The Algebraic Structure of Petri Nets

Vladimiro Sassone
Department of Informatics, University of Sussex

This survey retraces, collects, and summarises the contributions of the author — both individually and in collab-
oration with others — on the theme of algebraic, compositional approaches to the semantics of Petri nets.

Introduction

An extremely successful line of research in g@mantics of concurrencyooted in
the very ideas of denotational semantics, is the one followinglfpebraicapproach. It
focuses otructuralandcompositionabspects of systems and behaviours, and the leading
idea is to describe them by means of a few basic building blocks and a small number of
combinatorg 39, 62, 38, 6/t The appeal of this is that it tends to devise neat algebraic
structures that capture tiessentiahature of the class of systems considered.

In this paper, we first survey a line of research — detailed8) p4, 59, 86, 87, 16
— aimed at recasting Petri nptocessesn the light of ideas fromprocess algebraand
categorical algebraln particular, we shall focus on Petri rincatenable processga4,

86], on strongly concatenable processe&d/[14, and on their representation in terms of
symmetric monoidal categories

Petri netswere introduced in theg6o’s by Carl Adam Petri inT4] (see also the refer-
encesT5, 80, 85, 72, 83. They are a widely used model for concurrency, attractive from
the theoretical point of view because of its simplicity and its intrinsically concurrent and
distributed nature, and very successful in applications such system modeling, analysis, and
design (see, e.g.81, 82, 46, 99and browse through the several available computer-aided
design, analysis, and verification tools based on Petri &13. [Actually, ‘Petri net’ is
a rather generic term: in fact, Petri’s original idea can be constrained and generalised in
many sensible ways, giving rise to several net-based models widely studied in the litera-
ture. These range from the essen@Edimentary84] and placetransition netq2€] to the
sophisticategbredicat@ransition[88] andcoloured net$47, 48, 49, including stochastic
Petri netg[2] used in simulation and performance evaluation.

Here we shall be concerned exclusively with pjaeasition (PT) nets — though it
would be interesting to explore to what extent these ideas and techniques can be lifted to
classes of high-level nets. The reason why PT nets form an important class is that they
formalise a very basic model of distributed systems, in which (instances of) places (i.e.,
tokens) can be understood as available resources, and transitions as concurrent activities
that require exclusive use of some of these resources and that, after completion, release
new resources (tokens in places) to the environment. Another suggestive possible interpre-
tation is to look at places as ‘mailboxes’ and at tokens as messages, portraying a view of
placétransition nets as a distributed model of concurrency with a form of asynchronous
message passing. We shall study PT nets under the bdpeterriets are monoidsiniti-
ated by p8]. Our first aim will be to axiomatise the (noninterleaving) computations of a

A previous version appeared Trhe Bulletin of the EATCS no /@une 2000.

2 . Vladimiro Sassone

net, i.e., its processes, and their structure. We sealgabrato represent them; an algebra
where processes can be seen as terms built up from their atomic components and whose
algebraic laws can be used to compute with and reason on and them.

The mathematical structures we shall use to this purpose are the symmetric monoidal
categoriesMonoidal categorieslate back toT] (see b5 for an easy thorough introduc-
tion and p8§] for advanced topics). Essentially, a monoidal category is an algebraic theory
of so-called ‘arrows’, or ‘morphisms’, and of two operations on them, a (pagé¥-
tial composition_; _, and aparallel composition®, the tensor product. But let us proceed
orderly. Acategoryis a graph equipped with a self-looping eddg for each nodes, and
with an associative binary operatian; _ of composition of adjacent edges. Nodes and
edges here are calledjectsandarrows andid, is theidentityarrow at object, and be-
haves as a unit under compositionfukactoris a mapping between categories that behaves
homomorphically with respect to; _ andid, i.e., it maps identities to identities. Adding a
tensor product to a category amounts to adding to the graph an operation of parallel com-
position of objects and arrows that behaves well with respect toIn this paper we shall
be concerned only with a particular kind of monoidal categories, namely the ‘strict’ ones.

A strict monoidal categoris a structure@, ®, €), whereC is a categorye is an object
of C, called theunit object,®: C x C — Cis a functor that, as an operation of objects and
arrows, is associative and admésndide as, respectively, the unit object and arrow. A
monoidal category isymmetridf, informally, the tensor product isommutativaup to a
chosen family of isomorphisng,, : u®v —s veu, for all objectsu, v e C. The collection
of the arrowsc,, must be subject to aaturality condition b5] and to the all important
Kelly-MacLanecoherenceaxioms b4, 57, and is called theymmetryof C.

Another relevant application of Petri nets is their use as a semantic basis to interpret
concurrent languages, a task that calls for a compositigmalcess algebra-likedescrip-
tion of nets. And in fact, the literature is rich of examples of process algebras and concur-
rent programming languages interpreted over the domain of nets, asy&,@4[23, 20)
and also of real net-based process algebras, suc6ad(, 63. In particular, B4] uses
Petri nets to model an algebra of processes and to infer several noninterleaving behavioural
equivalences on it, while2f3] interprets CCS (cf.§2]) on nets — taking up a line of re-
search initiated byd4], where event structures (cB§]) were used — based on an oper-
ation of decomposition of processes into sequential agents. The decomposition approach
is also followed by 71], while the semantics for the-calculus (cf. p4]) presented inZ0]
is based on nets with inhibitory arcs (see, e 22, [49), a powerful extension of PT nets.
A related line of research, as already mentioned, takes inspiration from the work on pro-
cess algebras and set out to design and study net algebras. One of the most prominent
approaches among these is the Petri Box calcdldis §entered around operations of asyn-
chronous communication and synchronisation, wt8i] puilds on operations of parallel
and non-deterministic composition. In dfdrent context, but with a similar veir63] in-
troduces the notion of named Petri nets and provides a representation for them as an action
calculus.

We proceed in our survey by focusing on the algebra of nets developé#]inThat
approach is entirely based on a notionmikrfacefor Petri nets that specifies what parts
of the net argublic, i.e., accessible to the environment, and what partpiavate Also,
it partitions public net components imput places and 6utput transitions, and dictates
the discipline by which nets are composed via a minimal set of combinators forming a
rudimentary calculus of nets. The most important of these is a form of asynchronous com-
munication — message passing — by means of which a net may, via its output transitions,

The Algebraic Structure of Petri Nets - 3

send messages to another net, by delivering tokens to the second net'’s input places. Net
composition is centred on an interesting fornredursionconsisting offeeding baclout-

puts to inputs, yielding a bridge to structures of recent common interest in category theory
and in computer science: thi@ced monoidal categorid$Q].

PETRI NETS IN THE SMALL

Among the semantics proposed for Petri nets, a role of paramount importance is played
by the various notions gfrocesse.g. [76, 35, 9, whose merit is to provide a faithful ac-
count of computations involving manyftirent transitions and of theausal connections
between the events occurring in computations. This is, in fact, the essencenohiheer-
leavingapproach to the semantics of concurrency, where computations are decorated with
additional information describing causes afiéets that ruled the occurrences of events in
them. The mathematical structures arising naturally form this premises are the partially or-
dered multisetsq9], pomsetdor short. Thus, informally speaking, Petri net processes —
whose standard version is given by the Goltz-Reigig-sequential processg3s — are
net computations together with an explanation of the cause by which each transition has
fired, that be represented abstractly by means of ordered sets whose elements are labelled
by transitions.

