . In fact, since arrows in the
category C are finite processes, and since we understand infinite computations
as ‘limits’ of countable sequences of finite processes, we can think of them as
sequences of arrows in C, i.e., C-valued, ω-shaped diagrams

c0
f0−→ c1

f1−→ · · · fn−1−→ cn
fn−→ cn+1

fn+1−→ · · ·
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which are exactly the functors from the partial ordered category ω = {0 < 1 <
2 < 3 < · · ·} to C.

However, this is only part of the story, actually the easiest. First of all, we are
not interested in a set-theoretic treatment of infinite processes, but rather in their
categorical description. In other terms, we aim at extending our category C to
a larger category whose objects represent states and whose arrows represent the
processes of N , including the infinite ones. Secondly, but not less importantly,
we want to preserve for infinite computations the view already available for
categories of finite net computations as models of (essentially) algebraic theories.

Changing the viewpoint, one may look at an ω-diagram F in C as a ‘formal
state’, rather than as a computation, namely the state reached by (the compu-
tation represented by) F . Then, a tentative solution which immediately arises
is provided by Cω, the category of functors from ω to C and natural transfor-
mations. The tensor product ⊗ on C is easily lifted to Cω by defining

(F, F ′) � //

(σ,σ′)

��

⊗ ◦ 〈F, F ′〉

σ⊗̃σ′

��
(G,G′) � // ⊗ ◦ 〈G,G′〉

CωCω × Cω
⊗̃ //

where 〈 , 〉 is the pairing of functors induced by the product C × C and ⊗̃
acts on the natural transformations σ and σ′ componentwise. The tensor ⊗̃ is
exemplified in the diagram below.

c0 ⊗ c′0
f0⊗f ′0 //

σ0⊗σ′0
��

c1 ⊗ c′1
f1⊗f ′1 //

σ1⊗σ′1
��

c2 ⊗ c′2
f2⊗f ′2//

σ2⊗σ′2
��

c3 ⊗ c′3 · · ·

σ3⊗σ′3
��

d0 ⊗ d′0
g0⊗g′0

// d1 ⊗ d′1
g1⊗g′1

// d2 ⊗ d′2
g2⊗g′2

// d3 ⊗ d′3 · · ·

However, it is easily realized that the functor category Cω is quite removed from
the category we are looking for. For example, for any non-identity arrow f in C,
there are infinitely many F ∈ Cω such that F (j < j + 1) = f , for some j ∈ ω,
while for any i 6= j, F (i < i+ 1) is an identity arrow. Although in our intended
interpretation all these functors clearly represent the same computation, viz. f ,
they are distinct in Cω and, even worse, they are not necessarily isomorphic to
each other, which is the very least one would desire. Of course, a way out of
this problem could be to construct a suitable quotient of Cω, or, more in the
spirit of category theory, to make some appropriate arrows be isomorphisms;
otherwise said, the notion of morphism for the category we search for is not at
all self-evident.

Another conceptual approach to the issue of infinite computations which lies
fully in the categorical framework is to exploit the notion of colimit. Suppose
that we can ‘complete’ C by adding suitable objects and arrows so that we can
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ensure that every ω-diagram in the completed category has a colimit. Then, in
particular, for every sequence c0

f0−→ c1
f1−→ · · · of processes of N , we have a

unique (up to isomorphism) object c and a cocone

c0
f0 //

λ0
((QQQQQQQQQQQQQQQ c1

f1 //

λ1

!!B
BB

BB
BB

B c2
f2 //

λ2

��

c3
f3 //

λ3

}}||
||

||
||

c4 · · ·
λ4

vvlllllllllllllll

c

where, by definition, fi;λi+1 = λi for any i ∈ ω, with ; denoting the sequential
composition of processes, i.e., the composition in C. Then, it follows immediately
that the arrow λ0: c0 → c represents the infinite computation c0

f0−→ c1
f1−→ · · ·.

In the following, we shall give (some different representations of) the ‘free’
(in a lax sense to be explained later) completion of C by ω-chains. Moreover,
Section 5 will clarify how the two, seemingly different, approaches discussed in
this section can be reconciled. Although we shall not achieve a representation of
the category of infinite computations of N (or equivalently a free cocompletion
of C) where ‘just the needed points’ and ‘nothing else’ is added, nevertheless,
all the desired infinite computations will be represented faithfully, and all the
computations which are ‘intuitively’ the same will have isomorphic colimits in
the completed category. Also, C will be embedded (fully and faithfully) by means
of a strict monoidal functor in it.
Remark. Concerning foundational issues, we assume as usual the existence of a fixed
universe U of small sets upon which small and locally small categories are built [24]. A
category is small if the collection of all its arrows form a small set, i.e., it belongs to U;
it is locally small if the collection of arrows between any two objects of the category is
a small set.

Notation. In the following, Set, Cat and CAT are, respectively, the category of small
sets and functions, the category of small categories and functors and the category of
locally small categories and functors. Concerning notation, we shall use a double under-
lying to denote a 2-category. Thus, Cat and CAT are the 2-categories corresponding to
Cat and CAT . Apart from the large categories above, and unless differently specified,
in the following C stands for a generic locally small category. We denote indifferently
by juxtaposition (from right to left) and by ◦ the composition of functors, while
the composition of arrows is always written as ◦ , except in the categories of net
processes where, in order to emphasize the fact that it represents sequentialization, we
write composition as ; and we use the (left to right) diagrammatic order. We tend
to avoid parentheses around the arguments of functors. Finally, we shall preferably
denote homsets in C by HomC(a, b). However, since this notation can easily become
heavy, we shall occasionally write C[a, b].

2 Presheaf Categories as Free Cocompletions

Given a locally small C, a presheaf on C is a contravariant functor P :Cop →
Set. The (not necessarily locally small) category SetCop

is the category of all
presheaves on C. We remind the reader that C is embedded fully and faithfully
in SetCop

via the Yoneda embedding Y defined as follow. To any c ∈ C we
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associate the presheaf Y(c) = HomC( , c), often denoted by hc. This is the
presheaf which associates to d ∈ C the set HomC(d, c) and to f : d′ → d in C the
function ( ◦ f):HomC(d, c) → HomC(d′, c), as in the diagram below.

d
� //

f

��

HomC(d, c)

( ◦f)

��
d′

� // HomC(d′, c)

SetCop Y(c) //

Now, Y can be extended to the arrows of C by mapping f : c → c′ to the
(constant) natural transformation (f ◦ ):Y(c) �→ Y(c′). It is very easy to see
that this definition makes Y into a (covariant) functor from C to SetCop

.

c � //

f

��

HomC( , c) = Y(c)

(f◦ )

��
c′

� // HomC( , c′) = Y(c′)

SetCop
C

Y //

Functors of the form Y(c), i.e., those set-valued contravariant functors on C

isomorphic to Y(c) for some c ∈ C, are very important for at least two reasons.
Firstly, they represent faithfully the category C, and secondly, if C is small, they
generate via small colimits all the others presheaves in SetCop

. They are called
representable functors.

Lemma 2.1 (Yoneda’s Lemma)

For any P ∈ SetCop
we have that HomSetCop (Y(c), P ) ∼= P (c) via the natural

isomorphism θ which sends σ:Y(c) �→ P to σc(idc).

Corollary 2.2 (Yoneda’s Embedding)
The functor Y:C → SetCop

is full and faithful. Thus, Y determines an equiv-
alence between C and its replete image in SetCop

, i.e., between C and the full
subcategory of SetCop

consisting of the representable functors.

Proof. Immediate: SetCop
[Y(c),Y(c′)] ∼= Y(c′)(c) = C[c, c′]. X

There is also a contravariant version of Yoneda’s embedding Y′:Cop → SetC

defined as follows:

c � //

f

��

HomC(c, ) = Y′(c)

c′
� // HomC(c′, ) = Y′(c′)

SetCCop
Y′ //

( ◦f)

OO

7



Y′ is dual to Y; in particular there is a version of Yoneda’s Lemma which says
that, for each c ∈ C and for each P ∈ SetC, one has

SetC[HomC(c, ), P ] ∼= P (c).

It is worthwhile to recall that Y preserves limits and Y′ preserves colimits,
i.e., for any F: J → C, if F has a limit, one has Y(lim←− F) ∼= lim←−(YF), and if F has a
colimit one has Y′(lim−→ F) ∼= lim←−(Y′F).

Recall from general results in category theory that functor categories are as
cocomplete (and complete) as their target categories, the colimits being com-
puted ‘pointwise’. Thus, SetCop

is cocomplete, and so we can consider the col-
imit of any small diagram of presheaves. Moreover, it can be shown that every
presheaf on C is a colimit of representables in a canonical way. This result im-
plies quite directly that SetCop

can be considered as the cocompletion of C by all
small colimits (and limits). This claim is substantiated by the fact that SetCop

enjoys a weak form of ‘universality’, namely that for any cocomplete category E

and any functor A:C → E, there is a functor F:SetCop
→ E which preserves all

small colimits and such that the following diagram commutes.

SetCop F // E

C

Y

?�

OO

A

77ppppppppppppppp

Moreover, F is, up to isomorphism, the unique functor which enjoys this property.
The proofs of these facts can be found in [26].

The understanding of SetCop
as the “free’ completion of of a category C by

arbitrary small colimits, together with the fact that C is embedded in SetCop

via the Yoneda’s embedding, gives a strong hint on what the completion of C

by ω-chains should be: an appropriate full subcategory of SetCop
. Formally, we

have the following definition.

Definition 2.3 (ω-Ind-Representable Functors)
Given a locally small category C, let Ĉω denote the full subcategory of SetCop

which contains the representables hc, c ∈ C, and lim−→(Y ◦ F) for any functor

F:ω → C, Y being the Yoneda embedding. The presheaves in Ĉω are called
ω-ind-representable (ind for inductively).

It can be shown (see e.g. [32], and later sections in this paper) that Ĉω is
closed under colimits of ω-chains and that it is ‘universal’ (in the weak sense
above) among the ω-chain cocomplete categories which extends C. Thus, Ĉω
provides a quick answer to the issue of ω-chain cocompletion of categories.

However, although ω-ind-representable presheaves are a highly elegant cate-
gorical notion, they are still rather far from our intuition motivated in Section 1.
Moreover, some extra machinery is needed in order to express the construction
of Ĉω functorially on CAT . Finally, in the case of monoidal categories, it is
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not easy to extend the monoidal structure of C to Ĉω in a direct way. In the
following we shall give a representation of (a category equivalent to) Ĉω that is
better suited to our purposes.

3 ω-Chains versus ω-Filters

Although chains are quite simple structures, they are rather uncomfortable to
manage, at least in our context, since, as categories, they are very strongly
restricted. This situation, however, is common to other fields of mathematics,
like partial order theory and topology, where one uses the—equivalent in many
contexts—notion of directed set [27, 16, 33]. Thus, as a first step, we abandon
ω-chains and we broaden the class of index categories we use for the colimits,
but, as we shall see, this will not change the kind of cocompleteness.

Chains versus Directed Partial Orders

Definition 3.1
A non-empty subset D of a partial order P is directed if any pair of elements in
D has an upper bound in D. Equivalently, D is directed if it contains an upper
bound of any of its finite subsets. A chain is a non-empty partial order which is
totally ordered.

It is well known that, for a partial order, having a least upper bound for
each of its directed subsets of cardinality ω, and having a least upper bound
for each of its chains of cardinality ω are equivalent notions. This result can
be extended to the corresponding notion of cocompleteness in categories. For
D a directed set, a functor F :D → C is called ω-directed if |D| ≤ ω, where | |
gives the cardinality of sets. Similarly, we shall call functors F :ω → C ω-chain
functors, or simply ω-chains.

Definition 3.2
A category C is ω-directed cocomplete if it admits colimits of all ω-directed
functors. It is ω-chain cocomplete if it has colimits of all ω-chain functors.

Proposition 3.3
C is ω-directed cocomplete if and only if it is ω-chain cocomplete.

Proof. One implication is trivial, since an ω-chain is a countable directed set. Let
us show that when C admits colimits of all ω-chains it has colimits of all ω-directed
functors. Let F : D → C be a ω-directed functor. If D is finite then D has a greatest
element, say d, and, therefore, F has a colimit, namely F (d) with the obvious limit
cocone. Otherwise, the proof is based on the following lemma [27].

Lemma. Let D be an infinite directed set. Then, there exists a transfi-
nite sequence {Dα}α of directed subsets of D, with α < |D|, such that

i) For any α
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• If α is finite so is Dα;

• If α is infinite, then |Dα| = |α| (and therefore |Dα| < |D|).
ii) For any ordinals α < β < |D|, Dα ⊂ Dβ .

iii) D =
S

α Dα.

Therefore, we can find a countable sequence of finite directed subsets {Di}i<ω such
that, Di ⊂ Di+1, for any i < ω, and D =

S
i∈ω Di. Let ini: Di → D denote the

injection of Di in D. For any i < ω, let Fi: Di

ini
↪→ D

F−→ C be the restriction of F
to Di, and let σi: Fi

�→ ci be a colimit for Fi. Now, observe that for any i ≤ j, since
Di ⊆ Dj , we have (σj)i: Fi

�→ cj , where (σj)i is the restriction of σj to Di. Then,
by definition of colimit, there exists a unique induced arrow fi,j : ci → cj such that
fi,j ◦ (σi)d = (σj)d for any d ∈ Di.

It follows, again from the universal property of colimits, that the following definition
defines a functor G: ω → C.

G(i) = ci for any i ∈ ω; G(i ≤ j) = fi,j .

Since G is an ω-chain we can consider lim−→ G in C. Let λ: G
�→ c be the limit cocone.

