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ABSTRACT

This paper attempts to review and characterise the problem of the semantic gap in image retrieval and the
attempts being made to bridge it. In particular, we draw from our own experience in user queries, automatic
annotation and ontological techniques. The first section of the paper describes a characterisation of the semantic
gap as a hierarchy between the raw media and full semantic understanding of the media’s content. The second
section discusses real users’ queries with respect to the semantic gap. The final sections of the paper describe our
own experience in attempting to bridge the semantic gap. In particular we discuss our work on auto-annotation
and semantic-space models of image retrieval in order to bridge the gap from the bottom up, and the use of
ontologies, which capture more semantics than keyword object labels alone, as a technique for bridging the gap
from the top down.

Keywords: Semantic Gap, Image Retrieval, Automatic Annotation, Ontologies, Cross Language Latent Se-
mantic Indexing

1. INTRODUCTION

At the present time, many of the papers on image retrieval make reference to the problem of the semantic gap.
There is a growing awareness in the community of many of the limitations of current retrieval technology and
the incompatibility between queries formulated by searchers and the facilities that have been implemented so
far in image retrieval systems. Whether in papers by researchers of content based techniques who believe they
may be providing a bridge to the semantics or by professional searchers frustrated by the inability of systems to
accommodate their queries, the semantic gap appears as a recurring issue in their endeavours.

In a review of the early years of content-based retrieval, Smeulders et al1 define the semantic gap as the “lack
of coincidence between the information that one can extract from the visual data and the interpretation that the
same data have for a user in a given situation”. At the end of the survey the authors conclude that: “A critical
point in the advancement of content-based retrieval is the semantic gap, where the meaning of an image is rarely
self-evident. ...The aim of content-based retrieval systems must be to provide maximum support in bridging the
semantic gap between the simplicity of available visual features and the richness of the user semantics.”

Smeulders et al also mention another gap of relevance to content based retrieval, the sensory gap, which they
define as “the gap between the object in the world and the information in a (computational) description derived
from a recording of that scene”. Although this is an important issue, we will confine ourselves in this paper to
the problem of the semantic gap.

Our aim in this paper is to try and characterise the gap rather more clearly and explore what is and is not
being done to bridge it. We begin in Section 2 by defining the gap more carefully to aid later discussion and
suggest that it can be divided usefully into a series of smaller gaps between definable representations. In Section
3 we look at queries and their categorisation in order to show how an awareness of the requirements of real
searchers can sharpen an understanding of the limiting effects of the gap. In sections 4 and 5 we present some
of our own gap bridging work and summarise that of others. In particular, in Section 4, we describe some work
on image annotation which attempts to build bridges between low level features and higher level “object” labels:
i.e. tackling the gap from the bottom upwards. In Section 5 we argue that ontologies and ideas from emerging

Further author information: E-mail: {jsh02r | phl}@ecs.soton.ac.uk, {p.g.b.enser | c.sandom}@bton.ac.uk



semantic web technology can help to represent and integrate higher-level knowledge about images, potentially
capturing more of the semantics than a set of “object” labels alone. In Section 6 we draw some brief conclusions
and outline future work.

2. CHARACTERISING THE GAP

The semantic gap manifests itself as a computational problem in image retrieval. The representations one can
compute from raw image data cannot be readily transformed to high-level representations of the semantics that
the images convey and in which users typically prefer to articulate their queries. It may be useful to look at the
series of representations between and including the two extremes. At the lowest level of representation are the
raw media, which in this particular case refers to raw images but our analysis is quite general. Content-based
retrieval algorithms typically extract feature vectors, or in MPEG 7 parlance, descriptors and these constitute
the second level. They may be simple colour histograms, texture statistics or more sophisticated feature vectors
developed for content based tasks and may represent parts of an image or the whole image. At a higher level
there are representations of “objects” which may be prototype combinations of feature vectors or some other
more explicit representation. Once identified, these objects may be given symbolic labels, ideally the names of
the objects. This is a simplification as labels may be general or specific e.g. a mountain or Mount Everest.
Even where it is possible, labelling all the objects in an image does not typically capture all the semantics. The
relationships between the objects as depicted in the image, and the variety of connotations invoked, the implied
relationship with the world at large, implied actions, and the broader context, all contribute to the rich high
level full semantic representation of the image. The hierarchy of levels between the raw media and full semantics
is illustrated in Figure 1.

