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Abst rac t .  A DNA-based biomolecular string processing scheme demon- 
strated by Adleman has attracted wide attention. While it is not known 
to what degree the scheme can scale up, it nevertheless introduces a new 
and interesting concept which seems so far to have been overlooked. The 
key point is that the Adleman scheme involves building specific hardware 
for a single problem instance. This opens a design degree of freedom that 
is not limited to biomolecular architectures. 

1 Introduction 

DNA computing, first developed by L. Adleman [1], raises novel questions about 
the relationship between the structure and function of computational systems. 
The scheme has primarily been discussed from the point of view of its pro- 
grammability [13]. The implication is that  it shares the main property of a con- 
ventional digital computer,  namely the property of being generM purpose and 
in the limit being computation universal. 

The universality property has in fact been demonstrated for the scheme as 
a whole [11]. However, caution is necessary, since this is a class property, not 
a property of the actual systems that  can be constructed. This sharp deviation 
from the usuM concept of universality is due to the fact that  the structure of any 
given realization is specific for a particular problem instance. Nevertheless such 
extreme special purposiveness can in principle afford computational advantages 
for certain problem domains. We will illustrate the reasons for this by developing 
a close analysis of the manner in which the Adleman system works. Though the 
scheme does not have practical value at the present time [10], it serves as a good 
springboard for identifying features that  should apply to other possible machines 
and to biological organisms. 

2 U n i v e r s a l i t y  v e r s u s  Specificity 

In the absence of space and time bounds general purpose machines would be 
universal [7]. The universal Turing machine is the simplest and best known 
example. Such a machine (or formalism) can emulate any other machine. Actual 
machines are, of course, never universal in this arbitrary sense, since they are 
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always subject to memory and time limitations. We call such finite machines 
quasi-universal and adopt the convention that  the state includes the memory. 
The program can then be regarded as encoded in the state. 

Universality is not always an advantage. In general higher performance can 
be achieved with specialized hardware. A typical example is an analog com- 
puter used to solve a differential equation. The equation is fixed in the physical 
structure, but the parameter values and initial conditions can be varied. The 
hardware in this case is clearly problem specific, since the physical structure has 
to be changed to deal with different differential equations. 

The difference between quasi-universal and problem specific machines is that  
the problem is represented in the state in the former case and in the physical 
structure in the latter. The physical structure might be viewed as a material 
state, but the two cases differ widely in the amount of energy required to change 
the state. Thus when a digital computer is reprogrammed we ordinarily view it as 
the same machine, whereas an analog computer (or a specially cut digital circuit) 
would more naturally be viewed as a different machine. As noted above, both 
machine types can process different instances of a problem, and in both cases 
this is achieved by starting from different initial states. For present purposes 
we will therefore distinguish the structure of a system from the state of this 
structure, using the latter to refer to changes in a given machine structure. 

The opposite extreme of universality would be a machine that  encodes a sin- 
gle problem instance in its structure. We will call such a machine an instance 
machine. The distinguishing feature of an instance machine is that  it is not pos- 
sible to process different instances of a problem by starting from different initial 
states. More generally, any computing device with the following two properties 
qualifies as an instance machine: 

1. The physical structure of the machine is specific for a single problem instance 
(but we exclude the trivial case of a system that  can only be used to answer 
questions about its own behavior). 

2. The time evolution of the machine leads to a state or structure that  can be 
interpreted as a solution to the problem (i.e., representation of the problem 
in the system structure should lead to the development of a solution). 

3 K e y  f e a t u r e s  o f  D N A  c o m p u t i n g  

The Adleman scheme may be the first which employs actual instance machines. 
In fact all realizations of it are instance machines. 

Each realization is a probabilistic parallel machine with a high degree of fine- 
grained parallelism. The new feature is that  the self-assembly properties of DNA 
are used to achieve this high degree of parallelism. Problems are represented with 
DNA sequences. The solution of the problem proceeds through the free energy 
minimization associated with the self-assembly (or annealing) of these DNA 
molecules. That  the physical structure of the machine is specific for a single 
problem is due to the fact that  special DNA sequences are necessary for each 
problem instance. 
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The actual computation proceeds in three phases (Fig. 1). First, in a synthesis 
phase, a structural representation of the input (i.e., the problem instance) is 
created. In the second phase the structures formed during the synthesis stage 
undergo a state to state development driven by free energy minimization. In the 
third stage the result of the computation is extracted from an analysis of the 
final structure. 

