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∗∗Computer Science Department, Aarhus University, Denmark

Extended Abstract
Models for concurrency can be classified with respect to the three rel-
evant parameters: behaviour/system, interleaving/noninterleaving, lin-
ear/branching time. When modelling a process, a choice concerning such
parameters corresponds to choosing the level of abstraction of the result-
ing semantics. The classifications are formalised through the medium of
category theory.

Introduction

From its beginning, many efforts in the development of the theory of concurrency
have been devoted to the study of suitable models for concurrent and distributed
processes, and to the formal understanding of their semantics.

As a result, in addition to standard models like languages, automata and
transition systems [4, 9], models like Petri nets [8], process algebras [6, 2], Hoare
traces [3], Mazurkiewicz traces [5], synchronization trees [15] and event struc-
tures [7, 16] have been introduced.

The idea common to the models above is that they are based on atomic
units of change—be they called transitions, actions, events or symbols from an
alphabet—which are indivisible and constitute the steps out of which computa-
tions are built.

The difference between the models may be expressed in terms of the param-
eters according to which models are often classified. For instance, a distinction
made explicitly in the theory of Petri nets, but sensible in a wider context, is
that between so-called “system” models allowing an explicit representation of
the (possibly repeating) states in a system, and “behaviour” models abstracting
away from such information, which focus instead on the behaviour in terms of
patterns of occurrences of actions over time. Prime examples of the first type are
transition systems and Petri nets, and of the second type, trees, event structures
and traces. Thus, we can distinguish among models according to whether they
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Beh./Int./Lin. Hoare languages HL

Beh./Int./Bran. synchronization trees ST

Beh./Nonint./Lin. deterministic labelled event structures dLES

Beh./Nonint./Bran. labelled event structures LES

Sys./Int./Lin. deterministic transition systems dTS

Sys./Int./Bran. transition systems TS

Sys./Nonint./Lin. deterministic transition systems with independence dTSI

Sys./Nonint./Bran. transition systems with independence TSI

Table 1: The models

are system models or behaviour models, in this sense; whether they can faithfully
take into account the difference between concurrency and nondeterminism; and,
finally, whether they can represent the branching structure of processes, i.e., the
points in which choices are taken, or not. Relevant parameters when looking at
models for concurrency are

Behaviour or System model;
Interleaving or Noninterleaving model;
Linear or Branching Time model.

The parameters cited correspond to choices in the level of abstraction at
which we examine processes and which are not necessarily fixed for the process
once and for all. It is the application one has in mind for the formal semantics
which guides the choice of abstraction level.

This work presents a classification of models for concurrency based on the
three parameters, which represents a further step towards the identification of
systematic connections between transition based models. In particular, we study
a representative for each of the eight classes of models obtained by varying the
parameters behaviour/system, interleaving/noninterleaving and linear/branching
in all the possible ways. Intuitively, the situation can be graphically represented,
as in the picture below, by a three-dimensional frame of reference whose coordi-
nate axes represent the three parameters.

Int/NonInt
←−−−−−−−−−−−

Beh/Sys

↑|||||||||||||||||

Lin/Bran

�
�

�
��
ր

Our choices of models are summarized in Table 1. It is worth noticing that,
with the exception of the new model of transition systems with independence,
each model is well-known.

The formal relationships between models are studied in a categorical setting,
using the standard categorical tool of adjunctions. The “translations” between
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models we shall consider are coreflections or reflections. These are particular
kinds of adjunctions between two categories which imply that one category is
embedded , fully and faithfully, in another.1

Here we draw on our experience in recasting models for concurrency as cat-
egories, detailed in [17]. Briefly the idea is that each model (transition systems
are one such model) will be equipped with a notion of morphism, making it
into a category in which the operations of process calculi are universal construc-
tions. The morphisms will preserve behaviour, at the same time respecting a
choice of granularity of the atomic changes in the description of processes—the
morphisms are forms of simulations. One role of the morphisms is to relate the
behaviour of a construction on processes to that of its components. The reflec-
tions and coreflections provide a way to express that one model is embedded
in (is more abstract than) another, even when the two models are expressed in
very different mathematical terms. One adjoint will say how to embed the more
abstract model in the other, the other will abstract away from some aspect of
the representation. The preservation properties of adjoints can be used to show
how a semantics in one model translates to a semantics in another.

