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1 Introduction

[ am pleased that panelists agreed to contribute short reviews relating to the
panel on “The Role of Agent Interaction in Models of Computation”, at the
Workshop on Foundations of Interactive Computation”, held in Edinburgh
in April 2005. The panelists were asked, prior to the panel, to address the

following questions:
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e What are the challenges in formalizing models of interactive computation?
e How does interaction impact the notion of solving computational problems?
e How do interactive systems relate to open multi-agent systems?

* How can practice and experience on multiagent systems influence the theory
of computation?

e How do models of interaction contribute to the study of AI, networking,
and other applications?

e How does interaction influence interdisciplinary applications?

* Where do concurrency theory and agent coordination/cooperation fit in?

The presentations at the panel and the questions and comments of the
audience greatly contributed to our understanding of the role of interaction
in better modeling the computing discipline, which was a primary goal of the
overall workshop. The authors and titles of the panelist reviews included in
this article are as follows:

e Farhad Arbab, Impact of Interaction on Constructive Models.
* Dina Goldin, The Turing Thesis Myth.
o Peter McBurney, Agents and Interaction (co-authored with Michael Luck).

e David Robertson, Interactive Cooperation.

We hope that these panel reviews will contribute to the readers under-
standing that interaction can contribute to the evolution of future models of
computation.

Peter Wegner, Panel Chair

2 Impact of Interaction on Constructive Models of Com-
putation

The first question posed to the members of this panel asks: “how do inter-
active models change our notion of a computational problem?” The second
question inquires “how do models of interaction contribute to the study of Al,
networking, and other applications?” Software Engineering deals with con-
struction of complex software systems. I address these two questions in the
context of Software Engineering: how models of interaction can contribute
to the study of complex systems, and how interactive models can change our
notion of computational problems that we construct those systems for.
Various models of computation exist to serve different purposes. Turing
Machines (TMs), for instance, capture the essence of algorithmic computing



P. Wegner et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 181-198 183

as a sequence of mechanical operations that, if terminates, transforms its given
input into an output. TMs were devised to explore the expressiveness of this
notion of computing, and its limits. TMs are not (meant to be) useful for the
actual construction of computing systems, hardware or software. Examples of
constructive models of computation include the so-called von Neumann model,
functional programming, logic programming, imperative programming, and
object oriented programming.

Every system that performs a complex computation is not necessarily com-
plex. Quite simple systems can contain complex algorithms. The challenge
in engineering of complex computing systems has little to do with complex
algorithms; it involves coping with the complex behavior that arises out of
composing even a non-trivial number of (even simple) constituent parts into
a coherent functioning whole. The complexity of a system arises out of the
multitudes of combinations of ways in which the functioning of its constituent
parts can mutually affect and interfere with one another. Various forms of
concurrency often arise in the study and construction of such systems.

Concurrent TMs do not add expressiveness over what a single universal
TM offers: whatever algorithmic computation a set of concurrent TMs can
perform, can also be performed on a single TM. In spite of this expressive
equivalence, models of computation that have proven effective for construc-
tion of sequential programs are notoriously inadequate for construction of con-
current systems. Calculi such as CSP [14], CCS [21], the m-calculus [22,25],
process algebras [6,7,29], and the actor model [1] are among the various mod-
els of computation specifically aimed at the complexities that arise in the
construction of concurrent systems.

Wegner’s proposal of Interaction Machines [30,32] and the claim that they
model more than the algorithmic notion of computing captured by TMs have
drawn considerable attention on interaction as a new paradigm in computing.
However, Interaction Machines, as well as most subsequent work on interac-
tion, e.g., by Goldin, et al. [11], and van Leeuwen and Wiedermann [27,28],
focus on expressiveness issues. As such, one may regard them as the “TM
level” work for the new paradigm of interaction. Wegner and Goldin have
proposed interaction as a framework for modeling of complex systems [33].

The real world contains unpredictability and non-computable functions.
This places interaction at the center of the design of computing systems that
must interface with the real world. But an interaction-centric perspective
serves as an effective framework that simplifies the study, specification, and
construction of all kinds of complex systems. In systems that deal with the
subsets of the real world that exclude unpredictability and non-computable
functions, or in closed computing subsystems that do not interact with the
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real world at all, everything is, at least in principle, knowable and/or com-
putable. Good engineering practice suggests that it makes perfect sense to
pretend that even in these situations, the context in which each piece of a
computing system must function is unknowable and may be subject to un-
predictable change. Pretending that the environment is unknowable is tanta-
mount to assuming that every component/subsystem interacts with the real
world. It leads to a “defensive” design perspective that yields more robust
components/subsystems which contain fewer implicit assumptions about their
environment and can therefore be reused in a wider variety of contexts. But,
what sorts of models can one use to actually construct systems, exploiting
interaction as a computing paradigm?