Bare process models, however, fail to bring to the foregroundlgpebraic structure
of the space of computations of a net. Our interest, instead, resides on abstract models that
capture the mathematical essence of such spaces, possibly axiomatically, roughly in the
same way as a prime algebraic domain (or, equivalently, a prime event stri2fugq)
models the computations of a net (see, exfJ))[The research detailed %8, 24, 59,
86, 87 identifies such structures agmmetric monoidal categories- where objects are
states, i.e., multisets of tokens, arrows are processes, and the tensor product and the arrow
composition model, respectively, the operations of parallel and sequential composition of
processes.

At a higher level of abstraction, the next important question concerrgidbal struc-
ture of the collection of such spaces, i.e., the axiomatisatiortHe large of net com-
putations. In other words, the space of the spaces of computations of Petri nets. Building
on [24, 8, the work presented ir8[7] shows that the so-callexsymmetric Petri categories
a class of symmetric strict monoidal categories with free (non-commutative) monoids of
objects, provide one such an axiomatisation.

In this part, we retrace and illustrate the main results achieved so far along these lines
of research by the author, both in joint and individual work. The next one will look at net
algebras ‘in the large’ from a fierent angle.

1. Petri nets as monoids

The idea of looking at nets adgebraic structurese.g. B0, 91, has been interpreted
in [58] by viewing nets asnternal graphsin categories of sets with structure and using
monoidal categories as a suitable semantic framework for them. Precisely, a net is a graph

N = (prey, posty: Tn — w(Sn))

whose nodes form the free commutative mongi@y) of thefinite multisets ofSy. Here,
Sy andTy are sets of, respectivelglacesandtransitions andprey andpost, are func-
tions assigning @ourceand atarget multiset of places to each transition. Accordingly,
a morphism of nets is graph homomorphigfp f,) whose node component respects the

4 . Vladimiro Sassone

SN:{aabac}
to 1
Ivn={t: a—c,

t:b—c,
t:c— 2} e <e e
t

Ficure 1. A netN and one of its two concatenable procesSEs a+ b — 2c

monoidal structure on places. This, with the obvious componentwise composition of mor-
phisms, defines the categdpgtri.

Ideally, Petri net processes are simply computations carrying explicit information
about causleffect relationship between event occurrences. This is conveniently described
by defining a process ¢ to be a mapr: ® — N, where® defines the process ‘skeleton’
andrn ‘labels’ ® with places and transitions of in a way compatible with its structure.

DerniTION. A process nets a finite, acyclic ne® such that for alt € Tg, preg(t) and
post(t) are sets (as opposed to multisets), and fotpat t; € T,

preg(to) Npreg(t) =@ and - pos(to) N posk(ta) = 2.
A processof N e Petri is (up to isomorphism) a net morphism @ — N, where® is a
process net and maps places to places (as opposed to multisets of places).

Inspired by the work in process algebras, we would like to concatenate a process
m1: ®1 — N with sourceu to a processg: ®g — N with targetu by gluing appropriately
theterminalplaces 0®y and thenitial places 0®;. However, the simple minded attempt
fails immediately: due to the ambiguity introduced by multiple instances of places, two
processes dfl can be composed sequentially in many ways, each of which gives a possibly
different process dfl. In other words, process concatenation has to do with metgkems
in the process placeshat is instances of places, rather than mergiages

2. Concatenable processes

It follows from the precedent argument that any attempt to recast the procedéas of
an algebra that includes sequential composition must disambiguate each token in a process.
This is exactly the idea afoncatenable processg®4]: they are simply processes where,
when needed, instances of places (tokens) are distinguished by appropriate decorations,
e.g., by ordering the initial and terminal places that carry the same label.

Dernition. A concatenable process N is a triple

(7T: ®— N, {<a}aeSNa {<<a}aeSN)7

wherer is a process, and, and <, are linear orderings of, respectively, the initial and
terminal places 0® contained imgl(a) (cf. Figure 1).

This immediately yields an operation of concatenation: the ambiguity about multiple
tokens is resolved using the additional information given by the orderings (cf. Figure 2).

DermviTioN. Let CPy: u — v andCP;: v — w be concatenable processeshyfand let
mo: ®9 — N andri: ®; — N be their underlying processes. Téequential compositign
or concatenationCP, ; CP;: u — w is obtained by gluing togethety andr,, identi-

fying injectively each terminal place @, with an initial place of®; in the uniqueway

compatible with the orderings:; on®g and<, on®; for all a € Sy.

The Algebraic Structure of Petri Nets - 5

@ @)
» @
151 ® fo . . @ @
© © o n
; © s ©
o

<.

N ; = © ©
5 <c @
i |
t ® (o
1 ®ty; Coes I ®id, (1 ®1y; cee)s t Qid, to®1t;tQid,

Ficure 2. A netN and its concatenable process to®t; ;t ®id.

The existence of concatenation leads easily to the definition of the category of con-
catenable processes Nf It turns out this is asymmetric strict monoidal categof$5]
under the tensor product given by the following operation of parallel composition of pro-
cesses: foCPy: Uy — Vo andCP;: u; — vi, CPy® CPy: ug+ Uy — Vo + V1 is obtained by
puttingrg andr; disjointly side by side and by making the place®gfprecede the places
of @ (cf. Figure 2; consult24] for further examples).

The main result of 24] is an axiomatisation of such a category, stated here in the
improved enunciation proved ir8§]. Its relevance is that it describes net behaviours as
algebrasin terms ofuniversalconstructions.

THeoreM. For any net N, there exists a one-to-one correspondence — preserving source,
target, sequential and parallel composition (tensor product) of processes (arrows) — be-
tween the concatenable processes of N and the arrows of the cafe@idypbtained from

the free symmetric strict monoidal categofyN) on N by imposing the axioms

Cap = Idagp, Iifaand b are diferent places of N
s;t;s = 1t if t is a transition of N and s and’ sire symmetries of (N),
where c, id,®, and _ ; _ are, respectively, the symmetry isomorphism, the identities, the

tensor product, and the composition®{N).

This also yields an equational theory for net processes as, in explicit t&N%,is
the category whose arrows are generated by the rules
ue w(Sn) aandbin Sy t:u—-vinTy

idy: u— uin P(N) Cap: @a+b— b+ainP(N) t:u—vinP(N)

a:u—vandg: U — Vv in P(N) a:u—vandg: v— win P(N)
a®pB:u+U —v+VinP(N) a;B: u— win P(N)
modulo the axioms expressing that it is a strict monoidal category with compositign
tensor_® _, and symmetry isomorphismand the two axioms quoted above.

ExampLe. Figure 2 shows a concatenable proceser the netN of Figure 1 that corre-
sponds to the arrowg ® t; ;t ® id; of £(N). To exemplify the algebra of processesNf
n is expressed as parallelg) and sequential_(; -) composition of simpler processes.

6 . Vladimiro Sassone

@ < O @ > O

fo n fo n
© © © ©

t t
to Rt 3t Qid, tl®t0;cc,c;t®idc

Ficure 3. Two strongly concatenable processes correspondingfd-igure 2

Such operations are matched precisely by operations and axioff(]Ndf and this is the
essence of the theorem above.