Then c, together with the cocone F
�→ c whose componenent at d ∈ D is λi ◦ (σi)d,

for any i such that d ∈ Di, is lim−→D
F . X

Filtered Categories and Cofinal Functors

In this subsection we broaden further the kind of index categories over which
colimits are considered. In particular, we recall the basic facts about filtered
categories and cofinal functors.

Definition 3.4 (Filtered Categories)
A category J is filtered if it is not empty and

i) for all j, j′ ∈ J there exists k and u: j → k, v: j′ → k, i.e.,

j

j′

u

↘
↗
v

k.

ii) for all i
u−→−→
v
j in J, there exists w: j → k such that w ◦ u = w ◦ v, i.e.,

i
u−→−→
v
j

w−→ k is commutative.

A functor F: J → C is filtered if J is filtered.

A good point is that colimits in Set indexed by filtered categories are easily
characterized.

Proposition 3.5
Let F: J → Set be filtered and suppose that J is small. Consider the set

∐
j∈J F(j)

and the binary relation R on it defined as follows

ini(x) R inj(y) ⇔ ∃k ∈ J and

i

j

u

↘
↗
v

k such that F(u)(x) = F(v)(y).

Then, (i) R is an equivalence relation; and (ii)
(∐

j∈J F(j)
) /

R ∼= lim−→J
F.
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Cofinal subcategories are the categorical generalization of the set-theoretic
notion of cofinal chains. Intuitively, a subcategory I of J is cofinal in J if the
colimit of any J-indexed diagram coincides with the colimit of the same dia-
gram restricted to I. Of course, there is no conceptual need to limit oneself to
subcategories, and that is why one introduces cofinal functors.

Definition 3.6 (Cofinal Functors)
A functor φ: I → J is cofinal if for any functor F: J → C

lim−→ I
(F ◦ φ) exists ⇒ lim−→J

F exists and lim−→ I
(F ◦ φ) ∼= lim−→J

F,

the isomorphism being via the canonical comparison map lim−→ I
(F ◦ φ) → lim−→J

F

induced by the colimit.
A subcategory I of J is cofinal if the inclusion functor is cofinal.

Of course the name is inherited from the corresponding notion in set the-
ory and the ‘co’ prefix has nothing to do with duality in categories. For this
reason, MacLane [25, chap. IX] and others use the term ‘final’ to name the
concept. However, once the reader has been warned about this mismatch, we
prefer to keep using the classical terminology. The following key lemma gives a
characterization of cofinal functors between filtered categories.

Lemma 3.7
For a functor φ: I → J the following properties can be stated:

F1: for any j ∈ J, there exists i ∈ I such that HomJ(j, φ(i)) 6= ∅.

F2: for any i ∈ I and for any j
f−→−→
g
φ(i) in J, there exists h: i→ k in I such

that φ(h) ◦ f = φ(h) ◦ g.

Then, we have the following facts:

i) if φ is cofinal, then F1 holds;

ii) if I is filtered, then φ is cofinal if and only if F1 and F2 hold and, in this
case, J is also filtered;

iii) if J is filtered and φ is full and faithful, then φ is cofinal if and only if F1

holds, and, in this case, I is also filtered.

The next proposition shows that requiring the existence of filtered colimits
is equivalent to requiring the existence of directed colimits. Given a category
J, by the cardinality of J, in symbols |J|, we mean, as usual, the cardinality of
the underlying set of arrows of J. If J is filtered and |J| ≤ ω, we say that J
is ω-filtered. We say that a functor F: J → C is ω-filtered if J is ω-filtered. A
category C is ω-filtered cocomplete, or countably filtered cocomplete, if it admits
colimits of all ω-filtered functors.

11



Proposition 3.8
A category C is ω-filtered cocomplete if and only if it is ω-directed cocomplete,
if and only if it is ω-chain cocomplete.

Proof. The second double implication is Proposition 3.3 and one direction of the first
one is trivial. The other direction follows immediately by the following lemma [13].

Lemma. Let J be small and filtered. Then, there exists a directed set D
and φ: D → J which is cofinal. Moreover, if |J| is infinite, then |J| = |D|.

X

4 A KZ-Doctrine for the ω-Ind Completion

As we already mentioned at the end of Section 2, the cocompletion by ω-chains
of C obtained directly from the category of preasheaves on C is not well suited
for a functorial formalization, which is indeed a desirable property. Moreover,
in many occasions a more concrete description of the objects of Ĉω may be
useful. In particular, we think of something very close to the description of
infinite processes we have sketched in Section 1. Close to this issue, there is the
fact that one would often like a more algebraic description of colimits in terms of
pseudo monads (see also the discussion at the beginning of Appendix A). In this
section we study a KZ-doctrine for the ω-filtered cocompletion. In other words,
we study alternative representations for the ω-ind-representable presheaves.

ω-Ind Objects

The following definition of ω-ind-object follows the same simple idea about rep-
resentation of ‘formal state’ we discussed in Section 1.

Definition 4.1 (ω-Ind-Objects)
A functor X: J → C is an ω-ind-object, or simply an ind-object, if J is ω-filtered.
We shall identify ω-ind-objects X: I → C and Y : J → C if there exists a cofinal
φ: I → J whose object component is an isomorphism and such that Y ◦ φ = X.

Thus, ω-ind-objects are nothing but countable filtered diagrams in C. We
can think of ω-ind-objects as ‘syntactic’ representations of ω-ind-representable
functors. In particular, we shall say that the ω-ind-object X: I → C represents
the ω-ind-representable presheaf

L(X) = lim−→(I X−→ C
Y−→ Ĉω) ∼= lim−→ i∈I

HomC( , X(i)) ∼= lim−→ i∈I
hX(i).

Observe that, since Ĉω is ω-chain cocomplete, Proposition 3.8 guarantees the
existence of L(X). Moreover, it is worth noticing that the equalities imposed
by Definition 4.1 are perfectly harmless because they identify objects which
represent isomorphic presheaves.

In order to simplify notation, we shall often use the so-called indexed notation
for ω-ind-objects. We write (Xi)i∈I for X: I → C with X(i) = Xi. Admittedly
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this notation is rather poor but it will not be misleading, and therefore it will
be acceptable, provided one never forgets that we are not handling sequences or
chains of objects, but filtered diagrams in C. Of course, given an ω-ind-object
(Xi)i∈I, we reserve the right to use X also in every context in which a functor
is expected.

As already observed in Section 1, the key point is the definition of morphisms
for ω-ind-objects. The right notion should be such that it identifies, i.e., it makes
isomorphic, ω-ind-objects which intuitively should be the same. Moreover, it has
to make the category of ω-ind-objects filtered cocomplete. Clearly, the theory
exposed in Section 2 allows us to identify such notion of morphism immediately.

Definition 4.2
The category Indω(C) is the category whose objects are the ω-ind-objects of C,
and whose homsets are defined by

HomIndω(C)(X,Y ) = HombCω
(L(X),L(Y )).

This makes L into a full and faithful functor from Indω(C) to Ĉω. However,
observe that it is far from being injective on the objects. Nevertheless, we have
that Indω(C) and Ĉω are (weakly) equivalent.

Proposition 4.3

Indω(C)
�∼= Ĉω.

Proof. Exploiting Proposition 3.8 and Proposition 3.3, it is immediate to see that
L is a weak equivalence, i.e., a full and faithful functor whose replete image is

the whole target category, i.e., such that every object P in bCω is isomorphic to
some L(X) for X in Indω(C). Freyd and Scedrov [8] show that the hypothesis
that every weak equivalence is a strict (classical) one is equivalent to the axiom
of choice. Since in our context we have largely used such an axiom, we can also
assume that L is an equivalence. X

Proposition 4.4
The category Indω(C) is locally small.

Proof. Given the ω-ind-objects (Xi)i∈I and (Yj)j∈J, we have:

Indω(C)[X, Y ] = bCω[L(X),L(Y )]

= SetCop
[L(X),L(Y )]

∼= SetCop
[lim−→ I

hXi , lim−→ J
hYj ]

∼= lim←− I
SetCop

[hXi , lim−→ J
hYj ] (since Y′ preserves colimits)

∼= lim←− I

„
lim−→ J

hYj

«
Xi (by the Yoneda’s lemma)

∼= lim←− I
lim−→ J

HomC(Xi, Yj).

Thus, since by hypothesis each HomC(Xi, Yj) is a small set, as a lim←− lim−→ construction
in Set indexed by small categories, HomIndω(C)(X, Y ) is a small set. X

13



Proposition 4.5
If C is small, then so is Indω(C).
Proof. There is ‘only’ a small set of ω-filtered diagrams in C and, therefore, the

objects of Indω(C) form a small set. Regarding morphisms, by Proposition 4.4,
the collection of the morphisms of Indω(C) are a family of small sets indexed by
a small set, and therefore a small set. X

Proposition 4.6
Consider the ω-ind-objects (Xi)i∈I and (Yj)j∈J and suppose that there exists a
cofinal φ: I → J such that Y ◦ φ = X. Then, (Xi)i∈I

∼= (Yj)j∈J in Indω(C).
Proof. Since φ is cofinal L(X) = L(Y ◦ φ) ∼= L(Y ). X

Next, we give a more explicit representation of morphisms of ω-ind-objects.
Recalling a computation we have done in Proposition 4.4, we have that

Indω(C)[(Xi)i∈I, (Yj)j∈J] = SetCop
[L(X),L(Y )] = lim←− I

lim−→J
HomC(Xi, Yj).

From Proposition 3.5, we know how to compute filtered colimits in Set. An
element x ∈ lim−→J

HomC(Xi, Yj) is an equivalence class of arrows [f ]∼ each rep-
resentative of which is an arrow f :Xi → Yj of C for some j ∈ J and where

(
f :Xi → Yj′

)
∼

(
g:Xi → Yj′′

)
⇔ ∃

j′

j′′

u

↘
↗
v

k in J st. Y (u) ◦ f = Y (v) ◦ g.

Concerning limits, their calculus in Set is much simpler than that of colimits.

Proposition 4.7
Let I be a small category and F: I → C a functor. By 〈f〉 we denote a function
f :Obj (I) →

⋃
i∈Obj (I) F(i) such that, for all i ∈ Obj (I), it is f(i) ∈ F(i). Then,

lim←− I
F =

{
〈f〉

∣∣∣ F(h)(f(i)) = f(j), ∀h: i→ j in I
}
.

Getting back to our problem, the elements x in lim←− I
lim−→J

HomC(Xi, Yj) are
therefore a collection of equivalence classes [fi]∼ indexed by the objects of I
which are compatible in the precise sense that for any h: i→ i′ in I we have

[fi]∼ = [fi′ ◦X(h)]∼.

We shall denote this kind of families of equivalence classes with a notation
similar to the one used for ω-ind-objects, namely, ([fi])i∈I: (Xi)i∈I → (Yj)j∈J,
where fi is an arrow from Xi to some Yj . The square brackets remind us that
each component is an equivalence class and the index i means that fi is a rep-
resentative for the i-th class. We almost always avoid explicit mention of ∼.
However it should be taken into account that ∼, and thus the elements of [fi]∼,
of course depends on the actual J, while the compatibility of the various com-
ponents depends also on I.
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The composition of ω-ind-morphisms can be defined explicitly through the
canonical function induced by the limit. However, its description in terms of
families of equivalence classes is simple: given ([fi])i∈I: (Xi)i∈I → (Yj)j∈J and
([gj ])j∈J: (Yj)j∈J → (Zk)k∈K, their composition is the I-indexed family whose
i-th component is [g ◦ f ]∼′ for (f :Xi → Yj) ∈ [fi]∼ and (g:Yj → Zk) ∈ [gj ]∼′ ,
with the equivalence ∼ being relative to J, and the equivalence ∼′ to K. In
other words, the i-th class of the composition is obtained by considering the
class (wrt. K) of the composition of one representative of the i-th component of
([fi])i∈I and one representative of the ji-th component of ([gj ])j∈J, where ji is
determined by the chosen representative of fi. Of course, it can be shown that
this is well-defined, i.e., that the definition does not depend on the choice of f
and g above and that it gives an ω-ind-morphism from (Xi)i∈I to (Zk)k∈K.
Remark. An alternative description of ω-ind-morphisms can be found via a category of
fractions construction [9]. The interest of this approach, introduced in [35] (see [32] for
a detailed survey), resides in the fact that it explains the cocompletion construction
‘just’ by making invertible a class of arrows in a universal way. Moreover, such a
class of arrows is as simple as possible and, therefore, the approach gives insights on
the subject by making intuitively clear how the arrows chosen similarly to Section 1
should be enriched in order to get cocompleteness.

When C is a poset P , there is the following connection of Indω(C) with the
theory of complete posets.

Proposition 4.8
Let P be a small poset. Then Indω(P) is equivalent to the completion of P by
countable ideals viewed as a category.

Proof. Recall that an ideal in P is a directed subset I ⊆ P which is down-
ward closed, i.e., such that i ∈ I and j ≤ i implies j ∈ I. Now, observe that
HomIndω(P)

(X, Y ) = lim←− lim−→ HomP (Xi, Yj) must be either a singleton or the empty

set, since each HomP (Xi, Yj) is such. Then Indω(P) is a preorder. Moreover, an
ideal I of P is naturally an ω-ind-object, namely the inclusion I ↪→ P . Conversely,
an ω-ind-object X: I → P can be thought as an ideal just by taking the ‘downward’
closure of its image in P . Since X is cofinal in the ω-ind-object corresponding to
such a closure, this defines an equivalence. X

A general treatment of the completion of posets in a categorical framework,
namely via monads, has been given in [28].