Of course, interactive systems consist of concurrent parts, and it is only
natural that people resort to the wealth of knowledge, models, languages,
and tools that have emerged over decades of experience with concurrency,
in construction of interactive computing systems. However, one should not
misconstrue the lack of better tools and familiarity of existing ones as evidence
for their adequacy. The fact that we currently apply languages and tools
based on various concurrent object oriented models, the actor model, and
various process algebras, etc., simply means that they comprise the best in
our available arsenal, but it does not mean that they necessarily embody the
most appropriate models for tackling interaction in practice. Even for no
reason other than to properly evaluate the adequacy of our existing tools, we
need to cast them aside, if only temporarily, and address, with a fresh mind, a
few fundamental questions regarding the hallmark properties of constructive
models of interaction. After all, if interaction identifies a distinctive shift
within (or out of) concurrency, of a magnitude deserving recognition as a
new paradigm, then it surely must have at least some non-trivial practical
implications on what characterizes a suitable model or tool for construction
of systems exploiting that distinction.

The most striking hallmark of interaction is that it is a phenomenon that
involves two or more actors. This is in contrast to action, which is what
a single actor manifests. A model of interaction must allow us to directly
specify, represent, construct, compose, decompose, analyze, and reason about
that which transpires among two or more engaged actors, without the necessity
to be specific about their actions. Only then can we have an explicit model
of an interaction (protocol) and directly study its properties independently of
the details of its engaged actors.

The actor model and various concurrent object oriented models tackle
concurrency by focusing on construction of things that interact, not on inter-
action. The actors (or agents, objects, etc.) in these models constitute the
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primary concern. By explicitly performing actions such as sending or receiv-
ing a message or invoking a remote method, these actors collectively fulfill
their tacit obligations under an implicit interaction protocol. These models
have no means to express an interaction protocol explicitly as a tangible piece
of specification or code. Instead, an interaction can be derived only by con-
sidering and inferring the possible combinations of the actions of all involved
actors together. Significant properties of interactions in these models, e.g.,
rendezvous, synchronous, or various forms of asynchronous communication,
are often fixed by the model itself and cannot be altered. Where such a model
allows a choice, it is only the interacting parties that can choose from the
alternatives. For instance, the target of a message is determined by its sender;
what the receiver must do is indicated by the sender (i.e., which method is
invoked), but determined by the receiver; if the model allows a choice on syn-
chronization, then the actions of the interacting parties determine which form
is used; etc. All this means that given a set of actors, their interaction is fixed;
the same actors cannot be composed in a different interaction; an interaction
protocol is neither tangible nor explicit; it cannot be specified, studied, or
reused independently of its actors; and the only way to change an interaction
is by modifying the actions of its involved actors.

Making interaction explicit in construction of a computing system allows
building a system by choosing (1) an explicit interaction protocol, (2) a com-
patible set of actors, and (3) composing them. Models based on process al-
gebras are (somewhat) better suited for this purpose. In the m-calculus, for
instance, communication is not targeted. This allows a third-party process to
pick and compose two other processes in a variety of ways, thus influencing
the protocol by which they interact. Nevertheless, process algebras are models
for constructing processes out of a set of atomic ones, which represent primi-
tive actions. They offer operators for composing (atomic) processes into more
complex ones. Interaction and communication protocols ensue only as ancil-
lary consequences of the unfolding of the collective behavior of the processes
involved in a concurrent system and have no explicit constructs to directly
express them. The compositionality offered by process algebras convolutes
composed interaction protocols: to learn how a process r that is a parallel
composition of processes p and ¢ interacts with its environment, one must
unravel the actions of p and ¢ and consider all of their possible combinations.