The picture below, in which arrows represent coreflections and the “back-
ward” arrows reflections, shows the “cube” of relationships.

dTSI

�
�

�
............
........................................

..........�
⊳−−−−−−−−−֓ dTS

�
�

�
............
........................................

..........�
△

||||||||||
∪

△

||||||||||
∪

dLES

�
�

�
............
........................................

..........�
⊳−−−−−−−−−֓ HL

�
�

�
............
........................................

..........�

TSI ⊳−−−−−−−−−֓ TS
△

||||||||||
∪

△

||||||||||
∪

LES ⊳−−−−−−−−−֓ ST

Although most of the chosen models are well known, among the adjunctions
in the cube only HL −֒⊳ ST, ST −֒⊲ TS and ST −֒⊲ LES have already appeared
in literature.

Here all proofs are omitted. The reader interested in the details is referred
to [10, 11]. Some of the results presented here will appear in [17].

1 Interleaving Models

In this section, we study the interleaving models. We start by briefly recall-
ing some well-known relationships between languages, trees and transition sys-
tems [17], and then, we study how they relate to deterministic transition systems.

1Here a coreflection is an adjunction in which the unit is natural isomorphism, and a

reflection an adjunction where the counit is a natural isomorphism.
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Definition 1.1 (Labelled Transition Systems)
A labelled transition system is a structure T = (S, sI , L,Tran) where S is a set
of states; sI ∈ S is the initial state, L is a set of labels, and Tran ⊆ S × L × S
is the transition relation.

Given the labelled transition systems T0 and T1, a morphism h: T0 → T1 is a pair
(σ, λ), where σ: ST0

→ ST1
is a function and λ: LT0

⇀ LT1
a partial function,

such that2

i) σ(sI
T0

) = sI
T1

;

ii) (s, a, s′) ∈ TranT0
implies if λ↓a then

(

σ(s), λ(a), σ(s′)
)

∈ TranT1
;

σ(s) = σ(s′) otherwise.

This defines the category TS of labelled transition systems.

Definition 1.2 (Synchronization Trees)
A synchronization tree is an acyclic, reachable transition system S such that

(s′, a, s), (s′′, b, s) ∈ TranS implies s′ = s′′ and a = b.

We write ST to denote the full subcategory of TS consisting of synchronization
trees.

Definition 1.3 (Hoare Languages)
A Hoare language is a pair (H, L), where ∅ 6= H ⊆ L∗, and sa ∈ H ⇒ s ∈ H .

A partial map λ: L0 ⇀ L1 is a morphism of Hoare languages from (H0, L0)

to (H1, L1) if for each s ∈ H0 it is λ̂(s) ∈ H1, where λ̂: L∗
0 → L∗

1 is defined by

λ̂(ǫ) = ǫ and λ̂(sa) =

{

λ̂(s)λ(a) if λ↓a;

λ̂(s) otherwise.

These data give the category HL of Hoare languages.

Observe that any language (H, L) can be seen as a synchronization tree just
by considering the strings of the language as states, the empty string being
the initial state, and defining a transition relation where s

a
−→ s′ if and only

if sa = s′. This extends to a functor from HL to ST. This functor and the
inclusion functor from ST to TS may be viewed as embeddings, as stated in
the following theorem, where −֒⊲ represents a coreflection and −֒⊳ a reflection,
and the functors from right to left abstract away from information about states
(from TS to ST) and branching structure (from ST to HL).

Theorem 1.4
HL −֒−−−−−−⊳ ST −֒−−−−−−⊲ TS

2We use f↓x to mean that a partial function f is defined on argument x.
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The right adjoint from TS to ST is the well-known construction of unfold-
ing, while the left adjoint from ST to HL is a straightforward “set of paths”
construction.

The existence of a (co)reflection from category A to B tells us that there is
a full subcategory of B which is equivalent (in the formal sense of equivalences
of categories) to A. Therefore, once we have established a (co)reflection, it is
sometimes interesting to identify such subcategories. In the case of HL and ST

such a question is answered below.

Proposition 1.5 (Languages are deterministic Trees)
The full subcategory of ST consisting of those synchronization trees which are
deterministic, say dST, is equivalent to the category of Hoare languages.

