
A Note on Logic Programming Fixed-Point Semantics

Vladimiro Sassone

Dipartimento di Informatica – Università di Pisa
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Abstract

In this paper, we present an account of classical Logic Programming fixed-point semantics
in terms of two standard categorical constructions in which the least Herbrand model is
characterized by properties of universality.

In particular, we show that, given a program P , the category of models of P is reflective in
the category of interpretations for P . In addition, we show that the immediate consequence
operator gives rise to an endofunctor TP on the category of Herbrand interpretations for
P such that category of algebras for TP is the category of Herbrand models of P .

As consequences, we have that the least Herbrand model of P is the least fixed-point of TP
and is the reflection of the empty Herbrand interpretation.

Introduction

Logic Programming, arisen in the early seventies from the work on automatic theorem proving,
is a very simple formalism based on the rigorous mathematical framework of first-order theories.
The revolutionary idea introduced in Kowalski’s work [13] is that logic has a computational
interpretation and, therefore, logic can be used as a programming language.

Generally speaking, following [17], a logic system is a formal system consisting of the set of
sentences over a certain alphabet equipped with an entailment relation—informally speaking
a proof system capable to “calculate” consequences of sets of sentences—and a satisfaction
relation related by a condition of soundness, but not necessarily of completeness, of entailment
with respect to satisfaction. From the Logic Programming point of view, any such system is a
programming language whose operational semantics is given by the entailment relation.

The classical theory of Logic Programming is devoted to the study of the fragment of first-
order logic consisting of Horn clauses. Although Horn clauses reduce the expressive power
of first-order logic, the choice of such a fragment presents some advantages both from the
computational and from the model theoretic point of view. In fact, on one hand it has a
simple, efficient goal-oriented deduction system (SLD-resolution) while on the other hand it is
the largest fragment of first-order logic such that every set of formulas (program) admits an
initial model, i.e., a model in which the facts entailed by the program are true and everything
else is false. Moreover, Horn clauses have a nice computational interpretation as function calls
in functional programming.

The latter fact led to the development of a functional (or fixed-point) semantics for logic
programs with which we are concerned in this note and that we recall in Section 1.



In recent years, algebraic ([10, 11]) and categorical ([2, 3, 8, 17]) methods have been ap-
plied in the study of logic programs. The work here lies between these approaches in the sense
that we follow the algebraic style of Goguen and Meseguer and study how well-known cate-
gorical constructions relate to standard logic programs fixed-point semantics. Doing that, we
invariantly find the least Herbrand model as a distinguished element in those constructions.

Among the most studied categorical constructions, there are adjunctions and algebras for
endofunctors ([12, 15, 4, 5]).

Algebras for endofunctors are a translation to the categorical language and generalization
to arbitrary categories of the classical notion of algebra built over a set of elements, where the
role of the signature is played by functors. Equipped with a sensible notion of morphism, the
algebras for a given endofunctor T form a category which provides the mechanism to define
the concepts of fixed-point and least fixed-point for T .

In Section 2.1, we show that, fixed a program P , the immediate consequence operator can
be lifted to an endofunctor TP on the category of Herbrand interpretations, in such a way that
the category of algebras for such a functor is exactly the category of Herbrand models of P .
Moreover, we show that the least Herbrand model of P is the least fixed-point of TP .

Universal and free constructions appear everywhere in Mathematics and Computer Science
and the relevance of adjunctions follows exactly from the fact that they elegantly describe such
situations. Particular forms of adjunctions are the reflections. Very informally, a reflection of a
category B to a subcategory A guarantees the existence of a canonical representative in A for
each object in B. In Section 2.2, we show that the category of models of a program is reflective
in the category of interpretations for that program and that the least Herbrand model is the
reflection of the empty Herbrand interpretation.

1 Fixed-Point Semantics for Logic Programs

In this section, we briefly recall the basic definitions and results of fixed-point semantics for
logic programs ([1, 14, 16], among the others) in the algebraic style of [10, 11].

1.1 Logic Programs

Syntactically, logic programs are terms of languages in which at least two different kinds of en-
tities can be recognized: operators (or constructors) and predicates. Such a nature is faithfully
taken into account by signatures with predicates.