Let us concretize this picture by tracing an example through the three stages. 
Given a directed graph and a choice of a start and an end vertex in the graph, 

Input 

Synthesis _I 
-I 

Free energy driven 
computation 

_1 
r I 

Analysis 

Output 

Fig. 1. The three phases of the DNA based computation. 

the question can be asked: does there exist a path from the start vertex to the 
end vertex that visits every vertex in the graph exactly once? Such a path, called 
a (directed) Hamiltonian path, is frequently of interest in optimization problems. 
For the graph in Fig. 2 and the choice of A and D as the start and end vertices 
a Hamiltonian path exists and is indicated in the figure by solid arrow heads. 

Fig. 2. Hamiltonian path problem. 

The first phase of the computation is the encoding of the graph in DNA base 
sequences. To this end a short oligonucleotide of fixed size with an arbitrary, 
but unique base sequence is formally assigned to each vertex in the graph. The 
oligonucleotides are illustrated in Fig. 3 as dashed boxes. The first half of the 
sequence is indicated by the lower case letter of the vertex and the second half 
by the primed lower case letter. 
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Fig. 3. Encoding of the vertices through base sequences. 

From this formal assignment a molecular representation of the graph is de- 
rived as follows. For each edge in the graph a nucleotide sequence is synthesized 
with the property that its first half is identical with the second half of the se- 
quence formally assigned to the vertex from which it originates. The second half 
of the sequence that represents the edge is identical to the first half of the se- 
quence assigned to the vertex that the edge enters. (See edge 2 in Figs. 3 and 4 
and note that the start A and the end D are exceptions.) 

Then for each intermediate vertex, such as B and C in the example graph, 
the oligonucleotide corresponding to the complement of the sequence formally 
assigned to the vertex is synthesized. The set of molecules which represents the 
graph displayed in Fig. 2 is shown in Fig. 4, with complements indicated by 
bars over the lower case letters. The structure of the eight molecules completely 
specifies the graph. 

1:1 a I a' ] b ] 4 : ]  b' I d I 

2:1 b' I c I 5:] c' ] b ] 

3:l c ' l  d I d' I 6:l  d' [ a I 

B: C: 

d'l 

Fig. 4. Molecular representation of the directed graph shown in Fig. 2 and 3. 

At this point phase 2 of the computation begins. The molecules that repre- 
sent the graph interact with each other to form self-assembled supermolecular 
complexes through the association of complementary base sequences. Each of the 
complexes is a structural representation of a path in the graph. Three examples 
from the set of possible complexes are shown in Fig. 5. If a Hamiltonian path 
exists in the graph encoded in the reactant molecules then with high probability 
a self-assembled complex will be formed that represents this path. 

Phase 3 involves extracting the solution. The self-assembled (or hybridized) 
complexes are held together by hydrogen bonds. Sequences that are lined up 
next to each other in these complexes are first enzymatically linked to form 
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Fig. 5. Examples of complexes produced in the self-assembly phase. 

continuous strands. The strands are then analyzed to extract the molecules that 
encode the Hamiltonian path, if such molecules exist. (More than one molecule 
may be possible, first because the problem may have more than one solution and 
second because a given solution is typically encoded by more than one strand.) 

Molecules corresponding to a Hamiltonian path must satisfy three conditions. 
The first is that the molecule must start with the sequence encoding the start 
vertex and end with the sequence encoding the end vertex. If in a polymerase 
chain reaction (PCR) the primers are chosen according to the sequences that en- 
code for the start and the end vertex, only DNA segments that encode for a path 
with the correct start and end vertices will undergo exponential amplification 
(Fig. 6). Such specific amplification is the key feature of the PCR technique. 

I a [ a' I b I b ' l  c I = ' l  d l  d ' l  

I a l  a ' l  b I b ' l  c I r d l  d ' l  
i t i " l  

I: %a', >_  

Fig. 6. Selective amplification by polymerase chain reaction (PCR). 

The second necessary condition is that the molecules corresponding to prob- 
lem solutions have exactly the length of the sequences assigned to the vertices 
multiplied by the number of vertices in the graph. Gel electrophoresis provides a 
method of ensuring this by separating DNA strands migrating through a polymer 
gel according to their length (Fig. 7). 