Constructive models in the paradigm of interactive computing must offer
(1) primitive interactions; and (2) rules of composition for combining (primi-
tive) interactions into more complex interactions, without the need to specify
(the actions of) the actors involved. The necessity to explicitly specify an
interaction (i.e., what) independently of the actions that its engaged actors
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perform to manifest it (i.e., how) confers a relational constraint programming
style upon such a model: an interaction is an explicit relation that holds among
a set of actors and constrains every individual to coordinate their collective
behavior, shaping a coherent whole. Such explicitly specified constraints can
be composed together in various ways to yield more complex constraints (i.e.,
interaction protocols), without the need to specify the action sequences of any
actors.

Reo [2,5] serves as a good example of a constructive model of interaction.
It offers a channel-based exogenous coordination model wherein complex co-
ordinators, called connectors are compositionally built out of simpler ones.
The simplest connectors in Reo are a set of channels with well-defined behav-
ior supplied by users. Connectors orchestrate the behavior of their engaged
actors. Each connector in Reo imposes a specific coordination pattern on its
engaged actors, who without knowing anything about their interaction, merely
perform I/O operations through that connector.

In fact, every channel in Reo specifies a relational constraint that must
hold between the I/O actions performed on its two ends, without saying any-
thing about those actions or who performs them. These constraints specify
the relative timing (i.e., synchrony/asynchrony) of (the success of) the I/0O
actions, and the desired data dependencies between them (e.g., buffering, or-
dering, selection, conversion, filtering, loss, and/or expiration of data). Reo’s
compositional operators indeed compose such relations to produce the more
complex constraints that constitute the behavior of their resulting connec-
tors. As an explicit, tangible piece of specification or program code, the same
connector can be employed to engage entirely different sets of actors to yield
entirely different systems. Perhaps more interestingly, the same set of actors
can be composed together with different connectors, producing systems with
very different emergent behavior. Abstract Behavior Types [3] and Constraint
Automata [4] show how Reo’s notion of behavior (of channels, connectors, and
actors) can be formalized to reason about connectors and their composition.

Whereas process algebras explicitly compose and construct processes mak-
ing the interaction relations amongst them implicit, Reo explicitly composes
and constructs interaction relations and makes processes that engage in those
relations implicit. Reo’s liberal notion of channels and its fundamental no-
tion of channel/connector composition allow, among other things, explicit
construction of connectors that specify interaction protocols involving an ex-
pressive mix of synchrony and asynchrony.

Our tools not only influence how we solve problems, they also change our
very notion of those problems. A constructive model of computing that uses
interaction as a first-class primitive building block espouses the perspective of
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discovering the inter-dependencies among the principal actors in a computing
problem, and directly specifying the relations that constrain their communi-
cation. System construction then becomes composing an explicit skeleton of
interaction with component actors whose communication this skeleton coor-
dinates.

3 The Turing Thesis Myth

The fields of the theory of computation and concurrency theory have histor-
ically had different concerns. The theory of computation views computation
as a closed-box transformation of inputs to outputs, completely captured by
Turing machines (TMs). By contrast, concurrency theory focuses on the com-
munication aspect of computing systems, which is not captured by Turing
machines — referring both to the communication between computing compo-
nents in a system, and the communication between the computing system and
its environment. As a result of this division of labor, there has been little in
common between these fields.

According to the interactive view of computation, communication (in-
put/output) happens during the computation, not before or after it. This
approach, distinct from either concurrency theory or the theory of compu-
tation, represents a paradigm shift that changes our understanding of what
computation is and how it is modeled [31]. Interaction machines extend Tur-
ing machines with interaction to capture the behavior of concurrent systems,
promising to bridge these two fields.

The idea that Turing machines do not capture all computation, and that
interaction machines are more expressive, seems to fly in the face of accepted
dogma, hindering its acceptance within the theory community. In particu-
lar, the Church-Turing thesis is commonly interpreted to imply that Turing
machines model all computation. It is a myth that this interpretation of the
thesis is equivalent to the original [12]. In fact, the original Church-Turing
thesis only refers to the computation of functions, and specifically excludes
interactive computation.

It is time to recognize that today’s computing applications, such as web
services, intelligent agents, operating systems, and graphical user interfaces,
cannot be modeled by Turing machines; alternative models are needed. Only
by facing the fact that the applicability of the Church-Turing Thesis is limited
to functions, whereas the general notion of computation is not, can we begin
to properly investigate these alternative models.

One such model is Persistent Turing Machines (PTMs), originally formal-
ized in [11]. PTMs capture sequential interaction, which is a limited form
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of concurrency; they allow us to formulate the Sequential Interaction Thesis,
going beyond the expressiveness of Turing machines and of the Church-Turing
thesis.