The symmetries oP(N) and the related axiom on the symmetry isomorphisptay
in this correspondence a role absolutely fundamental: they account for the families of or-
derings{<alacs, and{<alacs,, Which are the key to concatenable processes, guaranteeing
a correct treatment of sequential composition. In other words, they are an algebraic rep-
resentation of th&hreads of causalityin process concatenation. On the other hand, the
axiom is actually a problematic one: because of its negative premiisea # b, it inval-
idates the freeness Gf(N) on Petri. Much worse, it make®(_) actnot functoriallyon
Petri. A detailed study of this issue is undertaken &7][where a functorial and univer-
sal construction for net computations is presented, based on a refinement of the notion of
concatenable processes that is the topic of next section.

3. Strongly Concatenable Processes

Strongly concatenable processae a slight refinement of concatenable processes in-
troduced in 87] to yield afunctorialalgebraic description of net computations. The refine-
ment, which consists of decorating initial and terminal places of processes more strongly
than in concatenable processes, e.g., by ordeaihgf them (cf. Figure 3), is shown to
be — in a very precise mathematical sense —dlightestrefinement that may achieve
this. As for their predecessors, strongly concatenable processes admit an axiomatisation in
terms of a universal algebraic construction based on symmetric monoidal categories.

Tueorem. The strongly concatenable processes of a net N are the arro@@\)f obtained

from the symmetric strict monoidal category freely generated from the places of N and, for
each transition t of N, an arrowt: u — v for each pair of linearisations (as strings) u
and v of the source and target (multisets) of t, by quotienting modulo the axiom

(@) Styy=tuv; S, fors: u— U and s: V. — v symmetries

The key point here is to associate kba category whose objects form a freen-
commutativemonoid {iz. S, as opposed tp(Sy)), i.e., to deal withstringsas explicit
representativesf multisets. As a consequence, each transitioN bhs many correspond-
ing arrows inQ(N), all however ‘related’ to each other by timaturality condition (),
which is the second relevant feature@f), actually the one that keeps the computational
interpretation of the catego@(N) (strongly concatenable processes) so surprisingly close
to that ofP(N) (concatenable processes).

Concerning functoriality@(_) extends to aoreflectionfunctor from the category of
Petri nets toa category of symmetric monoidal categories. Here, a$i, we proceed

The Algebraic Structure of Petri Nets . 7

using 2-categories an high-level approach that has the advantage of hiding some of the
gory details.

DerniTioN. A symmetric Petri categoris a symmetric strict monoidal categoZywhose
monoid of objects i$*, the free monoid o1, for some se8.

Symmetric Petri categories allow us to capture the essence of the arrows generating
Q(N), i.e., the instances of the transitions\df These have in fact two very special proper-
ties that characterise them completely: (1) they are decomposable as tensors only trivially,
and as compositions only by means of symmetries, and (2) they satisfy asbpnie
then use such properties, expressed in abstract categorical terms, to define the notion of
transitionin a general symmetric Petri category.

Dermnition. Let C be a symmetric Petri category aBd its monoid of objects. An arrow
in C is primitive if (denoting bye the empty word ir5*)

> T is nota symmetry;

> T=a,;B implies «isasymmetry ang is primitive, or vice versa;

> T=a®pB implies «a =id.andgis primitive, or vice versa.
A transitiont: u — v of C, for u,v € w(S), is a family {ryy: u — vin C} of primitive
arrows indexed by those pairs of stringsand v with underlying multisetsi andv, re-
spectively, and such thatry,, = 7yy; S, for s: u - u ands': v. — v symmetries of
C.

The definition above — that can also be formalised stating that transitions are nat-
ural transformations between appropriate functors — captures the essaR(d)ofthe
transitions inQ(N) areall andonly the families{t,, | t: u — v € Ty}. This leads us to
the following characterisation the@ategory(of the categories)f net computationsThe 2-
categorical notions used in the theorem below are natural extensions of the corresponding
(1-)categorical concepts; the interested reader will find the detailed definitioBg]in [

TueoreM. Let SPetriCat be the 2-category whose objects are the symmetric Petri cate-
gories, whose arrows are the symmetric strict monoidal functors that respect transitions,
and with a 2-cell F= G if there exists a monoidal natural isomorphism between F and G
whose components are all symmetries.

Then,Q(.): Petri — SPetriCat is a pseudo 2-functor (considering the categbgyri
of Petri nets as a trivial 2-category) that admits a pseudo right adjsiigt) forming with
Q(.) a pseudo coreflection.

4. Pre-Nets

Although strongly concatenable processes settle the token ambiguity probim of
they yield a construction that is functorial only up to isomorphism, thus needing a complex
quotient operationd7] or, equivalently, the 2-categorical treatment outlined above.

In [15, 164 we proposed an alternative construction centred on the notion of pre-net.
Pre-netsare nets whose states ateingsof tokens (as opposed toultisety. Such states
can be seen as totally ordered markings, a more concrete representation of multisets. The
idea is that each transition of a pre-net must specify the precise order in which the required
resources are fetched and the results are produced, as if it were an elementary strongly
concatenable process.

DerFntTION. A pre-netis a tupleR = ({o, {1 Tr — Sf), whereSg is a set ofplaces Tr is
a set oftransitions and¢p andZ; are functions assigning, respectively, source and target to
each transition.

8 . Vladimiro Sassone

A pre-net can be thought of as an implementation of a net, where an abstract data
structure, the multiset, is refined into a more concrete implementation data structure, the
string, and where each transitionu — Vv is simulated byone linear implementation
tuv: U — Vv arbitrarily fixed for some linearisations andv of u andv. For each PT
we can arbitrarily choose a pre-net representation. This corresponds to fix a total order
for the pre- and post-set of each transition, arfteds from the approach recalled §3
where, in order to avoid a choical] the possible linearisations of the pre- and post-sets are
considered in the alternative presentation of the net. We shall see that, in order to capture
the standard process semantics of nets, choosing one representative for each transition
sufices. In particular, although abandoning multisets might appear at first unnatural, this
approach enjoys some good properties. Here we limit ourselves to the following two.

> All pre-net implementations of the same net share the same semantic model, i.e.,
the semantics is independent of the choice of linearisations;

> The semantic model for the implemented net given by the construQ(grcan
be recovered from any pre-net implementation.

We shall usePreNet to indicate the category of pre-nets with the obvious notion of
morphisms, i.e., a graph morphism whose node component is a monoid homomorphism.
Let ur: S; — w(Sg) denote the function that mapsto u, the multiset consisting of
the symbols iru. Then, the mapA, from pre-nets to PT nets, sending the prefRet
(¢0.41: TR — Sf) to the netA(R) = (ur © o, ur © {1: TR — W(Sr)) extends to a functor
from PreNet to Petri.

The functorA(_): PreNet — Petri is neither full, nor faithful. However, if we con-
sider the categorilet whose objects are either PT nets or pre-nets and whose morphisms
are graph morphisms with monoid homomorphism as node component$dheis the
quotient ofNet modulo commutativity of the monoidal structure of nodes. This establishes
a strong relationship, between PT nets and pre-nets, expressible via a coreflection between
Petri andNet, which supports and further motivates our approach.