Needless to say, this is a gross simplification. For example, the objects may have components, with their own
labels. But this simple notation is sufficient to enable us to characterise the gap.

The first thing to observe is that the characteristics of the gap vary from one problem to another. There are
(rather rare) situations involving simple images where it is possible to pass computationally from the raw image
through descriptors to extraction of objects, labels and any required semantics fully automatically. An example
might be a robot vision system that can identify parts on a conveyer belt and capture all relevant semantics to
use the captured images effectively. But in general the semantic gap starts at the descriptors and goes all the way
up to the semantics. In some situations it is possible to extract objects and assign labels but a gap may remain
between the labels and the semantics. That is, we may be able to identify the names of the objects in an image
but the meaning or significance of the image remains unknown. Our system may be capable of identifying that
there are people and buildings in the image but is not able to recognise that this is a demonstration involving
police and students. In some cases the required semantics in a query may be expressed directly as a set of object
labels but more often the expressed semantics in the query are at a higher level than simply object label lists.

It may be instructive to see the gap in two major sections, the gap between the descriptors and object labels
and the gap between the labelled objects and the full semantics.

Two important observations are that firstly, as we will see later, user queries are typically formulated in
terms of the semantics and secondly, much of the interesting work which is attempting to bridge the semantic
gap automatically is tackling the gap between descriptors and labels and not that between the labels and the
full semantics.

The problem of the gap presents itself particularly because, although many image analysis researchers would
like queries to be formulated in terms of the descriptors or using the query by example paradigm which can
often be reduced to the problem of descriptor matching, most genuine users of image collections formulate their
queries at the other side of the gap in terms of the semantics or at best in terms of labels. A number of studies
have tried to characterise queries in some formal way and in the next section we review this work as a significant
activity, which is taking place to understand the requirements at one side of the gap.
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Figure 1. The Semantic Gap: Hierarchy of levels between the raw media and full semantics.

3. USERS’ QUERIES SHOULD BE THE DRIVER

The hallmark of a good image retrieval system is its ability to respond to queries posed by searchers, presented
in the desired way. There has been a tendency for much image retrieval research to ignore the issue of user
queries and to concentrate on content-based techniques. In spite of this, some investigators have analysed and
characterised image queries, providing valuable insights for retrieval system design and highlighting rather starkly
the problem of the semantic gap.

One of the earliest investigations of user queries was undertaken by Enser and McGregor2 who categorised
requests in terms of unique/non-unique features, cross-classified by refinement/non-refinement whereby a request
is qualified by the addition of temporal, spatial, affective, technical or other facets. Such facets generally serve
to locate a query at the high-level, full semantic end of the representation spectrum

Further studies,3, 4 analysed user requests using a tool which recognised the multi-layering of semantic
content in both still and moving documentary imagery. This multi-layering has been described in different
ways. The art historian Panofsky, working with creative images, identified ‘pre-iconographic’, ‘iconographic’
and ‘iconologic’ levels of expression,5 which Shatford’s generalisation in terms of generic, specific and abstract



Title Roomy Fridge
Date circa 1952
Description An English Electric 76A Refrigerator with an internal storage capacity of 7.6 cubic

feet, a substantial increase on the standard model.
Subject Domestic Life
Keywords black & white, format landscape, Europe, Britain, England, appliance, kitchen appli-

ance, food, drink, single, female, bending

Table 1. Metadata used for resolving the request of the query ‘A photo of a 1950s fridge’.

Figure 2. Roomy Fridge c©Getty Images

content, respectively, made amenable to general purpose documentary images.6 Shatford is more particularly
associated with the of-ness and about-ness of image content, the former corresponding with the denotational
properties, the latter with connotational properties of visual imagery. Such an approach resonates with the
perceptual and interpretive layers of meaning postulated by Jörgensen7 and with recent classification of queries
postulated by Hollink et al .8

Eakins & Graham9 offer an alternative three level classification of queries based on primitive features, derived
(sometimes known as logical) features and abstract attributes, the latter involving a significant amount of high-
level reasoning about the meaning and purpose of the objects or scenes depicted. In our experiences within the
realm of real user needs for visual imagery, both still and moving, the incidence of requests based on primitive
features is very rare indeed.