Indω( ) as a 2-endofunctor on CAT

We have already seen that if C is locally small, then so is Indω(C). Therefore, it
looks plausible that Indω( ) is the object part of an endofunctor on CAT . In this
subsection we show that this is the case. In particular, we show that Indω( )
can be extended to the 2-cells of CAT obtaining in this way a 2-functor.

Let F:C → D be a functor in CAT . We define a functor Indω(F): Indω(C) →
Indω(D). Concerning the objects, the definition is evident: we map X to the
composition of X with F.

I
X−→ C

F−→ D.
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For the morphisms the situation is slightly more difficult. However, in terms
of the representation of ω-ind-morphisms by families of equivalence classes, we
have the following obvious definition, whose functorial nature is evident.

([fi])i∈I: (Xi)i∈I → (Yj)j∈J 7→ ([Ffi])i∈I: (FXi)i∈I → (FYj)j∈J.

Observe that, of course, [Ffi]∼ is not necessarily the image of [fi]∼, since,
intuitively, D could have ‘more’ morphisms.

Consider now F,G:C → D. Given a natural transformation α: F �→ G there is
then an obvious candidate for Indω(α): Indω(F) �→ Indω(G), namely the family
{αX}X∈Indω(C) where αX : (FXi)i∈I → (GXi)i∈I is the arrow of Indω(D) whose
i-th component is [αXi

]∼. In other words, Indω(α) is determined by (taking the
equivalence classes of the component arrows of) αX : FX �→ GX. Observe that
the condition [αXi

]∼ = [αXj
◦ FX(h)]∼ for any h: i→ j in I comes directly from

the naturality in CAT of α.
It is now very easy to check that {αX}X∈Indω(C) is a natural transformation

and that this definition makes Indω( ) into a 2-functor.

Proposition 4.9
Indω( ):CAT → CAT is a 2-functor.

Constant ω-Ind-Objects: the 2-natural unit y

In this section we see that the Yoneda embedding Y:C → Ĉω has a corresponding
embedding y:C → Indω(C). This shall provide us with a 2-natural transforma-
tion for the KZ-doctrine we are building.

The category 1 consisting of a unique element and its identity arrow, i.e., the
terminal object in CAT , is a filtered category. For any c ∈ C we denote by c the
ω-ind-object c: 1 → C which picks up c. These kind of ω-ind-objects are called
constant ω-ind-objects and provide a full and faithful image of C in Indω(C) via
the functor y defined below.

c � //

f

��

c

f

��
d

� // d

Indω(C)C
y //

Observe that, by definition, y(f) is [f ]∼. However, since the index category for
d is 1, in this case ∼ is trivial, i.e., [f ]∼ consists of the unique element f .

Thus, y plays the role which Y plays in the case of presheaves. Of course
there are many objects in Indω(C) which can represent C and, consequently,
many possible embeddings y. (For instance, in Section 5 we shall use another
y.) If we consider a constant functor c: I → C, which always takes the value c,
we have that L(c) = lim−→ I

hc = hc, i.e., c and c are isomorphic in Indω(C). The
same happens if we consider a finite index category I and a functor X: I → C
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which sends the greatest element of I to c. The ω-ind-objects X such that X ∼= c
for some c ∈ C, or equivalently such that L(X) ∼= hc, are called essentially
constant ω-ind-objects. Of course, y defines an equivalence between C and the
full subcategory of the essentially constant ω-ind-objects in Indω(C).

A first connection with KZ-doctrines is the following proposition, where the
reader will recognize the similarity with the definition of algebra for a KZ-
doctrine (see Appendix A, Definition A.3) .

Proposition 4.10
A locally small category C is ω-filtered cocomplete if and only if y:C → Indω(C)
has a left adjoint.

Proof. C has ω-filtered colimits if and only if for every (Xi)i∈I in Indω(C) and c
in C there is a natural isomorphism HomC(lim−→ X, c) ∼= CI[X, ∆c], where ∆c: I → C
is the constant functor which selects c. By definition of c, it is immediate to see
that such cocones X

�→ ∆c are in one-to-one correspondence with ω-ind-morphisms
X → c. It follows that C has all ω-filtered colimits if and only if there is a natural
isomorphism

HomC(lim−→ X, c) ∼= HomIndω(C)(X, y(c)),

which is the isomorphism for the adjointness lim−→ a y. Observe that, since y is full
and faithful, the adjunction is a reflection. X

Now, we have to see that the family {yC}C∈CAT is a 2-natural transformation
Id �→ Indω( ). The task is fairly easy: naturality is immediate, while for any
α: F → G in CAT , the equation for 2-naturality is Indω(α)yC = yDα, i.e.,

C
yC // Indω(C)

GF ED
Indω(F)

��

@A BC
Indω(G)

OO
⇓Indω(α) Indω(D) = C

GF ED
F

��

@A BC
G

OO⇓ α D
yD // Indω(D)

Now, the X-th component of Indω(α) is ([αXi
]∼)i∈I: (FXi)i∈I → (GXi)i∈I, and

therefore the c-th component of Indω(α)yC is [αc]∼. On the other hand, the
c-th component of yDα is yD(αc) which is again [αc]∼. Thus, we can conclude
this subsection with the following proposition.

Proposition 4.11
y: Id �→ Indω( ) is a 2-natural transformation.

Filtered Colimits in Indω(C): the 2-natural multiplication

In this subsection we show that Indω(C) is ω-filtered cocomplete. This is not
surprising, since we already know that Ĉω is the ‘free’ cocompletion of C by
ω-filtered colimits and we have shown that Indω(C) and Ĉω are equivalent.
However, we shall see that the calculus of colimits in Indω(C) may be expressed
‘uniformly’ in C, i.e., that it gives rise to a 2-natural transformation in CAT .
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Consider a filtered diagram T of ω-ind-objects, i.e., an ω-ind-object in the
category Ind2

ω(C) = Indω(Indω(C)). Suppose that T (i) = (Xi,j)j∈Ji , and define
the functor U :K → C as follows:

• the objects of K are the pairs (i, j) where i ∈ I and j ∈ Ji;

• the arrows of K are pairs (α, f): (i, j) → (h, k) where α: i → h in I and
f :Xi,j → Xh,k is a representative of the j-th component of T (α):T (i) →
T (h), i.e., (Xi,j)j∈Ji → (Xh,k)k∈Jh

;

the composition in K being obviously given by (β, g) ◦ (α, f) = (β ◦ α, g ◦ f).
Now, U is defined by

(i, j) � //

(α,f)

��

Xi,j

f

��
(h, k) � // Xh,k

CK
U //

which, of course, gives a functor. Moreover, we have the following.

Lemma 4.12
K is filtered.

Proof. Easy, exploiting the fact that I and Ji are filtered. Concerning the cardinality
of K, it is enough to recall that a countable union of countable sets is countable. X

Proposition 4.13
U :K → C is the colimit of T : I → Indω(C) in Indω(C).
Proof. For any i ∈ I we can consider the functor

j
� //

f

��

(i, j)

(id,f)

��
j′

� // (i, j′)

KT (i)
ui //

Of course, we have U ◦ ui = T (i): Ji → C, and therefore ui induces a morphism
λi: lim−→(Y ◦ T (i)) → lim−→(Y ◦ U), i.e., an ω-ind-morphism λi: T (i) → U .

It is easy to see that the λi’s form a cocone with vertex U . First of all, observe
that, by definition, (λi)j the j-th component of λi is the class of the identity of

Xi,j . Then, (λi)j contains any f : Xi,j → Xh,j′ such that (i, j)
(α,f)−→ (h, j′) is in

K. It is now immediate to conclude that for any α: i → h in I we must have
λh ◦ T (α) = λi. Consider now another cocone {τi}, τi: T (i) → Y . Explicitly, we
have τi: (Xi,j)j∈Ji → (Yj)j∈J. Then, by collecting together these arrows we have
τ̄ : (Xi,j)i∈I,j∈Ji → (Yj)j∈J, which, thanks to the naturality of the τ ’s, is easily shown
to be an ω-ind-morphism τ̄ : U → Y . Of course we have τ̄ ◦ λi = τi for any i ∈ I,
and that τ̄ is the unique ω-ind-morphism U → Y which enjoys this property. X
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Thus, we have the following.

Proposition 4.14
Indω(C) is ω-filtered cocomplete.

Our claim that y plays the role which Y plays in the case of presheaves
can now be fully justified by the following proposition which states the pseudo
universal property enjoyed by Indω(C).

Proposition 4.15
Let C be a locally small category. For any ω-filtered cocomplete category E and
any functor A:C → E, there is a functor F: Indω(C) → E which preserves the
ω-filtered colimits and such that the following diagram commutes.

Indω(C) F // E

C

y

?�

OO

A

77nnnnnnnnnnnnnnnn

Moreover, F is unique up to isomorphism.

Proof. Consider F which sends the ω-ind-object (Xi)i∈I to lim−→ I
(A ◦ X) in E and

whose behaviour on the morphisms is induced by the universal property of colimits.
Since without loss of generality we may assume that F(c) = lim−→ y(A(c)) = A(c),
it follows immediately that the diagram commutes. Moreover, by exploiting the
explicit definition of ω-filtered colimits in Indω(C) given in Proposition 4.13, it is
easy to check directly that F preserves them.

Now, suppose that K: Indω(C) → E renders the diagram commutative and pre-
serves ω-filtered colimits. Then, for any (Xi)i∈I in Indω(C), we have:

F(X) ∼= lim−→ A(Xi)

∼= lim−→ K(y(Xi)) ∼= K(lim−→(y(Xi))) ∼= K(X),

where the last equality follows from (Xi)i∈I = lim−→ I
(y(Xi)) in Indω(C), as the reader

can check directly. Thus, we have K ∼= F. X

Our next step is to remark that the construction given above is functorial.
More precisely, since an ω-filtered diagram in Indω(C) is an object of Ind2

ω(C),
the colimit construction defines a functionmC from the objects of Ind2

ω(C) to the
objects of Indω(C). It follows by the very definition of colimits that mC can be
extended canonically to a left adjoint functor Ind2

ω(C) → Indω(C). Moreover,
by Proposition 4.10, the right adjoint to mC is yIndω(C). In other words, the
proof of the functoriality of mC has been implicitly given in Proposition 4.13.
Nevertheless, in the following we shall make explicit the definition of mC on
the morphisms of Ind2

ω(C). Consider T : I → Indω(C) and T ′: I′ → Indω(C)
in Ind2

ω(C). Suppose that T (i) = (Xi,j)j∈Ji
and T ′(i′) = (Y i

′

j )j∈J′
i′
. Thus, in

the indexed notation, we write ((Xi,j)j∈Ji
)i∈I for T and ((Yi,j)j∈J′i

)i∈I′ for T ′.
Consider now a morphism α:T → T ′ in Ind2

ω(C). By definition α = ([αi])i∈I,
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is a compatible family of equivalence classes (wrt. I′) of ω-ind-morphisms αi =
([αi,j ])j∈Ji :T (i) → T ′(i′) (the equivalence being now wrt. J′i′) in Indω(C), which
in the indexed notation can be written as([

([αi,j ])j∈Ji

])
i∈I
.

Then, as it appears neatly in the proof of Proposition 4.13, the collection ᾱ =
([αi,j ])(i,j)∈K of all the equivalence classes (wrt. K′) of representatives αi,j of the
j-th class of some representative αi of the i-th component of α, is an ω-ind-
morphism from mC(T ) = U :K → C to mC(T ′) = U ′:K′ → C, where U and U ′

are the colimits of T and T ′ determined as earlier in this section. We shall take
mC(α) to be ᾱ and conclude as follows.

Proposition 4.16
mC: Ind2

ω(C) → Indω(C) is a functor which is left adjoint to yIndω(C).

Let us now show that the collection of functors mC: Ind2
ω(C) → Indω(C)

is a 2-natural transformation (see [18] for the basic concepts of the theory of
2-categories) Ind2

ω( ) �→ Indω( ). First, we have to show that

Ind2
ω(C)

mC //

Ind2
ω(F)

��

Indω(C)

Indω(F)

��
Ind2

ω(C) mD

// Indω(D)

commutes.
Let T = ((Xi,j)j∈Ji

)i∈I be in Ind2
ω(C). Then, Ind2

ω(F)(T ) = Indω(F) ◦ T =(
Indω(F)

(
(Xi,j)j∈Ji

))
i∈I

, which is
(
F◦(Xi,j)j∈Ji

)
i∈I

, i.e., ((FXi,j)j∈Ji)i∈I. Then,

mD

(
Ind2

ω(F)(T )
)

= (FXi,j)(i,j)∈K′ , where K′ is built in Indω(D) for the diagram

Indω(F) ◦T . On the other hand, mC

(
((Xi,j)j∈Ji

)i∈I

)
= (Xi,j)(i,j)∈K, and there-

fore Indω(F)(mC(T )) = F ◦mC(T ) = (FXi,j)(i,j)∈K, where K is built in Indω(C)
for the diagram T . Observe that K and K′ do not need to be isomorphic. More
precisely, the objects in K and K′ coincide, being the pairs (i, j) for i ∈ I and
j ∈ Ji. However, the morphisms of K′ are pairs (α, f): (i, j) → (i′, j′) for α: i→ i′

in I and f : FXi,j → FXi′,j′ in D a representative of the j-th class of FT (α), while
in the morphisms of K the component f is a morphism f :Xi,j → Xi′,j′ in C,
representative of the j-th class of T (α). Of course, these do not need to be the
same, since, as observed earlier, [Ff ]∼ is not necessarily the image through F

of [f ]∼. However, observe that, if φ is the functor defined by

(i, j) � //

(α,f)

��

(i, j)

(α,Ff)

��
(i′, j′) � // (i′, j′)

K′K
φ //
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which is clearly well defined, we have mD

(
Ind2

ω(F)(T )
)
φ = Indω(F)(mC(T )).