Speaking informally, behaviour/system and linear/branching are indepen-
dent parameters, and we expect to be able to forget the branching structure of
a transition system without necessarily losing all the internal structure of the
system. This leads us to identify a class of models able to represent the internal
structure of processes without keeping track of their branching, i.e., the points at
which the choices are actually taken. A suitable model is given by deterministic
transition systems.

Definition 1.6 (Deterministic Transition Systems)
A transition system T is deterministic if

(s, a, s′), (s, a, s′′) ∈ TranT implies s′ = s′′.

Let dTS be the full subcategory of TS consisting of those transition systems
which are deterministic.

Consider the binary relation ≃ on the state of a transition system T defined
as the least equivalence which is forward closed, i.e.,

s ≃ s′ and (s, a, u), (s′, a, u′) ∈ TranT ⇒ u ≃ u′;

and define ts .dts(T ) =
(

S/≃, [sI
T ]≃, LT ,Tran≃

)

, where S/≃ are the equivalence

classes of ≃, and
(

[s]≃, a, [s′]≃

)

∈ Tran≃ ⇔ ∃(s̄, a, s̄′) ∈ TranT with s̄ ≃ s and s̄′ ≃ s′.

This construction defines a functor which is left adjoint to the inclusion
dTS →֒ TS.

Next, let us present a universal construction from Hoare languages to deter-
ministic transition system. In particular, we exhibit a coreflection HL −֒⊲ dTS.
Let (H, L) be a language. The left adjoint is defined on objects as follows:
hl .dts(H, L) = (H, ǫ, L,Tran), where (s, a, sa) ∈ Tran for any sa ∈ H , which
is trivially a deterministic transition system. The right adjoint is a standard
“set of traces” construction. Thus, we have enriched our diagram and we have
a square.
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Theorem 1.7 (The Interleaving Surface)

dTS −֒−−−−−−−−⊳ TS
△

||||||||||
∪

△

||||||||||
∪

HL −֒−−−−−−−−⊳ ST

Observe that the construction of the deterministic transition system associ-
ated to a language coincides exactly with the construction of the corresponding
synchronization tree. However, due to the different objects in the categories,
the type of universality of the construction changes. In other words, the same
construction shows that HL is reflective in ST—a full subcategory of TS—and
coreflective in dTS—another full subcategory of TS.

2 Non Interleaving vs. Interleaving Models

Event structures [7, 16] abstract away from the cyclic structure of the process
and consider only events (strictly speaking event occurrences), assumed to be
the atomic computational steps, and the cause/effect relationships between them.
Thus, we can classify event structures as behavioural, branching and noninter-
leaving models. Here, we are interested in labelled event structures.

Definition 2.1 (Labelled Event Structures)
A labelled event structure is a structure ES = (E, #,≤, ℓ, L) consisting of a set
of events E partially ordered by ≤; a symmetric, irreflexive relation # ⊆ E×E,
the conflict relation, such that

{ e′ ∈ E | e′ ≤ e } is finite for each e ∈ E,

e # e′ ≤ e′′ implies e # e′′ for each e, e′, e′′ ∈ E;

a set of labels L and a labelling function ℓ: E → L. For an event e ∈ E, define
⌊e⌋ = { e′ ∈ E | e′ ≤ e }. Moreover, we write ∨∨ for # ∪ { (e, e) | e ∈ EES}.
These data define a relation of concurrency on events: co = E2

ES
\(≤∪≤−1∪#).

A labelled event structure morphism from ES 0 to ES 1 is a pair of partial functions
(η, λ), where η: EES0

⇀ EES1
and λ: LES0

⇀ LES1
are such that

i) ⌊η(e)⌋ ⊆ η(⌊e⌋);

ii) η(e) ∨∨ η(e′) implies e ∨∨ e′;

iii) λ ◦ ℓES0
= ℓES1

◦ η.

This defines the category LES of labelled event structures.
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The computational intuition behind event structures is simple: an event e
can occur when all its causes, i.e., ⌊e⌋ \ {e}, have occurred and no event which is
in conflict with has already occurred. This is formalized by the following notion
of configuration.

Definition 2.2 (Configurations)
Given a labelled event structure ES , define the configurations of ES to be those
subsets c ⊆ EES which are

Conflict Free: ∀e1, e2 ∈ c, not e1 # e2

Left Closed: ∀e ∈ c ∀e′ ≤ e, e′ ∈ c

Let L(ES ) denote the set of configurations of ES .