Within the particular context of archival imagery, a large proportion of queries typically seek uniquely defined
objects; e.g. ‘HMS Volunteer’; ‘Balshagary School (Glasgow)’; ‘Marie Curie’.2, 4 A study of archival moving
image requests3 generated a similar finding, with 68% of the requests including at least one uniquely defined
facet; e.g. ‘Stirling Moss winning Kentish 100 Trophy at Brands Hatch, 30 August 1968’. Depiction of an
event such as this, necessarily invokes the full semantic level because any event is a temporal interpretative
relationship between objects. Similarly, it can be argued that the attaching of a label to a place invokes full
semantics because a place has to be interpreted as a spatial relationship between objects. In all such cases,
detailed textual metadata is necessary in order to represent and recover the full semantic content.

The essential nature of textual metadata is emphasised, furthermore, by the frequent occurrence of requests
that address issues of identification, interpretation and significance of depicted features within still images.10, 11

For example, a request for ‘A photo of a 1950s fridge’ was resolved using the metadata in Table 1.12 The
corresponding image is shown in Figure 2.

Within the metadata reference is made to a specific manufacturer and model of the depicted object, whilst
enabling requests at the more generic levels of ‘refrigerator’ or ‘fridge’ and ‘kitchen appliance’ to be satisfied.
Furthermore, the process of identification often involves context, recognition of which would seem to invoke high-
level cognitive analysis supported by domain and tacit knowledge (viz ‘Domestic Life’ in the above example).



In general, contextual anchorage is an important role played by textual annotation within the image metadata.
The request for a 1950s fridge is an example of query ‘refinement’ or qualification, moreover, which needs textual
annotation for its resolution.

A yet more pressing need for supporting textual metadata occurs when the significance of some visual feature
is at issue. Studies of user need have revealed that significance is an important - because frequently encountered
- class of request. The problem here is that significance is a non-visible attribute, which can only be anchored
to an image by means of some explanatory text. Significance frequently takes the form of the first or last
occasion when some visible feature occurred in time, or the first/only/last instantiation of some physical object.
Clearly, significance has no counterpart in low-level features of an image. Image retrieval operations that address
significance, necessarily involve the resolution of verbalised queries by matching operations conducted with
textual metadata.

When the requester’s focus of interest lies with the abstract or affective content of the image, wanting images
of ‘suffering’ or ‘happiness’, for example, appropriate textual cues within the metadata will help to condition our
interpretation of the image.

An even more challenging scenario in this context occurs when image searchers specify features that must
not be present in the retrieved image; e.g. ‘George V’s coronation but not procession or any royals’. Provision
is sometimes made in controlled keywording schemes to indicate the absence of commonly visible features (e.g.,
‘no people’, ‘alone’).

The above examples combine to indicate the scale of the challenge faced in trying to overcome the constraints
innate within current automatic image indexing and retrieval techniques on their ability to recover appropriate
images in response to real expressions of need.

4. IMAGE ANNOTATION AND SEMANTIC SPACES: ATTACKING THE GAP
FROM BELOW

By developing systems to automatically annotate image content, we can attempt to identify symbolic labels to
apply to the image, or parts of the image. Auto-annotation attempts to bridge the gap between descriptors
and symbolic labels by learning which combinations of descriptors represent objects, and what the labels of the
objects should be.

The first attempt at automatic annotation was perhaps the work of Mori et al ,13 which attempted to apply
a co-occurrence model to keywords and low-level features of rectangular image regions. The current techniques
for auto-annotation generally fall into two categories; those that first segment images into regions, or ‘blobs’
and those that take a more scene-orientated approach, using global information. The segmentation approach
has recently been pursued by a number of researchers. Duygulu et al14 proposed a method by which a machine
translation model was applied to translate between keyword annotations and a discrete vocabulary of clustered
‘blobs’. The data-set proposed by Duygulu et al14 has become a popular benchmark of annotation systems in
the literature. Jeon et al15 improved on the results of Duygulu et al14 by recasting the problem as cross-lingual
information retrieval and applying the Cross-Media Relevance Model (CMRM) to the annotation task. Jeon et
al15 also showed that better (ranked) retrieval results could be obtained by using probabilistic annotation, rather
than hard annotation. Lavrenko et al16 used the Continuous-space Relevance Model (CRM) to build continuous
probability density functions to describe the process of generating blob features. The CRM model was shown to
outperform the CMRM model significantly. Metzler and Manmatha17 propose an inference network approach to
link regions and their annotations; unseen images can be annotated by propagating belief through the network
to the nodes representing keywords.