Moreover, exploiting Lemma 3.7, point (ii), it is easy to see that φ is cofinal.
Then, by Definition 4.1, we conclude thatmD

(
Ind2

ω(F)(T )
)

= Indω(F)(mC(T )),
since we identify such objects in Indω(D).

Consider now a morphism α from T to T ′ in Ind2
ω(C). Then, it may be

shown that mD

(
Ind2

ω(F)(α)
)

and Indω(F)(mC(α)) coincide.

Remark. We would like to stress that the result above proves the naturality of the
identification of ω-ind-objects imposed in Definition 4.1. In fact, it is important to
notice that the proof given above does not rely on the fact that φ:K → K′ is the
identity on the objects, but just on the fact that it is an isomorphism. Thus, the proof
above applies to all the ω-ind-objects identified via the cofinal φ.

Next, we have to show that m is 2-natural, i.e., that for any α: F �→ G we have
Indω(α)mC = mDInd2

ω(α). Consider an object T = ((Xi,j)j∈Ji
)i∈I of Ind2

ω(C),
and let U :K → C be mC(T ). Then, the component at T of Indω(α) ∗ mC is
(Indω(α) ∗mC)T = Indω(α)U = ([αXi,j

])(i,j)∈K: (FXi,j)(i,j)∈K → (GXi,j)(i,j)∈K.
On the other hand, Ind2

ω(α)T = ([Indω(α)T (i)])i∈I = ([([αXi,j
])j∈Ji

])i∈I, and
thus mD(Ind2

ω(α)T ) = ([αXi,j
])(i,j)∈K′ . But this is again the situation we met

before and, thus, we can conclude that the two morphisms coincide. Since the
same holds for each T in Ind2

ω(C), it follows that Indω(α)∗mC = mD∗Ind2
ω(α).

Then, we have shown the following.

Proposition 4.17
m: Ind2

ω( ) �→ Indω( ) is a 2-natural transformation.

Remark. It is worth noticing the primary role played in establishing the naturality of
m by the fact that our index categories are filtered. There is no obvious way to achieve
the same result working with chains or directed sets.

We complete this subsection by stating the following relevant fact.

Proposition 4.18
Let C and D be locally small categories. Then, for any F:C → D, the functor

Indω(F) preserves ω-filtered colimits.

Proof. We have proved that mC is 2-natural. In particular, the equation of natu-

rality is mD ◦ Ind2
ω(F) = Indω(F) ◦mC. However, since mC is an explicit choice

of colimits and the colimits of a given diagram are isomorphic, this can be read as
Indω(F) ◦ lim−→C

∼= lim−→D
◦Ind2

ω(F), i.e., Indω(F) preserves ω-filtered colimits. X

The ω-Ind KZ-Doctrine

In this subsection we sum up the results by showing that the data Indω( ), y,
and m determine a KZ-doctrine on CAT . We shall refer to Appendix A for the
needed basic notions of the theory of KZ-doctrines as the need arises.

Recall that, by Proposition 4.16, we have a reflection mC a yIndω(C). Let
ηC: idInd2

ω(C)
�→ yIndω(C) ◦ mC be the unit of this adjunction. Then, we take
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λC to be ηC ∗ Indω(yC). For general reasons, we know that ηC gives the limit
cocones. Let us give it explicitly.

Given T = ((Xi,j)j∈Ji)i∈I, we have mC(T ) = (Xi,j)(i,j)∈K and therefore we
have yIndω(C)(mC(T )) = ((Xi,j)(i,j)∈K)1, where we use the notation (T )1 for the
singleton diagram of value T . Thus, ηT is an I-indexed family of ω-ind-morphisms
αi in Indω(C), where αi is the ‘inclusion’ of T (i) in the colimit of T , which is the
Ji-indexed family of the equivalence classes (wrt. K) of the identities of Xi,j . In
other words, we have ηT = ([([idXi,j ])j∈Ji ])i∈I: ((Xi,j)j∈Ji)i∈I → ((Xi,j)(i,j)∈K)1.
Thus, we can conclude the triangular identities, which in the particular case of
a reflection take the form

ηC ∗ yIndω(C) = 1 and mC ∗ ηC = 1.

Let us verify the KZ-doctrine axioms in Definition A.1.
T0: mC ◦ yIndω(C) = id and mC ◦ Indω(yC) = id .

mC

(
yIndω(C)

(
(Xi)i∈I

))
= mC

(
((Xi)i∈I)1

)
= (Xi)(∗,i)∈K. Once again, K deter-

mined from 1 and I is not isomorphic to I. In fact, its objects are pairs (∗, i)
and its morphisms are pairs (∗, i) (id,f)−→ (∗, i′), where f is a representative of the
i-th class wrt. I of the identity on (Xi)i∈I. Thus, although every f : i → i′ in I
corresponds to (id , f) in K, the converse is not true. However, the embedding
φ: I → K, which sends i to (∗, i) and f to (id , f), is easily shown to be cofinal.
Thus, the last formula is equal to (Xi)i∈I. The same formal steps prove that
mC ◦ yIndω(C) is the identity also on the morphisms.

mC

(
Indω(yC)((Xi)i∈I)

)
= mC

(
((Xi)1)i∈I

)
= (Xi)(i,∗)∈K. This time the objects

of K are pairs (i, ∗) for i ∈ I and the morphisms are pairs (α, k) where α: i→ i′

is in I and k is a representative of the unique equivalence class wrt. 1 of X(α).
However, because of the particular form of 1 there is a unique representative in
that class. Therefore, in this case, K is isomorphic to I. Thus, the last formula is
equal to (Xi)i∈I. The same argument can be used for the morphisms of Indω(C)
to show mC ◦ Indω(yC) = id , as required.

Observe now that Indω(yC): Indω(C) → Ind2
ω(C), and thus

λC = ηC ∗ Indω(yC): Indω(yC) �→ yInd2
ω(C) ◦mC ◦ Indω(yIndω(C)) = yInd2

ω(C),

as required.
Let us proceed to show that the remaining KZ-doctrine axioms hold in our

context.
T1: λC ∗ yC = 1.
The lefthand side of the equation actually is ηC ∗ Indω(yC) ∗ yC, which by
naturality of y is ηC∗yIndω(C)∗yC. But the last two elements of this composition
are one of the triangular identities for the adjunction, and therefore the formula
above is an identity 2-cell.
T2: mC ∗ λC = 1.
The lefthand side of the equation is mC ∗ ηC ∗ Indω(yC), and using the other
triangular identity involved we again can show that it equals 1.
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T3: mC ∗ Indω(mC) ∗ λInd2
ω(C) = 1.

Consider T = ((Xi,j)j∈Ji
)∈I. We have Indω(yIndω(C))(T ) = (((Xi,j)j∈Ji

)1)i∈I.
Thus, the unit ηIndω(C) at this object is the I-indexed family α of equivalence
classes [αi] whose representatives are ω-ind-morphisms

αi: ((Xi,j)j∈Ji)1 → ((Xi,j)j∈Ji)(i,∗)∈K0 ,

where K0 is built by mIndω(C) for I and 1. Each αi has a unique component
which, by definition, is the equivalence class (wrt. K) of the identity ω-ind-
morphism of (Xi,j)j∈Ji

. Then Indω(mC)(α) is the I-indexed family β of equiv-
alence classes [βi] whose representatives are ω-ind-morphisms

βi: (Xi,j)(∗,j)∈Hi
→ ((Xi,j)j∈Ji)(i,∗,j)∈Li

,

where Hi is built by mC for 1, and Ji and Li corresponds to K0 and Ji. Observe
that each component of βi is the equivalence class (wrt. Li) of the identity of
Xi,j in C. Finally, we must compute mC(β). We have the index categories
K built from I and the Hi’s and K′ built from 1 and the Li’s. Thus, mC(β)
is a (i, ∗, j) ∈ K-indexed family γ whose components are equivalence classes
(wrt. K′) of the identity arrow of Xi,j . Now let K′′ be the index category for
mC(T ). Of course, K, K′ and K′′ all have isomorphic sets of objects and, as
usual, it is not difficult to show that there exist cofinal functors φ:K′ → K and
φ′:K′′ → K. It follows that the component at T of mC ∗ Indω(mC) ∗ ηIndC ∗
Indω(yInd2

ω(C)) = mC ∗ Indω(mC) ∗ λInd2
ω(C) is the identity of mC(T ), i.e.,

mC ∗ Indω(mC) ∗ λInd2
ω(C) = 1, as required.

Thus, we have proved the following.

Proposition 4.19(
Indω( ), y,m, {λC}C∈CAT

)
is a KZ-doctrine on CAT .

Moreover, by Proposition 4.5, we also have the following result concerning
Cat, the category of the small categories.

Proposition 4.20(
Indω( ), y,m, {λC}C∈Cat

)
is a KZ-doctrine on Cat.

We turn our attention to the category Indω-Alg of Indω( )-algebras. By
Definition A.3, an algebra is a category A together with a functor a: Indω(A) →
A which is a reflection left adjoint for yA:A → Indω(A). By Proposition 4.10 we
conclude immediately that the algebras are exactly the locally small ω-filtered
cocomplete categories with a choice a of colimits. Recall that, by the general
theory of KZ-doctrines, the same category A gives rise to different algebras only
via isomorphic a’s, i.e., via different choices of colimits in A.

Let us consider the Indω( )-homomorphisms. From the theory in Section A,
we know that F:A → B is a morphism of the algebras (A,a) and (B,b) if and
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only if the 2-cell φ = b ∗ Indω(F) ∗ Indω(a) ∗ λA is invertible.

Indω(A)
Indω(F) //

a

��

Indω(B)

b

��
A

F
// B

φ

{� ��
��

�
��

��
�

Consider A = (Ai)i∈I in Indω(A). Then, a(A) is (a choice of) the colimit
lim−→A

A, and F(a(A)) is F(lim−→A
A). On the other hand, Indω(F)(A) = (FAi)i∈I is

the translation through F of the diagram A in B and b(Indω(F)(A)) is (a choice
for) its colimit lim−→B

FA. In our context we have

φ = b ∗ Indω(F) ∗ Indω(a) ∗ ηA ∗ Indω(yA).

Moreover, the unit of the reflection a a yA is given by Indω(a) ∗ ηA ∗ Indω(yA).
Notice that the i-th component of η = (ηA ∗Indω(yA))A: ((Ai)1)i∈I → ((Ai)i∈I)1

is the class of ηi: (Ai)1 → (Ai)i∈I whose unique component is the class of
the identity of Ai. Then, Indω(a)(η) = ([a(ηi)])i∈I: (Ai)i∈I → (a((Ai)i∈I))1

is the limit cocone for A. Therefore, by applying Indω(F) to Indω(a)(η), we
get ([Fa(ηi)])i∈I: (FAi)i∈I → (Fa((Ai)i∈I))1, which is the translation in B of
the cocone, and finally, by applying b, we get b(([Fa(ηi)])i∈I):b((FAi)i∈I) →
(Fa((Ai)i∈I)) which is the canonical comparison map lim−→B

(FA) → F(lim−→A
A).

Then, we have that φ is invertible if and only if (by definition) F preserves
ω-filtered colimits (up to isomorphism). Therefore, we can conclude with the
following proposition.

Proposition 4.21
The 2-category of Indω( )-algebras on CAT (Cat) is the 2-category of the ω-
filtered cocomplete locally small (small) categories with a choice of colimits and
of the functors which preserve them up to isomorphism.
In equivalent terms, Indω-Alg on CAT (Cat) is the category ω-CAT (ω-Cat) of

the ω-chain cocomplete locally small (small) categories with a choice of colimits
and ω-cocontinuous functors. It follows from Proposition A.13 that Indω( )
determines a KZ-adjunction (see Definition A.11) from CAT (Cat) to ω-CAT

(ω-Cat).

5 ω-Ind Completion of Monoidal Categories

In this section we show that the ω-filtered cocompletion of a monoidal cate-
gory is a monoidal category in a canonical way. Moreover, the KZ-doctrine
(Indω( ), y,m, λ) lifts to KZ-doctrines on any of the 2-categories in Table 1,
giving in this way their ‘free’ cocompletion.

We shall illustrate two equivalent approaches, the second being actually a
variation of the first. As usual, we state definitions and results preferably for
Indω(C), although everything which follows can be rephrased for Indω(C).
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We recall that a monoidal category [7, 25] is a structure (C,⊗, e, α, λ, ρ),
where C is a category, ⊗:C×C → C is a functor, α: 1⊗( 2⊗ 3)

∼−→ ( 1⊗ 2)⊗ 3 is
‘the associativity ’ natural isomorphism,2 λ: e⊗ 1

∼−→ 1 is ‘the left unit ’ natural
isomorphism and ρ: 1 ⊗ e

∼−→ 1 is ‘the right unit ’ natural isomorphism, e is an
object in C, subject to the following Kelly-MacLane coherence axioms [23, 17]:

(αx,y,z ⊗ idk) ◦ αx,y⊗z,k ◦ (idx ⊗ αy,z,k) = αx⊗y,z,k ◦ αx,y,z⊗k;
idx ⊗ λy ◦ αx,e,y = ρx ⊗ idy. (1)

A monoidal category is strict if α, λ and ρ are the identity natural transfor-
mation, i.e., if ⊗ is strictly monoidal. It is symmetric if it is given a symmetry
natural isomorphism γ: 1 ⊗ 2

∼−→ 2 ⊗ 1 satisfying the following axioms.