The natural algebraic models for representing concurrent computations on pre-nets
live in the categonsSMC of symmetric strict monoidal categories. More precisely, we are
only interested in the full subcategory consisting of categories whose monoid of objects is
freely generated. We denote it BSMC. The obvious forgetful functor from the category
FSSMC to the categorPreNet admits a left adjoiniZ. The categoryZ(R) has as objects
the strings ofS},, and as arrows those generated by the rules below, modulo the axioms of
monoidal categories (associativity, functoriality, identities, unit), including the coherence
axioms that make af the symmetry natural isomorphism.

w e S; aandbin S t:u—-vinTg
idy: Ww— we Z(R) Cap: ab— bae Z(R) ttu-ve Z(R

a:u—-vandg: v - Vv e Z(R a:u—vandg:v- Vv e Z(R
a®p:ud - w e Z(R) a;B:u—V e Z(R

The above construction bears strong similarities to the work on coherence by MacLane
and Kelly, and even more closely to Pfender’s construction of theSre®noidal cate-
gory [78]. In computer science, similar constructions are given by Hotzstegories44],
and by Bensond], with grammars as the primary area of application.

As anticipated, corresponding to the two features of our approach, we have the follow-
ing results. The first states that pre-nets representing isomorphic PT nets yield the same

The Algebraic Structure of Petri Nets -9

algebraic net semantics. The second rel@geg, andA, and contains the entire essence
of the pre-net approaclany pre-net representation of the néfR) is as good as R

TueoreM. Let RR' € PreNet. If A(R) ~ A(R), thenZ(R) =~ Z(R).

Tueorem. For R a pre-net, the categori (R) quotiented out by the axiom= s ;t; s,
for each transition t u — v and symmetriess)su — uand §: v — Vv is equivalent to the
categoryQ(A(R)) of strongly concatenable processes.

5. Related Work

An alternative important line of research on Petri nets semantics is the so-gailed
folding approach, initiated by Nielsen et al. i67 and further developed by Winskel
in [96, 99, according to which thedynamic’ structure of nets is ‘unrolled’, ‘unfolded’
to the‘static’ structure of event structures or, equivalently, of so-called occurrence nets.
Its main merit is to assign to each net a single object that represents its entire behaviour
and explains in a uniform, appealing way the interplay between non-determinism and con-
currency. This fact can be justified formally by considering that the unfolding is a special
(co)limit construction that gives rise to a coreflection between the categories of (safe) Petri
nets and prime event structures. An alternative unfolding construction is descril&Sj in [
while Engelfriet in B2] consider a wider class of nets. Meseguer et &l] pxtend the
construction of §7] to the entire category of plageansition nets and, inbp], study the
relationships between unfolding and process semantics.

Other semantic investigations have capitalized directly oratgebraic structureof
Petri nets, noticed by Reisi§{)], by Winkowski [92, 93, and later exploited by Winskel to
identify a sensible notion ahorphismbetween netsdb, 91 and open the way to categor-
ical treatments. Among the algebraiategorical approaches, a relevant place is occupied
by those drawing on the analogy between nets and prodfeanlogic, first noticed by
Asperti [3]. Among these, we mentioriB, 14, 31. A really excellent survey is given by
Marti-Oliet and Meseguer irf[7]. Other relevant approaches are by Mukufé]] which
provides an account of net behaviours in terms of (step) transition systems, and by Hoogers
et al. in 42, that uses (generalised) trace theory (66,[27) to the same purpose, and
in [43], where a notion of net unfolding is explained in terms of a notion of local event
structure.

More recently, Ehrig and Padber8d, 73, inspired by the ‘Petri nets as monoid’
approach, give a uniform algebraic presentation of several classes of nets based on the idea
of a parameterized abstract Petri net. Desel eP8].dttain results on the representation of
net processes similar to those presented here using partial algebras, in a fashion not unlike
the early work of Winkowski92, 93.

The ‘Petri nets as monoids’ paradigm has been applied successfully to the semantics
of several extensions of platensition nets. Among these, two recent interesting results
concernzero-safeand contextual nets Zero-safe nets, introduced by Bruni and Monta-
nari [17, 1§, extend Petri nets with a simple mechanism to model transactions, i.e., two
or more transitions that must always occur without any other transition occurring in be-
tween. Contextual net2p, 65, 4% (see also21, 91, 6, J) are nets with ‘read-arcs’ used
to ‘read’ without consuming, so allowing multiple, non-exclusive, concurrent uses of the
same resource (token) and, therefore, the modeling of shared resources. Bruni and Sassone
in [19] extend the categorical process semantics approach surveyed here satisfactorily to
contextual nets, building on previous work by Gadducci and MontaB88aki [

10 . Vladimiro Sassone

PETRI NETS IN THE LARGE

The previous sections have mainly focused our atteritiothe small’, at level of single

nets, whereas Petri nets are often u$edhe large’, for instance as a semantic basis to
interpret concurrent languages, which calls for the studgl@ébras of net&n the large’

and, possibly, for their abstract characterisations. Among several existing approaches, we
recall the fundamental ideas underlying the work presente@gjn focusing orfinite nets

whose transitions alabelledby (possibly silent) actions. We shall use@untablesetAct

of visibleactionsa, as, a3, .. ., and a distinguishesilentactionr.

DeriniTion. A labelledPetri netis a Petri nelN together with annitial state $ € pu(Sn),
and alabelling functionAy: Ty — Actu {1}.

6. An Algebra of Nets

Similarly to [10, 63, everything is based on a notionioterfacefor Petri nets. These
are ordered selections of places, the ‘input’, and transitions, the ‘output’, that specify what
parts ofN arepublic, i.e., accessible from the environment, and what partpavate to
the net. The private places and transitions cannot be accessed and, therefore, cannot be
used directly for connecting nets to each other.

DeriniTiON. A net with interfacés a structurepy, .. ., pn;ta, ..., tm> N, whereN is a finite
labelled net, angby, ..., pn € SN, t1, ..., tm € Ty are all distinct, andin(ti) # 7.

Drawing on the experience of developments in concurrency theory, a minimal yet ex-
pressive, set of combinators should certainly include operations allowing (forrirgexf)
actioncommunicationparallel compositionrecursion and — to facilitate the description
of modular systems — operations suchrasbelling and hiding. However, in order to
avoid a chaotic ‘structural’ calculus where everything is permitted, it is obvious that some
restrictions on the allowed connections of places and transitions must be imposed. The
input/output partition of interfaces readily suggest a reasonable discipline of interaction:
connections between nets should go from outputs to inputs, invobrihgoublic compo-
nents. This formalises the well-motivated and solid intuition that the only allowed interac-
tions are achieved bsendingandreceivingalong interfaces, thought of as communication
channels, the input interfaces providing fters’ in which the tokens arriving from the en-
vironment are gathered, the output interfaces sending tokens out to the environment. In
other words, interfaces provide the notions of ‘private’ and ‘public’ channels for nets, and
their inpufoutput partition suggests a discipline for net cooperation.

DeriniTion. The setCM of combinators of nets with interface consists of the combinators
defined by the following rules.
Po;to>No and Py;ti>N; disjoint
par(By; to> No, Py; > Ni) = By, By; To, > NolNy
whereNp||N; is the (componentwise) union df andNjy;
1<i<|p] and 1<j<|f]
>
addi, j, B; T> N) = B; T> N(pi = t;)
whereN(p «t) is the netN augmented with an arc frorto p;
> rel(g, p; > N) = p; T> N[¢],
whereg¢: Act — ActU {r} is a ‘relabelling’ function, andN[¢] is obtained
from N by relabelling viag the transitions that carnyontr actions;

The Algebraic Structure of Petri Nets . 11

maxP) < |g| and maxT) < |f]
hide(P, T, p;t> N) = pxP; AT N
whereP andT are finite sets of positive natural numbers (nexé 0), and
X\ X is the string obtained frork by removingx;, for all i € X;
1<i<|p]
mark(i, p;T>N) = p;f>N e p;
whereN e pis the netN augmented with a token ip.