The models by Monay and Gatica-Perez,18 Feng et al19 and Jeon and Manmatha20 use rectangular regions
rather than blobs. Monay and Gatica-Perez18 investigates Latent Space models of annotation using Latent Se-
mantic Analysis and Probabilistic Latent Semantic Analysis, Feng et al19 use a multiple Bernoulli distribution to
model the relationship between the blocks and keywords, whilst Jeon and Manmatha20 use a machine translation
approach based on Maximum Entropy. Blei and Jordan21 describe an extension to Latent Dirichlet Allocation22

which assumes a mixture of latent factors is used to generate keywords and blob features. This approach is
extended to multi-modal data in the article by Barnard et al .23



Oliva and Torralba24, 25 explored a scene oriented approach to annotation in which they showed that basic
scene annotations, such as ‘buildings’ and ‘street’ could be applied using relevant low-level global filters. Hare
and Lewis26 showed how vector-space representations of image content, created from local descriptors of salient
regions within an image,27–29 could be used for auto-annotation by propagating semantics from similar images.
Yavlinsky et al30 explored the possibility of using simple global features together with robust non-parametric
density estimation using the technique of ‘kernel smoothing’. The results shown by Yavlinsky et al30 were
comparable with the inference network17 and CRM.16 Notably, Yavlinsky et al showed that the Corel data-set
proposed by Duygulu et al14 could be annotated remarkably well by just using global colour information.

Most of the auto-annotation approaches described above perform annotations in a hard manner; that is, they
explicitly apply some number of annotations to an image. A hard auto-annotator can cause problems in retrieval
because it may inadvertently annotate with a similar, but wrong label; for example, labelling an image of a horse
with “foal”. Jeon et al15 first noted that this was the case when they compared the retrieval results from a
fixed-length hard annotator with a probabilistic annotator. Duygulu et al14 attempt to get around this problem
by creating clusters of keywords with similar meaning.

Our current approach to auto-annotation31 is different; Instead of applying hard annotations, we have de-
veloped an approach in which annotation is performed implicitly in a soft manner. The premise behind our
approach is simple; a semantic-space of documents (images) and terms (keywords) is created using a linear
algebraic technique. Similar documents and/or terms within this semantic-space share similar positions within
the space. For example, given sufficient training data, this allows a search for “horse” to return images of both
horses and foals because the terms “horse” and “foal” share similar locations within the semantic space. The
following subsections describe the approach in brief, and illustrate the performance with results using the Corel
data-set proposed by Duygulu et al.

4.1. Building a semantic-space: Using linear algebra to associate images and terms

Latent Semantic Indexing is a technique originally developed for textual information retrieval. Berry et al32

described how Latent Semantic Indexing can be used for cross-language retrieval because it ignores both syntax
and explicit semantics in the documents being indexed. In particular, Berry et al cite the work of Landauer
and Littman33 who demonstrate a system based on LSI for performing text searching on a set of French and
English documents where the queries could be in either French or English (or conceivably both), and the system
would return documents in both languages which corresponded to the query. The work of Landauer and Littman
negates the need for explicit translations of all the English documents into French; instead, the system was trained
on a set of English documents and versions of the documents translated into French, and through a process called
‘folding-in, the remaining English documents were indexed without the need for explicit translations. This idea
has become known as Cross-Language Latent Semantic Indexing (CL-LSI).

Monay and Gatica-Perez18 attempted to use straight LSI (without ‘folding-in’) with simple cross-domain
vectors for auto-annotation. They first created a training matrix of cross-domain vectors and applied LSI. By
querying the left-hand subspace they were able to rank an un-annotated query document against each annotation
term in order to assess likely annotations to apply to the image. Our approach, described below, is different
because we do not explicitly annotate images, but rather just place them in a semantic-space which can be
queried by keyword.