3.1  The interactive paradigm

The question “what do operating systems compute?’ has been a conundrum
for the theoretical community, since they never terminate, and therefore never
formally produce an output. Yet it is clear that they do compute, and that
their computation is both useful and important to capture formally. The
computation performed by operating systems is interactive, where input and
output happen during the computation, not before or after it.

We suggest that computation is to be viewed as an ongoing transforma-
tion of inputs to outputs — e.g., operating systems, or control systems. This
interactive approach, distinct from either concurrency theory or the theory of
computation, represents a paradigm change to our understanding of what is
computation, and how it should be modeled. This conceptualization of com-
putation allows, for example, the entanglement of inputs and outputs; later
inputs to the computation may depend on earlier outputs. Such entanglement
is impossible in with the traditional formalization of computation, where all
inputs precede computation, and all outputs follow it.

The example of driving home from work [10] represents an empirical proof
of the claim that interactive computation is more expressive than function-
based computation, i.e. it can solve a greater range of problems. While the
Church-Turing Thesis remains true, the mathematical worldview, defining all
computational problems as closed-box transformations of predefined input to
finite output, no longer reflects the nature of computational problems. Driving
home from work, queuing jobs within an operating system, or controlling
factory equipment, are all legitimate problems on par with finding common
factors or choosing the next move on a given chess board.

3.2 Algorithm as a culprit

The current prevalent misunderstanding of the nature of computation, as ex-
pressed by the Church-Turing thesis, can be blamed on the 1960’s decision by
theorists and educators to place algorithms at the center of the new discipline
of computer science (CS). The central role of algorithms in CS was prescribed
by the ACM curriculum [8], and clearly reflected in early undergraduate text-
books. However, various textbooks chose to define this term differently.
While some textbooks such as [16] were careful to explicitly restrict al-
gorithms to those that compute functions, and are therefore TM-equivalent,



P. Wegner et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 181-198 189

most theory books left the restriction unstated (though implied). Yet other
early textbooks, usually those in non-theoretic fields, such as [23], explicitly
broadened the notion of algorithms to include problems beyond those that can
be solved by TMs. Two of their examples, that can supposedly be solved by
an algorithm, are making potato vodka and filling a ditch with sand; driving
home from work would fit right in, too.

A recent ACM SIGACT Newsletter acknowledges that of all undergrad-
uate CS subjects, theoretical computer science has changed the least over
the decades [26]. While the practical computer scientists have long since
followed the lead of [23] and broadened the concept of algorithms beyond
the computation of functions®, theoretical computer science has retained the
mathematical worldview that frames computation as function-based, and de-
limits our notion of a computational problem accordingly. This is true at least
at the undergraduate level, despite advanced complexity theoretic work that
ventures outside this worldview, such as on-line and distributed algorithms,
Arthur-Merlin games, and interactive proofs.

The result of such inconsistent use of the term “algorithm” is a dichotomy,
where the computer science community thinks of algorithms as synonymous
with the general notion of computation (“what computers do”) yet at the
same time as being equivalent to Turing machines. This dichotomy expresses
iteself in the incorrect interpretation of the Church-Turing thesis that is com-
monplace in the computing literature:

“A TM can do anything that a computer can do.”

We refer to the common belief in the equivalence of this interpretation to the
original thesis as the Turing Thesis myth.

3.3  Time for new models

The history of extending TMs is at least as old as the theory of computation.
All TM extensions that can be found in theory textbooks, such as increasing
the number of tapes or changing the alphabet, are algorithmic. In the case of
algorithmic extensions, the Church-Turing thesis applies, and it can be taken
for granted that the new model is equivalent to the original. However, as a
result of the Turing Thesis myth, it is common to assume the equivalence of
any TM extension to the original, and we no longer expect formal proofs of
this.

To capture the contemporary interactive use of computers, the more re-
cent TM extensions have tended to be non-algorithmic, with computation that

I Sometimes this was accomplished by revising the term “function” itself, as in imperative
languages, where functions may have side effects, etc.
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spans multiple inputs and outputs to the underlying TM. Nowadays we con-
sider non-terminating interactive computations of Turing machines, persistent
Turing machines, nets of Turing machines, Turing machines with evolvable
architecture, etc., exactly for reasons of capturing “all computers”, or “all
computations”. Indeed, the recent proliferation of such models can be viewed
as a paradigm shift in the field of models of computation.