We say that e is enabled at a configuration c, in symbols c ⊢ e, if

(i) e 6∈ c; (ii) ⌊e⌋ \ {e} ⊆ c; (iii) e′ ∈ EES and e′ # e implies e′ 6∈ c.

Although it is not the only possible one (see [11], where a category of pomset
languages and a category of generalized trace languages are considered), a fair
choice for behavioural, linear and noninterleaving models is given by determin-
istic labelled event structures.

Definition 2.3 (Deterministic Labelled Event Structures)
A labelled event structure ES is deterministic if for any c ∈ L(ES ), and for any
pair of events e, e′ ∈ EES , whenever c ⊢ e, c ⊢ e′ and ℓ(e) = ℓ(e′), then e = e′.

This defines the category dLES as a full subcategory of LES.

In [14], it is shown that synchronization trees and labelled event structures
are related by a coreflection from ST to LES. The left adjoint associates with
an ST-object S, a LES-object where the events are the transitions of S, ≤ is the
tree-ordering of these, and # is the relation of incompatibility of transitions in
this ordering. Hence co is empty, and in fact, the analogous of Proposition 1.5 for
this coreflection states that synchronization trees are event structures with empty
concurrency relations. The coreflection ST −֒⊲ LES restricts to a coreflection
dST −֒⊲ dLES, and hence, by Proposition 1.5, to a coreflection HL −֒⊲ dLES.

Now, on the system level we look for a way of equipping transition systems
with a notion of “concurrency” or “independence”, in the same way as LES

may be seen as adding “concurrency” to ST. Moreover, such enriched transition
systems should also represent the “system model” version of event structures.
Several such models have appeared in the literature [12, 1, 13]. Here we choose
a variation of these.

Definition 2.4 (Transition Systems with Independence)
A transition system with independence is a structure (S, sI , L,Tran, I) consisting
of a transition system (S, sI , L,Tran) together with an irreflexive, symmetric
relation I ⊆ Tran2 such that
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i) (s, a, s′) ∼ (s, a, s′′) ⇒ s′ = s′′;

ii) (s, a, s′) I (s, b, s′′) ⇒ ∃u. (s, a, s′) I (s′, b, u) and (s, b, s′′) I (s′′, a, u);

i.e.,
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iii) (s, a, s′) I (s′, b, u) ⇒ ∃s′′. (s, a, s′) I (s, b, s′′) and (s, b, s′′) I (s′′, a, u);
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iv) (s, a, s′) ∼ (s′′, a, u) I (w, b, w′) ⇒ (s, a, s′) I (w, b, w′);

where ∼ is least equivalence on transitions including the relation ≺ defined by

(s, a, s′) ≺ (s′′, a, u) ⇔ (s, a, s′) I (s, b, s′′) and
(s, a, s′) I (s′, b, u) and
(s, b, s′′) I (s′′, a, u). HHHHj ?

HHHHj
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Morphisms of transition systems with independence are morphisms of the un-
derlying transition systems which preserve independence, i.e., such that

(s, a, s′) I (s̄, b, s̄′) and λ↓a, λ↓b ⇒
(

σ(s), λ(a), σ(s′)
)

I
(

σ(s̄), λ(b), σ(s̄′)
)

.

These data define the category TSI of transition systems with independence.
Moreover, let dTSI denote the full subcategory of TSI consisting of transition
systems with independence whose underlying transition system is deterministic.

Thus, transition systems with independence are precisely standard transi-
tion systems but with an additional relation expressing when one transition is
independent of another. The relation ∼, defined as the reflexive, symmetric and
transitive closure of a relation ≺ which simply identifies local “diamonds” of
concurrency, expresses when two transitions represent occurrences of the same
event. Thus, the equivalence classes [(s, a, s′)]∼ of transitions (s, a, s′) are the
events of the transition system with independence.

Transition systems with independence admit TS as a coreflective subcate-
gory. In this case, the adjunction is easy. The left adjoint associates to any
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transition system T the transition system with independence whose underlying
transition system is T itself and whose independence relation is empty. The right
adjoint simply forgets about the independence, mapping any transition system
with independence to its underlying transition system. From the definition of
morphisms of transition systems with independence, it follows easily that these
mappings extend to functors which form a coreflection TS −֒⊲ TSI. Moreover,
such a coreflection trivially restricts to a coreflection dTS −֒⊲ dTSI.

