In proceedings of MFCS ‘91, LNCS 520, Springer-Verlag, 1991

CCS DYNAMIC BISIMULATION is PROGRESSING*

Ugo Montanari and Viadimiro Sassone

Dipartimento di Informatica — Universita di Pisa
Corso Italia 40 - 56100 - Pisa - Italy
E-MAIL:{ugo,vladi}@dipisa.di.unipi.it

Abstract

Weak Observational Congruence (woc) defined on CCS agents is not a bisimulation since it does
not require two states reached by bisimilar computations of woc agents to be still woc, e.g. a.7.8.nil
and a.B.nil are woc but T.6.nil and B.nil are not. This fact prevents us from characterizing CCS
semantics (when T is considered invisible) as a final algebra, since the semantic function would induce
an equivalence over the agents that is both a congruence and a bisimulation.

In the paper we introduce a new behavioural equivalence for CCS agents, which is the coarsest among
those bisimulations which are also congruences. We call it Dynamic Observational Congruence because
it expresses a natural notion of equivalence for concurrent systems required to simulate each other in
the presence of dynamic, i.e. run time, (re)configurations. We provide an algebraic characterization
of Dynamic Congruence in terms of a universal property of finality.

Furthermore we introduce Progressing Bisimulation, which forces processes to simulate each other
performing explicit steps. We provide an algebraic characterization of it in terms of finality, two
characterizations via modal logic in the style of HML, and a complete axiomatization for finite agents.
Finally, we prove that Dynamic Congruence and Progressing Bisimulation coincide for CCS agents.
Thus the title of the paper.

1 Introduction

Understanding concurrent systems is difficult, since many of our intuitions about sequential systems
cannot be extended to concurrent and distributed systems. In particular, there is no prevalent, notion of
system behaviour on which semantic constructions can be based.

Milner’s Calculus of Communicating Systems (CCS) ([Mil80], [Mil89]) can be considered the touch-
stone of process description languages. Its semantics is given in two steps. First, a Labelled Transition
Systems (LTS), which constitutes the abstract machine (the interpreter) of the language, is defined in
the style of Plotkin’s Structured Operational Semantics (SOS) ([Plo81]). Then behavioural equivalences
are introduced.

A large number of such equivalences have been proposed. Several properties are interesting in the
analysis of concurrent systems, and each definition stresses a particular aspect of systems behaviour.
For instance, if we are interested only in the actions performed by a system, we consider a simple trace
equivalence; otherwise, if we allow the possibility of replacing a subsystem by an equivalent one, we must
define an equivalence which is a congruence with respect to language constructs. Moreover, if we follow
the interleaving approach ([Mil80], [Mil89]), i.e. if we express concurrency of actions by saying that they
may be executed in any order, then we will choose to observe sequences of actions. In a truly concurrent
approach, on the other hand, ([Pet62], [NPWZ8I], [Pra86], [DDM90]) we may want to observe partial
orderings of actions. For an overview and a comparison of many behavioural equivalences see [De 87] or
[GvG89].

Among the equivalences proposed in the literature, we consider those based on bisimulation ([Mil80],
[Par81], [vGW89]). Two processes are equivalent if they not only produce the same observations, but
also reach equivalent states afterwards and, in the case of Branching Bisimulation, pass only through
equivalent intermediate states. The advantages of those equivalences, besides their operational sugges-
tiveness, are the existence of simple axiomatizations, the elegance of the proofs and their relationship with

*Research supported in part by HEWLETT-PACKARD Laboratories, Pisa Science Center.

346

equivalences based on logics ([Mil89]), on denotational semantics ([Abr88]) and on algebraic techniques
([BBS88], [Acz87]).

Ferrari and Montanari ([FM90]) define Strong Observational Congruence, the simplest equivalence
based on bisimulation, in an algebraic way. They see the CCS transition system as equipped with
an algebraic structure on both states (the operations of the language) and transitions (an operation
for every SOS inference rule). Furthermore they define a collection (in fact a subcategory) of such
transition systems, where the operations are not necessarily free and where morphisms relating two
transition systems are transition preserving, i.e. they define simplification mappings which respect, besides
operations on both nodes and arcs and besides labels (including 7’s) on arcs, the transitions outgoing
from any state. This subcategory has an initial and a final element, and the unique morphism from the
former to the latter defines the coarsest equivalence on agents that is both a congruence and a strong
bisimulation, i.e. Strong Observational Congruence.

A similar construction can be repeated by mapping computations instead of transitions, and disre-
garding 7’s. We obtain the coarsest equivalence that is both a congruence and a weak bisimulation,
but this equivalence is not the Weak Observational Congruence, since the latter is not a weak bisimu-
lation. Actually, Van Glabbeek ([vG87]) shows that Weak Observational Congruence is a bisimulation,
but the operational semantics of CCS he assumes is not the usual one, e.g. a.3 — 7.5. From these facts
originated the idea of the new behavioural equivalence introduced in this paper.

