
The Algebraic Structure of Petri Nets
Vladimiro Sassone

Department of Informatics, University of Sussex

This survey retraces, collects, and summarises the contributions of the author — both individually and in collab-
oration with others — on the theme of algebraic, compositional approaches to the semantics of Petri nets.

Introduction

An extremely successful line of research in thesemantics of concurrency, rooted in
the very ideas of denotational semantics, is the one following thealgebraicapproach. It
focuses onstructuralandcompositionalaspects of systems and behaviours, and the leading
idea is to describe them by means of a few basic building blocks and a small number of
combinators[39, 62, 38, 64]. The appeal of this is that it tends to devise neat algebraic
structures that capture theessentialnature of the class of systems considered.

In this paper, we first survey a line of research — detailed in [58, 24, 59, 86, 87, 16]
— aimed at recasting Petri netprocessesin the light of ideas fromprocess algebrasand
categorical algebra. In particular, we shall focus on Petri netconcatenable processes[24,
86], on stronglyconcatenable processes [87, 16], and on their representation in terms of
symmetric monoidal categories.

Petri netswere introduced in the1960’s by Carl Adam Petri in [74] (see also the refer-
ences [75, 80, 85, 72, 83]). They are a widely used model for concurrency, attractive from
the theoretical point of view because of its simplicity and its intrinsically concurrent and
distributed nature, and very successful in applications such system modeling, analysis, and
design (see, e.g., [81, 82, 46, 99] and browse through the several available computer-aided
design, analysis, and verification tools based on Petri nets [77]). Actually, ‘Petri net’ is
a rather generic term: in fact, Petri’s original idea can be constrained and generalised in
many sensible ways, giving rise to several net-based models widely studied in the litera-
ture. These range from the essentialelementary[84] andplace/transition nets[26] to the
sophisticatedpredicate/transition [88] andcoloured nets[47, 48, 49], includingstochastic
Petri nets[2] used in simulation and performance evaluation.

Here we shall be concerned exclusively with place/transition (PT) nets — though it
would be interesting to explore to what extent these ideas and techniques can be lifted to
classes of high-level nets. The reason why PT nets form an important class is that they
formalise a very basic model of distributed systems, in which (instances of) places (i.e.,
tokens) can be understood as available resources, and transitions as concurrent activities
that require exclusive use of some of these resources and that, after completion, release
new resources (tokens in places) to the environment. Another suggestive possible interpre-
tation is to look at places as ‘mailboxes’ and at tokens as messages, portraying a view of
place/transition nets as a distributed model of concurrency with a form of asynchronous
message passing. We shall study PT nets under the banner ‘Petri nets are monoids’, initi-
ated by [58]. Our first aim will be to axiomatise the (noninterleaving) computations of a

A previous version appeared inThe Bulletin of the EATCS no 70, June 2000.

2 · Vladimiro Sassone

net, i.e., its processes, and their structure. We seek analgebrato represent them; an algebra
where processes can be seen as terms built up from their atomic components and whose
algebraic laws can be used to compute with and reason on and them.

The mathematical structures we shall use to this purpose are the symmetric monoidal
categories.Monoidal categoriesdate back to [7] (see [55] for an easy thorough introduc-
tion and [28] for advanced topics). Essentially, a monoidal category is an algebraic theory
of so-called ‘arrows’, or ‘morphisms’, and of two operations on them, a (partial)sequen-
tial composition ; , and aparallel composition⊗, the tensor product. But let us proceed
orderly. Acategoryis a graph equipped with a self-looping edgeidu for each nodeu, and
with an associative binary operation; of composition of adjacent edges. Nodes and
edges here are calledobjectsandarrows, andidu is theidentityarrow at objectu, and be-
haves as a unit under composition. Afunctor is a mapping between categories that behaves
homomorphically with respect to; andid, i.e., it maps identities to identities. Adding a
tensor product to a category amounts to adding to the graph an operation of parallel com-
position of objects and arrows that behaves well with respect to; . In this paper we shall
be concerned only with a particular kind of monoidal categories, namely the ‘strict’ ones.

A strict monoidal categoryis a structure (C,⊗,e), whereC is a category,e is an object
of C, called theunit object,⊗ : C × C→ C is a functor that, as an operation of objects and
arrows, is associative and admitse and ide as, respectively, the unit object and arrow. A
monoidal category issymmetricif, informally, the tensor product iscommutativeup to a
chosen family of isomorphismscu,v : u⊗v

∼
−→ v⊗u, for all objectsu, v ∈ C. The collection

of the arrowscu,v must be subject to anaturality condition [55] and to the all important
Kelly-MacLanecoherenceaxioms [54, 51], and is called thesymmetryof C.

Another relevant application of Petri nets is their use as a semantic basis to interpret
concurrent languages, a task that calls for a compositional, ‘process algebra-like’ descrip-
tion of nets. And in fact, the literature is rich of examples of process algebras and concur-
rent programming languages interpreted over the domain of nets, as, e.g., [71, 34, 23, 20],
and also of real net-based process algebras, such as [36, 10, 63]. In particular, [34] uses
Petri nets to model an algebra of processes and to infer several noninterleaving behavioural
equivalences on it, while [23] interprets CCS (cf. [62]) on nets — taking up a line of re-
search initiated by [94], where event structures (cf. [96]) were used — based on an oper-
ation of decomposition of processes into sequential agents. The decomposition approach
is also followed by [71], while the semantics for theπ-calculus (cf. [64]) presented in [20]
is based on nets with inhibitory arcs (see, e.g., [22, 45]), a powerful extension of PT nets.
A related line of research, as already mentioned, takes inspiration from the work on pro-
cess algebras and set out to design and study net algebras. One of the most prominent
approaches among these is the Petri Box calculus [10], centered around operations of asyn-
chronous communication and synchronisation, while [36] builds on operations of parallel
and non-deterministic composition. In a different context, but with a similar vein, [63] in-
troduces the notion of named Petri nets and provides a representation for them as an action
calculus.

We proceed in our survey by focusing on the algebra of nets developed in [68]. That
approach is entirely based on a notion ofinterfacefor Petri nets that specifies what parts
of the net arepublic, i.e., accessible to the environment, and what parts areprivate. Also,
it partitions public net components in ‘input’ places and ‘output’ transitions, and dictates
the discipline by which nets are composed via a minimal set of combinators forming a
rudimentary calculus of nets. The most important of these is a form of asynchronous com-
munication — message passing — by means of which a net may, via its output transitions,

The Algebraic Structure of Petri Nets · 3

send messages to another net, by delivering tokens to the second net’s input places. Net
composition is centred on an interesting form ofrecursionconsisting offeeding backout-
puts to inputs, yielding a bridge to structures of recent common interest in category theory
and in computer science: thetraced monoidal categories[50].

PETRI NETS IN THE SMALL

Among the semantics proposed for Petri nets, a role of paramount importance is played
by the various notions ofprocess, e.g. [76, 35, 9], whose merit is to provide a faithful ac-
count of computations involving many different transitions and of thecausal connections
between the events occurring in computations. This is, in fact, the essence of thenoninter-
leavingapproach to the semantics of concurrency, where computations are decorated with
additional information describing causes and effects that ruled the occurrences of events in
them. The mathematical structures arising naturally form this premises are the partially or-
dered multisets [79], pomsetsfor short. Thus, informally speaking, Petri net processes —
whose standard version is given by the Goltz-Reisignon-sequential processes[35] — are
net computations together with an explanation of the cause by which each transition has
fired, that be represented abstractly by means of ordered sets whose elements are labelled
by transitions.