Our idea is based on a generalisation of CL-LSI. In general any document (be it text, image, or even video)
can be described by a series of observations made about its content. We refer to each of these observations
as terms. In order to create a semantic-space for searching images, we first create a ‘training’ matrix of terms
and documents that describe observations about a set of annotated training images; these observations consist
of low-level descriptors and observations of which keywords occur in each of the images. This training term-
document matrix then has LSI applied to it. The final stage in building the semantic-space is to ‘fold-in’ the
corpus of un-annotated images, using purely the visual observations. The result of this process is two matrices;
one representing the coordinates of the terms in the semantic space, and the other representing the coordinates
of documents in the space. Similarity of terms and documents can be assessed by calculating the angle between
the respective coordinate vectors.
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Figure 3. Average Precision-Recall plots for the Corel data-set using RGB-Histogram descriptors for both the CL-LSI

and vector-space propagation algorithms.

4.2. Experiments with the Corel data-set

In order to demonstrate the approach described above, we have experimented using the training set of 4500
images and test set of 500 images described by Duygulu et al .14 The visual observations have been kept simple
in order to demonstrate the power of the approach; each observation term is a bin from a 64-bin global RGB
histogram of the image in question. Because all of the images in the data-set have ground truth annotations,
it is possible to automatically assess the performance of the retrieval. By splitting the data-sets into a training
set and testing set, it is possible to attempt retrieval for each of the annotation terms and mark test images as
relevant if they contained the query term in their annotations. Results from using this technique are presented
against results using the ‘hard’ annotations from the semantic propagation technique.26

The overall average precision-recall curves of the CL-LSI and Vector-Space Propagation approaches are shown
in Figure 3. As before, the CL-LSI approach outperforms the propagation approach. Whilst the overall averaged
precision-recall curve doesn’t achieve a very high recall and falls off fairly rapidly, as before, this isn’t indicative of
all the queries; some query terms perform much better than others. Figure 4 shows a histogram of the R-Precision
for the best query terms. Figure 5 shows precision-recall curves for some queries with good performance.

Ideally, we would like to be able to perform a direct comparison between our CL-LSI method and the results
of the statistical machine-translation model presented by Duygulu et al ,14 which has become a benchmark
against which many auto-annotation systems have been tested. Duygulu et al present their precision and recall
values as single points for each query, based on the number of times the query term was predicted throughout
the whole test set. In order to compare results it should be fair to compare the precision of the two methods at
the recall given in Duygulu2002 et al ’s results. Table 2 summarises the results over the 15 best queries found by
Duygulu et al ’s14 system (base results), corresponding to recall values greater than 0.4.

Table 2 shows that nine of of the fifteen queries had better precision for the same value of recall with the
CL-LSI algorithm. This higher precision at the same recall can be interpreted as saying that more relevant
images are retrieved with the CL-LSI algorithm for the same number of images retrieved as with the machine
learning approach. This result even holds for Duygulu at al ’s slightly improved retrained result set. This implies,
somewhat surprisingly, that even by just using the rather simple RGB Histogram to form the visual observations,



Figure 4. R-Precision of all queries with an R-Precision of 0.25 or above, in decreasing order.
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Query Word Recall Precision
Machine Translation CL-LSI,
Base Results, th=0 RGB Histogram, K=43

petals 0.50 1.00 0.13
sky 0.83 0.34 0.35

flowers 0.67 0.21 0.26
horses 0.58 0.27 0.24
foals 0.56 0.29 0.17
mare 0.78 0.23 0.19
tree 0.77 0.20 0.24

people 0.74 0.22 0.29
water 0.74 0.24 0.34
sun 0.70 0.28 0.52
bear 0.59 0.20 0.11
stone 0.48 0.18 0.22

buildings 0.48 0.17 0.25
snow 0.48 0.17 0.54

Table 2. Comparison of precision values for equal values of recall between Duygulu et al ’s machine translation model

and the CL-LSI approach.

the CL-LSI approach performs better than the machine translation approach for a number, of queries. This,
however does say something about the relative simplicity of the Corel dataset.30 Because not all of the top
performing results (c.f. Figure 4) from the CL-LSI approach are reflected in the best results from the machine
translation approach, it follows that the CL-LSI approach may actually perform better on a majority of good
queries compared to the machine translation model. Of course, whilst the CL-LSI approach may outperform the
machine translation approach in terms of raw retrieval performance, it doesn’t have the capability of applying
keywords to individual segmented image regions that the translation model does.