The basic idea of dynamic bisimulation is to allow at every step of bisimulation not only the execution
of an action (or a sequence of actions), but also the embedding of the two agents under measurement
within the same, but otherwise arbitrary, context.

Conceptually, bisimulation can be understood as a kind of game, where two programs try in turn to
match each other’s moves. When a move consists of performing some computational steps and matching
a move means to produce the same observable behaviour, then we obtain the notion of observational
equivalence. This definition is independent of the particular observable behaviour (7 observable or not,
sequences or partial orderings of actions, etc.), and it can be proved under very mild conditions that the
maximal bisimulation relation always exists and is an equivalence ([MS89]).

Instead of programs just being able to perform computational steps, we might consider modular (i.e.
compositional) software systems which are statically configured at time zero. In our functional setting,
this means to start the game by applying an arbitrary context to both agents. The resulting semantic
notion is Milner’s Observational Congruence.

Finally we may allow dynamic reconfiguration: at any instant in time the structure of both software
systems may be modified, but in the same way; i.e. a context can be applied to both agents. In this
way we obtain our new notion of dynamic bisimulation, and the resulting semantic equivalence is called
Dynamic Observational Congruence. Of course the bisimulation game is not just an academic fancy
but is motivated by practical considerations: equivalent (in the various senses discussed above) modules
can actually replace each other consistently in any real system, guaranteeing software modularity and
reusability. In particular, the issue of dynamic reconfiguration is relevant for system programming and
for applications like software development, where executing new programs is essential, and like industrial
automation, where halting execution may be extremely costly.

In this paper we show that Dynamic Observational Congruence is the coarsest bisimulation which is
also a congruence, and thus it is algebraically characterized by the finality construction in the style of
[FM90] outlined above.

Furthermore we introduce a new observational equivalence, Progressing Bistmulation, between states
of alabelled transition system with a distinct action 7. The basic idea underlying Progressing Bisimulation
is to force programs in the bisimulation game to match moves with explicit moves. This also justifies its
name.

For Progressing Bisimulation we give an algebraic characterization in the category of labelled transition
systems and two modal logics in the style of HML, one in which the modal operators may include
7’s, and their meaning is that at least those 7’s must appear in the models, the other in which the
satisfaction relation forces agents to move. Then we provide a complete axiomatization for states with
finite computations, consisting of the axioms for Strong Observational Congruence and of two of the three
Milner’s 7-laws (of course a.7.P = «.P is no longer true).

Finally, we show that on the CCS transition system Progressing Bisimulation coincides with Dynamic
Congruence. That gives all the characterizations above to Dynamic Congruence and gives meaning to

347

the paper’s title.

This presentation stresses the fact that we are in presence of two distinct, general concepts, which, in
the case of CCS, coincide: Dynamic Congruence, which makes sense on the LTS of every language and
has a nice algebraic characterization and Progressing Bisimulation, which makes sense on every LTS with
a distinct action 7 and has algebraic, logical and axiomatic characterizations.

The paper is organized as follows.

In section 2 we recall the basic concepts of CCS ([Mil80], [Mil89]). Section 3 provides the operational
definition and an algebraic characterization of Dynamic Observational Congruence. The Progressing
Bisimulation and its algebraic, logical and ariomatic characterizations are introduced in section 4. Fi-
nally, in section 5 we show that Dynamic Congruence and Progressing Bisimulation coincide in the CCS
transition system, thus obtaining a full characterization of Dynamic Congruence.

In the paper, we follow the notations and definitions in the references, thus the expert reader can
safely skip section 2. For space saving, proofs are only sketched: the full version can be found in [MS90].

2 Calculus of Communicating Systems

In this section we recall the basic definitions of Milner’s Calculus of Communicating Systems (CCS). For
a full introduction however, the reader is referred to [Mil80] and [Mil89].

Let A = {a,,7,...} be a fixed set of actions, and let A = {@|a € A} be the set of complementary
actions (~ being the operation of complementation). A = AU A (ranged over by \) is the set of wvisible
actions. Let 7 € A be the invisible action; A U {7} is ranged over by p.

Definition 2.1 (CCS Ezxpressions and Agents)
The syntax of CCS expressions is defined as follows:

E:=z|nil|pE|E\a|E[®|E+ E|E|E|recz.E
where x is a variable, and ® is a permutation of AU {7} preserving 7 and ~. CCS agents (ranged over
by P,Q,...) are closed CCS expressions, i.e. expressions without free variables. o

The operational semantics of CCS is defined in terms of labelled transition systems ([Kel76]) in which the
states are CCS expressions and the transition relation is defined by axioms and inference rules driven by
the syntactic structure of expressions.

Definition 2.2 (CCS Transition Relation)
The CCS transition relation —— is defined by the following inference rules.