Bare process models, however, fail to bring to the foreground thealgebraic structure
of the space of computations of a net. Our interest, instead, resides on abstract models that
capture the mathematical essence of such spaces, possibly axiomatically, roughly in the
same way as a prime algebraic domain (or, equivalently, a prime event structure [96, 98])
models the computations of a net (see, e.g., [70]). The research detailed in [58, 24, 59,
86, 87] identifies such structures assymmetric monoidal categories— where objects are
states, i.e., multisets of tokens, arrows are processes, and the tensor product and the arrow
composition model, respectively, the operations of parallel and sequential composition of
processes.

At a higher level of abstraction, the next important question concerns theglobal struc-
ture of the collection of such spaces, i.e., the axiomatisation ‘in the large’ of net com-
putations. In other words, the space of the spaces of computations of Petri nets. Building
on [24, 86], the work presented in [87] shows that the so-calledsymmetric Petri categories,
a class of symmetric strict monoidal categories with free (non-commutative) monoids of
objects, provide one such an axiomatisation.

In this part, we retrace and illustrate the main results achieved so far along these lines
of research by the author, both in joint and individual work. The next one will look at net
algebras ‘in the large’ from a different angle.

1. Petri nets as monoids

The idea of looking at nets asalgebraic structures, e.g. [80, 97], has been interpreted
in [58] by viewing nets asinternal graphsin categories of sets with structure and using
monoidal categories as a suitable semantic framework for them. Precisely, a net is a graph

N = (preN,postN : TN → µ(SN))

whose nodes form the free commutative monoidµ(SN) of thefinitemultisets ofSN. Here,
SN andTN are sets of, respectively,placesandtransitions, andpreN andpostN are func-
tions assigning asourceand atarget multiset of places to each transition. Accordingly,
a morphism of nets is graph homomorphism〈 ft, fp〉 whose node component respects the

4 · Vladimiro Sassone

a�� �������	

�

b�� �������	

�

�
���
���t0

��� � � �
� � t1

c�� �������	

�

t

SN � � a � b � c �
TN � � t0 : a � c �

t1 : b � c �
t : c �����

a�� �������	

�

b�� �������	

�

�
t0

�
t1

c�� �������	 � c c�� �������	

F 1. A net N and one of its two concatenable processesCP: a+ b→ 2c

monoidal structure on places. This, with the obvious componentwise composition of mor-
phisms, defines the categoryPetri.

Ideally, Petri net processes are simply computations carrying explicit information
about cause/effect relationship between event occurrences. This is conveniently described
by defining a process ofN to be a mapπ : Θ→ N, whereΘ defines the process ‘skeleton’
andπ ‘labels’Θ with places and transitions ofN in a way compatible with its structure.

D. A process netis a finite, acyclic netΘ such that for allt ∈ TΘ, preΘ(t) and
postΘ(t) are sets (as opposed to multisets), and for allt0 , t1 ∈ TΘ,

preΘ(t0) ∩ preΘ(t1) = ∅ and postΘ(t0) ∩ postΘ(t1) = ∅.

A processof N ∈ Petri is (up to isomorphism) a net morphismπ : Θ → N, whereΘ is a
process net andπ maps places to places (as opposed to multisets of places).

Inspired by the work in process algebras, we would like to concatenate a process
π1 : Θ1 → N with sourceu to a processπ0 : Θ0 → N with targetu by gluing appropriately
theterminalplaces ofΘ0 and theinitial places ofΘ1. However, the simple minded attempt
fails immediately: due to the ambiguity introduced by multiple instances of places, two
processes ofN can be composed sequentially in many ways, each of which gives a possibly
different process ofN. In other words, process concatenation has to do with mergingtokens
in the process places, that is instances of places, rather than mergingplaces.

2. Concatenable processes

It follows from the precedent argument that any attempt to recast the processes ofN as
an algebra that includes sequential composition must disambiguate each token in a process.
This is exactly the idea ofconcatenable processes[24]: they are simply processes where,
when needed, instances of places (tokens) are distinguished by appropriate decorations,
e.g., by ordering the initial and terminal places that carry the same label.

D. A concatenable processof N is a triple

(π : Θ→ N, {<a}a∈SN , {�a}a∈SN),

whereπ is a process, and<a and�a are linear orderings of, respectively, the initial and
terminal places ofΘ contained inπ−1

p (a) (cf. Figure 1).

This immediately yields an operation of concatenation: the ambiguity about multiple
tokens is resolved using the additional information given by the orderings (cf. Figure 2).

D. Let CP0 : u → v andCP1 : v → w be concatenable processes ofN, and let
π0 : Θ0 → N andπ1 : Θ1 → N be their underlying processes. Thesequential composition,
or concatenation,CP0 ; CP1 : u → w is obtained by gluing togetherπ0 andπ1, identi-
fying injectively each terminal place ofΘ0 with an initial place ofΘ1 in the uniqueway
compatible with the orderings�a onΘ0 and<a onΘ1 for all a ∈ SN.

The Algebraic Structure of Petri Nets · 5

b�� ��������
	

b�� ��������
	

	

t1

�
	

t0

c�� ��������
;

c�� ��������
c�� ��������

;

�
c

c

c�� ��������
c�� ��������
	

t
� c�� ��������

�

b�� ��������
	

a�� ��������
	

	

t1

	

t0

c�� ��������
;

c

c�� ��������

c�� ��������
	

�
c c�� ��������

t

�

a�� ��������
	

b�� ��������
	

	

t0

	

t1

c�� ��������
	

c�� ��������
t

t1
� t0 ; cc � c ; t � idc

�
t1

� t0 ; cc � c � ; t � idc t0
� t1 ; t � idc

F 2. A net N and its concatenable processπ = t0 ⊗ t1 ; t ⊗ idc

The existence of concatenation leads easily to the definition of the category of con-
catenable processes ofN. It turns out this is asymmetric strict monoidal category[55]
under the tensor product given by the following operation of parallel composition of pro-
cesses: forCP0 : u0→ v0 andCP1 : u1→ v1, CP0⊗CP1 : u0+u1→ v0+ v1 is obtained by
puttingπ0 andπ1 disjointly side by side and by making the places ofΘ0 precede the places
of Θ1 (cf. Figure 2; consult [24] for further examples).

The main result of [24] is an axiomatisation of such a category, stated here in the
improved enunciation proved in [86]. Its relevance is that it describes net behaviours as
algebrasin terms ofuniversalconstructions.

T. For any net N, there exists a one-to-one correspondence — preserving source,
target, sequential and parallel composition (tensor product) of processes (arrows) — be-
tween the concatenable processes of N and the arrows of the categoryP(N) obtained from
the free symmetric strict monoidal categoryF (N) on N by imposing the axioms

ca,b = ida⊗b, if a and b are different places of N,

s; t ; s′ = t, if t is a transition of N and s and s′ are symmetries ofF (N),

where c, id,⊗, and ; are, respectively, the symmetry isomorphism, the identities, the
tensor product, and the composition ofF (N).

This also yields an equational theory for net processes as, in explicit terms,P(N) is
the category whose arrows are generated by the rules

u ∈ µ(SN)

idu : u→ u in P(N)

a andb in SN

ca,b : a+ b→ b+ a in P(N)

t : u→ v in TN

t : u→ v in P(N)

α : u→ v andβ : u′ → v′ in P(N)

α ⊗ β : u+ u′ → v+ v′ in P(N)

α : u→ v andβ : v→ w in P(N)

α; β : u→ w in P(N)

modulo the axioms expressing that it is a strict monoidal category with composition; ,
tensor ⊗ , and symmetry isomorphismc and the two axioms quoted above.