The molecules that are known to encode the correct start and end vertices 
and to have the correct length are checked for whether they encode all inter- 
mediate vertices. Hybridization probes of the sequences complementary to the 
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Fig.  7. Separation through gel electrophoresis. 

ones formally assigned to the vertices are used to ensure this third necessary 
condition. Each vertex is checked separately. The probe is attached to a solid 
support and DNA molecules that encode the vertex in question will bind to this 
probe; other DNA molecules can be washed out. The process is illustrated in 
Fig. 8 for vertex C. 

r. a ] a' ] b ] b' ] c ] c' ] d ] d ' - ]  

Fig.  8. Identification with hybridization probes. 

Finally, the molecules that  remain can be sequenced to yield the Hamiltonian 
path. 

4 G e n e r a l  I n s t a n c e  M a c h i n e  C h a r a c t e r i s t i c s  

At first sight it might seem that  instance machines, such as used in the Adleman 
scheme, would always be less desirable than quasi-universal machines or than 
machines that  are designed for a specific class of problems. This is not necessarily 
the case. Under some circumstances instance machines may be able to solve 
larger problems or be able to deal with an important  case in a shorter amount  
of time. 

The DNA example considered in the previous section provides a useful paradigm. 
We can use this example to elicit the main characteristics of instance machines, 
and to consider how these bear on issues of size and speed. 

Table 1 summarizes the main characteristics and compares them to those 
of conventional (digital) computers. Recall that  self-assembly (or annealing) is 
the key to DNA computing. This means that  the state transitions are primarily 
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Table 1. Contrasts between universal and instance machine computing 

Conventional Computer Instance Machine 

State transition Constraint controlled Free energy dominated 
Dissipation Must be high enough to af-Contributes to integrity of 

ford speed and reliability, low machine structure, allows for 
enough to sustain integrity ot higher speed and reliability 
machine structure 

Initial conditions Initial state is part of problem 
representation, course of com- 
putation narrowly prescribed 

Programming requires precise 
control of system state, po- 
tential barriers limit number 
of states 

Potential size of 
state set 

Minimum size of 
state set 

Machine life cycle 

State set must be large 
enough to accommodate all 
classes of tasks, typically only 
a fraction of states used for a 
given problem instance 
Unlimited reuseability de- 
sired, reset mechanism must 
be built in 

Initial structure (or family 
of states) specifies problem, 
course of computation not 
sensitive to initial state 
Programming through con- 
trol of system structure al- 
lows for closely similar states, 
expanded state set possible 
Only states relevant to prob- 
lem instance need to be 
supported 

Only limited reuseability nec- 
essary, in deterministic case 
one run sufficient 

driven by either energy minimization or entropy maximization. In a digital com- 
puter, by contrast, energy is irrelevant to the course of the computation. The 
designer takes great care to ensure that the different states of the machine are as 
similar as possible from the energy point of view and that any differences that 
do occur are precluded from affecting the state transitions. This feature is key 
to conventional programmability. The programmer therefore has the freedom to 
prescribe the course of the computation by setting constraints that restrict the 
dynamic degrees of freedom without considering energy/entropy aspects [12]. 
Constraints play a role in all computational systems, including DNA instance 
machines, but in the latter the energy differences between different states are 
the main controlling factor. Consequently the dynamics are self-organizing. 

Of course digital computers must be plugged into a source of energy and 
must export heat to the environment. The energy serves to push the system 
over the potential barriers that separate the different possible states. For this 
reason dissipation is closely connected to both speed and reliability. It is possible 
on paper to construct universal computing models that are practically reversible 
[2], but these systems are nearly as likely to run backwards as forwards. Also, 
to ensure that the system undergoes correct state transitions it is important 
for states to be separated by significant potential barriers. The constraints that 



703 

encode the program followed by a digital machine limit the amount of dissipation 
that is possible, however. Clearly the rate of heat export must be high enough so 
that these constraints do not melt. This limitation is much less severe for systems 
with self-organizing dynamics, since the course of the computation as a whole, 
including structural changes, is driven by dissipation. The speed and reliability 
attainable is therefore potentially greater than for conventional machines. 

The high parallelism of DNA computing actually has its origin in this speed 
and reliability property, since it depends on the high speed and reliability of DNA 
hybridization. The scheme also illustrates the distinction between programming 
by structure preparation as opposed to state preparation. The outcome of a con- 
ventional computation is highly sensitive to the initial state, since this encodes 
the program. The DNA computer, by contrast, encodes the problem it solves 
in its initial structure, and therefore in a large family of states. The course of 
the computation is accordingly highly stable to perturbations, since it follows a 
basin of attraction. Unlike a conventional constraint controlled machine, it is not 
necessary to support the existence of possible states that are never relevant to 
the problem at hand. Furthermore, the number of possible states that a conven- 
tional machine can assume is limited by the requirement for significant potential 
barriers. 