Definition 1.1 (Signatures with Predicates)
A (one-sorted) signature with predicates is a pair 〈Σ, Π〉 where Σ and Π are disjoint families
of disjoint sets of, respectively, symbols for operations {Σn |n ∈ N} and symbols for predicates
{Πn |n ∈ N}. Σn and Πn contain the symbols of arity n. X

Given a signature 〈Σ, Π〉 and a set of symbols for variables X, that without loss of generality
we will suppose disjoint from any Σi, terms built up from constructors and variables represent
individuals to whom predicates may be applied.



Definition 1.2 (Terms)
The set TΣ,Π(X) of terms with variables X on the signature 〈Σ, Π〉 is the smallest set such
that:

(i) Σ0 ∪X ⊆ TΣ,Π(X);

(ii) ∀t1, . . . , tn ∈ TΣ,Π(X) and ∀σ ∈ Σn, σ(t1, . . . , tn) ∈ TΣ,Π(X) X

Definition 1.3 (Atoms)
The set of atoms with variables X on (Σ, Π) is the set of formulas

BΣ,Π(X) =
{

ρ(t1, . . . , tn)
∣∣∣ ρ ∈ Πn and t1, . . . , tn ∈ TΣ,Π(X)

}
.

X

Given B ⊆ BΣ,Π(X), we will denote by [[B]]ρ the set
{

(t1, . . . , tn)
∣∣∣ ρ(t1, . . . , tn) ∈ B

}
.

When the set of variables is the empty, the previous constructions give the set of ground
terms TΣ,Π(∅), denoted by TΣ,Π and called Herbrand universe for 〈Σ, Π〉, and the set of ground
atoms BΣ,Π(∅), denoted by BΣ,Π and called Herbrand base for 〈Σ, Π〉.

Definition 1.4 (Horn Clauses, Goals and Programs)
Fixed a signature (Σ, Π) and a set of variables X, definite clauses, goals or queries and definite
programs on (Σ, Π) with variables X are, respectively, formulas of the type A ← B1, . . . , Bn,
formulas of the type ← B1, . . . , Bn, where A, B1, . . . , Bn are atoms in BΣ,Π(X), and sets of
definite clauses. X

1.2 Interpretations

In the previous section, we have defined in a purely syntactic way what a logic program is. The
first thing we need to start talking about semantics is an interpretation for the symbols which
constitute the program. We will identify interpretations with the category of the algebras ([6, 7],
for an excellent survey see [9]) whose signature is program’s one. Let us begin by recalling the
basic definitions of Category Theory ([15, 5]).

Definition 1.5 (Graphs)
A graph is a structure (dom, cod: A→ O), where A and O are classes1 of, respectively, arrows
and objects, and dom and cod are functions which associate to each arrow, respectively, a
domain and a codomain. X

Given a graph G, the class of its composable arrows is

A×O A =
{
〈g, f〉

∣∣∣ g, f ∈ A and dom(g) = cod(f)
}

.

A category is a graph where each object has an identity arrow and arrows are closed under a
given operation of composition.

1We shall not worry about foundational problems. We suppose to be working in a given Grothendieck
universe.
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Figure 1: (Σ, Π)-homomorphisms

Definition 1.6 (Categories)
A category C is a graph together with two additional functions

id: O → A and ◦: A×O A→ A,

called, respectively, identity and composition, such that

∀A ∈ O, cod
(
id(A)

)
= A = dom

(
id(A)

)
,

∀〈g, f〉 ∈ A×O A, cod
(
g ◦ f

)
= cod(g) and dom

(
g ◦ f

)
= dom(f).

Moreover, ◦ is associative and for all f ∈ A, given A = dom(f) and B = cod(f), we have
f ◦ id(A) = f = id(B) ◦ f . X

Usually, the arrows of a category, also called morphisms, are denoted by f :A → B, where
A = dom(f) and B = cod(f) and identities by idA. The class of arrows f :A → B in C is
indicated as C[A,B]. Moreover, in dealing with a category C the actual classes A and O are
never mentioned: we write A ∈ C for objects and f in C for arrows.

A subcategory B of C is a category whose classes of objects and arrows are contained in the
respective classes of C; B is full when for each A,B ∈ B we have B[A,B] = C[A,B].

