
Parallel Computing with DNA: Toward the
Anti-Universal Machine

Klaus-Peter Zauner and Michael Conrad

Wayne State University, Dept. of Computer Science,
Detroit MI 48202, USA, e-maih biocomputing~cs.wayne.edu,

www: http://www.cs.wayne.edu/biolab/

Abst rac t . A DNA-based biomolecular string processing scheme demon-
strated by Adleman has attracted wide attention. While it is not known
to what degree the scheme can scale up, it nevertheless introduces a new
and interesting concept which seems so far to have been overlooked. The
key point is that the Adleman scheme involves building specific hardware
for a single problem instance. This opens a design degree of freedom that
is not limited to biomolecular architectures.

1 Introduction

DNA computing, first developed by L. Adleman [1], raises novel questions about
the relationship between the structure and function of computational systems.
The scheme has primarily been discussed from the point of view of its pro-
grammability [13]. The implication is that it shares the main property of a con-
ventional digital computer, namely the property of being generM purpose and
in the limit being computation universal.

The universality property has in fact been demonstrated for the scheme as
a whole [11]. However, caution is necessary, since this is a class property, not
a property of the actual systems that can be constructed. This sharp deviation
from the usuM concept of universality is due to the fact that the structure of any
given realization is specific for a particular problem instance. Nevertheless such
extreme special purposiveness can in principle afford computational advantages
for certain problem domains. We will illustrate the reasons for this by developing
a close analysis of the manner in which the Adleman system works. Though the
scheme does not have practical value at the present time [10], it serves as a good
springboard for identifying features that should apply to other possible machines
and to biological organisms.

2 U n i v e r s a l i t y v e r s u s Specificity

In the absence of space and time bounds general purpose machines would be
universal [7]. The universal Turing machine is the simplest and best known
example. Such a machine (or formalism) can emulate any other machine. Actual
machines are, of course, never universal in this arbitrary sense, since they are

Jeffrey Pfaffmann
Text Box
In Parallel Problem Solving from Nature: PPSN IV, Berlin. H.-M. Voigt and W. Ebeling and I. Rechenberg and H.-P. Schwefel (Eds.), LCNS Vol. 1141, pp. 696--705, Springer-Verlag, Berlin 1996.

697

always subject to memory and time limitations. We call such finite machines
quasi-universal and adopt the convention that the state includes the memory.
The program can then be regarded as encoded in the state.

Universality is not always an advantage. In general higher performance can
be achieved with specialized hardware. A typical example is an analog com-
puter used to solve a differential equation. The equation is fixed in the physical
structure, but the parameter values and initial conditions can be varied. The
hardware in this case is clearly problem specific, since the physical structure has
to be changed to deal with different differential equations.

The difference between quasi-universal and problem specific machines is that
the problem is represented in the state in the former case and in the physical
structure in the latter. The physical structure might be viewed as a material
state, but the two cases differ widely in the amount of energy required to change
the state. Thus when a digital computer is reprogrammed we ordinarily view it as
the same machine, whereas an analog computer (or a specially cut digital circuit)
would more naturally be viewed as a different machine. As noted above, both
machine types can process different instances of a problem, and in both cases
this is achieved by starting from different initial states. For present purposes
we will therefore distinguish the structure of a system from the state of this
structure, using the latter to refer to changes in a given machine structure.

The opposite extreme of universality would be a machine that encodes a sin-
gle problem instance in its structure. We will call such a machine an instance
machine. The distinguishing feature of an instance machine is that it is not pos-
sible to process different instances of a problem by starting from different initial
states. More generally, any computing device with the following two properties
qualifies as an instance machine:

1. The physical structure of the machine is specific for a single problem instance
(but we exclude the trivial case of a system that can only be used to answer
questions about its own behavior).

2. The time evolution of the machine leads to a state or structure that can be
interpreted as a solution to the problem (i.e., representation of the problem
in the system structure should lead to the development of a solution).

3 K e y f e a t u r e s o f D N A c o m p u t i n g

The Adleman scheme may be the first which employs actual instance machines.
In fact all realizations of it are instance machines.