Since an instance machine by definition deals with only one instance of a 
problem it is in principle unnecessary to reset it to its initial structure and run 
it again. Some rerunning would be useful for randomized computations and for 
testing the machine. The potential advantage is that it is unnecessary to restrict 
the design to materials with high reversibility (i.e., reuseability) and unnecessary 
to support reset mechanisms. The latter could be costly with free energy driven 
devices. In the case of the Adleman system the effort and energy required to use 
the same DNA bases for a different computation would be much greater than 
that required to start with a new batch of material. The machine is not only an 
instance machine, but a throw away instance machine. 

5 Is  t h e r e  a N i c h e  f o r  A n t i - U n i v e r s a l i t y ?  

For an instance machine to be worthwhile the problem instance would have to 
be very important. The number of instances could be combinatorially explosive, 
but in practice it is often a particular instance that is of interest. Economic 
decision makers, for example, often are presented with particular instances of 
large graph problems. Another example would be the need to rapidly recognize a 
particular pattern in a complex background. In some domains it may be sufficient 
to have solutions for a small number of arbitrary instances. This is the case 
when it is required to judge the quality of a particular heuristic, approximate, 
or suboptimal solution procedure. The availability of a small number of optimal 
solutions provides a useful benchmark. Developing test sets against which to 
assess genetic algorithms would be an example [14]. 

DNA computing is far from being competitive with conventional machines in 
any of these domains, and may never become so. The Hamiltonian path problem 
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originally used to illustrate its operation is NP complete. Thus it is almost cer- 
tainly the case (though not yet proved) that the number of resources required to 
solve the problem increases exponentially with problem size. The Adleman sys- 
tem cannot overcome this combinatorial explosion, just as conventional systems 
cannot. The advantage that it could conceivably have would be its enormous 
parallelism that converts the exponential time burden that conventional ma- 
chines face into an exponential materials burden in terms of the amount of DNA 
required. Currently, however, it is not possible to exploit this tradeoff due to 
numerous practical limitations connected with the biochemical techniques avail- 
able. 

But the instance machine approach illustrated by DNA computing carries 
over to other technologies, where aspects of it may find more immediate applica- 
tion. This would be the case for conventional electronic and optical computers, 
where limits are set by the effect of state changes on machine structure. For 
example, the lifetime of a transistor is limited by electromigration (i.e., the ef- 
fect of switching operations on the distribution of atoms). This puts a limit not 
only on transistor size, but on the materials and geometries that can be used. 
These limitations would be irrelevant to an instance machine since the number 
of switching operations could be extremely small. Similarly, many materials with 
highly desirable optical computing properties have been discovered but cannot 
be used for conventional purposes because of low reversibility. The course of the 
computation in these designs would not be driven by free energy minimization, 
but admitting changes in the machine structure opens up a new design degree 
of freedom. 

Device proposals that utilize protein self-assembly for pattern recognition go 
a step further [5, 6]. Input signals are coded as molecular shapes, which then self- 
assemble to form higher level structures whose shape features represent different 
classes of input patterns. Enzymes specific for these shape features control the 
output of the device. The pattern recognition problem is thus converted to a free 
energy minimization process. Unlike Adleman DNA computing, which is also 
based on self-assembly, the protein self-assembly device is not programmable in 
a conventional sense, since a fixed set of formal (physics independent) rules is not 
available for ascertaining the effect of protein modifications. This is actually an 
advantage from the standpoint of potential computing power, since the number 
of interactions that can contribute to the computation is much less restricted. 
Such systems must be bred to perform desired functions through an evolutionary 
procedure [4, 3]. 

Biological evolutionary systems also make use of structure creating and de- 
stroying processes to maintain the potentiality of solving new problems without 
having to pay the price of maintaining the capacity to solve all problems. This 
is possible because their problem solving capabilities are represented in their 
structure as determined by strong chemical bonds [15, 8], as it is in DNA com- 
puting or in the protein self-assembly design. The structure-based computing 
principle illustrated by the instance machine concept is arguably better suited 
to the analysis of natural biological systems than is the state-based computing 
concept utilized in conventional comDutin~ models. 
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