E 5 E _
Act ESE Res 1 2 o,
) w) o T B \a p ¢ {a,a}
ol I
Rel) % Sum) . FE{ — FEy .
El[(I)]—>E2[<I>] E1+E—>E2 andE+E1*>E2
B A 2
Coml1) m By — Py m Com2) Ey, — F Wld Ey — Fy
FE\|E % Ey|E and E|E, X5 E|E, Er|Ey — F1|Fy
Rec) Eq[recx.Fy /] 2 By

recx.Fq LN Es5 0
The transition P 2> Q expresses that the agent P may evolve to become the agent () through the action
1, i being either a stimulus from the environment or the internal action 7 which is independent from the
environment. Computations are usually described by multistep derivation relations derived from LN
The relations we will need in the following are: == defined as (——)*, where € is the null string and *

- . t n
the transitive closure of relations; N LN ==, where p € AU {r}; == N “z, where

t=pips. .. pn € (AU{7T}H* and %:%%g, where s = A1 Ao ...\, € A*.

The semantics given by labelled transition systems is too concrete: the addition of behavioural equiva-
lence equates those processes which cannot be distinguished by any external observer of their behaviour.
Park’s notion of bisimulation ([Par81]) has become the standard device for defining behavioural equiva-
lences.

348

Definition 2.3 (Strong Bisimulation)
Let R be a binary relation over CCS agents. Then ¥, a transformation of relations, is defined by

(P,Q) € ¥(R) if and only if Vup € AU {7}
o whenever P 5 P’ there exists Q' s.t. Q +~ Q" and (P, Q') € R;
o whenever Q -~ Q' there exists P’ s.t. P 5 P’ and (P',Q’) € R.

A relation R is called strong bisimulation if and only if R C U(R).
The relation ~= U{R|R C ¥(R)} is called Strong Observational Equivalence. O

Since V¥ is a monotone function, ~ is the largest strong bisimulation. Moreover, it is an equivalence
relation over CCS agents.

Strong Observational Equivalence can be extended to CCS expressions by saying that two expressions
are strongly equivalent if all the agents obtained by binding their free variables to CCS agents are strongly
equivalent.

However, definition 2.3 does not consider 7 actions as special actions representing the occurrence of
invisible internal moves. If we take into account the special status of 7 actions, agents are equivalent if
they can perform the same sequences of visible actions and then reach equivalent states. The notion of
Weak Observational Equivalence implements this kind of abstraction.

Weak Equivalence, written ~, is defined by introducing a transformation ®, obtained from the defini-
tion of ¥ by replacing - by ==, and taking its greatest fixed point, i.e. ~= U{R|R C ®(R)}. Relation
~ is the largest weak bisimulation, and it is an equivalence relation. It is extended to CCS expressions
in the same way Strong Equivalence is.

An equivalence p is called congruence with respect to an operator f, if it is respected by the operator,
i.e. zpy implies f(z)pf(y). The equivalences which are congruences with respect to all the operators of
the language are very important: they provide algebras in which equality is mantained in every context,
a property that can be exploited by algebraic techniques.

Formally, in our framework, a context C[| is a CCS expression without free variables and with exactly
one “hole” to be filled by a CCS agent.

Relation ~ is a congruence with respect all CCS operators, that is E ~ F implies C[E] ~ C[F]
for each context C[], but it is well known that Weak Observational Equivalence is not a congruence.
Indeed, we have 7.F =~ E but in general it is false that 7.E + E' ~ E + E’, e.g. T.a.nil ~ a.nil but
B.nil + a.nil % B.nil + T.a.nil because the first agent provides o and § as alternative actions, while the
second agent may autonomously discard the (alternative by simply performing a 7 action.

The largest congruence contained in ~ is Milner’'s Weak Observational Congruence, written ~¢ and
defined by P ~¢ @Q if and only if for any context C[|, C[P] =~ C[Q].

Weak Observational Congruence has a main drawback: it is not a bisimulation. As an example
consider the weakly congruent agents a.7.nil and a.nil. When «.7.nil performs an « action becoming
the agent 7.nil, a.nil can only perform an « action becoming nil: clearly 7.nil and nil are not weakly
congruent but only weakly equivalent. Our definition of Dynamic Observational Congruence remedies
this situation.

3 Dynamic Observational Congruence

In this section we introduce Dynamic Bisimulation by giving its operational definition and its algebraic
characterization in the style of [FM90].

The definition is given for CCS, but it can be given for any labelled transition system in which the
concept of context makes sense, in particular for the LTS corresponding to any language.

3.1 Operational definition

We want to find the coarsest bisimulation which is also a congruence. Let B be the set of (weak)
bisimulations and C be the set of congruences.

349

Definition 3.1 (Dynamic Bisimulation)
Let R be a binary relation over CCS agents. Then ®4, a transformation of relations, is defined as follows:

(P,Q) € D4(R) if and only if Vs € A* and V(]]:
e whenever C[P] == P’ there exists Q' s.t. C[Q] == Q' and (P',Q’) € R;
e whenever C[Q] == Q' there exists P’ s.t. C[P] == P’ and (P',Q’) € R.
A relation R is called dynamic bisimulation if and only if R C ®4(R).
The relation ~%= U{R|R C ®4(R)} is called Dynamic Observational Equivalence. O

Relation ~¢ is a dynamic bisimulation and it is an equivalence relation. Just as Strong and Weak

Equivalence, it is extended to CCS expressions. In the following, whenever it makes sense, we will consider
only CCS agents: obviously, results hold also for CCS expressions, by definition of the equivalences on
them.