Each realization is a probabilistic parallel machine with a high degree of fine-
grained parallelism. The new feature is that the self-assembly properties of DNA
are used to achieve this high degree of parallelism. Problems are represented with
DNA sequences. The solution of the problem proceeds through the free energy
minimization associated with the self-assembly (or annealing) of these DNA
molecules. That the physical structure of the machine is specific for a single
problem is due to the fact that special DNA sequences are necessary for each
problem instance.

698

The actual computation proceeds in three phases (Fig. 1). First, in a synthesis
phase, a structural representation of the input (i.e., the problem instance) is
created. In the second phase the structures formed during the synthesis stage
undergo a state to state development driven by free energy minimization. In the
third stage the result of the computation is extracted from an analysis of the
final structure.

Let us concretize this picture by tracing an example through the three stages.
Given a directed graph and a choice of a start and an end vertex in the graph,

Input

Synthesis _I
-I

Free energy driven
computation

_1
r I

Analysis

Output

Fig. 1. The three phases of the DNA based computation.

the question can be asked: does there exist a path from the start vertex to the
end vertex that visits every vertex in the graph exactly once? Such a path, called
a (directed) Hamiltonian path, is frequently of interest in optimization problems.
For the graph in Fig. 2 and the choice of A and D as the start and end vertices
a Hamiltonian path exists and is indicated in the figure by solid arrow heads.

Fig. 2. Hamiltonian path problem.

The first phase of the computation is the encoding of the graph in DNA base
sequences. To this end a short oligonucleotide of fixed size with an arbitrary,
but unique base sequence is formally assigned to each vertex in the graph. The
oligonucleotides are illustrated in Fig. 3 as dashed boxes. The first half of the
sequence is indicated by the lower case letter of the vertex and the second half
by the primed lower case letter.

699

(~
- - 6 2 4

Fig. 3. Encoding of the vertices through base sequences.

From this formal assignment a molecular representation of the graph is de-
rived as follows. For each edge in the graph a nucleotide sequence is synthesized
with the property that its first half is identical with the second half of the se-
quence formally assigned to the vertex from which it originates. The second half
of the sequence that represents the edge is identical to the first half of the se-
quence assigned to the vertex that the edge enters. (See edge 2 in Figs. 3 and 4
and note that the start A and the end D are exceptions.)

Then for each intermediate vertex, such as B and C in the example graph,
the oligonucleotide corresponding to the complement of the sequence formally
assigned to the vertex is synthesized. The set of molecules which represents the
graph displayed in Fig. 2 is shown in Fig. 4, with complements indicated by
bars over the lower case letters. The structure of the eight molecules completely
specifies the graph.

1:1 a I a'] b] 4 :] b' I d I

2:1 b' I c I 5:] c'] b]

3:l c ' l d I d' I 6:l d' [a I

B: C:

d'l

Fig. 4. Molecular representation of the directed graph shown in Fig. 2 and 3.

At this point phase 2 of the computation begins. The molecules that repre-
sent the graph interact with each other to form self-assembled supermolecular
complexes through the association of complementary base sequences. Each of the
complexes is a structural representation of a path in the graph. Three examples
from the set of possible complexes are shown in Fig. 5. If a Hamiltonian path
exists in the graph encoded in the reactant molecules then with high probability
a self-assembled complex will be formed that represents this path.

Phase 3 involves extracting the solution. The self-assembled (or hybridized)
complexes are held together by hydrogen bonds. Sequences that are lined up
next to each other in these complexes are first enzymatically linked to form

700

I a l a ' l bU b' l d l ~'1

I a I a ' l b II b ' l ~11 r b I
r - - - - t i

I a l a ' l b l l b ' l c II c ' l d I d ' l

Fig. 5. Examples of complexes produced in the self-assembly phase.

continuous strands. The strands are then analyzed to extract the molecules that
encode the Hamiltonian path, if such molecules exist. (More than one molecule
may be possible, first because the problem may have more than one solution and
second because a given solution is typically encoded by more than one strand.)