Out of habit, researchers have continued to assume that these extensions
are equivalent to the original TM. But in the case of such non-algorithmic
extensions, Turing’s thesis does not apply, and equivalence can no longer be
taken for granted. Indeed, it no longer holds, as discussed next.

3.4  Modeling interactive computation

Wegner [31,32] has conjectured that interactive models of computation are
more expressive than “algorithmic” ones such as Turing machines. It would
therefore be interesting to see what minimal extensions are necessary to Turing
machines to capture the salient aspects of interactive computing. Motivated
by these goals, [11] has investigated a new way of interpreting Turing-machine
computation, one that is both interactive and persistent — persistent Turing
machines (PTMs).

A PTM is a nondeterministic 3-tape Turing machine (N3TM) with a read-
only input tape, a read /write work tape, and a write-only output tape. Upon
receiving an input token from its environment on its input tape, a PTM com-
putes for a while and then outputs the result to the environment on its output
tape, and this process is repeated forever. A PTM computes concurrently
with its environment, both acting as consumers of each other’s outputs and
producers of each other’s inputs.

In addition to having dynamic stream semantics, PTM computations are
persistent in the sense that a notion of “memory” (work-tape contents) is
maintained from one computation step to the next, where each PTM compu-
tation step represents an N3TM computation. The notions of interaction and
persistence in PTMs are formalized in terms of the persistent stream language
(PSL) of a PTM. Given a PTM, its persistent stream language is the set of in-
finite sequences (interaction streams) of pairs of the form (w;, w,) representing
the input and output strings of a single PTM computation step. Persistent
stream languages induce a natural, stream-based notion of equivalence for
PTMs.

The notion of a wuniversal PTM is also defined in [11]. Similarly to a
universal Turing machine, a universal PTM can simulate the behavior of an

arbitrary PTM. The class of sequential interactive computations is also intro-
duced:
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Sequential Interactive Computation: A sequential interactive compu-
tation continuously interacts with its environment by alternately accepting
an input string and computing a corresponding output string. Each output-
string computation may be both nondeterministic and history-dependent,
with the resultant output string depending not only on the current input
string, but also on all previous input strings.

Examples of sequential interaction include sequential JAVA objects, static C
routines, single-user databases, network protocols, and our original example
of driving home from work.

A sequential interactive analogue to the Turing Thesis is provided:

Sequential Interaction Thesis: Any sequential interactive computation
can be performed by a persistent Turing machine.

This hypothesis, when combined with other results in the paper, implies that
the class of sequential interactive computations is more expressive than the
class of algorithmic computations, and thus is capable of solving a wider range
of problems — proving Wegner’s conjecture.

It has been also conjectured [32] that multi-agent interaction is more ex-
pressive than sequential, or single-agent interaction. These conjectures remain
to be proven.

3.5 Conclusion

Hoare, Milner and others have long realized that TMs do not model all of
computation [34]. However, when their theory of concurrent computation was
first developed in the late "70s, it was premature to openly challenge TMs as
a complete model of computation. Concurrency theory positions interaction
as orthogonal to computation, rather than a part of it. By separating inter-
action from computation, the question whether the models for CCS and the
m-calculus went beyond Turing machines and algorithms was avoided.

Researchers in other areas of theoretical computer science have also found
need for interactive models of computation, such as Input/Output automata
for distributed algorithms [20] and Interactive TMs for interactive proofs [13].
However, the issue of the expressiveness of interactive models vis-a-vis TMs
was not raised until the mid-1990’s, when the model of interaction machines
as a more expressive extension of TMs was first proposed by one of the au-
thors [31].

While not part of CS Theory, the field of Al has perhaps gone the fur-
thest in explicitly recognizing the expressiveness gains of moving beyond al-
gorithms. In the early 1990’s, Rodney Brooks convincingly argued against
the algorithmic approach of “good old-fashioned AI”, positioning interaction
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is a prerequisite for intelligent system behavior [9]. This argument has been
adopted by the mainstream Al community, whose leading textbooks recognize
that interactive agents are a better model of intelligent behaviors than simple
input/output functions [24].