(γx,z ⊗ idy) ◦ αx,z,y ◦ (idx ⊗ γy,z) = αz,x,y ◦ γx⊗y,z ◦ αx,y,z;
γy,x ◦ γx,y = idx⊗y; (2)
ρx ◦ γe,x = λx.

When γ is the identity, C is said strictly symmetric.
Given C = (C,⊗, e, α, λ, ρ, γ) and (D,⊗′, e′, α′, λ′, ρ′, γ′), a monoidal functor

from C to D is a triple (F, ϕ0, ϕ), where F:C → D is a functor, ϕ0: e′ → F(e)
is an arrow in D, and ϕ: F( 1)⊗′ F( 2)

�→ F( 1 ⊗ 2) is a natural transformation,
required to satisfy

Fαx,y,z ◦ ϕx,y⊗z ◦ (idFx ⊗′ ϕy,z) = ϕx⊗y,z ◦ (ϕx⊗y ⊗′ idFz) ◦ α′Fx,Fy,Fz;
Fλx ◦ ϕe,x ◦ (ϕ0 ⊗′ idFx) = λ′Fx (3)
Fρx ◦ ϕx,e ◦ (idFx ⊗′ ϕ0) = ρ′Fx.

Moreover, (F, ϕ0, ϕ) is symmetric if

Fγx,y ◦ ϕx,y = ϕy,x ◦ γ′Fx,Fy. (4)

If ϕ0 and ϕ are isomorphisms, then (F, ϕ0, ϕ) is a strong monoidal functor, if
they are the identity, then F is a strict monoidal functor. The combination of
these data give the one-dimensional versions of the categories in Table 1.

A monoidal transformation between the functors (F, ϕ0, ϕ) and (F′, ϕ′0, ϕ′)
is a natural transformation σ: F �→ F′ such that

σx⊗y ◦ ϕx,y = ϕ′x,y ◦ (σx ⊗′ σy)
σe ◦ ϕ0 = ϕ′0 (5)

By combining in a sensible way the data above, we get the 2-categories listed
in Table 1 in page 3.

2We use the symbols n for n ∈ ω as placeholders.
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Cocompletion of Monoidal Categories: First Solution

The first issue is to extend ⊗ to a functor ⊗̂: Indω(C) × Indω(C) → Indω(C).
Observe that by composing ⊗ with yC we get a functor yC◦⊗:C×C → Indω(C).
Therefore, by the universality of Indω( ), we get a functor

⊗′: Indω(C× C) → Indω(C)

which is the unique-up-to-isomorphism free extension of ⊗ to the ω-ind-objects.
It is easy to realize that a possible choice for ⊗′ is exactly Indω(⊗).

Indω(C× C)
Indω(⊗) // Indω(C)

C× C

yC×C

OO

⊗
// C

yC

OO

Thus, we need a canonical way of relating Indω(C× C) and Indω(C)×Indω(C).

We observe that Indω(C×D)
�∼= Indω(C)× Indω(D), although they are not at

all isomorphic. Consider the mapping ∇ defined below

I
X−→ C×D

([fi])i∈I

��

� // (I π0X−→ C, I
π1X−→ D)

([fst(fi)])i∈I

��
([snd(fi)])i∈I

��

J
Y−→ C×D

� // (J π0Y−→ C, J
π1Y−→ D)

Indω(C)× Indω(D)Indω(C×D) ∇ //

where fst〈f, g〉 = f , snd〈f, g〉 = g and πi are the projections associated to the
cartesian product.

Given X: I → C × D, suppose X(i) = (ci, di). Then, the identity of X is
([(idci , iddi)])i∈I, and therefore ∇(idX) is the pair (([idci ])i∈I, ([iddi ])i∈I) which
is (idπ0X , idπ1X). Moreover, since fst(g ◦ f) = fst(g) ◦ fst(f) and snd(g ◦ f) =
snd(g) ◦ snd(f), it is immediate to show that the definition above respects com-
positions. Thus, ∇ is a functor.

For a quasi-inverse of ∇, we consider the following ∆.

(I X−→ C, J
Y−→ D)

� //

([fi])i∈I

��
([gj ])j∈J

��

I× J
X×Y−→ C×D

([fi×gj ])i∈I,j∈J

��

(I′ X′

−→ C, J′
Y ′−→ D)

� //
I′ × J′

X′×Y ′−→ C×D

Indω(C×D)Indω(C)× Indω(D) ∆ //

Also in this case it is immediate to see that ∆ is a functor. In fact, the image of
the identity of the pairX and Y is the I×J-indexed family whose component (i, j)
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is the class of the idXi
×idYj

which is idXi×Yj
, the identity of (X×Y )(i,j). Thus,

∆ respects the identities. Moreover, since (f ◦ f ′)× (g ◦ g′) = (f × g) ◦ (f ′× g′),
it follows that ∆ is a functor.

Now, given X = ((ci, di))i∈I, we have ∆∇(X) = π0X × π1X: I× I → C×D.
Observe that φX : I → I× I which sends i to (i, i) is clearly cofinal. Moreover, the
following diagram commutes.

I
φX //

X ''OOOOOOOOOOOOO I× I

π0X×π1X

��
C×D

It follows that X and π0X × π1X are isomorphic in Indω(C×D) via the
canonical morphism φ̄X induced from φX by colimit, i.e., via the injection
L(X) = lim−→ YX of Indω(C×D) in the category of presheaves over C×D. Since
φX enjoys a universal property, it is clear that the family {φ̄X}X∈Indω(C×D)

gives a natural transformation Id �→ ∆∇.
On the other hand, given the pair ((Xi)i∈I, (Yj)j∈J) in Indω(C)× Indω(D),

we have ∇∆((X,Y )) = (π0(X × Y ), π1(X × Y )), where π0(X × Y ): I × J → C

and π1(X × Y ): I× J → D. Of course, I× J is cofinal both in I and in J, via the
functors

(i, j) � //

(f,g)

��

i

f

��
(i′, j′) � // i′

II× J
ψ0

(X,Y ) //

and
(i, j) � //

(f,g)

��

j

g

��
(i′, j′) � // j′

JI× J
ψ1

(X,Y ) //

Moreover, the following diagrams commute.

I× J
ψ0

(X,Y ) //

π0(X×Y )
''NNNNNNNNNNNNN I

X

��
C

I× J
ψ1(X,Y ) //

π1(X×Y )
''NNNNNNNNNNNNN J

Y

��
D

and so there exist two invertible ω-ind-morphisms ψ̄0
(X,Y ):π0(X × Y ) → X and

ψ̄1
(X,Y ):π1(X×Y ) → Y induced by the universal property of colimits from ψ0

(X,Y )

and ψ1
(X,Y ). For general reasons, it follows that we have a natural transformation

ψ̄:∇∆ �→ Id , where ψ̄(X,Y ) = (ψ̄0
(X,Y ), ψ̄

1
(X,Y )). In other words we have the

following.

Proposition 5.1

Id ∼= ∆∇ via φ̄ and ∇∆ ∼= Id via ψ̄. Therefore, Indω(C×D)
�∼= Indω(C) ×

Indω(D).
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It is clear from the definition that ∆ and ∇ are such that

Indω(C)× Indω(D)
∆ //

∇
oo

Indω(C×D)

C×D

yC×yD

hhQQQQQQQQQQQQ yC×D

88ppppppppppp

and, if C and D are ω-filtered cocomplete, then

Indω(C)× Indω(D)
lim−→C

× lim−→D

((QQQQQQQQQQQQ

∆

��

C×D

Indω(C×D)

∇

OO

lim−→C×D

66mmmmmmmmmmmm

�∼=

i.e., lim−→C×D
(F) = (lim−→C

π0F, lim−→D
π1F) and (lim−→C

F, lim−→D
G) = lim−→C×D

F×G.
So we are allowed to define

Indω(C)× Indω(C) ∆ // Indω(C× C)
Indω(⊗) // Indω(C)

C× C

yC×yC

ggNNNNNNNNNNNNNNNNNNNNNNNN

yC×C

OO

⊗
// C

yC

OO

Observe that this diagram commutes, which means that the tensors of C

and Indω(C) coincide on the (essentially) constant ω-ind-objects. We shall see
that actually the entire monoidal structure of C, and not merely the tensor, is
preserved in Indω(C). In the following we shall denote Indω(⊗) ◦∆ by ⊗̂. In
terms of indexed representation of ω-ind-object we can then write

(Xi)i∈I

([fi])i∈I

��
(X ′i)i∈I′

⊗̂

(Yj)j∈J

([gj ])j∈J

��
(Y ′j )j∈J′

=

(Xi ⊗ Yj)(i,j)∈I×J

([fi⊗gj ])(i,j)∈I×J

��
(X ′i ⊗ Y ′j )(i,j)∈I′×J′

To make explicit the remaining monoidal structure we have to identify the
unit for ⊗̂, to lift the coherence natural isomorphisms α, λ, ρ and γ to Indω(C),
and to prove that the axioms are satisfied. This task is fairly easy now. Con-
cerning the unit, of course we take ê = yC(e) = e.
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α̂: 1 ⊗̂ ( 2 ⊗̂ 3)
∼−→ ( 1 ⊗̂ 2) ⊗̂ 3. For X = (Xi)i∈I, Y = (Yj)j∈J, Z = (Zk)k∈K

in Indω(C), let H be I× J× K and define α̂X,Y,Z as follows

([αXi,Yj ,Zk
])(i,j,k)∈H: (Xi ⊗ (Yj ⊗ Zk))(i,j,k)∈H → ((Xi ⊗ Yj)⊗ Zk)(i,j,k)∈H.

Observe that α̂ can be described as Indω(α) ∗ ∆ ∗ (IdIndω(C) × ∆). It follows
that α̂, since it is the image of a natural isomorphism through a 2-functor, is a
natural isomorphism.
λ̂: ê ⊗̂ 1

∼−→ 1. For X = (Xi)i∈I in Indω(C), the component at X of λ̂ is

λ̂X = ([λXi ])i∈I: (e⊗Xi)i∈I → (Xi)i∈I.

This time λ̂ can be written as Indω(λ)∗∆(ê, ), which implies that it is a natural
isomorphism.
ρ̂: 1 ⊗̂ ê

∼−→ 1. Given X = (Xi)i∈I in Indω(C), we define

ρ̂X = ([ρXi ])i∈I: (Xi ⊗ e)i∈I → (Xi)i∈I.

Observe that ρ̂ is Indω(ρ) ∗∆( , ê), and thus a natural isomorphism.
γ̂: 1 ⊗̂ 2

∼−→ 2 ⊗̂ 1. For X = (Xi)i∈I and Y = (Xj)j∈J, we define

γ̂X,Y = ([γXi,Yj
])(i,j)∈I×J: (Xi ⊗ Yj)(i,j)∈I×J → (Yj ⊗Xi)(j,i)∈J×I,

which again is Indω(γ) ∗∆, and thus a natural isomorphism.
Now it is really simple to check that these definitions enjoy the coherence

axioms (1) and (2). Thus, we have the following.

Proposition 5.2
For any monoidal category (C,⊗, e, α, λ, ρ) the filtered cocomplete category

(Indω(C), ⊗̂, ê, α̂, λ̂, ρ̂) is a monoidal category. Moreover, if (C,⊗, e, α, λ, ρ, γ)
is symmetric, then (Indω(C), ⊗̂, ê, α̂, λ̂, ρ̂, γ̂) is a symmetric monoidal category.

Finally, if C is monoidal strict, then so is Indω(C); if C is strictly symmetric so
is Indω(C).

Proof. Concerning the cases where C is strict monoidal or strictly symmetric, ob-
serve that the structure transformations α̂, λ̂, ρ̂ and γ̂ are identities when the
corresponding transformations of C are so. X

As anticipated above, the embedding yC preserves the monoidal structure
of C. Therefore, Indω(C) can be considered the ‘free’ cocomplete monoidal
category on C.

Proposition 5.3
The subcategory yC(C) of Indω(C) is isomorphic to C in the monoidal sense,
i.e., yC is a strict monoidal functor.
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Proof. Of course, yC(c⊗ d) = yC(c) ⊗̂ yC(d), since we identify 1 and 1× 1. For the
rest, observe that

yC(e) = ê;

yC(αx,y,z) = α̂yC(x),yC(y),yC(z);

yC(λx) = λ̂yC(x);

yC(ρx) = ρ̂yC(x);

yC(γx,y) = γ̂yC(x),yC(y);

which is enough to conclude the desired result. X

We conclude this subsection studying the behaviour of Indω( ) on monoidal
functors and monoidal transformations. Let (F, ϕ0, ϕ) be a monoidal functor
between the monoidal categories (C,⊗, e, α, λ, ρ, γ) and (D,⊗′, e′, α′, λ′, ρ′, γ′).
Consider (Indω(F), yC(ϕ0), Indω(ϕ) ∗ ∆), i.e., a functor Indω(F): Indω(C) →
Indω(D), a morphism yC(ϕ0): ê′ → Indω(F)(ê) and a natural transformation
from Indω(F)( 1) ⊗̂′ Indω(F)( 2) → Indω(F)( 1 ⊗̂ 2), whose component at the
ω-ind-objects X: I → C and Y : J → C is

([ϕXi,Yj ])(i,j)∈I×J: (F(Xi)⊗′ F(Yj))(i,j)∈I×J → (F(Xi ⊗ Yj))(i,j)∈I×J.