>

Observe that, since thgar(_, -) combinator is defined explicitly only for disjoint nets,
a ‘renaming’ is generally needed before applying it to its arguments. This implies that
no ‘fusion’ of nets is allowed bYCM. Combinatoradd(, j,) adds an arc from théh
place to thejth transitions of the interface. It provides both a form of recursion and, used
in connection withpar(_,), a form of ‘asynchronous message passing’ which feeds the
inputs of a net with the outputs of another one.

7. Congruences and Contexts for Labelled Petri Nets

The semantic equivalence of concurrent systems can be described in terms of sev-
eral kinds of models, e.g., languages, traces, pomsets, event structures, etc., which reflect
different assumptions about how behaviour is to be observed. Each of these notions of
‘observation’ gives rise to standard equivalencenear equivalence, disimulationand
possibly, fixed a set of operators, their congruence closures. A thorough study of sixteen
such behavioural equivalences for nets with interfaces is exposé8|inHere we treat a
single, yet typical, case: the step bisimulation.

DerNTION. A step bisimulatiorof Np andN; is a relationR € w(Sn,) X u(Sw,) such that
sy, R sn,, and wheneves R s, then (1) for each step (fireable multiset of transitions)
gX)s of Np, there exists a sequence of step¥; - - - Y,)S of N; resulting in the same
multisetof nonr labels asX, and withs R §'; (2) vice versa swapping the roles Kf
andNj.

Netspy; To > No and py; 1 > N; arestep bisimilar written py; To > No © py; t1 > Ny, if there
exists a step bisimulation & andN;.

For engineering reasons, related to feasibility of correctmesficationfor complex
systems, for mathematical reasons, related to the simpliciggoétional reasoningand
for conceptual reasons, related to common intuitions about system equivalence, it is im-
portant to consider equivalences which aomgruencegor a chosen set of system con-
structors. This guarantees that systems can be replaced by equivalent ones in any context.
Since it easy to see that is not a congruence fadd(, j, -), we are led ta=°, the largest
congruence contained in itiz. py; to>No ¢ py; Tr>Ny if and only if, for eachrCM -context
C, eitherbothnets are incompatible with it, @[By; fo > No] & C[py; 1> Na].

This universal quantification oveil contexts has however obvious drawbacks. The
main result of §8] is to show that it can actually be dispensed with by identifying a minimal
set of context which isiniversalfor it. More precisely, for each palMy andN; of nets with
interface there exists a readily-identified con&sduch thatNy andN; are<-congruent if
and only ifC does note-distinguish them. Here follow some of the details.

Recalling thatActis equipped with an enumeration, a», . . ., lety be the relabelling
functiona; - a3, i € w.

12 . Vladimiro Sassone

‘/@+ a, 4@»
7 v B I
| |
l l
| |
v v
LN Q) I N TEr— @) ()
N
oy CO] (1) =eememececceoss 0 f
| i
| |
v v
P, ? """""""" ? p]
9
FiGcure 4

DeriniTiON. Let @;t> U andp; @ » U’ be the nets with interface shown below.

L
o] Lo]

LetC;j and?f , i, j € w, be the contexts defined below (with self-explanatory shorthands)

Cij= par(par{(:l(@; te U[¥3k-2/,]), parl(jzl(p; o> U'[a'Sk—l/a]))’
U = add_, (k.i-+k add_, (j+k k. par(Ci . rel(y.)))).

Figure 4 present&(; ;[p; > N] for a p; {> N with |g] = i and|f] = j. The interface of
Uil p; > N] is shown by naming and numbering the places and transitions which belong
to it. The information in parentheses concern the orderings inConcerning the labels,
we use for asc2, k=1,...,i, 0 for azc-1, k=1,..., j, anday,, . . . ay; for the labels of
t'in N. The dashed arrows are those insertectby

The contextsly; ; are conceptually very simple. They provide a copyzot» U for
each place irp, and a copy ofp; @ » U’ for each transition i, The cascade afdd(i, j, .)
connects together the transition-place pairs so created. The role of the collectipm bf
is to test the ‘reactivity’ of the ‘input’ sites gb; T> N by sending in any number of tokens,
at any relative speed and independently for each plage ifihe collection ofp; @ » U’
tests the ‘output’-behaviour by recording the firings of the transitiors in

In order for these contexts to form universal collections, it is necessary to distinguish
in the behaviour oftf; j[p;T> N] the actions stemming frord4; j from those stemming
from N. This is achieved by theel(,) combinator: since the actions Nfare uniformly
‘remapped’ to B-numbered actions, we are free to uséadently numbered actions in
the contexts. The soundness of this technique relies on the faap tisahjective and,
therefore, no equivalences are enforced bythelabelling. We thus conclude as follows.

The Algebraic Structure of Petri Nets . 13

Tueorem. For By; o> No and py; 1 > Ni nets with interface,
Poifor No ©° Bitis Ni = 1Bl = [Bil = i, [fol = fal = |, and
Ui i Bo; To> No] © Ui j[Py; T Na].

8. Related Work

The work outlined in the second part of this survey relates to several Petri net calculi
proposed in the literature. Among these, we mention Gorrieri and Montanesis £36],
defined around operations of prefixing, parallel, and non-deterministic composition, and
used to give semantics to a fragment of CCStddently from most other calculi,cBne
is not based on an explicit notion of interface by means of which nets are composed. It
aims at describing behavioural more than structural composition, and is essentially a big
net whose markings represent concurrent processes behaviours, in the same sense as CCS
can be seen as a big transition system whose states represent processes.

The Petri Box calculusli0], by Best et al., has received much attention in the literature.
Itisinspired by CCS and motivated by the need to simplify the task of giving compositional
denotational semantics to concurrent programming languages. The calculus has a very
rich collection of operations, including sequential, hon-deterministic, and asynchronous
parallel composition with explicit multiple synchronisation based on a notion of interface
constituted by designated entry and exit places. The Box calculus has been used to describe
distributed algorithms, to give semantics to concurrent programming langusfjearid
has been embedded in the PEP computer-aided3apl [

A highly elegant calculus is Milner’s calculus of named né@,[arisen in the context
of control structures and, as such, inspired by name passing calculi, ascéheulus. It
focuses on very few basic ‘controls’ by means of which places, tokens, and transitions
can be glued together to form any finite net. A notablgedence with the work surveyed
here is that Milner’'s calculus is definitely more structure-oriented. The controls are in
fact suggested by structural considerations rather than by behavioural intuitions such as
asynchronous message passing underlgiky The dynamics of named nets is demanded
to an elegant reduction relation, and the question of behavioural congruences is open.