So, we are led to the following diagram.

Theorem 2.5 (Moving along the “interleaving/noninterleaving” axis)

dTSI ⊳−−−−−−−−−֓ dTS
�

�
�

............
........................................

..........�
△

||||||||||
∪

dLES ⊳−−−−−−−−−֓ HL

�
�

�
............
........................................

..........�

TSI ⊳−−−−−−−−−֓ TS
△

||||||||||
∪

LES ⊳−−−−−−−−−֓ ST

3 Non Interleaving Models

Now, the question is whether the relationships between the interleaving models
generalize to our chosen noninterleaving counterparts. This is indeed so, and in
the following we sketch the generalizations and their proofs.

First of all, it is quite easy to see that the inclusion functor from ST to TS

generalizes naturally to a functor les .tsi from LES to TSI. Consider a labelled
event structure ES = (E,≤, #, ℓ, L). Define les .tsi(ES ) to be the transition
system with independence of the finite configurations of ES , i.e.,

les .tsi(ES ) =
(

LF (ES ), ∅, L,Tran, I
)

,

where

• LF (ES ) is the set of finite configuration of ES ;

• (c, a, c′) ∈ Tran if and only if c = c′ \ {e} and ℓ(e) = a;

• (c, a, c′) I (c̄, b, c̄′) if and only if (c′ \ c) co (c̄′ \ c̄).

This is basically nothing but formalizing the computational intuition of event
structures (Definition 2.2) in terms of TSI. Our proof that this is part of a
coreflection, involves (yet another) characterization of LES—here in terms of
TSI—which also supports our claim of transition systems with independence
being a “generalization” of event structures.
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Theorem 3.1 (Event Structures are Transition Systems with Independence)
Let oTSI (occurrence transition systems with independence) denote the full
subcategory of TSI where the objects OTI = (S, sI , L,Tran, I) are reachable,
acyclic and such that

(1)
(s′, a, u) 6= (s′′, b, u) ∈ Tran implies

∃s. (s, b, s′) I (s, a, s′′) and (s, b, s′) I (s′, a, u)
and (s, a, s′′) I (s′′, b, u),

or, in other words, (s′, a, u) and (s′′, b, u) form the bottom of a concurrency
diamond, and

(2) t I t′ ⇒ ∃s. (s, a, s′) ∼ t and (s, b, s′′) ∼ t′.

Then oTSI and LES are equivalent categories. Moreover, the equivalence cuts
down to an equivalence of doTSI and dLES.

It is immediate to realize that les .tsi(ES ) is an occurrence transition system
with independence; thus, les.tsi factorizes through les .otsi :LES → oTSI and
the inclusion oTSI →֒ TSI. In order to give a hint about the equivalences
of Theorem 3.1, we sketch the transformation from oTSI to LES opposite to
les.otsi. The labelled event structure associated to OTI is

otsi .les(OTI ) =
(

TranOTI /∼,≤, #, ℓ, LOTI

)

,

where

• [(s, a, s′)]∼ ≤ [(s̄, b, s̄′)]∼ if and only if

for any path π of OTI , [(s̄, b, s̄′)]∼ ∈ π ⇒ [(s, a, s′)]∼ ∈ π;

• [(s, a, s′)]∼ # [(s̄, b, s̄′)]∼ if and only if

for any path π of OTI , [(s̄, b, s̄′)]∼ ∈ π ⇒ [(s, a, s′)]∼ 6∈ π;

• ℓ
(

[(s, a, s′)]∼

)

= a;

and where we write [(s, a, s′)]∼ ∈ π to mean that a representative of [(s, a, s′)]∼
occurs in the path π. An example of this construction is given in Figure 1.

The proof of Theorem 3.1 consists of showing that otsi.les and les.otsi form
an equivalence of categories.