Definition 1.7 (AlgΣ,Π)
A (Σ, Π)-algebra A consists of

(i) a set A, called carrier of the algebra and denoted by |A|;
(ii) for each n ∈ N and σ ∈ Σn an operation σA: An → A;

(iii) for each n ∈ N and ρ ∈ Πn a predicate ρA ⊆ An.

A (Σ, Π)-homomorphism between the (Σ, Π)-algebras A and B is a function φ: |A| → |B| which
respects operations and predicates (see Figure 1), i.e., such that:

(i) for each n ∈ N and σ ∈ Σn, φ
(
σA(a1, . . . , an)

)
= σB

(
φ(a1), . . . , φ(an)

)
;

(ii) for each n ∈ N and ρ ∈ Πn, φn(ρA) ⊆ ρB,

where φn is the cartesian product of n copies of φ.

This, with the usual notion of composition for homomorphisms, gives the category AlgΣ,Π. X

In order to simplify notation, we will denote φn by φ itself. Moreover, we will use πA to
indicate the set {ρ(e1, . . . , en) | (e1, . . . , en) ∈ ρA, ρ ∈ Π} and we extend the notation [[ ]]ρ to
subsets of πA for A ∈ AlgΣ,Π.
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The set TΣ,Π(X) given in the previous section can be given the structure of a (Σ, Π)-algebra
by defining operations and predicates as follows:

for σ ∈ Σn, σTΣ,Π(X)(t1, . . . , tn) = σ(t1, . . . , tn) and for ρ ∈ Π, ρTΣ,Π(X) = ∅.

The same construction makes TΣ,Π be a (Σ, Π)-algebra. Observe that variables in TΣ,Π(X)
are not considered operations of arity zero, but just elements of the algebra. This allows
(Σ, Π)-homomorphisms to map variables to any element of the target algebras and, therefore,
to capture the notions of substitutions and evaluations.

Proposition 1.8 (TΣ,Π(X) is the Free Algebra on X)
Let A be a (Σ, Π)-algebra. Given an assignment of values in A to the variables in X, i.e.,
a function α: X → A, there exists a unique (Σ, Π)-homomorphism α◦: TΣ,Π(X) → A which
extends α (see Figure 2), i.e., such that (α◦)|X = α. X

The (Σ, Π)-homomorphisms obtained as liftings of assignments are called evaluation. An
assignment θ: X → TΣ,Π(X) and the correspondent θ◦ are what is usually called substitution.

Evaluations can be composed by composing their liftings as homomorphism. For instance,
the composition of θ: X → TΣ,Π(X) and α: X → A gives rise to the assignment (α◦ ◦ θ◦)|X =
α◦ ◦ θ: X → A, as can be seen in Figure 3. In the following, with abuse of notation, we will
forget any difference between α and α◦. We will write αt to denote the evaluation of t under
the assignment α, i.e., α◦(t). Moreover, composition of evaluations will be denoted by left
juxtaposition. Therefore, for instance, we will write αθ(t1, . . . , tn) for(

α◦ ◦ θ◦(t1), . . . , α
◦ ◦ θ◦(tn)

)
=

(
(α◦ ◦ θ)◦(t1), . . . , (α

◦ ◦ θ)◦(tn)
)
.



We need a formal definition to establish whether a formula holds under an interpretation
A. This is the purpose of the next definition, in which A denotes a (Σ, Π)-algebra, α a generic
assignment TΣ,Π(X)→ A, A, B1, . . . , Bn are atoms, C ranges over clauses and P over programs.

Definition 1.9 (Satisfaction Relation)
The satisfaction relation |= between (Σ, Π)-algebras, and clauses, programs and goals is the
smallest relation such that:

A |=α ρ(t1, . . . , tn) if and only if (αt1, . . . , αtn) ∈ ρA;

A |=α B1, . . . , Bn if and only if A |=α Bi for i = 1, . . . , n;

A |=α A← B1, . . . , Bn if and only if A |=α B1, . . . , Bn ⇒ A |=α A;

A |= A← B1, . . . , Bn if and only if A |=α A← B1, . . . , Bn for each α;

A |= P if and only if A |= C for each C ∈ P ;

A |= ← B1, . . . , Bn if and only if A |=α B1, . . . , Bn for some α. X

Models are those interpretations under which the logical implications specified by the clauses
in the program are all realized. Some of the facts holding in a model of P will be logical
consequences of the program, while other will just depend on the nature of the particular
model. Hence, the consequences of a program, i.e., its semantics, are defined to be the set of
facts which hold under every model of P . That is formally stated in the next definitions.

