In proceedings of MFCS ‘93, LNCS n. 711, 1993

Deterministic Behavioural Models for Concurrency

Vladimiro Sassone* Mogens Nielsen*

Glynn Winskel™

*Dipartimento di Informatica, Universita di Pisa, Italy
**Computer Science Department, Aarhus University, Denmark

EXTENDED ABSTRACT
This paper offers three candidates for a deterministic, noninterleaving, behaviour
model which generalizes Hoare traces to the noninterleaving situation. The three
models are all proved equivalent in the rather strong sense of being equivalent as
categories. The models are: deterministic labelled event structures, generalized
trace languages in which the independence relation is context-dependent, and de-
terministic languages of pomsets.

Introduction

Models for concurrency can be classified according to whether they can represent the
structure of systems or just their behaviours (Behaviour or System model); whether they
can faithfully take into account the difference between concurrency and nondeterminism
(Interleaving or Noninterleaving model); and, finally, whether they can represent the
branching structure of processes, i.e., the points in which choices are taken, or not (Linear
or Branching Time model).

In [9], the authors studied a range of models based on such a classification. The clas-
sification has the shape of a cube whose vertices are categories of models—corresponding
to the eight classes of models obtained by varying the parameters above—and whose
edges establish formal relationships between such categories. More precisely, the edges
of the cube are special forms of adjunctions, namely reflections or coreflections, which
express translations between models.

Generally speaking, the model chosen to represent a class is a canonical and univer-
sally accepted representative of that class. For the behavioural models they are Hoare
languages [3] for interleaving, linear-time models, synchronization trees [12] for inter-
leaving, branching-time models, and labelled event structures [13] for noninterleaving,
branching-time models. However, for the class of noninterleaving, linear-time models,
there does not, at present, seem to be an obvious choice of a corresponding canonical
model.

The choice taken in [9] is deterministic labelled event structures, i.e. labelled event
structures where the enabling relation between configurations and events is deterministic
in the sense that whenever two events with the same label are enabled at a common
configuration they are the same. The following is an example of such an event structure,

*This author has been supported by a grant of the Danish Research Academy.

682

together with its domain of configurations.

b

a. .A’
N
WA

The choice of deterministic labelled event structures is based, by analogy, on the obser-
vation that Hoare trace languages may be viewed as deterministic synchronization trees,
and that labelled event structures are a canonical generalization of synchronization trees
within noninterleaving models. In this paper we investigate the relationship between this
model and two of the most-studied, noninterleaving generalizations of Hoare languages
in the literature: the pomsets of Pratt [8], and the traces of Mazurkiewicz [6].

Pomsets, an acronym for partial ordered multisets, are labelled partial ordered sets. A
noninterleaving representation of a system can be readily obtained by means of pomsets
simply by considering the (multiset of) labels occurring in the run ordered by the causal
dependency relation inherited from the events. The system itself is then represented by a
set of pomsets. For instance, the labelled event structure given in the example discussed
above can be represented by the following set of pomsets.

@@Ila/b

A simple but conceptually relevant observation about pomsets is that strings can be
thought of as a particular kind of pomsets, namely those pomsets which are finite and
linearly ordered. In other words, a pomset |a1 <ag < -+ < ay | represents the string

ajas - - a,. On the other side of such correspondence, we can think of (finite) pomsets
as a generalization of the notion of word (string) obtained by relaxing the constraint
which imposes that the symbols in a word be linearly ordered. This is why in the
literature pomsets have also appeared under the name partial words [2]. The analogy
between pomsets and strings can be pursued to the point of defining languages of partial
words, called partial languages, as prefix-closed—for a suitable extension of this concept
to pomsets—sets of pomsets on a given alphabet of labels.

Since our purpose is to study linear-time models which are deterministic, we shall
consider only pomsets without autoconcurrency, i.e., pomsets such that all the elements
carrying the same label are linearly ordered. Following [11], we shall refer to this kind
of pomsets as semiwords and to the corresponding languages as semilanguages. We shall
identify a category dSL of deterministic semilanguages equivalent to the category of
deterministic labelled event structures. Although pomsets have been studied extensively
(see e.g. [8, 1, 2]), there are few previous results about formal relationships of pomsets
with other models for concurrency.