Now, the right adjoint to les.tsi can be defined in terms of a notion of unfold-
ing tsi.otsi of TSI’s into oTSI’s which is the right adjoint of the inclusion func-
tor. The unfolding construction takes into account that computations which only
differ for the order in which (representatives of) independent events (∼-classes)
occur must be considered equivalent. Thus, differently from the interleaving
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Figure 1:

case, the unfolding is not a tree: the states reached by equivalent computations
coincide in the unfolded transition system. The proof that this form a coreflec-
tion is rather involved, but once established it is quite easy to see that it restricts
to a coreflection doTSI −֒⊲ dTSI. Thus, we have the coreflections LES −֒⊲ TSI

and dLES −֒⊲ dTSI. The result is summarized in the following theorem.

Theorem 3.2 (Moving along the “behaviour/system” axis)

dTSI ⊳−−−−−−−−−֓ dTS
�

�
�

............
........................................

..........�
△

||||||||||
∪

△

||||||||||
∪

dLES ⊳−−−−−−−−−֓ HL

�
�

�
............
........................................

..........�

TSI ⊳−−−−−−−−−֓ TS
△

||||||||||
∪

△

||||||||||
∪

LES ⊳−−−−−−−−−֓ ST

Finally, we consider the relationship between dTSI and TSI, looking for
a generalization of the reflection dTS −֒⊳ TS. Of course, the question to be
answered is whether a left adjoint for the inclusion functor dTSI →֒ TSI exists
or not. This is actually a complicated issue and for a long while we could not
see the answer. However, we can now answer positively! The definition of the
functor and the proof of the reflection are rather involved, since the presence of
an independence relation, together with the axioms of transition systems with
independence, raises considerably the complexity of the problem we faced easily
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in the interleaving case. In particular, the object component of the functor
is an inductive construction which builds on ts.dts taking independence into
account. It is quite easy to realize that applying the quotient construction which
defines ts.dts to transition systems with independence does not yield transition
systems with independence, since it does not preserve the irreflexivity of the
independence relation and properties (ii) and (iii) of Definition 2.4. However,
an inductive construction which “completes” the outcome of ts.dts, building a
transition system with independence upon it, can be defined. Technically, this
is achieved by constructing an ω-chain of transition systems which fail to be
transition systems with independence at most because of the irreflexivity of the
independence relation and axioms (ii) and (iii), say pre-transition systems with
independence, and by showing that the (co)limit of such a chain exists and is a
deterministic transition system with independence. Such a (co)limit construction
is the object component of the left adjoint to the inclusion dTSI →֒ TSI.

Of course, the non-irreflexivity of independence can be dealt only by elim-
inating the transitions involved, and since it arises from autoconcurrency, i.e.,
diamonds of concurrency whose edges carry the same label, this means that
we eliminate the nondeterminism arising from autoconcurrency by eliminating
all the events involved. However, it is not difficult to understand that, in our
context, this is the only possibile choice. (The reader can convince himself by
studying the problem on the very simple transition system with independence
consisting of a single diamond of autoconcurrency.)

Given sets S and L, consider triples of the kind (X,≡, I), where X ⊆ S ·L∗ =
{sα | s ∈ S and α ∈ L∗}, and≡ and I are binary relations on X . On such triples,
the following closure properties can be considered.

(Cl1) x ≡ z and za ∈ X implies xa ∈ X and xa ≡ za;

(Cl2) x ≡ z and za I yc implies xa I yc;

(Cl3) xab ≡ xba and xa I xb or xa I xab implies xa I yc⇔ xba I yc.

We say that (X,≡, I) is suitable if ≡ is an equivalence relation, I is a sym-
metric relation and it enjoys properties (Cl1), (Cl2) and (Cl3). Suitable triples
are meant to represent deterministic pre-transition systems with independence,
the elements in X representing both states and transitions. Namely, xa repre-
sents the state reached from (the state corresponding to) x with an a-labelled
transition, and that transition itself. Thus, equivalence ≡ relate paths which
lead to the same state and relation I expresses independence of transitions.
With this understanding, (Cl1) means that from any state there is at most one
a-transition, while (Cl2) says that I acts on transitions rather than on their rep-
resentation. Finally, (Cl3)—the analogous of axiom (iv) of transition systems
with independence—tells that transitions on the opposite edges of a diamond
behave the same with respect to I.

For x ∈ S · L∗ and a ∈ L, let x↾a denote the pruning of x with respect to a.
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Formally,

s↾a = s and (xb)↾a =

{

x↾a if a = b

(x↾a)b otherwise

Of course it is possibile to use unambiguously x↾A for A ⊆ L. Moreover, we
use X↾A to denote the set {x↾A | x ∈ X} and for R a binary relation on X ,
R↾A will be {(x↾A, y↾A) | (x, y) ∈ R}.