Molecules corresponding to a Hamiltonian path must satisfy three conditions.
The first is that the molecule must start with the sequence encoding the start
vertex and end with the sequence encoding the end vertex. If in a polymerase
chain reaction (PCR) the primers are chosen according to the sequences that en-
code for the start and the end vertex, only DNA segments that encode for a path
with the correct start and end vertices will undergo exponential amplification
(Fig. 6). Such specific amplification is the key feature of the PCR technique.

I a [a' I b I b ' l c I = ' l d l d ' l

I a l a ' l b I b ' l c I r d l d ' l
i t i " l

I: %a', >_

Fig. 6. Selective amplification by polymerase chain reaction (PCR).

The second necessary condition is that the molecules corresponding to prob-
lem solutions have exactly the length of the sequences assigned to the vertices
multiplied by the number of vertices in the graph. Gel electrophoresis provides a
method of ensuring this by separating DNA strands migrating through a polymer
gel according to their length (Fig. 7).

The molecules that are known to encode the correct start and end vertices
and to have the correct length are checked for whether they encode all inter-
mediate vertices. Hybridization probes of the sequences complementary to the

701

a I a' [b I b'] c I c' I b I c' d l d' l

" ' I . �9

I a I a' I b I b' l c I c' l d [d'

l

[a I a' I b I b' I d I d' I
|

Fig. 7. Separation through gel electrophoresis.

ones formally assigned to the vertices are used to ensure this third necessary
condition. Each vertex is checked separately. The probe is attached to a solid
support and DNA molecules that encode the vertex in question will bind to this
probe; other DNA molecules can be washed out. The process is illustrated in
Fig. 8 for vertex C.

r. a] a'] b] b'] c] c'] d] d ' -]

Fig. 8. Identification with hybridization probes.

Finally, the molecules that remain can be sequenced to yield the Hamiltonian
path.

4 G e n e r a l I n s t a n c e M a c h i n e C h a r a c t e r i s t i c s

At first sight it might seem that instance machines, such as used in the Adleman
scheme, would always be less desirable than quasi-universal machines or than
machines that are designed for a specific class of problems. This is not necessarily
the case. Under some circumstances instance machines may be able to solve
larger problems or be able to deal with an important case in a shorter amount
of time.

The DNA example considered in the previous section provides a useful paradigm.
We can use this example to elicit the main characteristics of instance machines,
and to consider how these bear on issues of size and speed.

Table 1 summarizes the main characteristics and compares them to those
of conventional (digital) computers. Recall that self-assembly (or annealing) is
the key to DNA computing. This means that the state transitions are primarily

702

Table 1. Contrasts between universal and instance machine computing

Conventional Computer Instance Machine

State transition Constraint controlled Free energy dominated
Dissipation Must be high enough to af-Contributes to integrity of

ford speed and reliability, low machine structure, allows for
enough to sustain integrity ot higher speed and reliability
machine structure

Initial conditions Initial state is part of problem
representation, course of com-
putation narrowly prescribed

Programming requires precise
control of system state, po-
tential barriers limit number
of states

Potential size of
state set

Minimum size of
state set

Machine life cycle

State set must be large
enough to accommodate all
classes of tasks, typically only
a fraction of states used for a
given problem instance
Unlimited reuseability de-
sired, reset mechanism must
be built in

Initial structure (or family
of states) specifies problem,
course of computation not
sensitive to initial state
Programming through con-
trol of system structure al-
lows for closely similar states,
expanded state set possible
Only states relevant to prob-
lem instance need to be
supported

Only limited reuseability nec-
essary, in deterministic case
one run sufficient

driven by either energy minimization or entropy maximization. In a digital com-
puter, by contrast, energy is irrelevant to the course of the computation. The
designer takes great care to ensure that the different states of the machine are as
similar as possible from the energy point of view and that any differences that
do occur are precluded from affecting the state transitions. This feature is key
to conventional programmability. The programmer therefore has the freedom to
prescribe the course of the computation by setting constraints that restrict the
dynamic degrees of freedom without considering energy/entropy aspects [12].
Constraints play a role in all computational systems, including DNA instance
machines, but in the latter the energy differences between different states are
the main controlling factor. Consequently the dynamics are self-organizing.