683

Mazurkiewicz trace languages [6] are defined on an alphabet L together with a sym-
metric irreflexive binary relation I on L, called the independence relation. The relation
I induces an equivalence on the strings of L* which is generated by the simple rule

aabf ~ abafB if alb,

where a, 5 € L* and a,b € L. A trace language is simply a subset M of L* which is
prefix-closed and ~-closed, i.e., « € M and « ~ (§ implies 8 € M. It represents a system
by representing all its possible behaviours as the sequences of (occurrences of) events it
can perform. Since the independence relation can be taken to indicate the events which
are concurrent to each other, the relation ~ does nothing but relate runs of the systems
which differ only in the order in which independent events occur.

However, Mazurkiewicz trace languages are too abstract to describe faithfully labelled
event structures. Consider for instance the labelled event structure shown earlier. Clearly,
any trace language with alphabet {a, b} able to describe such a labelled event structure
must be such that ab ~ ba. However, it cannot be such that aba ~ aab. Thus, we
are forced to move from the well-known model of trace languages. We shall introduce
here a new notion of generalized Mazurkiewicz trace language, in which the independence
relation is context-dependent. For instance, the event structure shown in the above picture
will be represented by a trace language in which «a is independent from b at €, i.e., after
the empty string, in symbols a I, b, but a is not independent from b at a, i.e., after the
string a has appeared, in symbols a J, b. In particular, we shall present a category GTL
of generalized trace languages which is equivalent to the category dLES of deterministic
labelled event structures. We remark that a similar idea of generalizing Mazurkiewicz
trace languages has been considered also in [4].

Summing up, we present the chain of equivalences

dSL ~ dLES ~ GTL

which, besides identifying models which can replace dLES in our classification, also
introduce interesting deterministic behavioural models for concurrency and formalizes
their mutual relationships. This being an extended abstract, all the proofs are omitted;
however, all the translations between models are presented in full. The reader interested
in the complete treatment is referred to [10].

1 Preliminaries

One of the most studied noninterleaving models for concurrency is that of event struc-
tures [7, 12]. Their first class objects are events, assumed to be the atomic computational
steps, which are related to each other by cause/effect and conflict relationships.

DEFINITION 1.1 (Labelled Event Structures)

A labelled event structure is a structure ES = (E,#,<,{, L) consisting of a set of events
FE partially ordered by <; a symmetric, irreflexive relation # C E x E, the conflict
relation, such that

{e' € E|e <e} is finite for each e € E,

e # ¢ < e implies e # ¢ for each e,e’, e’ € E;

684

a set of labels L and a labelling function ¢: E — L. For an event e € E, define |e] =
{e' € E| ¢ <e}. Moreover, we write W for the relation # U { (e,e) | e € Fgs}.

A labelled event structure morphism from ES to ES; is a pair of partial functions (n, \),
where n: Egs, — Egrs, and X\: Lgs, — Lgg, are such that

(1) n(e)) Sn(lel), (i) nle) Wn(e') =ewe', (i) Aolgs, ="Lps, on.

Taking composition to be the componentwise composition of partial functions, defines
the category LES of labelled event structures.

The computational intuition behind event structures is very simple: an event e can
occur when all its causes, i.e., |e]\ {e}, have occurred and no event which it is in conflict
with has already occurred. This is formalized by the following notion of configuration.

DEFINITION 1.2 (Configurations)
Given a labelled event structure ES, define the configurations of ES to be those subsets
¢ C Eggs which are

Conflict Free: Vey,eq € ¢, not e; # es

Left Closed: VeccVe' <e, e €c

Let L(ES) denote the set of configurations of ES. We say that event e is enabled at a
configuration ¢, in symbols c - e, if (i) e & ¢; (ii) |e| \ {e} C ¢; and (iii) ¢’ € Egg and
e’ # e implies €' ¢ c.

DEFINITION 1.3 (Deterministic Event Structures)

A labelled event structure ES is deterministic if and only if for any ¢ € L(ES), and for
any pair of events e, e’ € Egg, whenever ct e, ct e’ and {(e) = {(e), then e = ¢’

This defines the category ALES as a full subcategory of LES.