E. Figure 2 shows a concatenable processπ for the netN of Figure 1 that corre-
sponds to the arrowt0 ⊗ t1 ; t ⊗ idc of P(N). To exemplify the algebra of processes ofN,
π is expressed as parallel (⊗) and sequential (;) composition of simpler processes.

6 · Vladimiro Sassone

a�� ��������

	

� b�� ��������

	

	

t0

	

t1

c�� ��������

	

c�� ��������

t

t0

 t1 ; t
 idc

a�� ��������

	

� b�� ��������

	

	

t0

	

t1

c�� ��������

	

c�� ��������

t

t1

 t0 ;cc � c ; t
 idc

F 3. Two strongly concatenable processes corresponding toπ of Figure 2

Such operations are matched precisely by operations and axioms ofP(N), and this is the
essence of the theorem above.

The symmetries ofP(N) and the related axiom on the symmetry isomorphismc play
in this correspondence a role absolutely fundamental: they account for the families of or-
derings{<a}a∈SN and{�a}a∈SN , which are the key to concatenable processes, guaranteeing
a correct treatment of sequential composition. In other words, they are an algebraic rep-
resentation of the‘threads of causality’in process concatenation. On the other hand, the
axiom is actually a problematic one: because of its negative premise,viz. a, b, it inval-
idates the freeness ofF (N) on Petri. Much worse, it makesP() act not functoriallyon
Petri. A detailed study of this issue is undertaken in [87], where a functorial and univer-
sal construction for net computations is presented, based on a refinement of the notion of
concatenable processes that is the topic of next section.

3. Strongly Concatenable Processes

Strongly concatenable processesare a slight refinement of concatenable processes in-
troduced in [87] to yield afunctorialalgebraic description of net computations. The refine-
ment, which consists of decorating initial and terminal places of processes more strongly
than in concatenable processes, e.g., by orderingall of them (cf. Figure 3), is shown to
be — in a very precise mathematical sense — theslightestrefinement that may achieve
this. As for their predecessors, strongly concatenable processes admit an axiomatisation in
terms of a universal algebraic construction based on symmetric monoidal categories.

T. The strongly concatenable processes of a net N are the arrows ofQ(N), obtained
from the symmetric strict monoidal category freely generated from the places of N and, for
each transition t of N, an arrow tu,v : u → v for each pair of linearisations (as strings) u
and v of the source and target (multisets) of t, by quotienting modulo the axiom

(Φ) s; tu′,v = tu,v′ ; s′, for s: u→ u′ and s′ : v′ → v symmetries.

The key point here is to associate toN a category whose objects form a freenon-
commutativemonoid (viz. S∗N as opposed toµ(SN)), i.e., to deal withstringsas explicit
representativesof multisets. As a consequence, each transition ofN has many correspond-
ing arrows inQ(N), all however ‘related’ to each other by thenaturality condition (Φ),
which is the second relevant feature ofQ(), actually the one that keeps the computational
interpretation of the categoryQ(N) (strongly concatenable processes) so surprisingly close
to that ofP(N) (concatenable processes).

Concerning functoriality,Q() extends to acoreflectionfunctor from the category of
Petri nets toa category of symmetric monoidal categories. Here, as in [61], we proceed

The Algebraic Structure of Petri Nets · 7

using2-categories, an high-level approach that has the advantage of hiding some of the
gory details.

D. A symmetric Petri categoryis a symmetric strict monoidal categoryC whose
monoid of objects isS∗, the free monoid onS, for some setS.

Symmetric Petri categories allow us to capture the essence of the arrows generating
Q(N), i.e., the instances of the transitions ofN. These have in fact two very special proper-
ties that characterise them completely: (1) they are decomposable as tensors only trivially,
and as compositions only by means of symmetries, and (2) they satisfy axiom (Φ). We
then use such properties, expressed in abstract categorical terms, to define the notion of
transition in a general symmetric Petri category.

D. Let C be a symmetric Petri category andS∗ its monoid of objects. An arrowτ
in C is primitive if (denoting byε the empty word inS∗)

. τ is not a symmetry;

. τ = α ; β implies α is a symmetry andβ is primitive, or vice versa;

. τ = α ⊗ β implies α = idε andβ is primitive, or vice versa.

A transition τ : ū → v̄ of C, for ū, v̄ ∈ µ(S), is a family {τu,v : u → v in C} of primitive
arrows indexed by those pairs of stringsu andv with underlying multisets ¯u and v̄, re-
spectively, and such thats; τu′,v = τu,v′ ; s′, for s: u → u′ and s′ : v′ → v symmetries of
C.

The definition above — that can also be formalised stating that transitions are nat-
ural transformations between appropriate functors — captures the essence ofQ(N): the
transitions inQ(N) areall andonly the families{tu,v | t : ū → v̄ ∈ TN}. This leads us to
the following characterisation thecategory(of the categories)of net computations. The 2-
categorical notions used in the theorem below are natural extensions of the corresponding
(1-)categorical concepts; the interested reader will find the detailed definitions in [52].

T. Let SPetriCat be the 2-category whose objects are the symmetric Petri cate-
gories, whose arrows are the symmetric strict monoidal functors that respect transitions,
and with a 2-cell F⇒ G if there exists a monoidal natural isomorphism between F and G
whose components are all symmetries.

Then,Q() : Petri → SPetriCat is a pseudo 2-functor (considering the categoryPetri
of Petri nets as a trivial 2-category) that admits a pseudo right adjointN() forming with
Q() a pseudo coreflection.

4. Pre-Nets

Although strongly concatenable processes settle the token ambiguity problem of§1,
they yield a construction that is functorial only up to isomorphism, thus needing a complex
quotient operation [87] or, equivalently, the 2-categorical treatment outlined above.

In [15, 16] we proposed an alternative construction centred on the notion of pre-net.
Pre-netsare nets whose states arestringsof tokens (as opposed tomultisets). Such states
can be seen as totally ordered markings, a more concrete representation of multisets. The
idea is that each transition of a pre-net must specify the precise order in which the required
resources are fetched and the results are produced, as if it were an elementary strongly
concatenable process.

D. A pre-netis a tupleR = (ζ0, ζ1 : TR→ S∗R), whereSR is a set ofplaces, TR is
a set oftransitions, andζ0 andζ1 are functions assigning, respectively, source and target to
each transition.

8 · Vladimiro Sassone

A pre-net can be thought of as an implementation of a net, where an abstract data
structure, the multiset, is refined into a more concrete implementation data structure, the
string, and where each transitiont : ū → v̄ is simulated byone linear implementation
tu,v : u → v arbitrarily fixed for some linearisationsu and v of ū and v̄. For each PT
we can arbitrarily choose a pre-net representation. This corresponds to fix a total order
for the pre- and post-set of each transition, and differs from the approach recalled in§3
where, in order to avoid a choice,all the possible linearisations of the pre- and post-sets are
considered in the alternative presentation of the net. We shall see that, in order to capture
the standard process semantics of nets, choosing one representative for each transition
suffices. In particular, although abandoning multisets might appear at first unnatural, this
approach enjoys some good properties. Here we limit ourselves to the following two.

. All pre-net implementations of the same net share the same semantic model, i.e.,
the semantics is independent of the choice of linearisations;

. The semantic model for the implemented net given by the constructionQ() can
be recovered from any pre-net implementation.