It is just a matter of a few calculations to verify that the axioms (3) hold for
(Indω(F), yC(ϕ0), Indω(ϕ) ∗ ∆). Moreover, if (F, ϕ0, ϕ) is symmetric, then (4)
also holds, i.e., (Indω(F), yC(ϕ0), Indω(ϕ) ∗ ∆) is symmetric. Clearly, strong-
ness and strictness are also preserved. Let σ: (F, ϕ0, ϕ) �→ (F′, ϕ′0, ϕ′) be a
monoidal transformation. Recall that the component of Indω(σ) at the ω-ind-
objects X = (Xi)i∈I is ([σXi

])i∈I: (FXi)i∈I → (F′Xi)i∈I. Therefore, it follows
easily that, when σ satisfies (5), Indω(σ) is a monoidal transformation from
(Indω(F), yC(ϕ0), Indω(ϕ) ∗∆) to (Indω(F′), yC(ϕ′0), Indω(ϕ′) ∗∆). Therefore,
we can state the following proposition.

Proposition 5.4
The KZ-doctrine Indω( ) on CAT lifts to KZ-doctrines on B, for any B appearing
in Table 1.

Proof. Concerning the categories of locally small categories, the result follows im-
mediately from the previous considerations about monoidal functors and transfor-
mations and from Proposition 5.2. In the cases where B is a category of small
categories, it follows from the above and Proposition 4.20. X

For each B appearing in Table 1, let ω-B be the category consisting of the ω-
chain cocomplete categories in B with a choice of colimits and of the functors in B

which preserve ω-chain colimits up to isomorphism. Then, by Proposition A.13,
we have the following.

Proposition 5.5
For any B in Table 1, Indω( ) determines a KZ-adjunction from B to ω-B.
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Cocompletion of Monoidal Categories: Second Solution

The extension of the monoidal structure of C to Indω(C) given in the previous
subsection may look rather far from our intended interpretation motivated in
Section 1. For instance, the tensor of two ω-chains is (represented by) a two-
dimensional structure ω × ω. However, this is just a comfortable representation
for the tensor. One could consider another representation taking for example
the ‘diagonal’ cofinal chain in ω × ω, which is isomorphic as ω-ind-object to
the ‘whole square’, and which corresponds to the motivating diagram shown in
Section 1. In this subsection, we study an alternative description of the monoidal
structure of Indω(C) which is more intuitive and better suited for our intended
applications to Petri nets.

Let Cω be the full subcategory of Indω(C) consisting of the ω-chains, i.e.,
the ω-ind-objects indexed by ω.3 Then we have the following.

Proposition 5.6

Cω
�∼= Indω(C).

Proof. The inclusion functor Cω ↪→ Indω(C) is by definition full and faithfull. We
show that its replete image is Indω(C). Then, by exploting the result of [8] as in
Proposition 4.3, we have the desired result.

Let X be an ω-ind-object, i.e., a countable filtered diagram in C. We have to show
that it is isomorphic in Indω(C) to an ω-chain. By applying the lemma stated in
the proof of Proposition 3.8, and thanks to Proposition 4.6, we may assume that X
is indexed over a countable directed set D. Then, working as in Proposition 3.3, we
find a countable sequence of finite directed subsets {Di}i∈ω such that, Di ⊂ Di+1,
for any i ∈ ω, and D =

S
i∈ω Di, from which we can extract the corresponding

sequence of greatest elements {ci}i∈ω. Now, define the functors φ: ω → D and
Y : ω → C as follows:

φ(i) = ci and φ(i < i + 1) = ci < ci+1;

Y (i) = X(ci) and Y (i < i + 1) = X(ci < ci+1).

Clearly, by Lemma 3.7 (iii), we have that φ is cofinal, and since Y ◦ φ = X, by
Proposition 4.6, we conclude that X and Y are isomorphic in Indω(C). Since Y
is an ω-chain, this concludes the proof. X

Observe that, as immediate consequence of the proposition above, we have
that Cω is ω-chain (filtered) cocomplete. Of course, working with Cω, we have
to redefine y. We shall consider the obvious choice ȳ(c) = c = ω

c−→ C, the
constant chain. Of course, we still have that ȳ:C → Cω is full and faithful.
Moreover, L ◦ ȳ = L ◦ y.

Restricting our attention to ω makes possible expressing the commutativity
of ( )ω and × by an isomorphism.

3As in the case discussed in the note 1, the results which follow can be restated for any
cardinal ℵ and for the corresponding subcategory Cℵ of ℵ-chains in SetCop

.
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Proposition 5.7
There is an isomorphism (C×D)ω ∼= Cω ×Dω, defined by ∆ and ∇ below.

ω
X−→ C×D

([fi])i∈ω

��

� // (ω π0X−→ C, ω
π1X−→ D)

([fst(fi)])i∈ω

��
([snd(fi)])i∈ω

��

ω
Y−→ C×D

� // (ω π0Y−→ C, ω
π1Y−→ D)

Cω ×Dω(C×D)ω ∇ //

fst and snd being as in the previous subsection.

(ω X−→ C, ω
Y−→ D)

� //

([fi])i∈ω

��
([gi])i∈ω

��

ω
〈X,Y 〉−→ C×D

([fi×gi])i∈ω

��

(ω X′

−→ C, ω
Y ′−→ D)

� //
ω
〈X′,Y ′〉−→ C×D

(C×D)ωCω ×Dω ∆ //

〈 , 〉 being the pairing of functors.

As in the previous subsection, we have the following commutative diagrams.

Cω ×Dω //
(C×D)ω

oo

C×D

ȳC×ȳD

eeKKKKKKKKKK ȳC×D

99ssssssssss

Cω ×Dω

lim−→C
× lim−→D

%%LLLLLLLLLL

��

C×D

(C×D)ω

OO

lim−→C×D

99ssssssssss

�∼=

the second diagram existing when C and D are ω-chain cocomplete, and thus
we can define

Cω × Cω
∆ // (C× C)ω

⊗ω

// Cω

C× C

ȳC×ȳC

ddHHHHHHHHHHHHHHHHHHHH

ȳC×C

OO

⊗
// C

yC

OO

In the following, ⊗ω ◦ ∆ will be denoted by ⊗̃. Writing the tensor in terms
of the indexed representation of ω-ind-object and morphisms makes clear the
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correspondence of this approach with the discussion in Section 1.

(Xi)i∈ω

([fi])i∈ω

��
(X ′i)i∈ω

⊗̃

(Yi)i∈ω

([gi])i∈ω

��
(Y ′i )i∈ω

=

(Xi ⊗ Yi)i∈ω

([fi⊗gi])i∈ω

��
(X ′i ⊗ Y ′i )i∈ω

So, given the symmetric monoidal category (C,⊗, e, α, λ, ρ, γ), the monoidal
structure on Cω is (Cω, ⊗̃, ẽ, α̃, λ̃, ρ̃, γ̃), where

• ẽ = ȳC(e) = e;

• α̃X,Y,Z = ([αXi,Yi,Zi
])i∈ω;

• λ̃X = ([λXi ])i∈ω;

• ρ̃X = ([ρXi
])i∈ω;

• γ̃X,Y = ([γXi,Yi ])i∈ω.

Showing that these data form a symmetric monoidal category is a routine
task. Therefore, we can summarize the results in the following propositions.

Proposition 5.8
For any monoidal category (C,⊗, e, α, λ, ρ) the ω-filtered cocomplete category
(Cω, ⊗̃, ẽ, α̃, λ̃, ρ̃) is a monoidal category. Moreover, if (C,⊗, e, α, λ, ρ) is sym-
metric, then (Cω, ⊗̃, ẽ, α̃, λ̃, ρ̃, ⊗̃) is a symmetric monoidal category. Finally, if
C is monoidal strict, then so is Cω; if C is strictly simmetric so is Cω.

Proposition 5.9
The subcategory ȳC(C) of Cω is isomorphic to C in the monoidal sense, i.e., ȳC

is a strict monoidal functor.

Proposition 5.10
Cω is, up to equivalence, the free ω-chain cocomplete monoidal category on C.

Proof. Immediate from Proposition A.12 and Proposition 5.6. X

6 Applications to Petri Nets

The previous sections have shown how we can build the (pseudo) free ω-filtered
cocomplete category Indω(C) over a given C. In particular, in Section 5 we have
proved that the construction lifts to a KZ-doctrine on sSsMonCat, respectively
on SsMonCat, giving in this way the completion of strictly symmetric strict
monoidal categories, respectively symmetric strict monoidal categories. This
section, which matches in style Section 1, explains how these facts bring us close
again to Petri nets.

Following [30, 5], a Petri net is a structure N = (∂0
N , ∂

1
N :TN → S⊕N ),

where TN is a set of transitions, SN is a set of places, S⊕N is the free commutative
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monoid on SN , i.e., the monoid of finite multisets on SN , in this context usu-
ally called (finite) markings of N , and ∂0

N and ∂1
N are functions which associate

to any transition respectively a source and a target marking. For t ∈ TN , we
write t:u → v if ∂0

N (t) = u and ∂1
N (t) = v. A morphism of PT nets from N

to N ′ consists of a pair of functions 〈f, g〉, where f :TN → TN ′ is a function and
g:S⊕N → S⊕N ′ is a monoid homomorphism such that 〈f, g〉 respects source and
target, i.e.,

∂0
N ′ ◦ f = g ◦ ∂0

N and ∂1
N ′ ◦ f = g ◦ ∂1

N .

These data, with the obvious componentwise composition of morphisms, define
the category Petri of PT nets.

For N a net and w ∈ S⊕N , the set R[N,w] of markings of N reachable from w
is defined inductively by the rules

w ∈ R[N,w],
u⊕ u′ ∈ R[N,u] and t:u→ v ∈ TN

v ⊕ v′ ∈ R[N,u]
.

We say that a place a ∈ SN is bounded if for all w ∈ S⊕N there exists n ∈ ω such
that for all u ∈ R[N,w] with u(a) ≤ n. Otherwise, we say that a is unbounded.

Definition 6.1 (Process Nets and Processes)
A process (or occurrence) net is a net Θ such that

i) for all t ∈ TΘ, ∂0
Θ(t) and ∂1

Θ(t) are sets (as opposed to multisets);

ii) for all pairs t0 6= t1 ∈ TΘ and i = 0, 1, ∂iΘ(t0) ∩ ∂iΘ(t1) = ∅;

iii) the ‘flow’ relation ≺ on TΘ ∪ SΘ obtained as transitive closure of{
(a, t)

∣∣ a ∈ ∂0
Θ(t)

}
∪

{
(t, a)

∣∣ a ∈ ∂1
Θ(t)

}
is irreflexive, i.e., Θ is acyclic;

iv) TΘ ∪ SΘ is countable and for all x ∈ TΘ ∪ SΘ, the set {y | y ≺ x} is finite.

We shall denote by min(Θ) and max(Θ) the sets of places of Θ which are,
respectively, minimal and maximal with respect to ≺.

Given N ∈ Petri, a process of N is a morphism π: Θ → N , where Θ is a
process net, and π is a net morphism which maps places to places (as opposed to
morphisms which map places to markings) and such that the set π−1(a)∩min(Θ)
is finite for all the bounded a ∈ SN .
A process is finite if the underlying process net is such.

For the purpose of defining processes at the right level of abstraction, we
need to make some identifications. Of course, we shall consider as identical pro-
cess nets which are isomorphic and, consequently, we shall make no distinction
between two processes π: Θ → N and π′: Θ′ → N for which there exists an iso-
morphism ϕ: Θ → Θ′ such that π′ ◦ ϕ = π. Observe that the constraint on π
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is relevant, since we certainly want process morphisms to map a single compo-
nent of the process net to a single component of N . Otherwise said, process
are nothing but labellings of Θ, which in turn is essentially a partial ordering of
transitions, with an appropriate element of N .
Remark. We recall that an ordinal number is . . .

Definition 6.2 (f-indexed orderings)
Given a countable set A together with a set B and a function f :A → B, an
f-indexed ordering of A is a family {`b | b ∈ B} of bijections `b: f−1(b) → η, η
being a countable ordinal smaller than ω · ω.

Informally, an f -indexed ordering of A is a family of total orderings, one for
each of the partitions of A induced by f .

Definition 6.3 (Concatenable Processes)
A concatenable process of N is a triple CP = (π, `, L) where

• π: Θ → N is a process of N ;

• ` is a π-indexed ordering of min(Θ);

• L is a π-indexed ordering of max(Θ).

Two concatenable processes CP and CP ′ are isomorphic if their underlying
processes are isomorphic via an isomorphism ϕ which respects the ordering,
i.e., such that `′π′(ϕ(a))(ϕ(a)) = `π(a)(a) and L′π′(ϕ(b))(ϕ(b)) = Lπ(b)(b) for all

a ∈ min(Θ) and b ∈ max(Θ). As in the case of processes, we identify isomorphic
concatenable processes.
A concatenable process is finite if the underlying process is such.