Configurations of event structures may be viewed as labelled partial orders on L, i.e.,
as triples (E, <,f), where F is a set, < C E? a partial order relation; and ¢: E — L is a

) —

labelling function. We say that a labelled partial order (E, <,) is finite if E is so.

DEFINITION 1.4 (Partial Words)

A partial word on L is an isomorphism class of finite labelled partial orders. Given a
finite labelled partial order p we shall denote with [p] the partial word which contains p.
We shall also say that p represents the partial word [p].

A semiword is a partial word which does not exhibit autoconcurrency, i.e., such that
all its subsets consisting of elements carrying the same label are linearly ordered. This is
a strong simplification. Indeed, given a labelled partial order p representing a semiword
on L and any label a € L, such hypothesis allows us to talk unequivocally of the first
element labelled a, of the second element labelled a, ..., the n-th element labelled a. In
other words, we can represent p unequivocally as a (strict) partial order whose elements
are pairs in L X w, (a,#) representing the i-th element carrying label a. Thus, we are led
to the following definition, where for n a natural number, [n] denote the initial segment
of length n of w\ {0}, i.e., [n] = {1,...,n}.

685

DEFINITION 1.5 (Semiwords)
A (canonical representative of a) semiword on an alphabet L is a pair x = (A, <) where

e A, = U ({a} X [ni]), for some n! € w, and A, is finite;
a€l

e <, Is a transitive, irreflexive, binary relation on A, such that
(a,1) <z (a,7) if and only if i < j,
where < is the usual (strict) ordering on natural numbers.

The semiword represented by z is [[(Az, S,E)H, where (a,i) < (b,7) if and only if

(a,1) <5 (b,7) or (a,i) = (b,7), and E((a,i)) = a. However, exploiting in full the
existence of such an easy representation, from now on, we shall make no distinction
between x and the semiword which it represents. In particular, as already stressed in
Definition 1.5, with abuse of language, we shall refer to x as a semiword. The set of
semiwords on L will be indicated by SW(L). The usual set of words (strings) on L is
(isomorphic to) the subset of SW(L) consisting of semiwords with total ordering.

A standard ordering used on words is the prefix order C, which relates a and f if and
only if « is an initial segment of . Such idea is easily extended to semiwords in order to
define a prefix order C C SW (L) x SW(L). Consider z and y in SW(L). Following the
intuition, for x to be a prefix of y, it is necessary that the elements of A, are contained
also in A, with the same ordering. Moreover, since new elements can be added in A,
only “on the top” of A;, no element in A, \ A, may be less than an element of A,. This
is formalized by saying

zCy if and only if A, CA, and <,=<,NA2
and <, N((Ay \ 4z) X 4;) = 2.

It is quickly realized that C is a partial order on SW (L) and that it coincides with
the usual prefix ordering on words.

EXAMPLE 1.6 (Prefiz Ordering)
As a few examples of the prefix ordering of semiwords, it is

c
@E a b C a/l), and E a bl

However, it is neither the case that

Cc c

Ael 1l w | {lc|/

ab a b, a b ab

111

We shall use Pref(z) to denote the set {y € SW(L) | y T z} of proper prefizes
of . The set of maximal elements in x will be denoted by Maz(z). Semiwords with

686

a maximum element play a key role in our development. For reasons that will be clear
later, we shall refer to them as to events.

Another important ordering is usually defined on semiwords: the “smoother than”
order, which takes into account that a semiword can be extended just by relaxing its
ordering. More precisely, x is smoother than y, in symbols z < y, if imposes more
order contraints on the elements of y. Formally,

ry if and only if Az =4, and <;2 <.

It is easy to see that x C SW(L)x SW(L) is a partial order. In the following, we shall
use Smooth(z) to denote the set of smoothings of x, i.e., the set {y € SW(L) | y < z}.

EXAMPLE 1.7 (Smoother than Ordering)
The following few easy situations exemplify the smoother than ordering of semiwords.

c c
Il <1 |
ab a b < abc
On the other hand, neither
c C C c
‘ < ’ nor ’ < ‘
a b a bi, a b a b

2 Semilanguages and Event Structures

Semilanguages are a straightforward generalization of Hoare languages to prefix-closed
subsets of SW(L).