We shall usePreNet to indicate the category of pre-nets with the obvious notion of
morphisms, i.e., a graph morphism whose node component is a monoid homomorphism.
Let µR: S∗R → µ(SR) denote the function that mapsu to ū, the multiset consisting of
the symbols inu. Then, the mapA, from pre-nets to PT nets, sending the pre-netR =
(ζ0, ζ1 : TR → S∗R) to the netA(R) = (µR ◦ ζ0, µR ◦ ζ1 : TR → µ(SR)) extends to a functor
from PreNet to Petri.

The functorA() : PreNet → Petri is neither full, nor faithful. However, if we con-
sider the categoryNet whose objects are either PT nets or pre-nets and whose morphisms
are graph morphisms with monoid homomorphism as node components, thenPetri is the
quotient ofNet modulo commutativity of the monoidal structure of nodes. This establishes
a strong relationship, between PT nets and pre-nets, expressible via a coreflection between
Petri andNet, which supports and further motivates our approach.

The natural algebraic models for representing concurrent computations on pre-nets
live in the categorySSMC of symmetric strict monoidal categories. More precisely, we are
only interested in the full subcategory consisting of categories whose monoid of objects is
freely generated. We denote it byFSSMC. The obvious forgetful functor from the category
FSSMC to the categoryPreNet admits a left adjointZ. The categoryZ(R) has as objects
the strings ofS∗R, and as arrows those generated by the rules below, modulo the axioms of
monoidal categories (associativity, functoriality, identities, unit), including the coherence
axioms that make ofc the symmetry natural isomorphism.

w ∈ S∗R
idw : w→ w ∈ Z(R)

a andb in S∗R
ca,b : ab→ ba ∈ Z(R)

t : u→ v in TR

t : u→ v ∈ Z(R)

α : u→ v andβ : u′ → v′ ∈ Z(R)

α ⊗ β : uu′ → vv′ ∈ Z(R)

α : u→ v andβ : v→ v′ ∈ Z(R)

α; β : u→ v′ ∈ Z(R)

The above construction bears strong similarities to the work on coherence by MacLane
and Kelly, and even more closely to Pfender’s construction of the freeS-monoidal cate-
gory [78]. In computer science, similar constructions are given by Hotz’sX-categories [44],
and by Benson [8], with grammars as the primary area of application.

As anticipated, corresponding to the two features of our approach, we have the follow-
ing results. The first states that pre-nets representing isomorphic PT nets yield the same

The Algebraic Structure of Petri Nets · 9

algebraic net semantics. The second relatesQ,Z, andA, and contains the entire essence
of the pre-net approach:any pre-net representation of the netA(R) is as good as R.

T. Let R,R′ ∈ PreNet. If A(R) ' A(R′), thenZ(R) ' Z(R′).

T. For R a pre-net, the categoryZ(R) quotiented out by the axiom t= s0 ; t ; s1,
for each transition t: u→ v and symmetries s0 : u→ u and s1 : v→ v is equivalent to the
categoryQ(A(R)) of strongly concatenable processes.

5. Related Work

An alternative important line of research on Petri nets semantics is the so-calledun-
folding approach, initiated by Nielsen et al. in [67] and further developed by Winskel
in [96, 98], according to which the‘dynamic’ structure of nets is ‘unrolled’, ‘unfolded’
to the ‘static’ structure of event structures or, equivalently, of so-called occurrence nets.
Its main merit is to assign to each net a single object that represents its entire behaviour
and explains in a uniform, appealing way the interplay between non-determinism and con-
currency. This fact can be justified formally by considering that the unfolding is a special
(co)limit construction that gives rise to a coreflection between the categories of (safe) Petri
nets and prime event structures. An alternative unfolding construction is described in [69],
while Engelfriet in [32] consider a wider class of nets. Meseguer et al. [60] extend the
construction of [67] to the entire category of place/transition nets and, in [59], study the
relationships between unfolding and process semantics.

Other semantic investigations have capitalized directly on thealgebraic structureof
Petri nets, noticed by Reisig [80], by Winkowski [92, 93], and later exploited by Winskel to
identify a sensible notion ofmorphismbetween nets [95, 97] and open the way to categor-
ical treatments. Among the algebraic/categorical approaches, a relevant place is occupied
by those drawing on the analogy between nets and proofs inliner logic, first noticed by
Asperti [3]. Among these, we mention [13, 14, 31]. A really excellent survey is given by
Mart́ı-Oliet and Meseguer in [57]. Other relevant approaches are by Mukund [66], which
provides an account of net behaviours in terms of (step) transition systems, and by Hoogers
et al. in [42], that uses (generalised) trace theory (cf. [56, 27]) to the same purpose, and
in [43], where a notion of net unfolding is explained in terms of a notion of local event
structure.

More recently, Ehrig and Padberg [30, 73], inspired by the ‘Petri nets as monoid’
approach, give a uniform algebraic presentation of several classes of nets based on the idea
of a parameterized abstract Petri net. Desel et al. [25] attain results on the representation of
net processes similar to those presented here using partial algebras, in a fashion not unlike
the early work of Winkowski [92, 93].

The ‘Petri nets as monoids’ paradigm has been applied successfully to the semantics
of several extensions of place/transition nets. Among these, two recent interesting results
concernzero-safeandcontextual nets. Zero-safe nets, introduced by Bruni and Monta-
nari [17, 18], extend Petri nets with a simple mechanism to model transactions, i.e., two
or more transitions that must always occur without any other transition occurring in be-
tween. Contextual nets [22, 65, 45] (see also [21, 91, 6, 5]) are nets with ‘read-arcs’ used
to ‘read’ without consuming, so allowing multiple, non-exclusive, concurrent uses of the
same resource (token) and, therefore, the modeling of shared resources. Bruni and Sassone
in [19] extend the categorical process semantics approach surveyed here satisfactorily to
contextual nets, building on previous work by Gadducci and Montanari [33].

10 · Vladimiro Sassone

PETRI NETS IN THE LARGE

The previous sections have mainly focused our attention‘in the small’, at level of single
nets, whereas Petri nets are often used‘in the large’, for instance as a semantic basis to
interpret concurrent languages, which calls for the study ofalgebras of nets‘in the large’
and, possibly, for their abstract characterisations. Among several existing approaches, we
recall the fundamental ideas underlying the work presented in [68], focusing onfinite nets
whose transitions arelabelledby (possibly silent) actions. We shall use acountablesetAct
of visibleactionsα1, α2, α3, . . ., and a distinguishedsilentactionτ.

D. A labelledPetri net is a Petri netN together with aninitial state sN ∈ µ(SN),
and alabelling functionλN : TN → Act∪ {τ}.

6. An Algebra of Nets

Similarly to [10, 63], everything is based on a notion ofinterfacefor Petri nets. These
are ordered selections of places, the ‘input’, and transitions, the ‘output’, that specify what
parts ofN arepublic, i.e., accessible from the environment, and what parts areprivate to
the net. The private places and transitions cannot be accessed and, therefore, cannot be
used directly for connecting nets to each other.

D. A net with interfaceis a structurep1, . . . , pn; t1, . . . , tm . N, whereN is a finite
labelled net, andp1, . . . , pn ∈ SN, t1, . . . , tm ∈ TN are all distinct, andλN(ti) , τ.