We show now that ~? is the coarsest bisimulation which is also a congruence.

Lemma 3.2 (Dynamic Bisimulations are Weak Bisimulations)
R C B4(R) implies R C ®(R), where @ is the function defining Weak Observational Equivalence.
Proof. Directly from the definitions of ® and ®4 (fixing the context C[] = z). O

As a corollary to the previous lemma, we obtain that ~?C~, i.e. Dynamic Equivalence refines Weak
Observational Equivalence. However, the reverse inclusion does not hold as P ~ 7.P while P %% 1.P.

Lemma 3.3 (Dynamic Bisimulations are Congruences)
Let R C ®4(R). Then PRQ if and only if C[P]RC[Q)] for each context C[].
Proof. (=) If there were C[] such that (C[P],C[Q]) € R then A.C[] would be a context for which
the definition of ®4 does not hold. So (P, Q) & ®4(R) and R € ®4(R). (<) Obvious. O

As a corollary, we have that Dynamic Equivalence is a Congruence, i.e. P ~¢ @Q if and only if C[P] ~? C[Q)]
for each context C[]. Since ~¢ is the coarsest congruence contained in ~ and ~?C=, it follows that

~dCre

Proposition 3.4 (Dynamic Bisimulation < Bisimulation and Congruence)
R € BNC if and only if R C ®4(R).

Proof. (=) R € B implies R C ®(R) and R € C gives that PRQ implies C[P]RC[Q] VC[]. Then
it (P,Q) € R, ¥YC[] (C[P],C|Q]) € R and so (C[P],C[Q]) € ®(R) which, by definition of ®, implies
(P,Q) € ®4(R). Therefore, R C ®4(R). (<) If R C &4(R) then R C ®(R) by lemma 3.2, so
R € B. Moreover if (P,Q) € R then by lemma 3.3 (C[P],C[Q]) € R, so R € C. O

Therefore, ~¢= | J{R|R € BN C} is the coarsest bisimulation which is also a congruence.

3.2 Algebraic characterization

In this subsection we show that ~% has a corresponding object in CatLCCS, the category of CCS
computations whose construction is due to Ferrari and Montanari ([FM90]).

As we have seen in section 2, the operational semantics of CCS is defined by a deductive system.
Now, we structure those systems as typed algebras ([MSS90]), i.e. algebras in which types are assigned to
elements, and which contain, as special elements, the types themselves.

Types allow us to distinguish between elements which are agents (typed by state and denoted by
u,v,w...), elements which are transitions (typed by — and denoted by t) and elements which are
computations (typed by = and denoted by ¢).

In the following x : type will indicate that x has type type. Operations source() and target() and a
function label() which respectively give source state, target state and observation, are defined on elements
typed by — or =. We write t : u ., v to denote a transition with source(t) = u, target(t) = v and
label(t) = p. Similarly, we write ¢ : u == v. A computation with empty observation will be indicated by
¢ :u == v, while we will write u = v when we are not interested in the observation.

The definition of CCS models should be given by listing an appropriate presentation and saying that
CCS models are the models of that presentation. Since such a presentation would be rather long, we
prefer to give the definition as follows. The interested reader can find the rigorous definition in [FMM91].

350

Definition 3.5 (CCS Models and Morphisms, CatLCCS)

A CCS Model is a typed algebra (with multityping) where elements typed state have the algebraic structure
of guarded CCS agents. Moreover, there is an operation on transitions for each rule in the CCS transition
system, an operation idle and an operation _; _. They satisfy the following:

[, v >: o 50

tiu - tiu - : —
i if p & {o,a}
1[@] : ul@] 2 o[a] t\a:u\a =0\«
tiu -t tiu—tsw
t<tw:ut+w->0 wAHst:wtu—so
tiu - tiu -
tlw : ujw - vjw wlt : wlu - wlv
tlzulﬁvlandtgzugﬁvg
t1|t2 : U1|U2 L>’Ul|’02
t:u%v t:u%v idle(v) : v == v cl:u%vandﬁcg:v%w
t:u=—v t:u=—wv ;e u=w
Finally, a CCS Model satisfies the following equations:
recx.u = ufrecr.u/x c1; (c25¢3) = (e15¢2);¢3 ctu=u

wdle(u);c = ¢ = ¢;idle(v)

A CCS morphism is an homomorphism of algebras that respects types. This defines CatLCCS, the
category whose objects are CCS Models and whose morphisms are CCS morphisms. O

Note that the way in which we defined the operations also defines source, target and label. Note also
that there are no rules and operations for recursion which is instead handled by imposing the axiom
above on states. Moreover, 7’s are completely forgotten in the observations. Finally, note that a CCS
morphism respects source and target since they are operations of the algebra. It is easy to prove that
CCS morphisms respect the function label.