Of course digital computers must be plugged into a source of energy and
must export heat to the environment. The energy serves to push the system
over the potential barriers that separate the different possible states. For this
reason dissipation is closely connected to both speed and reliability. It is possible
on paper to construct universal computing models that are practically reversible
[2], but these systems are nearly as likely to run backwards as forwards. Also,
to ensure that the system undergoes correct state transitions it is important
for states to be separated by significant potential barriers. The constraints that

703

encode the program followed by a digital machine limit the amount of dissipation
that is possible, however. Clearly the rate of heat export must be high enough so
that these constraints do not melt. This limitation is much less severe for systems
with self-organizing dynamics, since the course of the computation as a whole,
including structural changes, is driven by dissipation. The speed and reliability
attainable is therefore potentially greater than for conventional machines.

The high parallelism of DNA computing actually has its origin in this speed
and reliability property, since it depends on the high speed and reliability of DNA
hybridization. The scheme also illustrates the distinction between programming
by structure preparation as opposed to state preparation. The outcome of a con-
ventional computation is highly sensitive to the initial state, since this encodes
the program. The DNA computer, by contrast, encodes the problem it solves
in its initial structure, and therefore in a large family of states. The course of
the computation is accordingly highly stable to perturbations, since it follows a
basin of attraction. Unlike a conventional constraint controlled machine, it is not
necessary to support the existence of possible states that are never relevant to
the problem at hand. Furthermore, the number of possible states that a conven-
tional machine can assume is limited by the requirement for significant potential
barriers.

Since an instance machine by definition deals with only one instance of a
problem it is in principle unnecessary to reset it to its initial structure and run
it again. Some rerunning would be useful for randomized computations and for
testing the machine. The potential advantage is that it is unnecessary to restrict
the design to materials with high reversibility (i.e., reuseability) and unnecessary
to support reset mechanisms. The latter could be costly with free energy driven
devices. In the case of the Adleman system the effort and energy required to use
the same DNA bases for a different computation would be much greater than
that required to start with a new batch of material. The machine is not only an
instance machine, but a throw away instance machine.

5 Is t h e r e a N i c h e f o r A n t i - U n i v e r s a l i t y ?

For an instance machine to be worthwhile the problem instance would have to
be very important. The number of instances could be combinatorially explosive,
but in practice it is often a particular instance that is of interest. Economic
decision makers, for example, often are presented with particular instances of
large graph problems. Another example would be the need to rapidly recognize a
particular pattern in a complex background. In some domains it may be sufficient
to have solutions for a small number of arbitrary instances. This is the case
when it is required to judge the quality of a particular heuristic, approximate,
or suboptimal solution procedure. The availability of a small number of optimal
solutions provides a useful benchmark. Developing test sets against which to
assess genetic algorithms would be an example [14].

DNA computing is far from being competitive with conventional machines in
any of these domains, and may never become so. The Hamiltonian path problem

704

originally used to illustrate its operation is NP complete. Thus it is almost cer-
tainly the case (though not yet proved) that the number of resources required to
solve the problem increases exponentially with problem size. The Adleman sys-
tem cannot overcome this combinatorial explosion, just as conventional systems
cannot. The advantage that it could conceivably have would be its enormous
parallelism that converts the exponential time burden that conventional ma-
chines face into an exponential materials burden in terms of the amount of DNA
required. Currently, however, it is not possible to exploit this tradeoff due to
numerous practical limitations connected with the biochemical techniques avail-
able.