Drawing on the experience of developments in concurrency theory, a minimal yet ex-
pressive, set of combinators should certainly include operations allowing (forms of)inter-
action/communication, parallel composition, recursion, and — to facilitate the description
of modular systems — operations such asrelabelling andhiding. However, in order to
avoid a chaotic ‘structural’ calculus where everything is permitted, it is obvious that some
restrictions on the allowed connections of places and transitions must be imposed. The
input/output partition of interfaces readily suggest a reasonable discipline of interaction:
connections between nets should go from outputs to inputs, involvingonly public compo-
nents. This formalises the well-motivated and solid intuition that the only allowed interac-
tions are achieved bysendingandreceivingalong interfaces, thought of as communication
channels, the input interfaces providing ‘buffers’ in which the tokens arriving from the en-
vironment are gathered, the output interfaces sending tokens out to the environment. In
other words, interfaces provide the notions of ‘private’ and ‘public’ channels for nets, and
their input/output partition suggests a discipline for net cooperation.

D. The setCM of combinators of nets with interface consists of the combinators
defined by the following rules.

.
~p0;~t0 . N0 and ~p1;~t1 . N1 disjoint

par(~p0;~t0 . N0, ~p1;~t1 . N1) = ~p0, ~p1;~t0,~t1 . N0‖N1

whereN0‖N1 is the (componentwise) union ofN0 andN1;

.
1 ≤ i ≤ |~p | and 1≤ j ≤ |~t |

add(i, j, ~p;~t . N) = ~p;~t . N〈pi ← t j〉

whereN〈p← t〉 is the netN augmented with an arc fromt to p;

. rel(φ, ~p;~t . N) = ~p;~t . N[φ],

whereφ : Act→ Act∪ {τ} is a ‘relabelling’ function, andN[φ] is obtained
from N by relabelling viaφ the transitions that carrynon-τ actions;

The Algebraic Structure of Petri Nets · 11

.
max(P) ≤ |~p | and max(T) ≤ |~t |

hide(P,T, ~p;~t . N) = ~prP;~trT . N

whereP andT are finite sets of positive natural numbers (max(∅) = 0), and
~xrX is the string obtained from~x by removingxi , for all i ∈ X;

.
1 ≤ i ≤ |~p |

mark(i, ~p;~t . N) = ~p;~t . N • pi

whereN • p is the netN augmented with a token inp.

Observe that, since thepar(,) combinator is defined explicitly only for disjoint nets,
a ‘renaming’ is generally needed before applying it to its arguments. This implies that
no ‘fusion’ of nets is allowed byCM . Combinatoradd(i, j,) adds an arc from theith
place to thejth transitions of the interface. It provides both a form of recursion and, used
in connection withpar(,), a form of ‘asynchronous message passing’ which feeds the
inputs of a net with the outputs of another one.

7. Congruences and Contexts for Labelled Petri Nets

The semantic equivalence of concurrent systems can be described in terms of sev-
eral kinds of models, e.g., languages, traces, pomsets, event structures, etc., which reflect
different assumptions about how behaviour is to be observed. Each of these notions of
‘observation’ gives rise to standard equivalences: alinear equivalence, abisimulationand
possibly, fixed a set of operators, their congruence closures. A thorough study of sixteen
such behavioural equivalences for nets with interfaces is exposed in [68]. Here we treat a
single, yet typical, case: the step bisimulation.

D. A step bisimulationof N0 andN1 is a relationR ⊆ µ(SN0) × µ(SN1) such that
sN0 R sN1, and whenevers R s̄, then (1) for each step (fireable multiset of transitions)
s[X〉s′ of N0, there exists a sequence of steps ¯s[Y1 · · ·Yn〉s̄′ of N1 resulting in the same
multisetof non-τ labels asX, and withs′ R s̄′; (2) vice versa swapping the roles ofN0

andN1.
Nets~p0;~t0 . N0 and~p1;~t1 . N1 arestep bisimilar, written~p0;~t0 . N0 ↔−

~p1;~t1 . N1, if there
exists a step bisimulation ofN0 andN1.

For engineering reasons, related to feasibility of correctnessverificationfor complex
systems, for mathematical reasons, related to the simplicity ofequational reasoning, and
for conceptual reasons, related to common intuitions about system equivalence, it is im-
portant to consider equivalences which arecongruencesfor a chosen set of system con-
structors. This guarantees that systems can be replaced by equivalent ones in any context.
Since it easy to see that↔− is not a congruence foradd(i, j,), we are led to↔−

c, the largest
congruence contained in it,viz.~p0;~t0.N0↔−

c ~p1;~t1.N1 if and only if, for eachCM -context
C, eitherbothnets are incompatible with it, orC[~p0;~t0 . N0] ↔− C[~p1;~t1 . N1].

This universal quantification overall contexts has however obvious drawbacks. The
main result of [68] is to show that it can actually be dispensed with by identifying a minimal
set of context which isuniversalfor it. More precisely, for each pairN0 andN1 of nets with
interface there exists a readily-identified contextC such thatN0 andN1 are↔− -congruent if
and only ifC does not↔− -distinguish them. Here follow some of the details.

Recalling thatAct is equipped with an enumerationα1, α2, . . ., letψ be the relabelling
functionαi 7→ α3i , i ∈ ω.

12 · Vladimiro Sassone

p
j+i

p
1 pj

τ

p
j+1

ti

p
1() p()i

ti+1
ti+j(tj)t1)(

ojo1

U i,jτ

t1

1α

N

3k jα3k

ιiι1

F 4

D. Let∅; t . U andp;∅ . U′ be the nets with interface shown below.

α

p

α

τ

t

U’U

LetCi, j andUi, j , i, j ∈ ω, be the contexts defined below (with self-explanatory shorthands)

Ci, j = par
(
parik=1

(
∅; t . U[α3k−2/α]

)
,par j

k=1

(
p;∅ . U′[α3k−1/α]

))
,

Ui, j = addj
k=1

(
k, i+k,addi

k=1

(
j+k, k,par

(
Ci, j , rel(ψ,)

)))
.

Figure 4 presentsUi, j [~p;~t . N] for a ~p;~t . N with |~p | = i and|~t| = j. The interface of
Ui, j [~p;~t . N] is shown by naming and numbering the places and transitions which belong
to it. The information in parentheses concern the orderings in~p;~t. Concerning the labels,
we useιk for α3k−2, k = 1, . . . , i, ok for α3k−1, k = 1, . . . , j, andαk1, . . . αk j for the labels of
~t in N. The dashed arrows are those inserted byadd.

The contextsUi, j are conceptually very simple. They provide a copy of∅; t . U for
each place in~p, and a copy ofp;∅ . U′ for each transition in~t. The cascade ofadd(i, j,)
connects together the transition-place pairs so created. The role of the collection of∅; t .U
is to test the ‘reactivity’ of the ‘input’ sites of~p;~t . N by sending in any number of tokens,
at any relative speed and independently for each place in~p. The collection ofp;∅ . U′

tests the ‘output’-behaviour by recording the firings of the transitions in~t.
In order for these contexts to form universal collections, it is necessary to distinguish

in the behaviour ofUi, j [~p;~t . N] the actions stemming fromUi, j from those stemming
from N. This is achieved by therel(ψ,) combinator: since the actions ofN are uniformly
‘remapped’ to 3k-numbered actions, we are free to use differently numbered actions in
the contexts. The soundness of this technique relies on the fact thatψ is injective and,
therefore, no equivalences are enforced by theψ-relabelling. We thus conclude as follows.

