Electronic Notes in Theoretical Computer Science 82 No. 8 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 3 pages

Temporal Constraints and Concurrent Objects
Extended Abstract

Giuseppe Milicia! and Vladimiro Sassone?

BRICS!, University of Aarhus, Denmark®
COGS?, University of Sussex — UK

1 Introduction

It is well known that the coexistence of inheritance and concurrency in object-
oriented languages is not without problems [2/I]. Matsuoka and Yonezawa
coined the term inheritance anomaly to refer to such problems [3].

Commonly, in object oriented code, the set of messages accepted by an
object is not uniform in time. Depending on the object’s state, some of its
methods will be unavailable, as e.g., pop from a empty stack, or put on a
full buffer. To avoid inconsistencies in a concurrent setting, programmers
use synchronization code to implement the required constraints. However,
the redefinition of synchronization behaviour in sub-classes often forces the
redefinition of entire methods. The inheritance anomaly nullifies the code-
reuse promised by inheritance. The situation can be exemplified in a simple
case by the following idealized pseudo-code of a buffer.

class Buffer {
void put(Object el) { if ("buffer mot full") ... }

Object get() { if ("buffer not empty") ... }
}

If we wish to derive a class HistoryBuffer providing the additional method
gget which removes an element only if the last operation was not a get, we are
most likely forced to redefine the inherited methods to do some book-keeping.
We have an instance of history-sensitive inheritance anomaly.

Generally speaking, the inheritance anomaly has been classified in three
broad varieties [3]: partitioning of states, modification of acceptable states and
history-sensitiveness of acceptable states. This latter is relevant to languages
based on method guards such as Java and C# and it is the variety of the
anomaly we wish to address.

* Center of the Danish National Research Foundation

(©2003 Published by Elsevier Science B. V.

MILICIA AND SASSONE

Although modern programming languages provide concurrency and inher-
itance, the inheritance anomaly is most commonly ignored. Indeed, Java and
C# are mainstream concurrent object oriented languages whose synchroniza-
tion primitives are based exclusively on (a non declarative use of) locks and
monitors.

2 A bit of Jeeg

Jeeg [M] is a dialect of Java related to the aspect oriented programming
paradigm. Synchronization constraints, expressed declaratively as guards, are
totally decoupled from the body of the method, so as to enhance separation
of concerns.

A typical Jeeg program has the following form:

public class MyClass {
sync {m : ¢; ... %}

// Standard Java class definition
public ... m(C...) { ... }

}

Intuitively, m : ¢ means that at a given point in time a method invocation
o.m() can be executed if and only if the guard ¢ evaluated on object o yields
true. Otherwise, the execution of m is blocked until ¢ becomes true. The
novelty of the approach is that guards are expressed in (a version of) Linear
Temporal Logic [5] (LTL), so as to allow expressing properties based on the
history of the computation. Exploiting the expressiveness of LTL, Jeeg is
able to single out situations such as the HistoryBuffer class described in the
introduction, thus ridding the language from the corresponding anomalies.
The syntax of the LTL variation we use is the following:

¢ =AP |lo | o&&o | @|p | Previouso | ¢ Since ¢

We can then code the HistoryBuffer example as:

public class HistoryBuffer extends Buffer {
sync { gget: (Previous (event != get)) && (! empty); }

public HistoryBuffer(int max) { super(max); }

public Object gget() throws Exception { ... }

Expressiveness
Due to the nature of the problem, it is of course impossible to claim for-
mally that a language avoids the inheritance anomaly or solves it. The matter

2

MILICIA AND SASSONE

depends on the synchronization primitives of the language of choice, and new
practice in object oriented programming may at any time unveil shortcomings
unnoticed before and leading to new kinds of anomalies. Nevertheless, since
the expressive power of LTL is clearly understood, one of the pleasant features
of Jeeg is to come equipped with a precise characterization of the situations it
can address. More precisely, all anomalies depending on sensitivity to object
histories expressible as star-free regular languages can, in principle, be avoided
in Jeeg.

Implementation

The current implementation of Jeeg relies on the large body of theoretical
work on LTL, that provides powerful model checking algorithms and tech-
niques. Currently, each method invocation incurs an overhead that is linear
in the size of the guards appearing in the method’s class. Also, the evalua-
tion of the guards at runtime requires mutual exclusion guarantees that have
a (marginal) computational cost. When compared with the benefit of a sub-
stantially increased applicability of inheritance, we feel that this is a mild price
to pay, especially in the common practical situations where code overriding is
infeasible or cost-ineffective.

We are currently working on alternative ways to implement the ideas of
Jeeg, aiming both at a lower computational overhead and at more expressive
logics.

The reader interested in the details is referred to [4]. The current Jeeg
implementation is available as open-source from http://sourceforge.net/
projects/jeegc/.

References

[1] P. America. POOL: Design and experience. OOPS Messenger, 2(2):16-20, Apr.
1991.

[2] J. P. Briot and A. Yonezawa. Inheritance and synchronization in concurrent
OOP. In European Conference on Object-Oriented Programming (ECOOP’87),
volume 276 of LNCS, pages 32-40. Springer-Verlag, 1987.

[3] S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-
oriented concurrent programming language. In A. Gul, W. Peter, and Y. Akinori,
editors, Research Directions in Concurrent Object-Oriented Programming, pages
107-150. MIT Press, 1993.

[4] G. Milicia and V. Sassone. |Jeeg: A Programming Language for Concurrent
Objects Synchronization. In Proceeding of JavaGrande/ISSCOPE 2002, pages
212-221, November 2002.

[5] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science (FOCS-77), pages 46-57,
Providence, Rhode Island, Oct. 31-Nov. 2 1977. IEEE Computer Society Press.

3

http://sourceforge.net/projects/jeegc/
http://sourceforge.net/projects/jeegc/
http://www.chispaces.com/papers/p20-milicia.pdf
http://www.chispaces.com/papers/p20-milicia.pdf

	Introduction
	A bit of Jeeg
	References