As a general result on typed algebras ([MSS90]), we state that CatLCCS has an initial object .

Weak Observational Congruence cannot be characterized algebraically in CatLCCS, even though
Ferrari and Montanari showed ([FM90]) that this is possible in a category constructed ad hoc from it.
This is because the definition of morphism implies that, from congruent states, corresponding transitions
lead to congruent states, and this is not the case for Weak Observational Congruence.

The situation is different for ~¢. In the following, we shall use [P] to denote the state to which agent
P evaluates in a particular CCS model.

The following lemma derives directly from the fact that h respects the algebraic structure of elements.

Lemma 3.6 (CatLCCS morphisms respect contexts)
If h is a CatLCCS morphism then h([P]) = h([Q)]) implies h([C[P]]) = h(IC[Q]]) for each context C[]. O

Definition 3.7 (Transition Preserving Homomorphism)
A CatLCCS morphism h : C — C' is called a transition preserving homomorphism if and only if:
o h: C — (' is a surjective CCS morphism;
et e, t': h(u) = v implies It € C, t:u= v with h(t) =1t O

Example 3.8 (no tp-homomorphism maps 7.+ 3 to a+ 3 or 7.« to)

The figures show two morphisms which
are not tp-morphisms.

In case (A) we have t : h(u) Lo but
In case (B) the morphism cannot re-
spect the algebra, for if it did we would
have h(t.a)) + h(B) = h(a) + h(B) and
so h(rt.a +) = h(a+ B) which is case
(A) (B) (A)- o

351

Proposition 3.9 (tp-homomorphism = Dynamic Bisimulation)
If h: S — C is a tp-homomorphism then h([P]) = h([Q]) implies P ~* Q.
Proof. We show that R = {< P,Q > |h([P]) = h([Q])} is a dynamic bisimulation. Let (P, Q) € R.
If C[P] == P’ then there exists t : [C[P]] == [P'] in S. Then h(t) : h([C[P]]) == h([P']). By
lemma 3.6 we have h(t) = t' : h([C[Q]]) == h([P']) and so by definition of tp-homomorphism there
exists " : [C[Q]] == [Q'] with h([Q']) = h([P']) . Hence there exists C[Q] == Q' and (P’,Q’) € R.
Symmetrically if C[Q] == Q’. Therefore, by definition of ®4, R C ®4(R). i

Proposition 3.10 (Dynamic Congruence = tp-homomorphism)
There exists an object I/ ~% of CatLCCS such that the unique morphism hea @ S — S/~ is a
tp-homomorphism. Moreover, P =% Q implies hra([P]) = h~a([Q)).
Proof. Let R be the congruence over defined as follows:
[PIR[Q] iff P~ Q and (t; : u1 == v1)R(t2 : uz == vo) iff uyRus and vy Ru,.
/a4 is obtained as the quotient of & modulo R and ha : $ — $/~¢ is the canonical map which
sends each element to its equivalence class. O

Hence, as a corollary of the previous two propositions we have that hya coincides with ~%, i.e. P =% Q
if and only if ha([P]) = h~a([Q]).

Moreover, &/~ is the terminal object in the subcategory of the objects reachable from 3 through
tp-homomorphisms, that is the one corresponding to the coarsest dynamic bisimulation, i.e. /2.
Proposition 3.11 (/x4 is terminal)

The subcategory of CatLCCS consisting of all objects reachable from S through tp-homomorphisms and
having morphisms which are tp-homomorphisms has S/~ as a terminal object. O

4 Progressing Bisimulation

In this section we introduce a new bisimulation, Progressing Bisimulation, on the states of a labelled
transition system with a distinct label 7. We will give an algebraic characterization of such a bisimulation
and two modal logical languages, in the style of HML, adequate with respect to it. Furthermore we will
provide a complete axiomatization of Progressing Equivalence for states with finite computations.

In the next section we will see that, when the transition system is the CCS transition system, Pro-
gressing Bisimulation coincides with Dynamic Congruence, thus completing its characterization for CCS.

We reiterate our two distinct results: the first, concerning Dynamic Congruence and guided by the
concept of context, and the second concerning Progressing Bisimulation and its algebraic, logical and
axiomatic characterizations. Both bisimulations are very general and go beyond CCS semantics, even
though Dynamic Congruence is perhaps better justified in terms of practical considerations. Moreover,
in the case of CCS they coincide, giving us plenty of characterizations of Dynamic Congruence.

4.1 Operational definition and Algebraic characterization

Definition 4.1 (Progressing Bisimulation)
Let R be a binary relation over the states of a labelled transition system T =< S,— AU {7} >.

Then @, a function from relations to relations, is defined as follows:
(s,7) € ®p(R) if and only if Vu € AU{T}:
o whenever s —— s’ there exists r' s.t. 1 == ' and (s',r") eR;
(s',r") e R.