The Algebraic Structure of Petri Nets · 13

T. For ~p0;~t0 . N0 and~p1;~t1 . N1 nets with interface,

~p0;~t0 . N0↔−
c ~p1;~t1 . N1 ⇐⇒ |~p0| = |~p1| = i, |~t0| = |~t1| = j, and

Ui, j [~p0;~t0 . N0] ↔− Ui, j [~p1;~t1 . N1].

8. Related Work

The work outlined in the second part of this survey relates to several Petri net calculi
proposed in the literature. Among these, we mention Gorrieri and Montanari’s S [36],
defined around operations of prefixing, parallel, and non-deterministic composition, and
used to give semantics to a fragment of CCS. Differently from most other calculi, S
is not based on an explicit notion of interface by means of which nets are composed. It
aims at describing behavioural more than structural composition, and is essentially a big
net whose markings represent concurrent processes behaviours, in the same sense as CCS
can be seen as a big transition system whose states represent processes.

The Petri Box calculus [10], by Best et al., has received much attention in the literature.
It is inspired by CCS and motivated by the need to simplify the task of giving compositional
denotational semantics to concurrent programming languages. The calculus has a very
rich collection of operations, including sequential, non-deterministic, and asynchronous
parallel composition with explicit multiple synchronisation based on a notion of interface
constituted by designated entry and exit places. The Box calculus has been used to describe
distributed algorithms, to give semantics to concurrent programming languages [11], and
has been embedded in the PEP computer-aided tool [37].

A highly elegant calculus is Milner’s calculus of named nets [63], arisen in the context
of control structures and, as such, inspired by name passing calculi, as theπ-calculus. It
focuses on very few basic ‘controls’ by means of which places, tokens, and transitions
can be glued together to form any finite net. A notable difference with the work surveyed
here is that Milner’s calculus is definitely more structure-oriented. The controls are in
fact suggested by structural considerations rather than by behavioural intuitions such as
asynchronous message passing underlyingCM . The dynamics of named nets is demanded
to an elegant reduction relation, and the question of behavioural congruences is open.

9. Conclusions and Future Work

Algebraic structures based on a central operation ofiteration, or feedback— inspired
by flowcharts and program schemata — have appeared rather early in computer science,
see, e.g., [29, 4, 89, 90, 63] and [12], that offers for a thorough exposition of so-called
‘ iteration theory’ and more references. The advent oftraced monoidal categories[50],
i.e., monoidal categories equipped with afeedbackoperation completely analogous to the
one considered inCM has recently revived interest in using such abstract structures in
semantics of computation, as e.g., in [1, 53, 40, 41]. Obviously, the calculus of [68] fits
nets into this framework very nicely, although some of the details still need to be clarified.
In particular, it may still lack some important operations, most notably synchronisation.

Finally, as already mentioned, it would be interesting to know how well and how
uniformly can the ‘Petri nets as monoids’ approach be lifted to high level nets.

Acknowledgements. I would like to thank the colleagues who have been part of developing
the material behind this survey. In particular, I acknowledge close collaboration with R. Bruni,
J. Meseguer, U. Montanari, M. Nielsen, and L. Priese on many parts of this work.

14 · Vladimiro Sassone

References

[1] S. A (1996), Retracing Some Paths in Process Algebra, inProceedings of CONCUR 96, U. Mon-
tanari and V. Sassone (Eds.),Lecture Notes in Computer Science1119, 1–17, Springer-Verlag.

[2] S. AM, A. B,  S. D (1998), Petri Nets in Performance Analysis: An introduc-
tion, in Advances in Petri Nets, Lectures on Petri Nets I: Basic Models, W. Reisig and G. Rozenberg (Eds.),
Lecture Notes in Computer Science1491, 122–173, Springer-Verlag.

[3] A. A , G. F,  R. G (1990), Implicative Formulae in the “Proofs as Computations”
Analogy, inProceedings of POPL 91, 59–71, ACM Press.

[4] E.S. B (1976), Feedback and Generalized Logic.Information and Control31, 75–96, Academic
Press.

[5] P. B (2000), Modelling Concurrent Computations: From Contextual Petri Nets to Graph Grammars.
Ph.D. thesis, TD-1/00, Dipartimento di Informatica, Università di Pisa.

[6] P. B, A. C,  U. M (1998), An event structure semantics for P/T contextual nets:
Asymmetric event structures, inProceedings FoSSaCS’98, M. Nivat (Ed.),Lecture Notes in Computer Sci-
ence1378, 63–80, Springer-Verlag.

[7] J. B́ (1963), Categories with Multiplication.Comptes Rendus Académie Science Paris256, 1887–
1890.

[8] D.B. B (1975) , The Basic Algebraic Structures in Categories of Derivations.Information and Control
28(1), 1–29, Academic Press.

[9] E. B  R. D (1987), Sequential and Concurrent Behaviour in Petri Net Theory.Theoretical
Computer Science55, 87–136, Elsevier.

[10] E. B, R. D,  J. H (1992), The Petri Box Calculus: a New Causal Algebra with Multilabel
Communication, inAdvances in Petri Nets 92, G. Rozenberg (Ed.),Lecture Notes in Computer Science609,
21–69, Springer-Verlag.

[11] E. B, R. D, M. K (1998), Petri Nets, Process Algebras, and Concurrent Programming
Languages, inAdvances in Petri Nets, Lectures on Petri Nets II: Applications, W. Reisig and G. Rozenberg
(Eds.),Lecture Notes in Computer Science1492, 1–84, Springer-Verlag.

[12] S.L. B  Z. É (1991), Iteration Theories: the Equational Logic of Iterative Processes. EATCS
Monographs on Theoretical Computer Science30, Springer-Verlag.

[13] C. B  D. G (1992), Temporal Logic and Categories of Petri Nets, inProceedings of ICALP
93, A. Lingaset al. (Eds.),Lecture Notes in Computer Science700, 570–581, Springer-Verlag.

[14] C. B, D. G,  V.  P (1991), A Linear Specification Language for Petri Nets. Technical
Report DAIMI PB-363, Computer Science Dept., University of Aarhus.

[15] R. B, J. M, U. M,  V. S (1999) , Functorial Semantics for Petri Nets under
the Individual Token Philosophy, inProceedings of CTCS 99, M. Hofmann, G. Rosolini, and D. Pavlovic
(Eds.),Electronic Notes in Theoretical Computer Science29, Elsevier.

[16] R. B, J. M, U. M, V. S (2000), Functorial Models for Petri nets.Information
and Computation, Academi Press. To appear.

[17] R. B  U. M (2000), Zero-Safe Nets: Comparing the Collective and Individual Token
Approaches.Information and Computation156 46–89, Academi Press.

[18] R. B  U. M (2000), Executing Transactions in Zero-safe Nets, inProceedings of ICATPN
2000, D. Simpson and M. Nielsen (Eds.),Lecture Notes in Computer Science1825, 83–102, Springer-
Verlag.

[19] R. B  V. S (2000), Algebraic Models for Contextual Nets, inProceedings of ICALP 2000,
U. Montanariet al. (Eds.),Lecture Notes in Computer Science1853, 175–186, Springer-Verlag.

[20] N. B  R. G (1995), A Petri Net Semantics for the Pi-Calculus, inProceedings of CONCUR
95, I. Lee and S. Smolka (Eds.),Lecture Notes in Computer Science962, 145–159, Springer-Verlag.

[21] N. B  M. P (1996), Non Sequential Semantics for Contextual P/T Nets, in Proceedings of
ICATPN 96, J. Billington and W. Reisig (Eds.),Lecture Notes in Computure Science1091, 113–132,
Springer-Verlag.