Definition 1.10 (Models of Programs)
The category of the models of a program P , denoted by Mod(P ), is the full subcategory of
AlgΣ,Π consisting of those algebras which satisfy P , i.e., the algebras M such that M |= P . X

Definition 1.11 (Logical Consequences)
An atom A is a logical consequence of a program P , written P |= A, if and only ifM |= A for
any M∈ Mod(P ). X

1.3 Fixed-Point Semantics

Classical Logic Programming theory is concerned with the study of different characterizations
of the set of logical consequences of programs. One of the classical approaches is the so-called
fixed-point semantics, in which such a set is constructed as least fixed-point of a endofunction
on the set of subsets of ground atoms. In this section we recall this approach.

Definition 1.12 (Consequence Operators)
Given a program P , the family of the immediate consequence operators is

TP =
{

TA: 2πA → 2πA | A ∈ AlgΣ,Π

}
,

where TA is the function which maps B ⊆ πA to the set{
ρ(θt1, . . . , θtn)

∣∣∣ θ: X → A, ρi(θti1, . . . , θt
i
ni

) ∈ B, i = 1, . . . , k,

ρ(t1, . . . , tn)← ρ(t11, . . . , t
1
n1

), . . . , ρ(tk1, . . . , t
k
nk

) ∈ P
}
∪B.

Since
⋃

n Tn
A(B) exists for each B ⊆ πA, where Tn

A(B) denotes n nested applications of TA to
B and

⋃
is the union of sets, we can define the function Tω

A which maps B to
⋃

n Tn
A(B) and

the family of consequence operators Tω
P =

{
Tω
A

∣∣∣ A ∈ AlgΣ,Π

}
. X



Models built from term algebras are called Herbrand models. The following is a well-known
fact about Herbrand models which does not hold for general models.

Proposition 1.13 (Characterization of Herbrand Models)
A term algebra A is a model of P if and only if TA(πA) ⊆ πA. X

Definition 1.14 (Least Herbrand Model)
The least Herbrand model of a program P is the algebra TΣ,Π,P obtained from TΣ,Π by enforcing
(t1, . . . , tn) ∈ ρTΣ,Π,P

if and only if ρ(t1, . . . , tn) ∈ Tω
TΣ,Π

(∅). X

The least Herbrand model is the most relevant model in that it completely characterizes
the semantics of a program: the facts true in TΣ,Π,P are exactly the consequences of P , i.e.,
the facts true in every model. In this sense the least Herbrand model is universal among the
models P . In the next section, we will see that it is universal also in some precise algebraic
senses. The standard results concerning TΣ,Π,P are listed in the following propositions.

Proposition 1.15 (TΣ,Π,P is Universal)
TΣ,Π,P is a model of P and TΣ,Π,P |= A⇔ P |= A. X

Proposition 1.16 (Herbrand’s Theorem)
TΣ,Π,P |=← B1, . . . , Bn if and only if M |=← B1, . . . , Bn for each M∈Mod(P ). X

2 Categorical Semantics

In this section, we give two categorical characterizations of the least Herbrand model. In
particular, we show that the classical notion of algebraic structure over a category can be applied
to case of Logic Programming getting the category of Herbrand models from the category of
Herbrand interpretations via the standard construction of algebras for endofunctors (see [15,
4, 5]). As a consequence, we find TΣ,Π,P as the least fixed-point of an endofunctor.

Moreover, we show that the category of (general) models is reflective in the category of
interpretations and we find again the least Herbrand model as reflection of the Herbrand inter-
pretation under which no fact holds.

We start by recalling that TΣ,Π,P is the initial object in Mod(P ). For a discussion about
the relevance of concept of initiality see, for instance, [9].

Definition 2.1 (Initiality)
An object = in a category C is initial in C if = belongs to C and for any c ∈ C there exists a
unique morphism from = to c. X

It is worthwhile observing that the initial object in AlgΣ,Π is TΣ,Π, the free algebra over the
empty set of generators.

The universality of the initial object is reflected in the following standard result from Cat-
egory Theory.