9. Conclusions and Future Work

Algebraic structures based on a central operatidteodtion, or feedback— inspired
by flowcharts and program schemata — have appeared rather early in computer science,
see, e.9.,39, 4, 89, 90, 6Band [12], that dfers for a thorough exposition of so-called
‘iteration theory and more references. The adventtaiced monoidal categoriebQ],
i.e., monoidal categories equipped witffieedbacloperation completely analogous to the
one considered iICM has recently revived interest in using such abstract structures in
semantics of computation, as e.g., in b3, 40, 4]. Obviously, the calculus ofgg] fits
nets into this framework very nicely, although some of the details still need to be clarified.
In particular, it may still lack some important operations, most notably synchronisation.
Finally, as already mentioned, it would be interesting to know how well and how
uniformly can the ‘Petri nets as monoids’ approach be lifted to high level nets.

Acknowledgements. | would like to thank the colleagues who have been part of developing
the material behind this survey. In particular, | acknowledge close collaboration with R. Bruni,
J. Meseguer, U. Montanari, M. Nielsen, and L. Priese on many parts of this work.

14 . Vladimiro Sassone

References

[1] S. Asramsky (1996), Retracing Some Paths in Process Algebr&roceedings of CONCUR 98. Mon-
tanari and V. Sassone (Edd.gcture Notes in Computer Scienca9, 1—17, Springer-Verlag.

[2] S. AimmoNE MarsaN, A. Bossio, anp S. DonateLur (1998), Petri Nets in Performance Analysis: An introduc-
tion, in Advances in Petri Nets, Lectures on Petri Nets I: Basic Mod#ldReisig and G. Rozenberg (Eds.),
Lecture Notes in Computer Scienc@®1, 122—173, Springer-Verlag.

[3] A. Asperi, G. Ferrarl, aND R. Gorriert (1990), Implicative Formulae in the “Proofs as Computations”
Analogy, inProceedings of POPL 9%9—71, ACM Press.

[4] E.S. Bsinerince (1976), Feedback and Generalized Logdiaformation and ControB1, 75—96, Academic
Press.

[5] P. Batpan (2000), Modelling Concurrent Computations: From Contextual Petri Nets to Graph Grammars
Ph.D. thesis, TDroo, Dipartimento di Informatica, Universitdi Pisa.

[6] P. BaLpan, A. Corraping, aND U. MonTaNART (1998), An event structure semantics foffRcontextual nets:
Asymmetric event structures, Proceedings FoSSaCS’'98l. Nivat (Ed.),Lecture Notes in Computer Sci-
ence1378, 63—8o, Springer-Verlag.

[7] J. Benaou (1963), Categories with MultiplicationComptes Rendus Académie Science Pegts 1887—
1890.

[8] D.B.Benson (1975) , The Basic Algebraic Structures in Categories of Derivatibrfermation and Control
28(1), 1—29, Academic Press.

[9] E. Best anp R. DeviLLers (1987), Sequential and Concurrent Behaviour in Petri Net Thebingoretical
Computer Sciencss, 87—136, Elsevier.

[10] E. Besr, R. DeviLiers, anp J. Hare (1992), The Petri Box Calculus: a New Causal Algebra with Multilabel
Communication, ilAdvances in Petri Nets 9%. Rozenberg (Ed.),ecture Notes in Computer Scier®,
21-69, Springer-Verlag.

[11] E. Best, R. DeviLLers, anp M. Koutny (1998), Petri Nets, Process Algebras, and Concurrent Programming
Languages, idvances in Petri Nets, Lectures on Petri Nets II: ApplicatidisReisig and G. Rozenberg
(Eds.),Lecture Notes in Computer Sciencg@2, 1-84, Springer-Verlag.

[12] S.L. BLoom anp Z. Esik (1991), lteration Theories: the Equational Logic of Iterative Proces$e&TCS
Monographs on Theoretical Computer SciegeeSpringer-Verlag.

[13] C. Brown anp D. Gurr (1992), Temporal Logic and Categories of Petri NetsPiroceedings of ICALP
93, A. Lingaset al. (Eds.),Lecture Notes in Computer Sciernpm, 570—581, Springer-Verlag.

[14] C. Brown, D. Gurr, anp V. DE Parva (1991), A Linear Specification Language for Petri NeT@chnical
Report DAIMI PB363, Computer Science Dept., University of Aarhus.

[15] R. Bruni, J. Mesecuer, U. MonTanari, anDp V. SassoNe (1999) , Functorial Semantics for Petri Nets under
the Individual Token Philosophy, iRroceedings of CTCS 981. Hofmann, G. Rosolini, and D. Pavlovic
(Eds.),Electronic Notes in Theoretical Computer SciengeElsevier.

[16] R.Brunt, J. MeseGuUER, U. MoNTaNART, AND V. SassoNE (2000), Functorial Models for Petri netiaformation
and ComputationAcademi Press. To appear.

[17] R. Brunt anp U. Montanart (2000), Zero-Safe Nets: Comparing the Collective and Individual Token
Approacheslnformation and Computationsé 46—89, Academi Press.

[18] R. Brunt anp U. MonTanarr (2000), Executing Transactions in Zero-safe NetsPioceedings of ICATPN
200Q D. Simpson and M. Nielsen (Edslecture Notes in Computer Scienc&s, 83—102, Springer-
Verlag.

[19] R. Brunt anp V. Sassone (2000), Algebraic Models for Contextual Nets, Proceedings of ICALP 2000
U. Montanariet al. (Eds.),Lecture Notes in Computer Scient853, 175-186, Springer-Verlag.

[20] N. Bust anp R. Gorriert (1995), A Petri Net Semantics for the Pi-Calculus,Rnoceedings of CONCUR
95, I. Lee and S. Smolka (Edslecture Notes in Computer Sciergfe, 145-159, Springer-Verlag.

[21] N. Bust anp M. Pnna (1996), Non Sequential Semantics for Contextudl Mets, in Proceedings of
ICATPN 96 J. Billington and W. Reisig (Eds.).ecture Notes in Computure Sciente91, 113-132,
Springer-Verlag.

[22] S. Garistensen anp N.D. Hansen (1993), Coloured Petri Nets extended with Place Capacities, Test Arcs
and Inhibitor Arcs, inProceedings of ICATPN 93. Ajmone Marsan (Ed.).ecture Notes in Computer
Scienc&91, 186—205, Springer-Verlag.

[23] P. Decano, R. De Nicora, anp U. Montanar: (1988), A Distributed Operational Semantics for CCS based
on ConditiofEvent SystemsActa Informaticaz6, 50—91, Springer-Verlag.

[24] P. Decano, J. MeseGuer, anp U. Montanart (1996), Axiomatizing the Algebra of Net Computations and
Processedcta Informaticag3, 641-667, Springer-Verlag.

The Algebraic Structure of Petri Nets . 15

[25] J. Deser, G. Jinas, anp R. Lorenz (2000), Process Semantics of Petri Nets over Partial Algebr&ran
ceedings of ICATPN 200@. Simpson and M. Nielsen (Edslecture Notes in Computer Scienc§25,
146-165, Springer-Verlag.

[26] J. DeseL ano W. Reisic (1998), PlacgTransition Petri Nets, ilkdvances in Petri Nets, Lectures on Petri Nets
I: Basic Models W. Reisig and G. Rozenberg (Edd.gcture Notes in Computer Sciencg91, 122-173,
Springer-Verlag.

[27] V. Diekert anDp G. Rozenser (Eps.) (1995), The Book of TracedVorld Scientific.

[28] S. HLenBERG, AND G.M. KeLLY (1966), Closed Categories, iroceedings of the Conference on Categorical
Algebra S. Eilenberget. al. (Eds.),421—562, Springer-Verlag.