[22] S. C  N.D. H (1993), Coloured Petri Nets extended with Place Capacities, Test Arcs
and Inhibitor Arcs, inProceedings of ICATPN 93, S. Ajmone Marsan (Ed.),Lecture Notes in Computer
Science691, 186–205, Springer-Verlag.

[23] P. D, R. D N,  U. M (1988), A Distributed Operational Semantics for CCS based
on Condition/Event Systems.Acta Informatica26, 59–91, Springer-Verlag.

[24] P. D, J. M,  U. M (1996), Axiomatizing the Algebra of Net Computations and
Processes.Acta Informatica33, 641–667, Springer-Verlag.

The Algebraic Structure of Petri Nets · 15

[25] J. D, G. J́,  R. L (2000), Process Semantics of Petri Nets over Partial Algebra, inPro-
ceedings of ICATPN 2000, D. Simpson and M. Nielsen (Eds.),Lecture Notes in Computer Science1825,
146–165, Springer-Verlag.

[26] J. D W. R (1998), Place/Transition Petri Nets, inAdvances in Petri Nets, Lectures on Petri Nets
I: Basic Models, W. Reisig and G. Rozenberg (Eds.),Lecture Notes in Computer Science1491, 122–173,
Springer-Verlag.

[27] V. D  G. R (E.) (1995), The Book of Traces, World Scientific.
[28] S. E, G.M. K (1966), Closed Categories, inProceedings of the Conference on Categorical

Algebra, S. Eilenberget. al.(Eds.),421–562, Springer-Verlag.
[29] C. E (1975), Monadic Computation and Iterative Algebraic Theories, inLogic Colloquium ’73,

H.E. Rose and J.C. Shepherdson (Eds.),175–230, North-Holland.
[30] H. E  J. P (1997), A Uniform Approach to Petri Nets, inProceedings of FCT 97, C. Freksa

et al. (Eds.),Lecture Notes in Computer Science1337, 219–231, Springer-Verlag.
[31] U. E  G. W (1993), Completeness Results for Linear Logic on Petri Nets, inProceedings

of MFCS 93, A. Borzyszkowski and S. Sokołowski (Eds.),Lecture Notes in Computer Science711, 442–
452, Springer-Verlag.

[32] J. E (1991), Branching Processes of Petri Nets.Acta Informatica28, 575–591, Springer-Verlag.
[33] F. G  U. M (1998), Axioms for contextual net processes,Proceedings of ICALP 98,

K. Larsenet al. (Eds.),Lecture Notes in Computer Science1443, 296–308, Springer-Verlag.
[34] R.J. G  F. V (1987), Petri Net Models for Algebraic Theories of Concurrency, in

Proceedings of PARLE 87, J.W. de Bakkeret al. (Eds.),Lecture Notes in Computer Science259, 224–242,
Springer-Verlag.

[35] U. G W. R (1983), The Non-Sequential Behaviour of Petri Nets.Information and Computa-
tion 57, 125–147, Academic Press.

[36] R. G  U. M (1990), Scone: A Simple Calculus of Nets, inProceedings of CONCUR
90, J.C.M. Baeten and J.W. Klop (Eds.),Lecture Notes in Computer Science458, 2–31, Springer-Verlag.

[37] B. G (1998), The State of PEP, inProceedings of AMAST 98, A.M. Haeberer (Ed.),Lecture
Notes in Computer Science1548, 522–526, Springer-Verlag.

[38] M. H (1988), Algebraic Theory of Processes. MIT Press.
[39] C.A.R. H (1985), Communicating Sequential Processes. Prentice Hall.
[40] M. H (1997), Recursion from Cyclic Sharing: Traced Monoidal Categories, inProceedings of

TLCA 97, Ph. de Groote and J.R. Hindley (Eds.),Lecture Notes in Computer Science1210, 196–213,
Springer-Verlag.

[41] T.T. H, P. P,  G. W (1998), Relational Semantics of Non-Deterministic
Dataflow, inProceedings of CONCUR 98, D. Sangiorgi and R. de Simone (Eds.),Lecture Notes in Computer
Science1466, 613–628, Springer-Verlag.

[42] P.W. H, H.C.M. K,  P.S. T (1992), A Trace Semantics for Petri Nets, inProceed-
ings of ICALP 92, W. Kuich (Ed.),Lecture Notes in Computer Science623, 595–604, Springer-Verlag.

[43] P.W. H, H.C.M. K,  P.S. T (1993), Local Event Structures and Petri Nets, in
Proceedings of CONCUR 93, E. Best (Ed.),Lecture Notes in Computer Science715, 462–476, Springer-
Verlag.

[44] G. H (1965) , Eine Algebraisierung des Syntheseproblemen von Schaltkreisen, I and II.Journal of Infor-
mation Processing and Cybernetics, EIK1, 185–206, 209–231. Otto-von-Guericke-Universität, Magdeburg,
Germany.

[45] R. J  M. K (1995), Semantics of Inhibitor Nets.Information and Computation.123, 1–16,
Academic Press.

[46] K. J (1998), An Introduction to the Practical Uses of Coloured Petri Nets, inAdvances in Petri Nets,
Lectures on Petri Nets II: Applications, W. Reisig and G. Rozenberg (Eds.),Lecture Notes in Computer
Science1492, 237–292, Springer-Verlag.

[47] K. J (1992), Coloured Petri Nets – Basic Concepts, Analysis Methods and Practical Use, Vol. 1:
Basic Concepts. EATCS Monographs in Theoretical Computer Science, Springer-Verlag.

[48] K. J (1994), Coloured Petri Nets – Basic Concepts, Analysis Methods and Practical Use, Vol. 2:
Analysis Methods. EATCS Monographs in Theoretical Computer Science, Springer-Verlag.

[49] K. J (1997), Coloured Petri Nets – Basic Concepts, Analysis Methods and Practical Use, Vol. 3:
Practical Use. EATCS Monographs in Theoretical Computer Science — Berlin: Springer-Verlag.

[50] A. J, R. S,  D. V (1996), Traced Monoidal Categories.Mathematical Proceedings of the
Cambridge Philosophical Society119, 447–468, Cambridge University Press.

16 · Vladimiro Sassone

[51] G.M. K (1964), On MacLane’s Conditions for Coherence of Natural Associativities, Commutativities,
etc.Journal of Algebra, n.1, 397–402, Acamedic Press.

[52] G.M. K,  R. S (1974), Review of the Elements of 2-Categories, inCategory Seminar Sidney,
Lecture Notes in Mathematics420, 75–103, Springer-Verlag.

[53] P. K, N. S,  R. W (1997), Bicategories of Processes.Journal of Pure and Applied
Algebra115, 141–178, North-Holland.

[54] S. ML (1963), Natural Associativity and Commutativity.Rice University Studies49, 28–46, Rice
University Press.

[55] S. ML (1971), Categories for the Working Mathematician. Springer-Verlag.
[56] A. M (1987), Trace theory, inPetri Nets, Applications and Relationship to other Models of

Concurrency, W. Braueret al. (Eds.),Lecture Notes in Computer Science255, 279–324, Springer-Verlag.
[57] N. Mı́-O  J. M (1991), From Petri Nets to Linear Logic through Categories: A Survey.

International Journal of Foundations of Computer Science2, 297–399, World Scientific.
[58] J. M  U. M (1990), Petri Nets are Monoids.Information and Computation88, 105–

155, Academic Press.
[59] J. M, U. M,  V. S (1996), Process versus Unfolding Semantics for

Place/Transition Petri Nets.Theoretical Computer Science153, 171–210, Elsevier.
[60] J. M, U. M,  V. S (1997), On the Semantics of Place/Transition Petri Nets.