0 : I
e whenever r — 1’ there exists s’ s.t. s = s’ and (s,

A relation R is called progressing bisimulation, if and only if R C ®,(R).
The relation ~P= U{R|R C ®,(R)} is called Progressing Equivalence. O

Relation &P is a progressing bisimulation and an equivalence relation.

Now we introduce an algebraic model of a labelled transition system. As for CCS Models (defini-
tion 3.5) the definition of LTS Models could be given more formally. The notations used here are those
defined in the previous section.

352

Definition 4.2 (LTS Models and Morphisms, LTS)
An LTS Model is a typed algebra (with multityping) where elements typed state are a set, i.e. they do not

have any particular algebraic structure. Partial operations idle and _;_ are defined so that they satisfy:
t:ui»v tiu——w cl:u%vandcyv%w

idle(v) : v == v

t:u:A>v tiu==v cn@:uggw
Moreover, an LTS Model satisfies the following equations:
- — (e o) CiU= v
o (2 ¢3) = (cr; ca)s €3 wdle(u);c = ¢ = ¢;idle(v)
An LTS morphism is a morphism of algebras that respects types and labelling. This defines LTS, the
category whose objects are LTS Models and whose morphisms are LTS morphisms. O

Clearly, given an LTS Model, elements typed by — represent transitions, elements typed by = represent
sequences of transitions (computations) and elements typed by state represent states of the transition
system. Note that an LTS morphism also respects source and target.

We introduce a new kind of morphism which, besides preserving transitions, prevents 7-transitions to
be mapped to idle-transitions. We refer to them as progressing transition preserving morphisms.

Definition 4.3 (Progressing Transition Preserving Morphism)
An LTS morphism h : T — T’ is called a progressing transition preserving morphism if and only if:

o h: T — T is a surjective LTS morphism;
et' €T’ t':h(s) =1 implies It €T, t:s=r with h(t) =1t';
o h(t) =idle(h(s)) implies t = idle(s). O

Example 4.4 (ptp-morphisms map 7.+ p to 7.1 but not p.oo + p.8 to p.(a+ 3))
Cases (A) and (B) of example 3.8 are

- i not ptp-morphisms, the first because it
- 1 does not preserve transitions, the sec-
m ond because it maps a not—idle to an
I / idle transition.

a o 3 In case (C) we have a ptp-morphism

12 6 . I ..
mapping a — transition to a computa-
tion —; ==L while the morphism

in case (D) is not a ptp, for it does not
(©) (D) preserve transitions. O

The following proposition establishes the correspondence between ptp-morphisms and progressing bisi-
mulations. This result is very similar to that in section 3.2.

Proposition 4.5 (ptp-morphism < Progressing Bisimulation,)

If h: T — T is a ptp-morphism then h(s) = h(r) implies s &P r.

There exist T /=P and a ptp-morphism hxp : T — T /=P such that s =P r implies hap(8) = haw ().
Therefore, s =P r if and only if har(8) = haw (7).

Finally, the subcategory of LTS consisting of all objects reachable from T through ptp-morphisms, and
having morphisms which are ptp-morphisms, has T/~P as a terminal object. O

4.2 Logical characterization

In this subsection we design two modal logical languages in the style of HML which are adequate with
respect to Progressing Bisimulation, i.e. two states are progressing equivalent if and only if they cannot
be distinguished by any formula of the language.

The proofs in the rest of the section follow Milner’s scheme in [Mil89], and so they are sketched very
roughly. For the definitions of the modal languages adequate with respect to Strong Congruence and
Weak Equivalence see [Mil89, chapter 10].

We introduce now a language whose modal operator may consider 7’s, with the meaning that at least
those 7’s must be observed in the models. In the following, A™ will mean A* \ {e}.

353

Definition 4.6 (The language : PLY")
Ppr is the smallest class of formulae containing the following:

o If o € PL™" thenVt € (AU{T})* (t), ¢ € PL*"
e If p € PL™" then ¢ € PL¥
o Ifp; € Ppr Vie I then N\;c; i € PL?", where I is an index set. O

T

Definition 4.7 (Satisfaction relation)
The validity of a formula p € PLT" at state r (r =, @) is inductively defined as follows :

o r =, (thr ¢ if and only if I s.t. r = ' and r’ Er o
o r =, —p if and only if not r =, ¢
o 1 s Niey i if and only if Vi € I r =, ;. .

There is another modal language we can naturally associate to ~P: PL~". Tts syntax is obtained from
that of PLZ" by substituting the modal operator ((t)), with the operator {(s)), for s € A*.
The satisfaction relation = is obtained by replacing in definition 4.7 the clause for r =, (), ¢ with the

clause r = (s)), ¢ if and only if I’ s.t. » == ' and ' |= ¢, where 5 = (if 5 # ¢ then s else 7).

The difference between the two languages is that PL¥" does not consider 7’s in its modal operator,
but takes care of them in the satisfaction relation, while the reverse holds for PL>". The language used
is a matter of taste.