In order to define an operation of concatenation of concatenable processes, we
associate a source and a target to a concatenable process CP = (π: Θ → N, `, L)
by considering the formal sums u =

⊕
a∈SN

ηa · a, where ηa is the codomain of
`a, respectively of La, if a ∈ π(min(Θ)), respectively a ∈ π(max(Θ)), and ηa
is 0 otherwise. It is easy to verify that SωN , the set of source and targets of
concatenable processes of N , is the set of the formal sums

⊕
a∈SN

ηa · a such
that ηa ∈ ω·ω and ηa ∈ ω if and only if a is bounded in N . It follows immediately
that SωN is a monoid with unit the sum

⊕
a∈SN

0 · a under the operation( ⊕
a∈SN

ηa · a
)
⊕

( ⊕
a∈SN

η′a · a
)

=
⊕
a∈SN

(ηa + η′a) · a,

where + is the usual sum of ordinals. Given their resemblance to markings, in
the following we shall call the elements of SωN generalized markings of N . The
concatenation of (π0: Θ0 → N, `0, L0):u → v and (π1: Θ1 → N, `1, L1): v → w
is the concatenable process (π: Θ → N, `, L):u → w defined as follows (see also
Figure 2), where, in order to simplify notations, we assume that SΘ0 and SΘ1

are disjoint.
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ā

1
GFED@ABC

��

ā

2
GFED@ABC

��
t0

��

t1

��

b̄0

2

GFED@ABC b̄1

1

GFED@ABC

Figure 1: A net N and one of its concatenable processes α: a→ ω · b

• Let A be the set of pairs (x, y) such that x ∈ max(Θ), y ∈ min(Θ), π0(y) =
a = π1(x) and L0

a(x) = `1a(y). By the definitions of concatenable processes
and of their sources and targets, an element of max(Θ0) belongs exactly
to one pair of A, and of course the same happens to min(Θ1). Consider
S0 = SΘ0 \max(Θ0) and S1 = SΘ1 \min(Θ1). Then, let in0:SΘ0 → S0∪A
be the function which is the identity on x ∈ S0 and maps x ∈ max(Θ1) to
the corresponding pair in A. Define in1:SΘ1 → S1 ∪A analogously. Then,

Θ = (∂0, ∂1:TΘ0 + TΘ1 → (S0 ∪ S1 ∪A)⊕),

where

– ∂0 = in⊕0 ◦ ∂0
Θ0

+ in⊕1 ◦ ∂0
Θ1

;

– ∂1 = in⊕0 ◦ ∂1
Θ0

+ in⊕1 ◦ ∂1
Θ1

;

• Suppose πi = 〈fi, gi〉, for i = 0, 1 and consider the function g(x) = gi(x) if
x ∈ Si and g((x, y)) = g0(x) = g1(y) otherwise. Then π = 〈f0 + f1, g〉.

• `a(x) = `0a(x) if x ∈ min(Θ0) and `a((x, y)) = `0a(x) if (x, y) ∈ min(Θ).

• La(x) = L1
a(x) if x ∈ max(Θ1) and La((x, y)) = L1

a(y) if (x, y) ∈ max(Θ).

Proposition 6.4
Under the above defined operation of sequential composition, the concatenable
processes of N form a category IP[N ] with objects the elements of SωN and
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with identities those processes consisting only of places, which therefore are
both minimal and maximal, and such that ` = L.

Concatenable processes admit also a tensor operation ⊗ such that, given
CP0 = (π0: Θ0 → N, `0, L0):u → v and CP1 = (π1: Θ1 → N, `1, L1):u′ → v′,
CP0 ⊗ CP1 is the concatenable process (π: Θ → N, `, L):u ⊕ u′ → v ⊕ v′ given
below.

• Θ = (∂0
Θ0

+ ∂0
Θ1
, ∂1

Θ0
+ ∂1

Θ1
:TΘ0 + TΘ1 → (SΘ0 + SΘ1)

⊕),

• π = π0 + π1;

• `a(in0(x)) = `0a(x) and `a(in1(y)) = u(a) + `1a(y).

• La(in0(x)) = L0
a(x) and La(in1(y)) = v(a) + L1

a(y).

It is easy to verify that ⊗ is a functor ⊗: IP[N ] × IP[N ] → IP[N ]. The
concatenable processes consisting only of places are the analogous of the sym-
metries. In particular, for any u =

⊕
a∈SN

ηa · a and v =
⊕

a∈SN
η′a · a in

§ωN , the concatenable process which consists of |ηa + η′a| places mapped by
π to the corresponding places of N and such that La(x) = v(a) + `a(x) and
`a(x) = La(x) − u(bi) corresponds to the component at (u, v) of the symmetry
isomorphism. Moreover, the category IP[N ] enjoys the axioms (2) for ; , ⊗
and γ as given above. Therefore, since the product is strictly associative and
the unit is strict, IP[N ] is a symmetric strict monoidal category.

Proposition 6.5
Under the above defined tensor product IP[N ] is a symmetric strict monoidal
category whose symmetry isomorphism is the family {γ̄(u, v)}u,v∈S⊗N .

The transitions t of N are faithfully represented in the obvious way by con-
catenable processes with a unique transition which is in the post-set of any
minimal place and in the pre-set of any maximal place, minimal and maximal
places being in one-to-one correspondence, respectively, with ∂0

N (t) and ∂1
N (t)

(see also Figure 3).

Definition 6.6 (Finite Concatenable Processes [5])
Let CP[N ] be the full subcategory of IP[N ] consisting of the finite concatenable
processes.

The arrows of P[N ] have a nice computational interpretation in terms of a
slight refinement of the classical notion of process consisting of a suitable layer
of labels to the minimal and to the maximal places of process nets in order to
distinguish among different istances of a place in a process of N . The equivalence
of the following definition of P[N ] with the original one in [5] has been proved
in [?].
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Definition 6.7
The category P[N ] is the monoidal quotient (see Appendix ??) of F(N), the
free symmetric strict monoidal category generated by N , modulo the axioms

γa,b = ida⊕b if a, b ∈ SN and a 6= b,

t; (id ⊗ γa,a ⊗ id) = t if t ∈ TN and a ∈ SN ,
(id ⊗ γa,a ⊗ id); t = t if t ∈ TN and a ∈ SN ,

where γ is the symmetry isomorphism of F(N).

Proposition 6.8
CP[N ] and P[N ] are isomorphic.

Proof. See [5]. X

Proposition 6.9
P[N ] embeds fully and faithfully in IP[N ] preserving the monoidal structure.

Proof. To be written. X

Proposition 6.10
IP[N ] is cocomplete and it is an algebra for the completion

Proof. To be written. X

Proposition 6.11
IP[N ] ∼= Indω(P[N ]).

Proof. To be written. X

Among other interesting categorical formalizations of net computations [30,
5] (see [32] for a survey), we would like to recall two relevant monoidal construc-
tions of processes, namely:

i) T [N ], which gives the free strictly symmetric strict monoidal category
on N , corresponding to the notion of commutative processes of N [3]; we
shall call CatPetri the category of such monoidal categories and symmetric
strict monoidal functors;

ii) P[N ], which gives the symmetric strict monoidal category obtained by quo-
tienting the free symmetric strict monoidal category on N whose monoid
of objects is S⊕ via the axioms

γa,b = ida⊗b if a, b ∈ S and a 6= b,

t; (id ⊗ γa,a ⊗ id) = t if t ∈ T and a ∈ S,
(id ⊗ γa,a ⊗ id); t = t if t ∈ T and a ∈ S,
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corresponding to the concatenable processes of N , which are a slight refine-
ment of the standard notion of process [10]; we shall refer to the category of
small symmetric monoidal categories with the properties above and sym-
metric strict monoidal functors as CatProc.

Since we already know that the monoidal structure of such categories is
preserved by the ω-ind-completion process, the remaining question is whether
the additional structure is preserved by the ω-ind-completion or, in other words,
if Indω( ) lifts to KZ-monads on CatPetri and on CatProc. Clearly, this would
be the best possible result from our point of view, since it would allow a full
application of the theory of the cocompletion of monoidal categories to the case of
Petri nets, thus giving a full account of infinite behaviours of nets. Unfortunately,
this is not the case. More precisely, only the objects of CatPetri are rather close
to keep their structure under the cocompletion construction. In fact, we know
from Proposition 5.2 that Indω(T [N ]) is a strictly symmetric strict monoidal
category. However, Indω(T [N ]) does not belong to CatPetri since its monoid
of objects is not free. The situation is worse for CatProc. Observe, in fact,
that when C is not strictly symmetric, then the primary requirement about the
monoid of objects being commutative fails immediately. In fact, in this case, the
tensor of diagrams in general will not be commutative because of the arrows.

Thus, Indω( ) does not restrict to an endofunctor on the categories we are
mainly concerned with. A possible way out of this problem, which is currently
under investigation, consists of looking for an alternative presentation of the co-
completion doctrine, i.e., for a doctrine whose functor is isomorphic to Indω( )
but better suited for the case of Petri nets. For the time being, however, we
present the following considerations about the relationships between Petri nets
and the cocompletion of their categories of processes which aim at showing that,
at the level of a single net, Indω( ) behaves as expected, giving a faithful descrip-
tion of infinite processes. We shall focus on the concatenable processes P[N ],
although, as in Section 1, all the following comes from rather general properties.

First of all, we need to show that Indω(P[N ]) can be considered as the
category of infinite concatenable processes of N . Consider a net N ∈ Petri and
an ω-chain

u0
α0−→ u1

α1−→ u2 · · ·un
αn−→ un+1 · · ·

i.e., an ω-ind-object U in P[N ]ω. We look at this chain as a limit point for an
infinite computation (and not as the infinite computation itself!), i.e., as a sort of
generalized infinite marking represented by the computation which produces it
from the finite markings. Observe that the adjective ‘generalized’ is appropriate,
since, in general, the infinite marking above depends on the transitions which
appear in the chain, not just on their sources and targets. For instance, if
we consider a net with two transitions t, t′: a → a, then the chains consisting
respectively of a sequence of t and a sequence of t′ represent different infinite
markings.

In order to substantiate the intuition about morphisms, let us start with the
following case. Let u be the standard representative of u in Indω(P[N ]), i.e.,
u = y(u) the diagram with value uI on the singleton filtered category 1. Given
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the particular shapes of 1 and ω, an arrow from u to U in Indω(P[N ]), is an
equivalence class [β]:u→ U of arrows β:u→ un in P[N ], where (β:u→ un) ∼
(β′:u→ uk) with n ≤ k if and only if β;αn+1; · · · ;αk = β′.

u

β

�� β′ �%
CC

CC
CC

C

CC
CC

CC
C

β′′

$,QQQQQQQQQQQQQQ

QQQQQQQQQQQQQQ

u0 α0
// u1 α1

// u2 α2
// · · ·

Now, recalling the characterization of arrows in P[N ] as concatenable pro-
cesses, we conclude that an arrow from u to U in Indω(P[N ]) is an ω-chain of
concatenable processes embedded into each other, i.e., it represents a unique in-
finite process. Before getting to the generality of arrows between ω-ind-objects,
it is worthwhile to point out the following particular case. Observe that each
ω-ind-object is the limit in Indω(C) of its component constant ω-ind-objects.
(To see this just apply the definition of colimit in Indω(C) given in Proposi-
tion 4.13.) Then, it follows immediately from the discussion above that, for any
n ∈ ω, the component at n of the limit cocone for U , say λn:un → U , contains
the set

{αn, αn;αn+1, αn;αn+1;αn+2, . . .}

as a cofinal subset. Then, λ0:u0 → U represents the limit of the sequence of
processes αi, as expected.

Consider now the ω-ind-objects U = u0
α0−→ u1

α1−→ · · · and V = v0
β0−→

v1
β1−→ · · · and an arrow ([σi])i∈ω:U → V . As explained above, each component

[σi] represents an infinite process leaving from ui, i.e., leaving from the i-th
approximation of the generalized marking U . Now, the ‘compatibility’ condition
on the components of ([σi])i∈ω means that for any n ≤ k and for any σi:un →
vn′ and σk:uk → vk′ , representatives of, respectively, the i-th and the k-th
component of the ω-ind-morphism, assuming without loss of generality n′ ≤ k′,
we must have αn; · · · ;αk−1;σk = σn;βn′ ; · · · ;βk′−1. It follows that the infinite
processes (corresponding to) [σi] form a sequence of embedded processes which
leave from better and better approximations of U . Then, this chain admits a
limit process which is the infinite process corresponding to ([σi])i∈ω. In other
words, morphisms from generalized infinite markings are defined via continuity
from ‘finite’ approximation morphisms. The same, of course, happens for the
composition of infinite processes which, therefore, are concatenable. A similar
description in term of continuity may be given for the parallel composition of
infinite processes.

Of course, the previous informal discussion could be easily translated into a
formal proof of the fact that P[N ]ω captures the usual intuitive notion of infinite
processes, thus yielding a smooth extension of the algebraic theory of Petri nets
of [30, 5] to an axiomatization in terms of monoidal categories of the infinite
causal behaviour of N . For the purpose of this paper, however, we simply claim
that the following definition is completely adequate.
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Definition 6.12
P[N ]ω is, up to equivalence, the (symmetric strict monoidal) category of infinite
concatenable processes of N .

Finally, since by Proposition 5.6 we know that Cω and Indω(C) are equivalent
categories, we have the following proposition.

Proposition 6.13
Indω(P[N ]) is, up to equivalence, the (symmetric strict monoidal) category of
the infinite concatenable processes of N .

Conclusions and Further Work

Of course, besides the problems with the semantics of nets we have noticed in
the previous section, there are many other applications to be investigated, and
we plan to explore many of these in the near future. For example, a mainstream
in the research on infinite computations focuses on topology—more precisely on
metric spaces (see [4] and references therein). Roughly, the approach consists
of defining a suitable distance between finite computations and applying to the
resulting metric space a standard Cauchy completion, thus yielding a complete
metric space where the infinite computations are the cluster points. One of the
most valuable aspects of this approach is that, by choosing appropriate metrics,
it is possible to factor out those infinite computations which do not enjoy certain
properties, in particular fairness properties [6]. It is indeed a very interesting
question whether these results can be recovered in the categorical framework
building on the seminal paper [22].