Mathematical Structures in Computer Science7, 359–397, Cambridge University Press.
[61] J. M, U. M,  V. S (1997), Representation Theorems for Petri Nets, inFoun-

dations of Computer Science, C. Freksaet al. (Eds.),Lecture Notes in Computer Science1337, 239–249,
Springer-Verlag.

[62] R. M (1989), Communication and Concurrency. Prentice-Hall.
[63] R. M (1993), Action Calculi or Syntactic Action Structures, inProceedings of MFCS 93,

A. Borzyszkowski and S. Sokołowski (Eds.),Lecture Notes in Computer Science711, 105–121, Springer-
Verlag.

[64] R. M (1999), Communicating and Mobile Systems: theπ-Calculus. Cambridge University Press.
[65] U. M  F. R (1995), Contextual Nets.Acta Informatica32, 545–596, Springer-Verlag.
[66] M. M (1992), Petri Nets and Step Transition Systems.International Journal of Foundations of Com-

puter Science3, 443- 478, World Scientific.
[67] M. N, G. P,  G. W (1981), Petri Nets, Event Structures and Domains, Part 1.Theo-

retical Computer Science13, 85–108, Elsevier.
[68] M. N, L. P,  V. S (1995), Characterizing Behavioural Congruences for Petri Nets,

in Proceedings of CONCUR 95, I. Lee and S. Smolka (Eds.),Lecture Notes in Computer Science962,
175–189, Springer-Verlag.

[69] M. N, G. R,  P.S. T (1995), Transition Systems, Event Structures and Un-
foldings.Information and Computation118, 191–207, Academic Press.

[70] M. N  V. S (1998), Petri Nets and Other Models of Concurrency, inAdvances in Petri Nets,
Lectures on Petri Nets I: Basic Models, W. Reisig and G. Rozenberg (Eds.),Lecture Notes in Computer
Science1491, 587–642, Springer-Verlag.

[71] E.R. O (1987), A Petri Net Semantics for CCSP, inAdvances in Petri Nets 86, G. Rozenberg (Ed.),
Lecture Notes in Computer Science266, 196–223, Springer-Verlag.

[72] E.R. O (1991), Nets, Terms and Formulas. Cambridge Tracts in Theoretical Computer Science,
Cambridge University Press.

[73] J. P (1999), Abstract Petri nets as a Uniform Approach to High-Level Petri Nets, inProceedings of
WADT 98, C. Freksaet al. (Eds.),Lecture Notes in Computer Science1589, 241–260, Springer-Verlag.

[74] C.A. P (1962), Kommunikation mit Automaten. Ph.D. thesis, Institut für Instrumentelle Mathematik,
Bonn.

[75] C.A. P (1973), Concepts of Net Theory, inProceedings of MFCS 73, 137–146, Mathematics Institute
of the Slovak Academy of Science.

[76] C.A. P (1977), Non-Sequential Processes. Interner Bericht ISF–77–5, Gesellschaft f̈ur Mathematik
und Datenverarbeitung, Bonn.

[77] Petri Net Tools on the Web, web page.http://www.daimi.au.dk/ petrinet/tools/, DAIMI, Univer-
sity of Aarhus.

[78] M. P (1974) , Universal Algebra in S-Monoidal Categories, Algebra-Berichte20, Department of
Mathematics, University of Munich.

[79] V. P (1986), Modelling Concurrency with Partial Orders.International Journal of Parallel Program-
ming15, 33–71, Plenum.

The Algebraic Structure of Petri Nets · 17

[80] W. R (1985), Petri Nets (an Introduction). EATCS Monographs on Theoretical Computer Science4,
Springer-Verlag.

[81] W. R (1991), System Design Using Petri Nets. Springer-Verlag.
[82] W. R (1998), Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets. EATCS

Monographs on Theoretical Computer Science, Springer-Verlag.
[83] W. R G. R (1998), Informal Introduction to Petri Nets, inAdvances in Petri Nets, Lectures

on Petri Nets I: Basic Models, W. Reisig and G. Rozenberg (Eds.),Lecture Notes in Computer Science1491,
1–11, Springer-Verlag.

[84] G. R  J. E (1998), Elementary Net Systems, inAdvances in Petri Nets, Lectures on
Petri Nets I: Basic Models, W. Reisig and G. Rozenberg (Eds.),Lecture Notes in Computer Science1491,
12–121, Springer-Verlag.

[85] G. R  P.S. T (1986), Petri Nets: Basic Notions, Structure, Behaviour, inCur-
rent Trends in Concurrency, J. de Bakkeret al. (Eds.),Lecture Notes in Computer Science224, 585–668,
Springer-Verlag.

[86] V. S (1996), An Axiomatization of the Algebra of Petri Net Concatenable Processes.Theoretical
Computer Science170, 277–296, Elsevier.

[87] V. S (1998), An Axiomatization of the Category of Petri Net Computations.Mathematical Struc-
tures in Computer Science8, 117–151, Cambridge University Press.

[88] E. S (1998), Principles of High-Level Net Theory, inAdvances in Petri Nets, Lectures on Petri Nets
I: Basic Models, W. Reisig and G. Rozenberg (Eds.),Lecture Notes in Computer Science1491, 174–210,
Springer-Verlag.

[89] G. Ş̌ (1987), On Flowchart Theories: Part I. The Deterministic Case.Journal of Computer and
System Sciences35, 163–191, Academic Press.

[90] G. Ş̌ (1987), On Flowchart Theories: Part II. The Nondeterministic Case.Theoretical Computer
Science52, 307–340, Elsevier.

[91] W. V (1997), Partial order semantics and read arcs, inProceedings of MFCS’97, P. Deganoet
al. (Eds.),Lecture Notes in Computer Science1295, 508–517, Springer-Verlag.

[92] J. W (1980), Behaviours of Concurrent Systems.Theoretical Computer Science12, 39- 60, Else-
vier.

[93] J. W (1982), An Algebraic Description of System Behaviours.Theoretical Computer Science21,
315- 340, Elsevier.

[94] G. W (1982), Event Structure Semantics for CCS and related languages, inProceedings of ICALP
82, M. Nielsen and E.M. Schmidt (Eds.),Lecture Notes in Computer Science140, 561–576, Springer-
Verlag.

[95] G. W (1984), A New Definition of Morphism on Petri Nets, inProceedings of STACS 84, M. Fontet
and K. Mehlhorn (Eds.),Lecture Notes in Computer Science166, 140–150, Springer-Verlag.

[96] G. W (1986), Event Structures, inAdvances in Petri Nets 86, W. Braueret al. (Eds.),Lecture Notes
in Computer Science255, 325–392, Springer-Verlag.

[97] G. W (1987), Petri Nets, Algebras, Morphisms and Compositionality.Information and Computation
72, 197- 238, Academic Press.

[98] G. W (1988), An Introduction to Event Structures, inLinear time, branching time, and partial order
in logics and models for concurrency, J.W. de Bakkeret al. (Eds.),Lecture Notes in Computer Science354,
365–397, Springer-Verlag.

[99] A. Y  A. K (1998), Petri Nets and Digital Hardware Design, inAdvances in Petri Nets,
Lectures on Petri Nets II: Applications, W. Reisig and G. Rozenberg (Eds.),Lecture Notes in Computer
Science1492, 154–236, Springer-Verlag.