Proposition 4.8 (PL~" and PLZ" induce the same equivalence)
Vi) € PL™ s =1 <1 =4 if and only if Vo € PLY s = p <1 =, .]

We show that the equivalences induced by PL~" and Ppr coincide with ~P.

Proposition 4.9 (PL¥ is adequate w.r.t. ~P)
s =P r if and only if Vo € PLY s =, o &1 =, .
Proof. Following Milner’s scheme, we define stratifications PL~. and ~?, respectively of PL>" and
~P, for k an ordinal, and prove that for each x, s ~ r if and only if Vi € PLY. s|=, ¢ & 1 =, ¢.
The proposition follows easily from that. O

As a corollary to propositions 4.8 and 4.9, we have that also PL™" is adequate w.r.t. =P, that is s =P r
if and only if V¢p € PL¥ s =4 < 1 = 1.

4.3 Axiomatic characterization

Going back to CCS, in this subsection we give a complete axiomatization of ~P for finite CCS agents. It
is worth noticing that every labelled transition system with finite computations can be represented by a
finite sequential CCS agent, in a straightforward way.

Obviously, to carry on a proof with axioms and equational deduction, we need an observational
equivalence which is actually a congruence. For the moment let us assume that ~P is a congruence
with respect the CCS operators: in the next section, we will prove that this is indeed the case (see
proposition 5.1).

For the axiomatizations of Strong and Weak Observational Congruence see [Mil89, pp. 160-165].
Let us begin relating ~P on CCS agents to ~ and =¢. The following is a direct consequence of the
definitions of ¥ and ®,,.

Proposition 4.10 (Strong Congruence refines Progressing Bisimulation)
~CrP where ~ 1is Strong Observational Congruence. O

Thus /P inherits all the properties of ~, in particular monoid laws and the expansion theorem ([Mil89,
pp. 62, 67-76]) hold for ~P. Concerning the 7-laws ([Mil89, p. 62]) we have:

Proposition 4.11 (Progressing Bisimulation and T-laws)
. P+7.P =P 1.P it. .(P+7.Q)+ a.Q =P a.(P+71.Q) . a.m.P %P a.P O

354

A CCS agent is finite if it does not contain recursion, and it is serial if it contains no parallel composition,
restriction or relabelling. It is clear that with the use of the expansion theorem every finite agent can be
equated to a finite serial agent. Therefore, a complete axiomatization for finite and serial agents can be
considered an axiomatization for finite agents (considering the expansion theorem as an axiom scheme).
In the rest of the subsection every CCS agent must be considered finite and serial.

We introduce a new set of axioms similar to the ones given for Strong and Weak Observational
Congruence: it contains the monoid laws and two of the three 7-laws.

Definition 4.12 (Azioms System A)

Al P+Q=Q+P (Tq : p.7.P = p.P)
Ay : P+ (Q+R)=(P+Q)+R Ty : P+7.P=T1.P
Ag:P+P=P Ty : p.(P+7.0Q)+ p.Q =p.(P+71.0Q)

Ay :P+nil=P
A={A1,A9, A3, Ay} U{Ty, T3}
0

Now, we prove that A is a complete set of axioms for ~P, i.e. two agents are progressing equivalent if and
only if they can be proved equal by the axioms of .4 and equational deduction (denoted by).

Proposition 4.13 (A is a complete axiomatization of ~P)
P =P Q if and only if A- P = Q.
Proof. (<) As previously noticed axioms .4 are true for ~P.
(=) Following Milner’s scheme, we define a standard form (SF) for CCS agents such that, using
axioms Ag, Ay, To and Tg, we can prove that each P is equal to a P’ in SF with P ~? P’. By
induction on the number of nested prefixes, it is easy to show that, if P ~P @ and if P and @ are
in SF, they can be proved equal using axioms A and Ag. So, if P =P @ then A P = Q. O

5 Dynamic Congruence and Progressing Bisimulation

In this section we show that Dynamic Congruence and Progressing Bisimulation coincide when ~P is
considered on CCS.

This gives many characterizations to ~%: in fact, we have two characterizations by finality through
particular kinds of abstraction morphisms (the one encoding the CCS algebra into states and transi-
tions, the other just considering the naked labelled transition system), two logical characterizations via
HML-like modal languages and, finally, an axiomatization for finite agents, besides the two operational
characterizations given by the bisimulation game.