Proposition 2.2 (Uniqueness of the Initial Object)
The initial object of a category C, if it exists, is unique up to isomorphisms. X

Proposition 2.3 (Initiality of TΣ,Π,P )
TΣ,Π,P is initial in Mod(P ).

Proof. Since TΣ,Π,P , when we forget about predicates, coincides with the initial (Σ, Π)-
algebra TΣ,Π, given any M ∈ Mod, it exists exactly one function φ from TΣ,Π,P to
M which respects condition (i) of Definition 1.7. From Proposition 1.15, it is immedi-
ate to see that φ respects also condition (ii) and that, therefore, is the unique (Σ, Π)-
homomorphism from TΣ,Π,P toM. X

2.1 TΣ,Π,P as Endofunctor Fixed-Point

Definition 2.4 (Endofunctors)
Given two categories C and D, a functor F :C→ D is a function which maps objects in C to
objects in D and morphisms in C to morphisms in D in such a way that:

(i) F(h):F(A)→ F(B), for each h:A → B in C;

(ii) F(idA) = idF(A);

(iii) F(k ◦ h) = F(k) ◦ F(h).

An endofunctor is a functor from a category to the category itself. X

Given a category C, the function which is the identity both on objects and arrows is clearly
an endofunctor. It will be denoted by 1C. Composition of functors is defined in the obvious
way and denoted by left juxtaposition.

Definition 2.5 (HAlgΣ,Π)
Let HAlgΣ,Π be the full subcategory of AlgΣ,Π consisting of those algebras which are Herbrand
interpretations, i.e., the (Σ, Π)-algebras of terms. X

In the following, we will denote by HMod(P ) the full subcategory of HAlgΣ,Π consisting
of the (Herbrand) models of P .

Now, we can see that the immediate consequence operator TTΣ,Π
gives an endofunctor on

the category of Herbrand interpretations.

Proposition 2.6 (Functor TP )
Given a program P on 〈Σ, Π〉, let us consider the function TP :HAlgΣ,Π → HAlgΣ,Π defined
by:

(i) TP (A) has the same elements of A;

(ii) σTP (A) = σA for each σ ∈ Σ;

(iii) ρTP (A) = [[TTΣ,Π
(πA)]]ρ for each ρ ∈ Π;

(iv) TP is the identity on homomorphisms.

Then TP is an endofunctor.



Proof. Properties (ii) and (iii) in Definition 2.4 obviously hold. In order to show (i),
since h is necessarily the identity,it is enough to show that(

∀ρ ∈ Π, ρA ⊆ ρB

)
⇒

(
∀ρ ∈ Π, ρTP (A) ⊆ ρTP (B)

)
.

Let (t1, . . . , tn) ∈ ρTP (A). Then, there exist (ti1, . . . , t
i
ni

) ∈ ρi
A, i = 1, . . . , k and

ρ(T1, . . . , Tn)← ρ1(T 1
1 , . . . , T 1

n1
), . . . , ρk(T k

1 , . . . , T k
nk

) ∈ P

with θ: X → A such that θTi = ti and θT k
i = tki , i = 1, . . . , k.

Since by hypothesis h(ρi
A) ⊆ ρi

B, we have hθ(T i
1, . . . , T

i
ni

) ∈ ρi
B, i = 1, . . . , k and, therefore,

hθ(T1, . . . , Tn) = (t1, . . . , tn) ∈ ρTP (B). X

Now, let us recall the basic definitions about algebras for endofunctors as stated in [5].

Definition 2.7 ( (T :C))
Given a category C and an endofunctor T :C → C, a T -algebra on C is a pair (A, a), where
A is an object in C and a: T (A)→ A is a morphism in C.

A T -homomorphism φ: (A, a)→ (B, b) is a morphism φ:A → B in C such that φ◦a = b◦T (φ),
i.e., such that the following diagram commutes.

T (A)
a−−−→ A

T (φ)

y yφ

T (B)
b−−−→ B

This defines (T :C), the category of T -algebras on C. X

Definition 2.8 (Fixed-Points)
A fixed-point for T is a T -algebra (A, a) ∈ (T :C) such that a: T (A)→ A is an isomorphism.