DEFINITION 2.1 (SemiLanguages)
A semilanguage is a pair (SW, L), where L is an alphabet and SW is a set of semiwords
on L which is

Prefix closed: y € SW and x Cy implies x € SW;,
Coherent: Pref(z) C SW and |Maz(x)| > 2 implies x € SW.

Semilanguage (SW, L) is deterministic if
x,y € SW and Smooth(x) N Smooth(y) # @ implies x =y.

In order to fully understand this definition, we need to appeal to the intended mean-
ing of semilanguages. A semiword in a semilanguage describes a (partial) run of a system
in terms of the observable properties (labels) of the events which have occurred, together
with the causal relationships which rule their interactions. Thus, the prefiz closedness
clause captures exactly the intuitive fact that any initial segment of a (partial) compu-
tation is itself a (partial) computation of the system.

In this view, the coherence axiom can be interpreted as follows. Suppose that there is
a semiword x whose proper prefixes are in the language, i.e., they are runs of the system,

687

and suppose that |Maz(z)| > 2. This means that, given any pair of maximal elements
in x, there is a computation of the system in which the corresponding events have both
occurred. Then, in this case, the coherence axiom asks for x to be a possible computation
of the system, as well. In other words, we can look at coherence as to the axiom which
forces a set of events to be conflict free if it is pairwise conflict free, as in [7] for prime
event structures and in [6] for proper trace languages.

To conclude our discussion about Definition 2.1, let us analyze the notion of deter-
minism. Remembering our interpretation of semiwords as runs of a system, it is easy
to realize how the existence of distinct x and y such that Smooth(z) N Smooth(y) # &
would imply nondeterminism. In fact, if there were two different runs with a common
linearization, then there would be two different computations exhibiting the same ob-
servable behaviour, i.e., in other words, two non equivalent sequences of events with the
same strings of labels.

Also the notion of morphism of semilanguages can be derived smoothly as an extension
of the existing one for Hoare languages.

Any X\: Ly — L; determines a partial function A: SW(Lg) — SW (L) which maps z
to its relabelling through), if this represents a semiword, and is undefined otherwise.
Consider now semilanguages (SW, Lo) and (SW1, L), and suppose for € SW that
X is defined on z. Although one could be tempted to ask that A(z) be a semiword in
SW1, this would be by far too strong a requirement. In fact, since in 5\(30) the order <, is
strictly preserved, morphisms would always strictly preserve causal dependency, and this
would be out of tune with the existing notion of morphism for event structures, in which
sequential tasks can be simulated by “more concurrent” ones. Fortunately enough, we
have an easy way to ask for the existence of a more concurrent version of 5\(:13) in SWy.
It consists of asking that A(z) be a smoothing of some semiword in SW.

DEFINITION 2.2 (Semilanguage Morphisms)
Given the semilanguages (SWo, Lg) and (SW1, L1), a partial function A: Ly — Ly is a
morphism \: (SWo, Lo) — (SW1, Ly) if !

Ve e SWo Mz and A(x) € Smooth(SW).

It is worth observing that, if (SW1, L) is deterministic, there can be at most one

semiword in SW1, say x, such that A(z) € Smooth(xy). In this case, we can think of
A (SWo, Lo) — (SW1, L) as mapping = to x).

ExXAMPLE 2.3
Given Lo = {a,b} and Ly = {e¢,d}, consider the deterministic semilanguages below.

SW, = I SW, —
o [a] [b] o [[d] [cd]

1Here, and in the following, we use f|z to mean that a partial function f is defined on argument z.

688

Then, the function A which maps a to ¢ and b to d is a morphism from (SWy, Lg) to
(SW1, Lq). For instance,

>

Cc
= I\< [c_d].
d

Observe that the function N': Ly — L1 which sends both a and b to c is not a morphism

since \ applied to gives which is not the smoothing of any semiword in

SW1, while \"": Ly — Lo which sends both ¢ and d to a is not a morphism from (SW 1, L1)
to (SWo, Lo) since \ is undefined on .

It can be shown that semilanguages and their morphisms, with composition that
of partial functions, form a category whose full subcategory consisting of deterministic
semilanguages will be denoted by dSL. In the following, we shall define translation
functors between dLES and dSL.