[29] C. BEcor (1975), Monadic Computation and Iterative Algebraic Theories,Logic Colloguium '73
H.E. Rose and J.C. Shepherdson (Edg3;230, North-Holland.

[30] H. Enric anp J. RpBerG (1997), A Uniform Approach to Petri Nets, iRroceedings of FCT 9TC. Freksa
et al.(Eds.),Lecture Notes in Computer Scientgs7, 219231, Springer-Verlag.

[31] U. EncBerG anp G. WinskeL (1993), Completeness Results for Linear Logic on Petri Net®roceedings
of MFCS 93 A. Borzyszkowski and S. Sokotowski (Edslecture Notes in Computer Sciengel, 442—
452, Springer-Verlag.

[32] J. BxgeLrrier (1991), Branching Processes of Petri NeAgta Informaticaz8, 575-591, Springer-Verlag.

[33] F. Gappuccr anp U. Montanart (1998), Axioms for contextual net processédoceedings of ICALP 98
K. Larsenet al. (Eds.),Lecture Notes in Computer Sciencgy3, 296—308, Springer-Verlag.

[34] R.J.van GraBBeek anD F. Vaanorager (1987), Petri Net Models for Algebraic Theories of Concurrency, in
Proceedings of PARLE 83.W. de Bakkeet al. (Eds.),Lecture Notes in Computer Scienzsy, 224242,
Springer-Verlag.

[35] U. Gorrz ano W. Reisic (1983), The Non-Sequential Behaviour of Petri Ndtormation and Computa-
tion 57, 125—147, Academic Press.

[36] R. Gorrieri aNp U. MonTanaRT (1990), Scone: A Simple Calculus of Nets, Rroceedings of CONCUR
90, J.C.M. Baeten and J.W. Klop (EdsLgcture Notes in Computer Scierys8, 2—31, Springer-Verlag.

[37] B. Granrmann (1998), The State of PEP, iProceedings of AMAST 9&\.M. Haeberer (Ed.)Lecture
Notes in Computer Scienag48, 522—526, Springer-Verlag.

[38] M. Hennessy (1988), Algebraic Theory of ProcessedIT Press.

[39] C.A.R. Hoare (1985), Communicating Sequential Processeeentice Hall.

[40] M. Hasecawa (1997), Recursion from Cyclic Sharing: Traced Monoidal CategoriesRnoceedings of
TLCA 97 Ph. de Groote and J.R. Hindley (Edd.gcture Notes in Computer Sciente10, 196213,
Springer-Verlag.

[41] T.T. HioesranpT, P. RNANGADEN, AND G. WinskeL (1998), Relational Semantics of Non-Deterministic
Dataflow, inProceedings of CONCUR 9B. Sangiorgi and R. de Simone (Ed$.¢cture Notes in Computer
Science466, 613-628, Springer-Verlag.

[42] P.W. Hoocers, H.C.M. KLEDN, anp P.S. THiacaraiaN (1992), A Trace Semantics for Petri Nets,Rtoceed-
ings of ICALP 92W. Kuich (Ed.),Lecture Notes in Computer Scier&xs, 595—604, Springer-Verlag.

[43] P.W. Hoocers, H.C.M. KLenn, anp P.S. ThiacaraiaN (1993), Local Event Structures and Petri Nets, in
Proceedings of CONCUR 9E. Best (Ed.)Lecture Notes in Computer Scienges, 462—476, Springer-
Verlag.

[44] G.Horz (1965) , Eine Algebraisierung des Syntheseproblemen von Schaltkreisen, | dodrhal of Infor-
mation Processing and Cybernetics, EiKi 85206, 209—23 1. Otto-von-Guericke-Universit, Magdeburg,
Germany.

[45] R. Jnickr ano M. Koutny (1995), Semantics of Inhibitor Net$nformation and Computation23, 1-16,
Academic Press.

[46] K. Jensen (1998), An Introduction to the Practical Uses of Coloured Petri Netéydmances in Petri Nets,
Lectures on Petri Nets II: ApplicationdV. Reisig and G. Rozenberg (Eddgcture Notes in Computer
Scienca492, 237292, Springer-Verlag.

[47] K. Jensen (1992), Coloured Petri Nets — Basic Concepts, Analysis Methods and Practical Use, Vol.
Basic ConceptsEATCS Monographs in Theoretical Computer Science, Springer-Verlag.

[48] K. Jensen (1994), Coloured Petri Nets — Basic Concepts, Analysis Methods and Practical Use, Vol.
Analysis Methods€EATCS Monographs in Theoretical Computer Science, Springer-Verlag.

[49] K. Jensen (1997), Coloured Petri Nets — Basic Concepts, Analysis Methods and Practical Use, Vol.
Practical Use EATCS Monographs in Theoretical Computer Science — Berlin: Springer-Verlag.

[50] A. Jovar, R. Street, anp D. Veriry (1996), Traced Monoidal CategorieBlathematical Proceedings of the
Cambridge Philosophical Society9, 447468, Cambridge University Press.

16 . Vladimiro Sassone

[51] G.M. KeLy (1964), On MacLane’s Conditions for Coherence of Natural Associativities, Commutativities,
etc.Journal of Algebran. 1, 397—402, Acamedic Press.

[52] G.M. KeLry, anp R. Srreer (1974), Review of the Elements of 2-Categories@ategory Seminar Sidngy
Lecture Notes in Mathematiggo, 75—103, Springer-Verlag.

[53] P. Karts, N. Sasapint, anp R. Warters (1997), Bicategories of Processe¥urnal of Pure and Applied
Algebra11s, 141-178, North-Holland.

[54] S. MacLane (1963), Natural Associativity and CommutativitRice University Studiegg, 28—6, Rice
University Press.

[55] S. MacLane (1971), Categories for the Working Mathematicia®pringer-Verlag.

[56] A. Mazurkiewicz (1987), Trace theory, irPetri Nets, Applications and Relationship to other Models of
ConcurrencyW. Braueret al. (Eds.),Lecture Notes in Computer Scienzss, 279324, Springer-Verlag.

[57] N. Marti-Ouier anp J. Mesecuer (1991), From Petri Nets to Linear Logic through Categories: A Survey.
International Journal of Foundations of Computer Scierceg7—399, World Scientific.

[58] J. Mesecuer anp U. Montanart (1990), Petri Nets are Monoids$nformation and ComputatioB8, 105—
155, Academic Press.

[59] J. Mesecuer, U. Montanari, anp V. Sassone (1996), Process versus Unfolding Semantics for
PlacgTransition Petri NetsTheoretical Computer Scienag3, 171210, Elsevier.

[60] J. Mesecuer, U. Montanari, aND V. SassoNe (1997), On the Semantics of Pla@eansition Petri Nets.
Mathematical Structures in Computer Sciernr¢cg59—397, Cambridge University Press.

[61] J. MeseGuer, U. Montanari, AND V. Sassone (1997), Representation Theorems for Petri NetsFaun-
dations of Computer Scienc€. Frekseaet al. (Eds.),Lecture Notes in Computer Sciencgs7, 239249,
Springer-Verlag.

[62] R. Mu~er (1989), Communication and Concurrendyrentice-Hall.

[63] R. Mmxer (1993), Action Calculi or Syntactic Action Structures, iRroceedings of MFCS 93
A. Borzyszkowski and S. Sokotowski (Edsbecture Notes in Computer Scientet, 105—121, Springer-
Verlag.