X

Hence, a fixed-point for an endofunctor is a T -algebra A such that A ∼= T (A). It is therefore
clear as this represents a generalization of the concept of fixed-point in the categorical language,
where everything is treated up to isomorphisms.

Proposition 2.9 ( lfp(T))
If (T :C) admits an initial object (A, a), then (A, a) is a fixed-point for T .

Proof. If (A, a) is initial, then ∃!φ: (A, a)→ (T (A), T (a)) and idA is the unique morphism
from (A, a) to itself. Then the following diagram commutes.

T (A)
a−−−→ A

T (φ)

y yφ

T 2(A)
T (a)
−−−→ T (A)

T (a)

y y a

T (A)
a−−−→ A



The upper square commutes by definition of morphism in (T :C). Reading the whole
rectangle, we have that a ◦ φ is a T -homomorphism from (A, a) to itself. Therefore,
a ◦ φ = idA and so T (a ◦ φ) = T (a) ◦ T (φ) = idT (A). On the other hand, from the upper
square we have that T (a) ◦ T (φ) = φ ◦ a, from which φ ◦ a = idT (A). Hence φ is an
isomorphism. X

The following definition is now completely natural. The reader can find in [5] some examples
which further justify it.

Definition 2.10 (Least Fixed-Point)
If (T :C) has an initial object, then it is called least fixed-point of T . X

Let us consider now (TP :HAlgΣ,Π). We will show that it has an initial object and that it
coincides with TΣ,Π,P . In other words, the (categorical) fixed-point of TP is the least Herbrand
model of P .

Proposition 2.11 (Herbrand models vs TP -algebras, part 1)
A is an Herbrand model of P if and only if (A, idA) ∈ (TP :HAlgΣ,Π).

Proof. Trivially from Proposition 1.13, since both conditions are equivalent to ρTP (A) ⊆ ρA
for each ρ ∈ Π. X

Proposition 2.12 (Herbrand models vs TP -algebras, part 2)
Let (A, a), (B, b) be in (TP :HAlgΣ,Π). Then φ is a (Σ, Π)-homomorphism from A to B if and
only if it is a TP -homomorphism from (A, a) to (B, b).

Proof. (⇐). Obvious.
(⇒). It is evident that the diagram in Definition 2.7 commutes, because TP (A) and A
are term algebras obtained from TΣ,Π,P , and therefore the unique (Σ, Π)-homomorphism
between them, if any, is the identity on terms. X

Two categories C and D are said isomorphic if there exists a pair of functors F :C→ D and
G:D → C such that GF = 1C and FG = 1D. Clearly, isomorphic categories are essentially
the same.

Corollary 2.13 (TP -algebras are models)
(TP :HAlgΣ,Π) ∼= HMod(P ).

Proof. It follows immediately from Proposition 2.12 that the functor F :HMod(P ) →
(TP :HAlgΣ,Π) which sends M in (M, idM) and is the identity on morphisms is an iso-
morphism of categories. X

Since isomorphisms of categories in particular are isomorphisms of classes of arrows between
correspondent objects, it is immediate to see that they send initial objects to initial objects.
The next corollary follows from this observation.

Corollary 2.14 (TΣ,Π,P is lfp(TP ))
TΣ,Π,P is the least fixed-point of TP . X



2.2 Models are reflective in Interpretations

In this section, we present a characterization of the least Herbrand model based on an adjunction
between interpretations and models.

Adjunctions, introduced in [12], provide an elegant way to formulate properties of free
objects and universal constructions.

Definition 2.15 (Adjunctions)
An adjunction from C to D is a triple 〈F ,G, ϕ〉:C ⇀ D, where F :C→ D and G:D→ C are
functors and ϕ is a function which assigns to each pair of objects A ∈ C and B ∈ D a bijection

ϕA,B:D[F(A),B] ∼= C[A,G(B)],

which is natural both in A and B, i.e., such that for all k:A′ → A and h:B → B′ the following
diagrams commute.

D[F(A),B]
ϕA,B−−−→ C[A,G(B)] D[F(A),B]

ϕA,B−−−→ C[A,G(B)]

◦ F(k)

y y ◦ k h ◦
y yG(h) ◦

D[F(A′),B]
ϕA′,B−−−→ C[A′,G(B)] D[F(A),B′]

ϕA,B′−−−→ C[A,G(B′)]
X

If 〈F ,G, ϕ〉:C ⇀ D is an adjunction, F is called left adjoint to G and, viceversa, G is called
right adjoint to F .