For a transition system with independence TI = (S, sI , L,Tran, I), we define
the sequence a triples (Si,≡i, Ii), for i ∈ ω, inductively as follows. For i = 0,
(S0,≡0, I0) is the least (with respect to componentwise set inclusion) suitable
triple such that

S ∪
{

sa
∣

∣

∣
(s, a, u) ∈ Tran

}

⊆ S0;
{

(sa, u)
∣

∣

∣
(s, a, u) ∈ Tran

}

⊆ ≡0;

and
{

(sa, s′b)
∣

∣

∣
(s, a, u) I (s′, b, u′)

}

⊆ I0;

and, for i > 0, (Si,≡i, Ii) is the least suitable triple such that

(ℑ) Si−1↾Ai−1 ⊆ Si; ≡i−1↾Ai−1 ⊆ ≡i; (Ii−1 \ TAi−1)↾Ai−1 ⊆ Ii;

(D1) xa, xb ∈ Si−1↾Ai−1 and xa (Ii−1 \TAi−1)↾Ai−1 xb
implies xab, xba ∈ Si and xab ≡i xba;

(D2) xa, xab ∈ Si−1↾Ai−1 and xa (Ii−1 \TAi−1)↾Ai−1 xab
implies xb, xba ∈ Si and xab ≡i xba;

where Ai = {a ∈ L | xa Ii xa} and TAi = {(xa, yb) ∈ Ii | a ∈ Ai or b ∈ Ai}.

The inductive step extends a triple towards a transition system with indepen-
dence by means of the rules (D1) and (D2), whose intuitive meaning is clearly
that of closing possibly incomplete diamonds. The process could create autoin-
dependent transitions which must be eliminated. This is done by (ℑ) which
drops them and adjusts ≡i and Ii. We define the limit of the sequence as

(

Sω =
⋃

i∈ω

⋂

j≥i

Sj , ≡ω =
⋃

i∈ω

⋂

j≥i

≡j , Iω =
⋃

i∈ω

⋂

j≥i

Ij

)

,

and consider TSysω =
(

Sω/≡ω, [sI ]≡ω
, Lω,Tran≡ω

, I≡ω

)

, where

• ([x]≡ω
, a, [x′]≡ω

) ∈ Tran≡ω
if and only if x′ ≡ω xa;

• ([x]≡ω
, a, [x′]≡ω

) I≡ω
([x̄]≡ω

, b, [x̄′]≡ω
) if and only if xa Iω x̄b;

• Lω = L \
⋃

j∈ω

Aj .
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Theorem 3.3
TSysω is a deterministic transition system with independence.

Thus, TSysω, which can be seen as the colimit of an appropriate ω-diagram
in the category of pre-transition system with independence, is the deterministic
transition system with independence associates to the transition system with
independence TI by the left adjoint to the inclusion dTSI →֒ TSI.

Once the reflection is established, it is then easy to see that it restricts
to a reflection doTSI −֒⊳ oTSI, and hence from Theorem 3.1, to a reflection
dLES −֒⊳ LES.

So, our results may be summed up in the following “cube” of relationships
among models.

Theorem 3.4 (The Cube)

dTSI

�
�

�
............
........................................

..........�
⊳−−−−−−−−−֓ dTS

�
�

�
............
........................................

..........�
△

||||||||||
∪

△

||||||||||
∪

dLES

�
�

�
............
........................................

..........�
⊳−−−−−−−−−֓ HL

�
�

�
............
........................................

..........�

TSI ⊳−−−−−−−−−֓ TS
△

||||||||||
∪

△

||||||||||
∪

LES ⊳−−−−−−−−−֓ ST

Conclusion

We have established a “cube” of formal relationships between well-known and (a
few) new models for concurrency, obtaining a picture of how to translate between
these models via adjunctions along the axes of “interleaving/noninterleaving”,
“linear/branching” and “behaviuor/system”. Notice the pleasant conformity
in the picture, with coreflections along the “interleaving/noninterleaving” and
“behaviour/system” axes, and reflections along “linear/branching”. All squares
(surfaces) of the “cube” commute, with directions along those of the embeddings.
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