Proposition 5.1 (&P is a congruence)
Let E, F be CCS expressions and E =P F. Then

i wE ~P u.F ii.. E+Q ~" F+Q iii.. E|Q ~P F|Q
iv.. E[®] ~P F[®] v.. E\a =P F\«a vi.. rece.E =P recx.F

Proof. The proof is standard. For i—v it is enough to exhibit appropriate progressing bisimulations.
For instance, R = {(P1|Q, P2|Q)|P1 =P P»} shows iii. Point vi is less trivial and must be done by
induction on the depth of the proofs by which actions are inferred, exploiting a concept analogous
to Milner’s bisimulation up to ~°. O

Proposition 5.2 (Dynamic and Progressing Bisimulations coincide)
~d=rP,
Proof. We shall prove that ~¢Ca? showing that ~?C ®,(~%). Suppose P ~? Q and P > P’. If

w # 7 then we have that 3Q == Q' and P’ ~% . Otherwise, if = 7 it must be that 3Q == Q'
in which at least one 7 move is done and P’ ~? . Actually, if this were not the case, we could find
a context for which the definition of ~¢ does not hold: C[] = z + o.P, where P is not dynamically
equivalent to each a-derivate of P’ if there exists any, otherwise P = nil will do.

355

Symmetrically if @ < @Q’. Then we have (P,Q) € ®,(~%) and so ~?C ®,(=%).

By similar technique we show that ~PC~?. Suppose that P ~P (). Since ~P is a congruence then
VC[] C[P] =P C[Q]. If C[P] == P’ with s € A* then, by repeated application of the definition of
~P, we have C[Q] == Q' and P’ =P Q'. Symmetrically if C[Q] == Q’. So ~PC & 4(~P). O

Acknowledgements. We wish to thank GianLuigi Ferrari for many interesting discussions, which have signif-

icantly contributed to our understanding of the subject. Special thanks to Rocco De Nicola for his suggestions

on the organization of the paper.

[Abr88]

[Acz87]

[BBS88]

[DDM90]

[De 87]

[FM90]

[FMMO91]

[GvG89]

[Kel76]

[Mil80]

[Mil89)

[MS89]

[MS90]

[MSS90]

[NPWS81]

[Par81]

[Pet62]

[Plo81]

[Pra86]

References

S. ABRAMSKY. A Domain Equation for Bisimulation. Technical report, Department of Computing,
Imperial College, London, 1988.

P. AczeL. Non-Well-Founded Sets. CSLI Lecture Notes n. 14, Stanford University, 1987.

D. BENSON AND O. BEN-SHACHAR. Bisimulations of Automata. Information and Computation,
n. 79, 1988.

P. DEcANO, R. DE NicorA, AND U. MONTANARI. A Partial Ordering Semantics for CCS. Theo-
retical Computer Science, n. 75, 1990.

R. DE NicorA. Extensional Equivalence for Transition Systems. Acta Informatica, n. 24, 1987.

G. FERRARI AND U. MONTANARI. Towards the Unification of Models for Concurrency. In Proceedings
of CAAP ’90. LNCS n. 431, Springer Verlag, 1990.

G. FERRARI, U. MONTANARI, AND M. MOWBRAY. On Causality Observed Incrementally, Finally.
In Proceedings of TAPSOFT ’91. LNCS n. 493, Springer Verlag, 1991.

U. Gorrz AND R. VAN GLABBEEK. Equivalence Notions for Concurrent System and Refinement of
Actions. In Proceedings of MFCS ’89. LNCS n. 379, Springer Verlag, 1989.

R. KELLER. Formal Verification of Parallel Programs. Communications of the ACM, vol. 7, 1976.

R. MILNER. A Calculus of Communicating Systems. Lecture Notes in Computer Science, n. 92.
Springer Verlag, 1980.

R. MILNER. Concurrency and Communication. Prentice Hall, 1989.

U. MONTANARI AND M. SGAMMA. Canonical Representatives for Observational Equivalences Classes.
In Proceedings of Colloquium on the Resolution of Equations in Algebraic Structures. North Holland,
1989.

U. MONTANARI AND V. SASSONE. Dynamic Bisimulation. Technical Report TR 13/90, Dipartimento
di Informatica, Universita di Pisa, 1990.

V. MANCA, A. SALIBRA, AND G. ScoLLO. Equational Type Logic. Theoretical Computer Science,
n. 77, 1990.

M. NIELSEN, G. PLOTKIN, AND G. WINSKEL. Petri Nets, Event Structures and Domains, Part 1.
Theoretical Computer Science, n. 13, 1981.

D. PArk. Concurrency and Automata on Infinite Sequences. In Proceedings of GI. LNCS n. 104,
Springer Verlag, 1981.

C.A. PETRI. Kommunikation mit Automaten. PhD thesis, Institut fiir Instrumentelle Mathematik,
Bonn, 1962.

G. PLOTKIN. A Structured Approach to Operational Semantics. DAIMI FN-19, Computer Science
Dept., Aarhus University, 1981.

V. PRATT. Modelling Concurrency with Partial Orders. International Journal of Parallel Program-
ming, n. 15, 1986.

356

[vG8T] R. VAN GLABBEEK. Bounded Nondeterminism and the Approximation Induction Principle in Process
Algebra. In Proceedings of STACS 87. LNCS n. 247, Springer Verlag, 1987.

[vGWS89] R. vAN GLABBEEK AND W. WELJLAND. Branching Time and Abstraction in Bisimulation Semantics.
In Proceedings of IFIP 11th World Computer Congress, August 1989.

357