5. ONTOLOGIES: ATTACKING THE GAP FROM ABOVE

Although automatic image annotation techniques can take us some way across the semantic gap and may enable
us to reach the label representation of Section 2, above, as we have shown in Section 3, even a very full set of image
labels falls far short of the richness required to represent the full semantics required to describe most images.
How might such semantics be represented? The artificial intelligence community has developed many knowledge
representation schemes over the years, but recently, the use of ontologies is seen as an increasingly popular way
of representing high-level knowledge about application domains. Part of the reason for this increasing interest
is the role which ontologies are playing in the emerging semantic web technologies aimed at making web based
information understandable by software systems as well as by humans. An ontology is a shared conceptualisation
of a domain and typically consists of a comprehensive set of concept classes, relationships between them, and
instance information showing how the classes are populated in the application domain.

Once knowledge from documents is represented richly in this way several new capabilities are facilitated.
First and foremost at least some of the semantics is made explicit and allows queries to be formulated in terms
of concepts and their relationship. It is possible to reason over the knowledge domain via the ontology using
reasoning software. The ontology can provide a platform for interoperability between systems and a versatile
vehicle for browsing and navigating around the document collection.

Although most published work on the use of ontologies has been concerned with textual information, there
is increasing interest and research into the use of ontologies with multimedia collections. Some early work on
semantic description of images using ontologies as a tool for annotating and searching images more intelligently
was described by Schreiber et al .34 More recently his team have extended the approach35 and also shown
how spatial information could be included in the annotations semi-automatically.36 Jaimes, Tseng and Smith
described a semi-automatic approach to the construction of ontologies for semantic description of videos, using



associated text in the construction37 and several authors have described efforts to move the MPEG-7 description
of multimedia information closer to ontology languages such as RDF and OWL.38, 39 Currently, the aceMedia
Project40 is developing a knowledge infrastructure for multimedia analysis, which incorporates a visual description
ontology and a multimedia structure ontology.

It is useful to consider ontologies for semantic description of multimedia in two parts, one describing the
multimedia content i.e. capturing knowledge about objects and their relationships in the image for example and
the other part capturing wider contextual knowledge about the multimedia object, how it was formed, by whom
it was created etc.

In the MIAKT project41, 42 we integrated image annotation tools for region delineation, feature extraction
and image analysis with an ontology to capture the semantics associated with the various imaging modalities
associated with the breast screening process. The aim of the project was to demonstrate enhanced support at
the semantic level for decision making which needs to draw on low level features and their descriptions as well as
the related case notes. It also provides a platform for reasoning about new cases on the basis of the semantically
integrated set of (multimedia) case histories. By contrast, in the Sculpteur project43 we mapped museum
multimedia object metadata (as opposed to image content) to an ontology based on the CIDOC Conceptual
Reference Model in order to provide semantic level navigation and retrieval which could be combined with
content based techniques which were also developed in the project.

6. CONCLUSIONS AND FUTURE WORK

In Section 3 we saw how the majority of queries by searchers are presented at the semantic level and in Section
4 we explored image annotation which attempts to bridge part of the gap from below; from the descriptors to
the object labels. The use of ontologies as a way of capturing the semantics of multimedia data was explored
briefly in Section 5 and if annotations (labels) can be linked automatically into ontology based representations
of the semantics, a tentative bridge across the semantic gap begins to emerge. However, current descriptors are
inadequate and current annotations and ontologies are far from rich. But on the positive side, multimedia retrieval
research is tackling the semantic issue. Eventually approaches to annotation will be coupled with software to
discover spatial and other relations between objects in images and more of the semantics will be integrated into
the ontological representation automatically to provide a richer platform for the support of semantic level query
mechanisms.

In the ‘Bridging the Semantic Gap’ project, funded in the UK by the Arts and Humanities Research Council,
we are exploring how well test-bed ontologies, combined with content-based techniques and annotation can meet
the real needs of image searchers in limited domains.
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