But the instance machine approach illustrated by DNA computing carries
over to other technologies, where aspects of it may find more immediate applica-
tion. This would be the case for conventional electronic and optical computers,
where limits are set by the effect of state changes on machine structure. For
example, the lifetime of a transistor is limited by electromigration (i.e., the ef-
fect of switching operations on the distribution of atoms). This puts a limit not
only on transistor size, but on the materials and geometries that can be used.
These limitations would be irrelevant to an instance machine since the number
of switching operations could be extremely small. Similarly, many materials with
highly desirable optical computing properties have been discovered but cannot
be used for conventional purposes because of low reversibility. The course of the
computation in these designs would not be driven by free energy minimization,
but admitting changes in the machine structure opens up a new design degree
of freedom.

Device proposals that utilize protein self-assembly for pattern recognition go
a step further [5, 6]. Input signals are coded as molecular shapes, which then self-
assemble to form higher level structures whose shape features represent different
classes of input patterns. Enzymes specific for these shape features control the
output of the device. The pattern recognition problem is thus converted to a free
energy minimization process. Unlike Adleman DNA computing, which is also
based on self-assembly, the protein self-assembly device is not programmable in
a conventional sense, since a fixed set of formal (physics independent) rules is not
available for ascertaining the effect of protein modifications. This is actually an
advantage from the standpoint of potential computing power, since the number
of interactions that can contribute to the computation is much less restricted.
Such systems must be bred to perform desired functions through an evolutionary
procedure [4, 3].

Biological evolutionary systems also make use of structure creating and de-
stroying processes to maintain the potentiality of solving new problems without
having to pay the price of maintaining the capacity to solve all problems. This
is possible because their problem solving capabilities are represented in their
structure as determined by strong chemical bonds [15, 8], as it is in DNA com-
puting or in the protein self-assembly design. The structure-based computing
principle illustrated by the instance machine concept is arguably better suited
to the analysis of natural biological systems than is the state-based computing
concept utilized in conventional comDutin~ models.

705

Acknowledgment This work was supported by the U.S. National Science Foun-
dation under Grant No. ECS-9409780.

R e f e r e n c e s

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266 (1994) 1021-1024

2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17 (1973)
525-532

3. Conrad, M.: Information processing in molecular systems. Currents in Modern
Biology (now BioSystems) 5 (1972) 1-14

4. Conrad, M.: The price of programmability. In: The Universal Turing Machine: A
Fifty Year Survey (Herken, R. ed.) pp. 285-307. Oxford: Oxford Univ. Press (1988)

5. Conrad, M.: Molecular computing. In: Advances in Computers (Yovits, M.C., ed.),
vol. 31, pp. 235-324. Boston: Academic Press (1990)

6. Conrad, M.: Molecular computing: the lock-key paradigm. Computer IEEE 25
(1992) 11-20

7. Hopcroft J.E., Ullman, I.: Introduction to Automata Theory, Languages, and Com-
putation, pp. 146-170. Reading: Addison-Wesley (1979)

8. Kondo, H.,Yamamoto, M., Watanabe, M.: Reversible intracellular displacement of
the cytoskeletal protein and organelles by ultracentrifugation of the sympathetic
ganglion. J. Submicrosc. Cytol. Pathol. 24 (1992) 241-250

9. Landaner, R.: Uncertainty principle and minimal energy dissipation in the com-
puter. Int. J. Theoret. Phys. 21 (1982) 283-297

10. Linial, M., Linial, N.: On the potential of molecular computing. Science 268 (1995)
481

11. Lipton, R.J.: DNA solution of hard computational problems. Science 268 (1995)
542-545

12. Pattee, H.H.: Physical problems of decision-making constraints. In: The Physical
Principles of Neuronal and Organismic Behavior (Conrad, M., Magar, M., eds.),
pp. 217-225. New York: Gordon and Breach, Science Publishers (1973)

13. Reif, J.H.: Parallel molecular computation: models and simulations. Seventh An-
nual ACM Symposium on Parallel Algorithms and Architectures (SPAA95), Santa
Barbara, June 1995 (to appear)

14. Schwefel, H.-P.: Evolution and Optimum Seeking, pp.105-164. New York: Wiley
(1995)

15. Skoultchi, A.I., Morowitz, H.J.: Information storage and survival of biological sys-
tems at temperatures near absolute zero. Yale J. Biol. Med. 87 (1964) 158-163