Given a deterministic semilanguage (SW,L) define dsl.dles((SW,L)) to be the
structure (F, <,#,¢, L), where

o = {e ‘ e € SW, eis an event, i.e., e has a maximum element};
o <=CNE%
= {(e,e’) € E?

£(e) is the label of the maximum element of e.

° e and €’ are incompatible wrt E};
[]

THEOREM 2.4

dsl.dles ((SW, L)) is a deterministic labelled event structure.

Consider now a deterministic labelled event structure DES = (E, <,#,/, L). Define
dles.dsl(DES) to be the structure (SW, L), where

SW = {[[(c, <N c2,£|c)ﬂ ‘ c is a finite configuration of DES}_

THEOREM 2.5
dles.dsl(DES) is a deterministic semilanguage.

It can be shown that dsl.dles and dles.dsl extend to functors which when composed
with each other yield functors naturally isomorphic to identity functors. In other words,
they form an adjoint equivalence [5, chap. III, pg. 91], i.e., an adjunction which is both
a reflection and a coreflection. It is worthwhile noticing that this implies that the map-
pings dsl.dles and dles.dsl constitute a bijection between deterministic semilanguages
and isomorphism classes of deterministic labelled event structures—isomorphism being
identity up to the names of events.

THEOREM 2.6
The categories dSL and dLES are equivalent.

In fact, dropping the axiom of coherence in Definition 2.1 we get semilanguages
equivalent to labelled stable event structures [12].

689

3 Trace Languages and Event Structures

Generalized trace languages extend trace languages by considering an independence re-
lation which may vary while the computation is progressing. Of course, we need a few
axioms to guarantee the consistency of such an extension.

DEFINITION 3.1 (Generalized Trace Languages)

A generalized trace language is a triple (M, I, L), where L is an alphabet, M C L* is a
prefix-closed and ~-closed set of strings, I: M — 2%L is a function which associates to
each s € M a symmetric and irreflexive relation I, C L x L, such that

I is consistent: s~ s’ implies I, = Iy;
M is I-closed: a Is;b implies sab e M;
I is coherent: (1) alsb and algc and clg, b implies a ¢,
(i4) alsc and clIgb implies (aIg b if and only if a I, b);

where ~ is the least equivalence relation on L* such that sabu ~ sbau if a I b.

As in the case of trace languages, we have an equivalence relation ~ which equates
those strings representing the same computation. Thus, I must be consistent in the
sense that it must associate the same independence relation to ~-equivalent strings.
In order to understand the last two axioms, the following picture shows in terms of
computations ordered by prefix the situations which those axioms forbid. There, the
dots represent computations, the labelled edges represent the prefix ordering, and the
dotted lines represent the computations forced in M by the axioms.

e U N

Dot D el

a . b a . b a . b

. .
C C

(4) (B) (©)

It is easy to see that axiom (i) rules out the situation described by just the solid lines
in (A)—impossible for stable event structures, while axiom (ii) eliminates cases (B)—
which is beyond the descriptive power of general event structures [12] and (C)—impossible
for event structures with binary conflict. They narrow down to those orderings of com-
putations arising from prime event structures.

DEFINITION 3.2 (Generalized Trace Language Morphisms)
Given the generalized trace languages (M, I, L) and (M',I’, L"), a partial function \: L —
L' is a morphism \: (M, I, L) — (M', I’ L) if

)\ preserves words: s€ M implies *(s) € M’;
A respects independence: a I;b and A|la, Alb implies \(a) If*(s) A(b);

690

where * is inductively defined by *(e) = e and A*(sa) = { i* Eg)\(a) loft})i\ifsze

Generalized trace languages and their morphisms, under the usual composition of
partial functions, form the category GTL.

A derived notion of event in generalized trace languages can be captured by the
relation ~ defined as the least equivalence such that

als b implies sa ~ sba and s~ s implies sa~ s'a.

The events occurring in s € M, denoted by Fuv(s), are the ~-classes a representative
of which occurs as a non empty prefix of s, i.e., {[u]N ’ u is a non empty prefix of s}.
It can be shown that s ~ s’ if and only if Fv(s) = Ev(s’"). Extending the notation, we
shall write Ev(M) to denote the events of (M, I, L), i.e., the ~-equivalence classes of non
empty strings in M.