In the last three decades, computing technology has shifted from main-
frames and microstations to networked embedded and mobile devices, with
the corresponding shift in applications from number crunching and data pro-
cessing to the Internet and ubiquitous computing. We believe it is no longer
premature to encompass interaction as part of computation. A paradigm shift
is necessary in our notion of computational problem solving so it can better
model the services provided by today’s computing technology.

4 Agents and Interaction

As the computing landscape moves from a focus on the individual stand-
alone computer system to a situation in which the real power of computers
is realized through distributed, open and dynamic systems, we are faced with
new technological challenges and new opportunities. In this section, I focus
on interactive systems in dynamic and open environments.

The characteristics of dynamic and open environments in which, for ex-
ample, heterogeneous systems must interact, span organizational boundaries.
These systems must operate effectively within rapidly-changing circumstances
and with dramatically increasing quantities of available information, suggest-
ing that a revision of traditional computing models and paradigms is required.
In particular, the need for some degree of autonomy, to enable intelligent com-
ponents to respond dynamically to changing circumstances while trying to
achieve over-arching objectives, is seen by many as fundamental.

While this notion is not intended to suggest an absence of control, some
application contexts offer no alternative to autonomous software. In practical
developments, Web Services, for example, now offer fundamentally new ways
of doing business through a set of standardized tools, and support a service-
oriented view of distinct and independent software components interacting to
provide valued functionality. In the context of such developments, agent tech-
nologies have become the primary weapons in the arsenal aimed at addressing
the emergent problems, and managing the inherent complexity.

Agent-based systems are one of the most vibrant and important areas of
research and development to have emerged in information technology in the
1990s. Put at its simplest, an agent is a computer system that is capable of
flexible autonomous action in dynamic, unpredictable, typically multi-agent
domains. Many observers believe that agents represent the most important



P. Wegner et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 181-198 193

new paradigm for software development since object-orientation. The con-
cept of an agent has found currency in a diverse range of sub-disciplines
of information technology, including computer networks, software engineer-
ing, object-oriented programming, artificial intelligence, human-computer in-
teraction, distributed and concurrent systems, mobile systems, telematics,
computer-supported cooperative work, control systems, mining, decision sup-
port, information retrieval and management, and electronic commerce. Be-
cause of the horizontal nature of agent technology, it is likely that the success-
ful adoption of agent technology in these areas will have a profound, long-term
impact both on the competitiveness and viability of I'T industries, and also on
the way in which future computer systems will be conceptualized and imple-
mented [18].

What is an agent? Agents can be defined to be autonomous, problem-
solving computational entities capable of effective operation in dynamic and
open environments [35]. Agents are often deployed in environments in which
they interact, and maybe cooperate, with other agents (including both peo-
ple and software) that have possibly-conflicting aims. Such environments are
known as multi-agent systems. Agents can be distinguished from objects (in
the sense of object-oriented software) in that they are autonomous entities ca-
pable of exercising choice over their actions and interactions. Agents cannot,
therefore, be directly invoked like objects. However, they may be constructed
using object technology. These notions find application in computer systems
relation to several distinct aspects, considered below.

Agents as a design metaphor: Agents provide software system de-
signers and developers with a way of structuring an application around au-
tonomous, communicative elements, and they lead to the construction of soft-
ware tools and infrastructure to support the design metaphor. In this sense,
they offer a new and often more appropriate route to the development of com-
plex systems, especially in open and dynamic environments [15]. In order to
support this view of systems development, particular tools and techniques need
to be introduced. For example, methodologies to guide analysis and design
are required; agent architectures are needed for the design of individual com-
ponents, and supporting infrastructure (including more general technologies,
such as Web Services) must be integrated.

Agents as a source of technologies: Agent technologies span a range
of specific techniques and algorithms for dealing with interactions with others
in dynamic and open environments. These include issues such as balancing
reaction and deliberation in individual agent architectures, learning from and
about other agents in the environment and user preferences, finding ways to
negotiate and cooperate with agents and developing appropriate means of
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forming and managing coalitions. Moreover, the adoption of agent-based ap-
proaches is increasingly influential in other domains. For example, multi-agent
systems can provide faster and more effective methods of resource allocation
in complex environments, such as the management of utility networks or lo-
gistics scheduling, than any human-centered approach. Similarly, the use of
agent systems to simulate real-world domains may provide answers to complex
physical or social problems which would be otherwise unobtainable, as in the
modeling of the impacts of climate change on various biological populations,
or modeling the impact of public policy options on social or economic behav-
ior. Agents offer a new and often more appropriate route to the development
of complex systems, especially in open and dynamic environments.
Further reading on the ideas of this section can be found in [17,19,36].