[64] R. Mu~er (1999), Communicating and Mobile Systems: th€alculus Cambridge University Press.

[65] U. MonTtanar: anp F. Rosst (1995), Contextual NetsActa Informatica3z, 545—596, Springer-Verlag.

[66] M. Mukunp (1992), Petri Nets and Step Transition Systeingernational Journal of Foundations of Com-
puter Sciencg, 443- 478, World Scientific.

[67] M. NieLsen, G. Rorkin, anp G. WinskeL (1981), Petri Nets, Event Structures and Domains, Paftheo-
retical Computer Sciences, 85-108, Elsevier.

[68] M. NieLsen, L. Priesg, anp V. Sassone (1995), Characterizing Behavioural Congruences for Petri Nets,
in Proceedings of CONCUR 95. Lee and S. Smolka (Eds.)ecture Notes in Computer Sciengé2,
175—-189, Springer-Verlag.

[69] M. NieLsen, G. RozenBerg, anD P.S. TaiacaraaN (1995), Transition Systems, Event Structures and Un-
foldings.Information and Computatiom18, 191—207, Academic Press.

[70] M. NieLsen anD V. Sassone (1998), Petri Nets and Other Models of ConcurrencyAtivances in Petri Nets,
Lectures on Petri Nets |: Basic Modeld/. Reisig and G. Rozenberg (Edd.gcture Notes in Computer
Science491, 587-642, Springer-Verlag.

[71] E.R. QoeroG (1987), A Petri Net Semantics for CCSP, Advances in Petri Nets 86&. Rozenberg (Ed.),
Lecture Notes in Computer Scierm#, 196223, Springer-Verlag.

[72] E.R. Qperoc (1991), Nets, Terms and Formula€ambridge Tracts in Theoretical Computer Science,
Cambridge University Press.

[73] J. RpBerG (1999), Abstract Petri nets as a Uniform Approach to High-Level Petri NetBrateedings of
WADT 98 C. Frekseet al. (Eds.),Lecture Notes in Computer Scientg89, 241260, Springer-Verlag.

[74] C.A. Perri (1962), Kommunikation mit Automate®h.D. thesis, Institutifr Instrumentelle Mathematik,
Bonn.

[75] C.A. Petri (1973), Concepts of Net Theory, iRroceedings of MFCS 7337-146, Mathematics Institute
of the Slovak Academy of Science.

[76] C.A. Perri (1977), Non-Sequential Processdsiterner Bericht ISF#7—5, Gesellschaftiir Mathematik
und Datenverarbeitung, Bonn.

[77] Petri Net Tools on the Welweb pagehttp://www.daimi.au.dk/ petrinet/tools/, DAIMI, Univer-
sity of Aarhus.

[78] M. Prenper (1974) , Universal Algebra in S-Monoidal Categoriealgebra-Berichte2o, Department of
Mathematics, University of Munich.

[79] V. Prarr (1986), Modelling Concurrency with Partial Ordensiternational Journal of Parallel Program-
ming1s, 33—71, Plenum.

The Algebraic Structure of Petri Nets . 17

[80] W. Reisic (1985), Petri Nets (an Introduction)EATCS Monographs on Theoretical Computer Sciegice
Springer-Verlag.

[81] W. Resic (1991), System Design Using Petri Ne8pringer-Verlag.

[82] W. Reisic (1998), Elements of Distributed Algorithms: Modeling and Analysis with Petri NEATCS
Monographs on Theoretical Computer Science, Springer-Verlag.

[83] W. Reisic anp G. Rozensera (1998), Informal Introduction to Petri Nets, ikdvances in Petri Nets, Lectures
on Petri Nets I: Basic Mode]dV. Reisig and G. Rozenberg (Edd.gcture Notes in Computer Scienc@1,
1-11, Springer-Verlag.

[84] G. Rozensera anp J. EngeLrrieT (1998), Elementary Net Systems, Advances in Petri Nets, Lectures on
Petri Nets |: Basic Mode|sW. Reisig and G. Rozenberg (Edd.gcture Notes in Computer Sciencg1,
12—-121, Springer-Verlag.

[85] G. RozenBerG anp P.S. Tiacaraian (1986), Petri Nets: Basic Notions, Structure, Behaviour,dar-
rent Trends in Concurrencgy). de Bakkeet al. (Eds.),Lecture Notes in Computer Scienzzy, 585-668,
Springer-Verlag.

[86] V. Sassone (1996), An Axiomatization of the Algebra of Petri Net Concatenable Proce3ge=oretical
Computer Sciencejo, 277—296, Elsevier.

[87] V. Sassone (1998), An Axiomatization of the Category of Petri Net ComputatioMathematical Struc-
tures in Computer Scien@&; 117-151, Cambridge University Press.

[88] E. Svrte (1998), Principles of High-Level Net Theory, iAdvances in Petri Nets, Lectures on Petri Nets
I: Basic Models W. Reisig and G. Rozenberg (Edd.gcture Notes in Computer Sciencg91, 174210,
Springer-Verlag.

[89] G. Sreraniscu (1987), On Flowchart Theories: Part I. The Deterministic Calrirnal of Computer and
System Sciencgs, 163—-191, Academic Press.

[90] G. Srerangscu (1987), On Flowchart Theories: Part Il. The Nondeterministic Ca$eoretical Computer
Sciences2, 307340, Elsevier.

[91] W. VoacLer (1997), Partial order semantics and read arcsPimceedings of MFCS’'97P. Degancet
al. (Eds.),Lecture Notes in Computer Scienc®s, 508—517, Springer-Verlag.

[92] J. Winkowskr (1980), Behaviours of Concurrent Systenihieoretical Computer Scienae, 39- 60, Else-
vier.

[93] J. Winkowskr (1982), An Algebraic Description of System Behaviouf$ieoretical Computer Scienee,
315- 340, Elsevier.

[94] G. Winsker (1982), Event Structure Semantics for CCS and related languag®spaeedings of ICALP
82, M. Nielsen and E.M. Schmidt (Eds.)ecture Notes in Computer Scientgo, 561—576, Springer-
Verlag.

[95] G. Winsker (1984), A New Definition of Morphism on Petri Nets, ifroceedings of STACS 8¥l. Fontet
and K. Mehlhorn (Eds.).ecture Notes in Computer Scieno#®, 140-150, Springer-Verlag.

[96] G. WinskeL (1986), Event Structures, ilddvances in Petri Nets 88V. Braueret al. (Eds.),Lecture Notes
in Computer Sciencess, 325392, Springer-Verlag.

[97] G. WinskeL (1987), Petri Nets, Algebras, Morphisms and Compositionalitformation and Computation
72, 197- 238, Academic Press.

[98] G. WinskeL (1988), An Introduction to Event Structures, irinear time, branching time, and partial order
in logics and models for concurrency.W. de Bakkeet al. (Eds.),Lecture Notes in Computer Sciergs,
365—397, Springer-Verlag.

[99] A. Yakorev anp A. KoeLmans (1998), Petri Nets and Digital Hardware Design,Adlvances in Petri Nets,
Lectures on Petri Nets II: ApplicationdV. Reisig and G. Rozenberg (Edd.gcture Notes in Computer
Scienceal492, 154—236, Springer-Verlag.