Moreover since by now there are several categorical approaches to the seman-
tics of computing systems in which objects represent states and arrows compu-
tations, this also yields a general method to construct and manipulate infinite
computations of those systems. A notable example is given by Meseguer’s con-
current rewriting systems [29]. This issue deserves to be fully investigated in
future.
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A KZ-Doctrines and Pseudo-Monads

Free constructions are defined up to isomorphism, which reflects the fact that
the stress is on the essential structure to be added, irrespective of the actual
representation chosen for such a structure. Correspondingly, free constructions,
as left adjoints to forgetful functors, give rise to monads [25], i.e., to algebraic
constructions. In the case of completion of categories by colimits, however, as
discussed in Section 2, the freeness condition is verified only up to isomorphism
of the functors involved. Thus, the free object is identified up to equivalence
of categories, in the precise sense that the (infinitely many) categories which
enjoy the universal property are ‘only’ equivalent—as opposed to isomorphic—
to each other. Correspondingly, the cocompletion functors do not give rise to
an adjunction or, equivalently, to a monad (however see [19]). We would like to
stress that, since the notion of colimit is defined only up to isomorphism, it is
not a strictly algebraic operation, and therefore it would not be reasonable to
expect a stronger form of universality.

Situations like this arise often in the everyday practice in mathematics, and
a lot of work has been done in order to formalize them in category theory, e.g. [1,
20, 11, 12, 34, 2, 35], where equality is replaced by equivalence of morphisms or,
even weaker, by the mere existence of a 2-cell between two morphisms. Needless
to say, it is very often the case that this 2-cells have to be related by coherence
isomorphisms themselves. So these constructions make sense in 3-categories, like
Cat. There are many natural examples of situations where the pseudo version
(i.e. up to coherent isomorphisms) or the lax version (i.e. up to coherent 2-cells)
of algebraic laws seems to be the natural requirement. Perhaps the most evident
example is the case of monoidal categories [7] where the standard notion of
monoidal functor is not required to commute with the monoidal structure ‘on
the nose’, but only up to isomorphisms or up to coherent 2-cells.

Of course another such example is, in our opinion, the cocompletion con-
struction we are interested in. Thus, instead of trying to ‘fish out’ some peculiar
representatives in order to make the colimit notion behave strictly algebraically,
we prefer to adopt a viewpoint also taken by other authors [19, 20, 35] who
recognize its 2-categorical ‘lax’ nature and formalize it as a pseudo-adjunction,
or equivalently as a pseudo-monad. However, the problem with this approach
is that the needed coherence conditions may look quite overwhelming some-
times. For instance, Zöberlein’s 2-doctrines [35], i.e., 2-functors on 2-categories
with unit and multiplication natural only up to isomorphisms for which the
laws for monads, algebras and homomorphisms hold up to isomorphism, must
be provided with 19 coherence axioms. Fortunately enough, in the nice case of
coquasi-idempotent doctrines [35], which are what is needed for the cocompletion
construction, most of them disappear. In the following we shall recall the basics
of KZ-doctrines or KZ-monads [20, 34] (KZ standing for Kock-Zöberlein), which
are a simpler representation of the cited notion. In particular, the most rele-
vant feature of KZ-doctrines is that all we need about coherent isomorphisms of
1-cells is contained in a single piece of information, namely a family of 2-cells.
Remark. In the following we shall be dealing with 2-categories. For the basic defini-
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tions the reader is referred to [18]. As a matter of notation, we shall denote by ∗
the horizontal composition and by � the vertical composition of 2-cells, while we

stick to the classical ◦ for the horizontal composition of 1-cells. Identity 1-cells are

written as idC , or simply id, while for the identity 2-cell of a 1-cell f we use f itself,

since confusion is never possible. Moreover, when the 1-cell involved is not relevant,

we write 1 to indicate a generic identity 2-cell.

Definition A.1
A KZ-doctrine on a 2-category C is a tuple (T , y,m, λ), where

• T :C → C is a 2-endofunctor;

• y: Id �→ T and m: T2 �→ T are 2-natural transformations;

• λ is a family of 2-cells {λC : TyC ⇒ yTC : TC → T2C}C∈C indexed by the
objects of C;

satisfying the following axioms4

T0: mC ◦ TyC = mC ◦ yTC = idTC ;

TC

idTC ""EEEEEEEE
TyC // T2C

mC

��

TC

idTC||yyyyyyyy

yTCoo

TC

T1: λC ∗ yC = 1;

C
yC // TC

GF ED
TyC

��

@A BC
yTC

OO⇓ λC T2C = 1

T2: mC ∗ λC = 1;

TC

GF ED
TyC

��

@A BC
yTC

OO⇓ λC T2C
mC // TC = 1

T3: mC ∗ TmC ∗ λTC = 1.

T2C

GF ED
TyTC

��

@A BC
yT2C

OO⇓ λTC T3C
TmC // T2C

mC // TC = 1

4It can be shown that the equations are only between 2-cells with the same source and
target, i.e., that they are well given.
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Thus, T , y and m play the role of the functor, unit and multiplication of an
ordinary 2-monad [2]. In particular, y and m are actual (not pseudo) 2-natural
transformations. As anticipated, the only additional 2-dimensional information
around is λ and every coherence isomorphism is obtained from it. Axiom T0

corresponds to the unit law of monads, that therefore holds strictly also in KZ-
doctrines. Axioms T1, T2 and T3 express the coherence of λ with the unit
and the multiplication. Observe that there is no explicit mention of a pseudo
form of the multiplication law. However, we shall see later that this is indeed
the case and, for any C ∈ C, there exists an isomorphism µC :mC ◦ TmC ⇒
mC ◦mTC : T3C → TC.

Proposition A.2
For any C ∈ C we have a reflection mC a yTC : T2C ⇀ TC, the unit of the
adjunction being TmC ∗ λTC : idT2C ⇒ yTC ◦mC .

Definition A.3 (T -Algebras)
An algebra for T is an object A ∈ C together with a structure map a: TA → A
which is a reflection left adjoint for yA:A→ TA.

Thus, structures are adjoints to units [20]. Observe that, since a a yA is a
reflection, we have a ◦ yA = id . Therefore, as in the case of the KZ-doctrine
itself, the unit law for the structure of an algebra holds strictly. Since we have
mC a yTC , for any C ∈ C there is a ‘free’ algebra on C, namely (TC,mC).

Given T -algebras (A,a) and (B,b), consider a morphism f :A → B in C.
By naturality of y, we have that Tf ◦ yA = yB ◦ f . Thus, we can consider the
identity 1: Tf ◦ yA ⇒ yB ◦ f and its mate (see e.g. [18]) φ:b ◦ Tf ⇒ f ◦ a under
the adjunctions a a yA and b a yB wrt. f and Tf , i.e.,

TA
Tf //

a

��

TB

b

��
A

f
// B

φ

{� ��
��

�
��

��
� =

TA
Tf // TB

b // B

TA

⇓ η

id

==zzzzzzzz
a

// A

⇓ 1

f
//

yA

OO

B

id

==||||||||
yB

OO
1⇓

We shall refer to φ as the canonical 2-cell associated to f .

Definition A.4 (T -homomorphisms)
A T -homomorphism f from the T -algebra (A,a) to the T -algebra (B,b) is a
morphism f :A→ B whose canonical 2-cell is invertible.

Since the calculus of mates preserves composition, given the algebras (A,a)
and (B,b), we have that if φf and φg are the canonical 2-cells of f :A→ B and
g:B → C, then the canonical 2-cell φg◦f associated to g ◦f is φg ∗φf . Moreover,
a simple shot of pasting shows that the canonical 2-cell associated to idA is the
identity 2-cell. Therefore, we have the following.
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Proposition A.5
T -algebras and T -homomorphisms form a category T -Alg which is lifted to a
2-category T -Alg by enriching it with all the 2-cells in C.

It follows immediately from the definitions that the forgetful functor

(A,a) � //

f

��

A

f

��
(B,b) � // B

CT -Alg U //

and
f−→

α

��

f−→
α

��
−→
g

−→
g

� //

CT -Alg U //

is faithful and locally fully faithful, i.e., T -Alg[f, g] = C[f, g].
Next, we state two important cases in which one can conclude that a mor-

phism is a T -homomorphism.

Proposition A.6
Let (A,a), (B,b) be T -algebras. If f :A → B is invertible, then f is a T -

homomorphism. Moreover, if f is a left adjoint, then f is a T -homomorphism.

T -algebras are characterized by structure maps which are adjoint to a given
morphism. Therefore, the structure on a given algebra is unique up to isomor-
phisms. Moreover, fixed a structure map the unit of the adjunction is uniquely
determined via λ.

Proposition A.7
Let (A,a) be an algebra and suppose that η is the unit of a a yA. Then,
η = Ta ∗ λA.

Since the canonical 2-cells of morphisms f :A → B are mates of an identity
2-cell under adjunctions whose units can be expressed through λ and whose
counits are identities, the following result is very natural.

Proposition A.8
Let (A,a) and (B,b) be algebras and consider f :A→ B. Then, the canonical

2-cell associated to f is φf = b ∗ Tf ∗ Ta ∗ λA.

Another relevant property of the multiplication m is the following.

Proposition A.9
For any C ∈ C there is a coreflection TyC a mC .

We show now, as promised, that the associativity law for m holds up to a
canonical isomorphism. In fact, since mC : T2C → TC is left adjoint to yTC , by
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Proposition A.6, it is a T -homomorphism with canonical 2-cell µC :mC ◦TmC ⇒
mC ◦mTC , i.e.,

T3C
TmC //

mTC

��

T2C

mC

��
T2C mC

// TC

µC

{� ��
��

�
��

��
�

We complete this appendix about KZ-doctrines by recalling that a KZ-
doctrines give rise to a particular kind pseudo-adjunctions. We first recall the
notion of pseudo natural transformation.

Definition A.10
Let F:C → D and G:C → D be 2-functors. A pseudo natural transformation
σ: F �→ G is a family {σC : FC → GC}C∈C of 1-cells in D together with a family

{σf :σC′ ◦ Ff → Gf ◦ σC | f :C → C ′ in C} of invertible 2-cells in D, such that

• for each µ: f ⇒ f ′:C → C ′ we have (Gµ ∗ σC) � σf = σf ′ � (σC′ ∗ Fµ);

• σidC
= 1σC

;

• σg◦f coincides with the pasting of the following 2-cells.

FC
σC //

Ff

��

GC

Gf

��
FC ′ σC′

//

Fg

��

GC ′

σf
;C

��
��

�
��

��
�

Gg

��
FC ′′ σC′′

// GC ′′

σg
;C

��
��

�
��

��
�

Definition A.11 (KZ-adjunction)
A KZ-adjunction is a tuple (F, G, η, ε) where F:C → D and G:D → C are 2-
functors, η: IdC

�→ GF is a 2-natural transformation and ε: FG �→ IdD is a pseudo
natural transformation such that

εF � Fη = 1;
Gε � ηG = 1; and

εε ∗ FηG = 1ε;
GεFf = 1.

A KZ-adjunction determines a family of equivalences between the hom-

categories HomD(FC,D)
�∼= HomC(C,GD) which also take a particular form.

For any C in C and D in D, let H and K be the functors defined below.

f � //

α

��

(Gf ◦ ηC)

Gα∗ηC

g � // (Gg ◦ ηC)

HomC(C,GD)HomD(FC,D) H //

and
f � //

α

��

(εD ◦ Ff)

εD∗Fα

g � // (εD ◦ Fg)

HomD(FC,D)HomC(C,GD) K //
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Then, we have that H◦K = Id and that the family {ψf = εf ∗FηC}f∈HomD(FC,D)

gives a natural isomorphism ψ:K◦H
�→ Id . Moreover, (the collection of all the)

H is natural in C and D while K is natural in C and natural up to isomorphism
in D. This characterization of KZ-adjunctions in terms of equivalences of hom-
categories gives us the following proposition, which makes explicit the kind of
universality enjoyed by FC.

Proposition A.12
For any f :C → GD in C, the morphism εD ◦ Ff : FC → D of D enjoys the
following universal property (wrt. ηC): for any g: FC → D and α: f ⇒ g ◦ ηC ,
there exists a unique β: εD ◦ Ff ⇒ g such that Gβ ∗ ηC = α.
Moreover, if C ′ is equivalent to FC in D, i.e., such that there exist h: FC → C ′

and k:C ′ → FC together invertible 2-cells k ◦ h⇒ idFC and h ◦ k ⇒ idC′ , then
εD ◦ Ff ◦ k enjoys the same universal property (wrt. ηC ◦ h) of εD ◦ Ff .

The next proposition makes explicit the link between KZ-doctrines and KZ-
adjunctions.

Proposition A.13
Let (T , y,m, λ) be a KZ-doctrine and consider the 2-functor

A
� //

f

��

(TA,mA)

Tf

��
B

� // (TB,mB)

T -AlgC F //

and

f−→
α

��

Tf−→

Tα

��
−→
g

−→
Tg

� //

T -AlgC F //

Let ε(A,a) be a: FU(A,a) = (TA,mA) → (A,a), where U is the forgetful functor
T -Alg → C, and for each T -homomorphism f let εf be φf , the canonical 2-cell

associated to f .
Then (F,U, y, ε) is a KZ-adjunction from C to T -Alg.

The reader is suggested to restate Proposition A.12 for the KZ-adjunction
obtained from a KZ-doctrine and to compare the result with Proposition 4.15.

In the paper we see how the notions concerning KZ-doctrines are perfectly
suited to describe the cocompletion construction. Of course, this is not surprising
since they arose from Kock’s work on completion of categories [19].
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Figure 2: An example of the algebra of concatenable processes
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��

��4
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Figure 3: A transitions tu,v:u→ v and the symmetry γ(u, v) in IP[N ]
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