Now, given a generalized trace language (M, I, L) define gtl.dles ((M, 1, L)) to be the
structure (Fv(M), <,#,¢, L), where

o [s]. <[¢']~ ifandonlyif Vue M, [¢']. € Fv(u) implies [s]. € Ev(u);

o [s]. # [s']~ ifand only if Yu € M, [s]~ € Ev(u) implies [s']. & Ev(u);

° E([s]w) =a ifandonlyif s=sa.

THEOREM 3.3
gtl.dles ((1\47 1, L)) is a deterministic labelled event structure.

On the other hand, in order to define a generalized trace language from a deterministic
labelled event structure DES = (E, <, #,¢, L), consider

M = {E*(el---en) ‘ {e1,...,en} CE and {ey,...,e;—1}F e, i:l,...,n}.

Since DES is deterministic, any s € M identifies unequivocally a string of events
Sec(s) = ey ---e, € E* such that {e1,...,e;_1} b e, i=1,...,n, and £*(e; ---e,) = s.
Now, for any s € M, take I, = {(a,b)
Then, define (M, I, L) to be dles.gtl(DES).

sab € M, Sec(sab) = weger and eg co 61}.

THEOREM 3.4
dles.gtl(DES) is a generalized trace language.

As in the case treated in the previous section, dles.gtl and gtl.dles extend to func-
tors between GTL and dLES which form an adjoint equivalence. Such an equivalence
restricts to an isomorphism of generalized trace languages and isomorphism classes of
deterministic labelled event structures.

THEOREM 3.5
Categories GTL and dLES are equivalent.

The result extends to labelled stable event structures by dropping the ‘only if” im-
plication in part (i) of the coherence axiom of Definition 3.1. Of course, it follows from
Theorem 2.6 and Theorem 3.5 that dSL and GTL are equivalent. In the full paper [10],
we also define direct translations between such categories.

691

References

1]

2]
3]

[4]

[5]
[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

J. GisCHER. The Equational Theory of Pomsets. Theoretical Computer Science, n. 61,
pp. 199-224, 1988.

J. GRABOWSKI. On Partial Languages. Fundamenta Informaticae, n. 4, pp. 428-498, 1981.
C.A.R. HOARE. Communicating Sequential Processes. Englewood Cliffs, 1985.

P.W. HoocEers, H.C.M KLEUN, AND P.S. THIAGARAJAN. A Trace Semantics for Petri
Nets. In Proceedings of ICALP ‘92, LNCS, n. 623, pp. 595-604, Springer Verlag, 1992.

S. MACLANE. Categories for the Working Mathematician. GTM, Springer-Verlag, 1971.

A. MAZURKIEWICZ. Basic Notions of Trace Theory. In lecture notes for the REX summer-
school in temporal logic, LNCS, n. 354, pp. 285-363, Springer-Verlag, 1988.

M. NIELSEN, G. PLOTKIN, AND G. WINSKEL. Petri nets, Event Structures and Domains,
part 1. Theoretical Computer Science, n. 13, pp. 85-108, 1981.

V. PRATT. Modeling Concurrency with Partial Orders. International Journal of Parallel
Processing, n. 15, pp. 33-71, 1986.

V. SASSONE, M. NIELSEN, AND G. WINSKEL. A Classification of Models for Concurrency.
To appear as Technical Report Daimi, Computer Science Department, Aarhus University,
1993. Extended abstract to appear in Proceedings of CONCUR ‘93.

V. SASSONE, M. NIELSEN, AND G. WINSKEL. Deterministic Behavioural Models for Con-
currency. To appear as Technical Report Daimi, Computer Science Department, Aarhus
University, 1993.

P. STARKE. Traces and Semiwords. LNCS, n. 208, pp. 332-349, Springer-Verlag, 1985.

G. WINSKEL. Event Structures. In Advances in Petri nets, LNCS, n. 255, pp. 325—-392,
Springer-Verlag, 1987.

G. WINSKEL, AND M. NIELSEN. Models for Concurrency. To appear in the Handbook of
Logic in Computer Science. A draft appears as DAIMI PB 429, 1992.

692