5 Interactive Cooperation

Interaction is a key problem in designing large scale systems that depend
on shared knowledge (and semantics) in order to support large communities
of people with complex activities and goals. Examples of such systems (all
currently in their inception) are semantic web systems, some forms of com-
putational grids and large multi-agent systems. Despite the scale of these
systems (or perhaps because it) many fundamental problems of interaction
remain unresolved. Let us consider seven of these below, with the aid of an
abstract, idealised, conceptual model that covers this class of system.

Figure 1 describes the simplest conceptual model I can imagine that can
apply. Each component is a process (in the sense of a computation of some
sort running on a CPU of some machine) that interacts with its local envi-
ronment and for which there is a specification of its competence. Processes
also have goals: either generated automatically or injected into the system via
interaction with humans or other real-world systems. A competence specifi-
cation is assumed to be some (partial) description of what the process can do,
expressed in a standard formal language. Processes are coordinated via an
interaction model that may interact with the processes directly or with their
specifications. There may be an interaction between local environments as a
consequence of other processes not constrained by an interaction model.

To see how this abstract model applies to one of the concrete applica-
tion domains, we translate it into the more specific architecture for that do-
main. For example, we can relate it to OWL-S, one of the standard semantic
web service specification languages. Translating this conceptual model to an
OWL-S view of semantic web services: a specification is the OWL-S service
model (describing the outputs of the process conditional on certain inputs);
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Specification Specification
Interaction
Process model > Process
Environment f[<-------------- > Environment

Fig. 1. Conceptual model of process interaction

a process provides the means of enacting that service (via its grounding in
a communication language appropriate to the messaging infrastructure); and
the interaction model is the OWL-S process model (describing the hierarchical
decomposition of processes required to satisfy the specification).

Using the model of Figure 1 as a frame of reference, we can now raise
seven questions that stem from vulnerabilities of the model applied in prac-
tice. Much of the activity in designing large scale, distributed, systems of
the kind described above is stimulated by the search for partial solutions and
workarounds for these problems.

The ontology matching problem : Although we assume (for simplicity)
a uniform logic, engineers of services will have expressed their ideas in dif-
ferent ways using this logic. We may have a goal and an interaction model
result that correspond conceptually but are expressed using different syntax.
Conversely, we may have a goal and interaction model result that match but
were used to describe different concepts. How can we avoid or detect such
situations?

The social norm problem : Our idealised model assumes that models of
interaction exist that are appropriate for anticipated goals of the processes
in our system. How are these models of interaction determined and how do
we now that they describe appropriate social norms?

The coalition formation problem : When we enlist the assistance of some
group of processes to interact in some specific way, how do we know we have
just those that are essential to the interaction?

The happy ending problem : When a process starts to interact with oth-
ers using some anticipated model of interaction, how do we ensure that
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this culminates in obtaining the goal sought by that process through the
interaction?

The common knowledge problem : As processes participate in an inter-
action we require that the knowledge they use to support the interaction
remains consistent throughout. It is known to be impossible, in theory, to
guarantee this if the processes are asynchronous and if messages between
processes may be lost. How do we avoid this theoretical worst case?

The environment scope problem : When a process is participating in an
interaction with others it may need to draw on information from its envi-
ronment. The issue then is how far to explore this environment in order to
ensure its information is accurate, particularly if the environment is noisy,
uncertain or loosely bounded. How do we ensure that the environment
yields information in the right form and of the right quality?

The environmental evolution problem : Interactions take time and dur-
ing this time the environments of the processes involved may change. It
is possible that environmental knowledge which was consistently used by a
process at one time during an interaction becomes inconsistent later as the
environment alters. How do we avoid the problem of shift in environmental
conditions while providing a service?

There are, of course, many views that can be taken of a complex problem
and we have explored here only one view. Nevertheless, it is striking how many
of these these problems must be viewed as essentially interaction problems,
rather than being solved purely through knowledge representation or inference
standardisation. It also is interesting historically to observe how few of them
are confined to one of the “sub-disciplines” of computing science. Perhaps
this is a consequence of the pragmatism required to produce partial solutions
to problems that, by their nature, we can control but not domesticate.
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