A well-know result in Category Theory is that left adjoints preserve initiality, i.e., they map
initial objects to initial objects.

Definition 2.16 (Reflections)
A subcategory C of D is said reflective in D if there exists a left adjoint, said reflector of D
in C, for the inclusion functor C ↪→ D. X

In the following, we will show the family of functions Tω
P , defined in Section 1.3, defines a

reflector of AlgΣ,Π in Mod(P ). Informally speaking, in our setting it means that any interpre-
tation can be “completed” to be a model in a universal way, i.e., that any interpretation has
a canonical representative—its reflection—in the category of models. The reader is referred
to [15] for further considerations on the relevance the concept of reflection. By exploiting stan-
dard results from Category Theory, we show that the TΣ,Π,P is the canonical object linked by
the adjunction to the empty Herbrand interpretation, i.e., TΣ,Π.

Definition 2.17 (Functor T ω
P )

Given a program P on 〈Σ, Π〉, let us consider the function T ω
P :AlgΣ,Π → AlgΣ,Π defined by:

(i) T ω
P (A) has the same elements of A;

(ii) σT ω
P (A) = σA for each σ ∈ Σ;

(iii) ρT ω
P (A) = [[Tω

A(πA)]]ρ for each ρ ∈ Π;

(iv) T ω
P is the identity on homomorphisms. X



Proposition 2.18 (T ω
P :AlgΣ,Π →Mod(P ))

For each A ∈ AlgΣ,Π, T ω
P (A) is a model. Moreover, φ:A → B in AlgΣ,Π if and only if

φ: T ω
P (A)→ T ω

P (B) is in Mod(P ). X

Proof. Obviously, since Tω
A(πA) = Tω

A(Tω
A(πA)), we have that T ω

P (A) = T (ω)
P (T (ω)

P (A))
which, therefore, is a model.

Concerning the claim about morphisms, the left implication is clearly true. In order
to show the converse implication, suppose now that (e1, . . . , en) ∈ ρT ω

P (A). We show by

induction on the least k ∈ N such that ρ(e1, . . . , en) ∈ Tk
A(πA) that φ(e1, . . . , en) ∈ ρT ω

P (B).

Induction base. In this case we have that ρ(e1, . . . , en) ∈ πA.
Then we have that φ(e1, . . . , en) ∈ ρT ω

P (B), since φ is a (Σ, Π)-homomorphism and πB ⊆
πT ω

P (B).

Inductive step. There exists k ∈ N \ {0} such that for some θ: X → A and for some
ρ(t1, . . . , tn) ← ρ1(t11, . . . , t

1
n1

), . . . , ρh(th1 , . . . , t
h
nh

) ∈ P , we have that θti = ei for i =

1, . . . , n and ρ1(t11, . . . , t
1
n1

), . . . , ρh(th1 , . . . , t
h
nh

) ∈ T(k−1)
A (πA). Therefore, by a straightfor-

ward application of the inductive hypothesis, the proof is concluded. X

As a corollary to the previous proposition we have that T (ω)
P :AlgΣ,Π → Mod(P ) is a

functor.

Proposition 2.19 ( 〈T ω
P ,←↩〉:AlgΣ,Π ⇀ Mod(P ))

T (ω)
P is the left adjoint to the inclusion functor of Mod(P ) in AlgΣ,Π.

Proof. Given A ∈ AlgΣ,Π and M ∈ Mod(P ) we have that φ:A → M if and only if

φ: T (ω)
P (A) → T (ω)

P (M) = M. Therefore the natural isomorphism we are seeking is the
identity AlgΣ,Π[A,M] = Mod(P )[T ω

P (A), T ω
P (M)] = Mod(P )[T ω

P (A),M]. X

Finally, we find again the least Herbrand model as the image of the initial (Σ, Π)-algebra
via T ω

P .

Corollary 2.20 (TΣ,Π,P is the reflection of TΣ,Π)

TΣ,Π,P = T (ω)
P (TΣ,Π).

Proof. TΣ,Π is initial in AlgΣ,Π and T ω
P preserves initiality. X
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